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Abstract We present a Merton (J Finance, 1974)-type structural model of credit risk
in which the borrower firm refinances its debt, there is cost for bankruptcy, and the
creditor has an option to extend the date of maturity of debt if the firm defaults. We
show that a solution exists in such amodel and in that solution the creditor has incentive
to extendmaturity to avoid bankruptcy cost.We solve themodel numerically and argue
that such maturity extension option for the creditor can have substantial impact on the
debt and stock values of the firm.

Keywords Structural model · Default · Bankruptcy cost · Maturity extension ·
Refinancing

JEL Classification G12 · G13 · G21 · G33

1 Introduction

This article studies corporate risk when the substantial part of a firm’s debt is financed
by one (or few) major creditor(s) along with other minute creditors. In the literature
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of structural models of corporate risk that follows Merton (1974) and Black and Cox
(1976), a single creditor is typically assumed for simplification. In reality, if there is
only one creditor, the creditor has an option of flexible private renegotiation whenever
the firm encounters financial distress. For instance, under Japan’s so-called ‘main bank
system’, the main bank of a firm often chooses private renegotiation rather than legal
renegotiation that follows application of the Japan’s Corporate Reorganization Law.1

This can have several implications on the firm’s debt and stock values and its default
and bankruptcy probabilities.

We present a Merton (1974)-type structural model of credit risk in which the firm
(debtor) refinances its debt, there is cost for bankruptcy, and the creditor has an option
to extend maturity, one of the simplest forms of private renegotiation.2 In our model,
the firm’s debt is in the form of a short-term discount bond with a fixed face value
and fixed time to maturity. Every time the maturity of the debt contract arrives, the
firm (i.e., stockholders) chooses whether to repay through refinancing (issuing a new
debt and putting up more equity capital) or simply to default on the debt. If default is
chosen by the firm, then the creditor chooses whether to force bankruptcy or not. That
is, if extending the maturity of the debt repayment and making the firm continue as
a going concern leads to debt value that is higher than the payoff of bankruptcy (the
firm’s asset value minus cost of bankruptcy), the creditor chooses to do so. In other
words, the model features a two-sided option, the firm’s decision for default and the
creditor’s decision for bankruptcy. The latter implies that default does not necessarily
lead to bankruptcy, so default and bankruptcy become two distinct events.

By making some restrictions on what the creditor can do in the event of the firm’s
default, we can prove the existence of a solution to the model that possesses certain
characteristics. Then we numerically solve the model and compute the debt and stock
values of the firm and its default and bankruptcy probabilities. We find that when the
firm defaults on debt, the creditor might extend the maturity of debt if the firm’s asset
is so low that the creditor cannot get much from liquidation.

Effects of suchmaturity extension include the following. First, when the bankruptcy
cost is high, the presence of such a maturity extension option can lead to higher debt
value than in the absence of such an option. Second, because of the higher possibility
of avoiding bankruptcy, stock value can also be higher. Third, the bankruptcy prob-
ability can be substantially lower. This is important for other minute creditors of the
firm; without taking into account the main creditor’s maturity extension option, they
would overestimate the firm’s bankruptcy probability. Finally, the default probability
can be lower with the presence of possible maturity extension. This is because the
reduction of the bankruptcy probability raises the stock value, which in turn makes
refinancing easier. That is, the effect of the bank’s maturity extension option on the
firm’s bankruptcy risk is not only through the obvious channel that extension simply
could prevent immediate bankruptcy but also through a kind of ‘multiplier effect’

1 Detailed studies of the roles and incentives of the main bank in the event of the debtor’s financial distress
are found in Aoki and Hugh (1995).
2 Refinancing is modeled in Leland and Toft (1996) but in order to explicitly model the creditor’s option
to postpone the firm’s repayment after default, we rather build on Merton (1974).
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that the reduction of long-run bankruptcy probability raises the stock value, facilitates
refinancing, lowers default probability, and further pushes down bankruptcy risk.

