Skip to main content
Log in

Interaction of Wall Shear Stress Magnitude and Gradient in the Prediction of Arterial Macromolecular Permeability

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Large spatial shear stress gradients have anecdotally been associated with early atherosclerotic lesion susceptibility in vivo and have been proposed as promoters of endothelial cell dysfunction in vitro. Here, experiments are presented in which several measures of the fluid dynamic shear stress, including its gradient, at the walls of in vivo porcine iliac arteries, are correlated against the transendothelial macromolecular permeability of the vessels. The fluid dynamic measurements are based on postmortem vascular casts, and permeability is measured from Evans blue dye (EBD) uptake. Time-averaged wall shear stress (WSS), as well as a new parameter termed maximum gradient stress (MGS) that describes the spatial shear stress gradient due to flow acceleration at a given point, are mapped for each artery and compared on a point-by-point basis to the corresponding EBD patterns. While there was no apparent relation between MGS and EBD uptake, a composite parameter, WSS–0.11 MGS0.044, was highly correlated with permeability. Notwithstanding the small exponents, the parameter varied widely within the region of interest. The results suggest that sites exposed to low wall shear stresses are more likely to exhibit elevated permeability, and that this increase is exacerbated in the presence of large spatial shear stress gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbee, K. A. Role of subcellular shear-stress distributions in endothelial cell mechanotransduction. Ann. Biomed. Eng. 30: 472–482, 2002.

    Article  PubMed  Google Scholar 

  2. Barbee, K. A., T. Mundel, R. Lal, and P. F. Davies. Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am. J. Physiol. 268:H1765–H1772, 1995.

    CAS  PubMed  Google Scholar 

  3. Buchanan, J. R., Jr., C. Kleinstreuer, G. A. Truskey, and M. Lei. Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction. Atherosclerosis 143:27–40, 1999.

    Article  CAS  PubMed  Google Scholar 

  4. Buchanan, J. R., C. Kleinstreuer, S. Hyun, and G. A. Truskey. Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta. J. Biomech. 36:1185–1196, 2003.

    Article  CAS  PubMed  Google Scholar 

  5. Butler, P. J., G. Norwich, S. Weinbaum, and S. Chien. Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity. Am. J. Physiol. Cell Physiol. 280:C962–C969, 2001.

    CAS  PubMed  Google Scholar 

  6. Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. Lond. B. Biol. Sci. 177:109–159, 1971.

    CAS  PubMed  Google Scholar 

  7. Conklin, B. S., D. S. Zhong, W. Zhao, P. H. Lin, and C. Chen. Shear stress regulates occludin and VEGF expression in porcine arterial endothelial cells. J. Surg. Res. 102:13–21, 2002.

    Article  CAS  PubMed  Google Scholar 

  8. DePaola, N., M. A. Gimbrone Jr., P. F. Davies, and C. F. Dewey Jr. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12:1254–1257, 1992.

    CAS  PubMed  Google Scholar 

  9. Fry, D. L. Aortic Evans blue dye accumulation: Its measurement and interpretation. Am. J. Physiol. 232:H204–H222, 1977.

    CAS  PubMed  Google Scholar 

  10. Fry, D. L., E. E. Herderick, and D. K. Johnson. Local intimal-medial uptakes of 125I-albumin, 125I-LDL, and parenteral Evans blue dye protein complex along the aortas of normocholesterolemic minipigs as predictors of subsequent hypercholesterolemic atherogenesis. Arterioscler. Thromb. 13:1193–1204, 1993.

    CAS  PubMed  Google Scholar 

  11. Galbraith, C. G., R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskel. 40:317–330, 1998.

    Article  CAS  Google Scholar 

  12. Girard, P. R., and R. M. Nerem. Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins. J. Cell Physiol. 163:179–193, 1995.

    Article  CAS  PubMed  Google Scholar 

  13. Helmke, B. P., and P. F. Davies. The cytoskeleton under external fluid mechanical forces: Hemodynamic forces acting on the endothelium. Ann. Biomed. Eng. 30:284–296, 2002.