As a feature ofmodels with refinancing, the effect of asset volatility (i.e., risk-taking
of a firm) also differs from that in the standard Merton model; that is, the increase in
volatility has a non-monotonic effect on the firm’s debt and stock values. Specifically,
stockholders avert risk when the asset level is high, and the creditor likes risk when
the asset level is relatively low. The former is because high volatility lowers the debt
value and worsens refinancing condition for stockholders. The latter is because when
the asset level is relatively low, high volatility raises the stock price, which makes
the firm’s refinancing easier and the default probability lower. Adding the creditor’s
maturity extension option to the model magnifies this non-monotonicity.

In some models in the literature, the trigger of default, or the threshold of the
borrower firm’s asset level below which the firm defaults, is exogenously given.3

Other models such as Leland (1994) and Leland and Toft (1996) have a one-sided
option; stockholders choose such a threshold but the creditor does not have any option.
Stockholders in these models make decisions whether to repay the debt to maintain the
firm or whether to go bankrupt and transfer the ownership to the creditor.4 When the
bankruptcy cost is high, however, there can be situations that the stockholders give up
repayment and choose bankruptcy but the creditor wants to maintain the firm even by
offering postponement of repayment, and this yields models with a two-sided option.
However, there are not many pricing models of corporate bonds in which the creditor
can renegotiate over the repayment condition of the debtor.Among the few suchpricing
models are Mella-Barral and Perraudin (1997) and Fan and Sundaresan (2000). These
models consider a firm that issues ‘consols’ and do not consider refinancing. In our
model, the firm refinances a discount bond by issuing a new bond, the value of which
is low when the asset level of the firm is low. One can interpret the firm of our model
as issuing ‘consols’ with variable coupons whose amount increases as the credit risk
of the firm increases.

The structure of the rest of the paper is as follows. In Sect. 2, we present ourmodel in
several versions and establish existence of solutions. Section 3 numerically computes
solutions and gives discussion. Section 4 concludes.

2 Model

2.1 Common environment

There is a firm whose date-t asset value At follows a geometric Brownian motion
under a risk-neutral probability measure:

d At = At (rdt + σdWt ), (1)

3 See for example Black and Cox (1976), Kim et al. (1993) and Longstaff and Schwartz (1995).
4 With the presence of bankruptcy cost and tax benefit of debt, the Modigliani-Miller theorem does not
hold and the optimal capital structure becomes an issue, which is the main interest of Leland (1994) and
Leland and Toft (1996). In this paper, we abstract from the optimal capital structure problem.
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where σ is the volatility, r is the risk-free rate, and Wt is a standard Brownian motion
with respect to the risk-neutral probability. The firm owes a single creditor (e.g. “main
bank”) a debt with face value f and time to maturity � years. To abstract from the
optimal capital structure choice problem,weassume that both f and� are exogenously
given to the firm for some institutional reasons. Once the maturity arrives, the firm
repays the debt by the following refinancing process. First, the firm rolls over the
debt; that is, the firm makes another debt contract again with face value f and time
to maturity �. Because the amount of funds raised from this new debt contract is
not enough to repay f , the firm fills the gap by raising equity capital.5 As long as
the firm stays solvent, this refinancing process is repeated every � years.6 Since the
face value of the firm’s debt always remains constant at f , the model has a kind of
time-homogeneous structure; nothing depends on the calendar time but only on the
remaining time to the maturity of debt.

If the firm’s asset value, say Ã, at the date of debt maturity is very low, the firm
cannot repay the debt; that is, the amount of funds the firm can raise from re-borrowing
and stock issuance does not reach f .7 We call that situation default. In the event of
default, the creditor has two options: bankruptcy and postponement. If the creditor
chooses the bankruptcy option, it lets the firm go bankrupt and receives min( f, α Ã),
where α ∈ (0, 1] is the asset recovery rate. The idea is that bankruptcy is costly; if
the firm’s asset level upon default is Ã, then 1 − α proportion is lost as bankruptcy
cost and only α proportion is received by the creditor (and potentially by stockholders
if α Ã > f ). On the other hand, if the creditor chooses the postponement option to
extend the date of debt maturity, it keeps the same debt but the new date of maturity
comes in another � years.

In Sect. 2.2, we will consider four versions of the model with refinancing that dif-
fer in assumptions on the creditor’s postponement option. In Model I, the creditor
does not have the option to extend the maturity date and thus always forces bank-
ruptcy after default. Hence this version resembles Leland and Toft (1996) while it
still differs from their model in that the date of maturity only arrives every � years
while it arrives continuously in their model. In Models II and III, the creditor has
the option to extend the maturity date but only N times, where N is an exogenously
given bound. The difference between II and III is whether or not the remaining num-
ber of postponements allowed is reset to N once the firm successfully repays the
debt. In Model IV, the creditor can extend the maturity date an unlimited number of
times.

One of our goals is to demonstrate possible impacts ofmaturity extension in a simple
model and provide complete proof for existence of a solution that applies a fixed-point

5 The firm and the stockholder can be identical (e.g. “owner-manager”), in which case issuing new stocks
means additional injection of money out of his pocket.
6 The assumption that the debt is repaid by issuing new stocks is found, for instance, in Leland (1994) and
Brennan and Schwartz (1978) and is necessary for the firm’s asset A to be exogenous (unaffected by the
capital structure of the firm).
7 In the case of the ‘owner-manager’, this means that he does not find it in his interest to meet the debt
obligation by putting up additional equity capital out of his own pocket.
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theorem.8 For that purpose, we have made several restrictive assumptions as above
on what the creditor can do. First, our model has no benefit of debt and hence does
not allow to study the optimal amount of debt (or optimal capital structure), so a fixed
amount of debt is imposed. While this simplification seems to be a good step toward a
model in which the amount of debt is endogenous, it remains an open questionwhether
such a full-fledged model has very different implications. Second, it is assumed that
the length of extension is always �. In reality, the creditor should choose between,
for example, extending by 1 month and extending by 1 year. However, we can assume
in our framework that � is short (such as 1 month) and N is, say, twelve. In such
an environment, the creditor is allowed to extend the maturity both for 1 month and
for 12 months in total, which resembles the maturity choice by the creditor. Third,
N , the maximum number of maturity extensions the creditor can give, is exogenously
fixed in Models II and III. Although it is certainly less restrictive than existing models
that do not allow maturity extension at all, it may appear somewhat arbitrary. One
interpretation is that some past history or the creditor’s reputation has led investors
to expect that the creditor gives extension at most a fixed number of times and not
unlimitedly. We consider the case of an unlimited number of maturity extensions in
Model IV.

2.2 Model variations and propositions

We focus on the prices of debt and stock right after the refinancing/maturity extension:
that is, when the time to debt maturity is exactly � years.9 Let A be the level of the
firm asset today and Ã be the (future) asset value at the date of debt maturity, which is
� years from today. Throughout the section, E Ã|A[·] denotes expectation with respect
to the risk-neutral probability conditional on the current asset level A. All proofs of
propositions are in the “Appendix”.

Model I: no postponement

Westart with the casewhere the creditor does not have the option to extend thematurity
on the firm’s default, that is, when N = 0. In this case, the firm’s default always leads to
bankruptcy. Let F0(A) and S0(A) denote the debt and stock values when the current
level of the firm asset is A and the time to maturity of the debt is � years. When
the maturity arrives and the firm asset value at that time is Ã, the firm repays f by
issuing a new debt valued F0( Ã), and new stocks that are worth f − F0( Ã). After
this process, the total stock value is S0( Ã) and hence the value of old stocks is the
difference S0( Ã)− ( f − F0( Ã)). This means that if this difference is nonnegative, the

8 To the best of our knowledge, our proof approach for existence of a solution in credit risk models that
have some recursive structure is new in the literature.
9 Prices at different times are obtained by discounting by using the risk neutral probability for the remaining
time to maturity.
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firm has positive net worth and can be successfully refinanced (hence no default).10

Otherwise, the firm is bankrupt and the creditor recovers min( f, α Ã). Let Ā0 denote
the default threshold, defined by

S0( Ã) − ( f − F0( Ã))

⎧
⎨

⎩

> 0 if Ã > Ā0

= 0 if Ã = Ā0

< 0 if Ã < Ā0
. (2)

Then, as we explain below, the default threshold and the security prices should
satisfy the following system of integral equations:

F0(A) = e−r�E Ã|A
[
1{ Ã≥ Ā0} f + 1{ Ã< Ā0}α Ã

]
, ∀A > 0, (3)