    PubMed  Google Scholar 

  14. Henderson, J. M., J. A. Aukerman, P. A. Clingan, and M. H. Friedman. Effect of alterations in femoral artery flow on abdominal vessel hemodynamics in swine. Biorheology 36:257–266, 1999.

    CAS  PubMed  Google Scholar 

  15. Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X. M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286:H1916–H1922, 2004.

    CAS  PubMed  Google Scholar 

  16. Hyun, S., C. Kleinstreuer, and J. P. Archie Jr. Hemodynamics analyses of arterial expansions with implications to thrombosis and restenosis. Med. Eng. Phys. 22:13–27, 2000.

    CAS  PubMed  Google Scholar 

  17. Jo, H., R. O. Dull, T. M. Hollis, and J. M. Tarbell. Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am. J. Physiol. 260:H1992–H1996, 1991.

    CAS  PubMed  Google Scholar 

  18. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302, 1985.

    CAS  PubMed  Google Scholar 

  19. Kuchan, M. J., and J. A. Frangos. Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am. J. Physiol. 264:H150–H156, 1993.

    CAS  PubMed  Google Scholar 

  20. Lei, M., C. Kleinstreuer, and G. A. Truskey. Numerical investigation and prediction of atherogenic sites in branching arteries. J. Biomech. Eng. 117:350–357, 1995.

    CAS  PubMed  Google Scholar 

  21. Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107:341–347, 1985.

    CAS  PubMed  Google Scholar 

  22. Mohan, S., M. Hamuro, G. P. Sorescu, K. Koyoma, E. A. Sprague, H. Jo, A. J. Valente, T. J. Prihoda, and M. Natarajan. IkappaBalpha-dependent regulation of low-shear flow-induced NF-kappa B activity: Role of nitric oxide. Am. J. Physiol. Cell Physiol. 284:C1039–C1047, 2003.

    CAS  PubMed  Google Scholar 

  23. Moore, J. E., Jr., C. Xu, S. Glagov, C. K. Zarins, and D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: Oscillatory behavior and relationship to atherosclerosis. Atherosclerosis 110:225–240, 1994.

    CAS  PubMed  Google Scholar 

  24. Nagel, T., N. Resnick, C. F. Dewey Jr., and M. A. Gimbrone Jr. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19:1825-34, 1999.

    CAS  PubMed  Google Scholar 

  25. Phelps, J. E., and N. DePaola. Spatial variations in endothelial barrier function in disturbed flows in vitro. Am. J. Physiol. Heart Circ. Physiol. 278:H469–H476, 2000.

    CAS  PubMed  Google Scholar 

  26. Remuzzi, A., C. F. Dewey Jr., P. F. Davies, and M. A. Gimbrone Jr. Orientation of endothelial cells in shear fields in vitro. Biorheology 21:617–630, 1984.

    CAS  PubMed  Google Scholar 

  27. Satcher, R. L., Jr., and C. F. Dewey Jr. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys. J. 71:109–118, 1996.

    PubMed  Google Scholar 

  28. Shyy, Y. J., H. J. Hsieh, S. Usami, and S. Chien. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc. Natl. Acad. Sci. U.S.A. 91:4678–4682, 1994.

    CAS  PubMed  Google Scholar 

  29. Tardy, Y., N. Resnick, T. Nagel, M. A. Gimbrone Jr., and C. F. Dewey Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17:3102–3106, 1997.

    CAS  PubMed  Google Scholar 

  30. Thomas, J. B., J. S. Milner, B. K. Rutt, and D. A. Steinman. Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation. Ann. Biomed. Eng. 31:132–141, 2003.

    PubMed  Google Scholar 

  31. Truskey, G. A., K. M. Barber, T. C. Robey, L. A. Olivier, and M. P. Combs. Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation. J. Biomech. Eng. 117:203–210, 1995.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morton H. Friedman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaMack, J.A., Himburg, H.A., Li, XM. et al. Interaction of Wall Shear Stress Magnitude and Gradient in the Prediction of Arterial Macromolecular Permeability. Ann Biomed Eng 33, 457–464 (2005). https://doi.org/10.1007/s10439-005-2500-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-2500-9

Keywords

Navigation