S0(A) = e−r�E Ã|A
[
1{ Ã≥ Ā0}(S0( Ã) − ( f − F0( Ã)))

]
, ∀A > 0, (4)

F0( Ā0) + S0( Ā0) = f. (5)

where 1{··· } is the indicator function.
The interpretation of (3)–(5) is as follows. Any security price is the discounted

future payoffs, discounted by the risk-free rate and the risk-neutral probability. The
right side of (3) means that the future payoff to the creditor is f if the future asset
level Ã is above the default threshold Ā0, and it is α Ã otherwise. The right side of
(4) means that the future payoff to the stockholders is S0( Ã) − ( f − F0( Ã)) if the
future asset level is above the default threshold and is zero otherwise. Equation (5)
only re-states the equality in (2).11 We have the following proposition.

Proposition 2.1 A solution (F0(·), S0(·), Ā0) to (3)–(5) exists, and it satisfies

(i) αA < F0(A) + S0(A) < A, ∀A > 0,
(ii) α Ā0 < f < Ā0, and
(iii) F0(·) + S0(·) is strictly increasing.

��
The inequalities (i) are somewhat intuitive because no matter when cash flow occurs,
the sum of payments to the creditor and stockholders never exceeds Ã or goes below
α Ã, whose present values by the risk-neutral probability measure are A and αA,
respectively. The inequality (ii) follows (i) and (5) and implies min( f, α Ã) = α Ã if
Ã < Ā0. Finally, (iii) confirms that the default threshold is well-defined by (2). Note
that with the presence of bankruptcy cost, there is a region for Ã that is higher than
the debt face value but still leads to default and bankruptcy, namely [ f, Ā0).

Due to the existence of bankruptcy cost and the absence of positive sides of debt
such as tax advantage, the firm’s value defined as the sum of the stock and debt values

10 In this model, new stock issuance is not for brand-new investment opportunities, but to simply replace
the debt that finances existing projects. For this reason, the total value of outstanding stocks after successful
refinancing is simply the value of the original stocks plus the money paid by the new stockholders.
11 Eqs. (3)–(4) assume min( f, α Ã) = α Ã, whenever bankruptcy occurs. This is confirmed to be the case
both in our propositions and in the numerical solution in Sect. 3.
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is strictly smaller than the firm’s asset value A [see (i)]. Consequently, the optimal
capital structure in the model would be ‘no debt at all’ if f were not exogenous to the
firm.12

Equation (3) implies that once the threshold Ā0 is given,we can obtain the analytical
solution for the debt value:13

F0(A; Ā0) = αA�(−x1) + f e−r��(x2), (6)

where �(·) is the cumulative density function of the standard normal distribution and

x1, x2 = log
(

A/ Ā0
) + (

r ± σ 2/2
)
�

σ
√

�
. (7)

In the special case of α = 1, the solution satisfies F0(A) + S0(A) = A, ∀A > 0
and (ii) reduces to Ā0 = f . In this case, (6)–(7) coincide with Merton (1974), a model
without refinancing. If α < 1, the present model differs from the Merton model even
if the latter is augmented with the same bankruptcy cost. This is because in our model
of refinancing the default threshold is strictly greater than f , while it remains f in the
Merton model.

We conclude Model I with the following proposition.

Proposition 2.2 There exists a unique A1 > 0 such that Ã � A1 ⇔ F0( Ã) �
α Ã,∀ Ã. ��

As will become clear, this proposition indicates that if the creditor were allowed to
postpone the firm’s repayment once, the creditor would do so if and only if the firm’s
asset at the point of that decision is below some threshold. We will use the existence
of this threshold in models with maturity extension.

Model II: finite postponements without resetting

In this version of the model, the creditor has an option to extend the maturity date of
the debt if the firm defaults. When the firm does not repay the debt at the maturity date,
the creditor compares the debt value after such maturity extension is given and the
immediate payoff of forcing bankruptcy. If the former is higher, the creditor extends
the debt maturity by another � years. After � years, the same situation arises and
this process can be repeated until the creditor extends the firm’s repayment N times
in total, where N is an exogenous bound on the number of times the creditor can
postpone the firm’s repayment.

Let F N (A) and SN (A) be the debt and stock valueswhen the current level of the firm
asset is A, the time to maturity is� years, and the number of remaining postponement

12 If the firm (stockholder) were allowed not to roll over the debt, when the first maturity arrives, the
stockholder would pay off the debt once and for all by paying out of his pocket, if and only if A ≥ f . After
that, the firm will continue as a going concern with no debt. Such a model can be regarded as the Merton
model augmented with bankruptcy cost.
13 The derivation is analogous to that of Black-Scholes formula for European put option.
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options is N . If the firm defaults with asset level Ã and if N ≥ 1, the creditor receives
min( f, α Ã) by forcing bankruptcy or F N−1( Ã) by extending the maturity. So the
payoff to the creditor is whichever is larger. The default threshold, denoted ĀN , is
defined in a similarmanner to (2) ofModel I, namely by SN ( ĀN )−( f −F N ( ĀN )) = 0.
When N = 0, this model reduces to Model I. Given F0(·), S0(·), and Ā0 defined in
Model I, we inductively define the system of integral equations for N ≥ 1:

F N (A) = e−r�E Ã|A
[
1{ Ã≥ ĀN } f + 1{ Ã< ĀN } max

(
α Ã, F N−1( Ã)

)]
, ∀A > 0,

(8)

SN (A) = e−r�E Ã|A
[
1{ Ã≥ ĀN }(SN ( Ã) − ( f − F N ( Ã)))

+ 1{ Ã< ĀN }1{α Ã<F N−1( Ã)}SN−1( Ã))
]
, ∀A > 0, (9)

F N ( ĀN ) + SN ( ĀN ) = f. (10)

Being analogous to (3)–(4) of Model I, Eq. (8) and (9) imply that both the debt
and stock values are the discounted expected future payoffs. Equation (10) is the
re-statement of the definition of the default threshold.

Given A1 obtained in Proposition 2.2, we can show the following proposition.

Proposition 2.3 Suppose that parameters are such that Ā0 ≤ A1 holds. Then for each
N, a solution (F N (·), SN (·), ĀN ) to (8)–(10) exists, and it satisfies:

(i) αA < F N (A) + SN (A) < A,∀A > 0,
(ii) α ĀN < f < ĀN ,
(iii) F N (·) + SN (·) is strictly increasing, and
(iv) the creditor always chooses to exercise the maturity extension option whenever

possible.

Moreover, in this solution, the higher N is, the less likely is the next default;

Ā0 > Ā1 > · · · > ĀN , (11)

and both the debt and stock values are increasing in N; that is, for all A > 0,

F0(A) < F1(A) < · · · < F N (A), and (12)

S0(A) < S1(A) < · · · < SN (A). (13)

��
Proof is done inductively, using the result of Model I as the terminal condition.

Consider the N = 1 case and suppose that the firm defaults for the first time with
asset value Ã. The creditor compares the liquidation value α Ã with the new debt value
that it can get by postponing the firm’s repayment once and for all, namely F0( Ã).
Proposition 2.2 implies that the creditor chooses to postpone if and only if the asset
value is lower than A1, the level we call the postponement threshold. Notice that how
likely it is that the firm will be able to repay does not matter much to this decision
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of the creditor. It is when the firm’s asset level is sufficiently low that the creditor
puts more value on a small chance of the firm recovering from distress than on the
immediate cash from liquidating the firm.

We denote the postponement threshold in general as AN , N ∈ N. We have not been
able to show analytically the existence of such threshold for general N . However, we
carried out computation with various parameter values and always found a unique
threshold. If such a threshold exists, the postponement-triggering condition in (9),
namely α Ã < F N−1( Ã), is written as Ã < AN , and the integral equations are re-
written accordingly. That is, (9) becomes

SN (A) = e−r�E Ã|A
[
1{ Ã≥ ĀN }

(
SN ( Ã) −

(
f − F N ( Ã)

))

+ 1{ Ã< ĀN }1{ Ã<AN }SN−1( Ã))
]
, ∀A > 0.

Model III: finite postponements with resetting

In this version of the model, N is an exogenous bound on the number of maturity
extensions that the creditor can make consecutively. As was the case with Model II,
if the firm defaults and the creditor extends the date of the debt maturity N times in a
row, then at the next date of maturity, the creditor can no longer extend the maturity.
However, in this version, it is assumed that once the firm repays its debt, the remaining
number of possible maturity extensions is reset to N again.

Let M (0 ≤ M ≤ N ) be the remaining number of successive extensions allowed.
Let F N ,M (A) and SN ,M (A) denote the debt and stock values when the current asset
level of the firm is A and the time tomaturity is� years.Denote the default threshold by
ĀR,N , where R stands for ‘reset’. The threshold is defined, as in (2), by SN ,N ( ĀR,N )−
( f − F N ,N ( ĀR,N )) = 0. As is understood in (15) below, the default threshold does
not depend on M because once the firm repays, M is reset to N , and hence only
SN ,N and F N ,N matter to refinancing. In the event of default, the creditor exercises its
maturity extension option if and only if F N ,M−1( Ã) > α Ã. The default threshold and
the security prices should satisfy the following system of integral equations: ∀A > 0,

F N ,M (A) =
⎧
⎨

⎩

e−r� E Ã|A
[
1{ Ã≥ ĀR,N } f + 1{ Ã< ĀR,N }α Ã

]
if M = 0

e−r� E Ã|A
[
1{ Ã≥ ĀR,N } f + 1{ Ã< ĀR,N } max(α Ã, F N ,M−1( Ã))

]
if M ≥ 1

,

(14)

SN ,M (A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−r�E Ã|A
[
1{ Ã≥ ĀR,N }(SN ,N ( Ã) − ( f − F N ,N ( Ã)))

]
if M = 0

e−r�E Ã|A
[
1{ Ã≥ ĀR,N }(SN ,N ( Ã) − ( f − F N ,N ( Ã)))

+ 1{ Ã< ĀR,N }1{α Ã<F N ,M−1( Ã)}SN ,M−1( Ã))
] if M ≥ 1

(15)

F N ,N ( ĀR,N ) + SN ,N ( ĀR,N )7 = f. (16)

Proposition 2.4 Suppose that parameters are such that Ā0 ≤ A1. Then for each N,
there exist {F N ,M (·), SN ,M (·)}M=0,1,...,N and ĀR,N that are a solution to (14)–(16),
and such that
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(i) αA < F N ,M (A) + SN ,M (A) < A, ∀A > 0,∀M = 0, 1, . . . , N,
(ii) α ĀR,N < f < ĀR,N < Ā0,
(iii) F N ,M (·) + SN ,M (·) is strictly increasing, and
(iv) the creditor always chooses to exercise the maturity extension option whenever

possible.

Moreover, both the debt and stock values are increasing in M: that is, for all A > 0,

F N ,0(A) < F N ,1(A) < · · · < F N ,N (A), and (17)

SN ,0(A) < SN ,1(A) < · · · < SN ,N (A). (18)

��
Although the change from Model II to Model III is seemingly minor, the proof

approach is very different from that of Proposition 2.3. This is because for given
N , the 2(1 + N ) functions {F N ,M (·), SN ,M (·)}M=0,1,...,N are dependent on one
another, so their existence must be established simultaneously, not inductively. Con-
sequently, while properties (i)–(iv) of Proposition 2.3 are carried over toModel III, the
monotonicity in terms of N , namely (11)–(13), is not. Inequalities (17)–(18) represent
monotonicity in terms of the remaining number of postponements, M , for a fixed N .

Model IV: unlimited postponements

Lastly, assume that the creditor’s option to postpone the firm’s repayment in the event
of default is unlimited. This corresponds to N = ∞ inModels II and III. Therefore, by
the analogous logic, the default threshold, denoted Ā∞, and security prices, denoted
F∞(·) and S∞(·), satisfy the following system of integral equations:

F∞(A) = e−r�E Ã|A
[
1{ Ã≥ Ā∞} f + 1{ Ã< Ā∞} max(α Ã, F∞( Ã))

]
, ∀A > 0 (19)

S∞(A) = e−r�E Ã|A
[
1{ Ã≥ Ā∞}(S∞( Ã) − ( f − F∞( Ã)))

+1{ Ã< Ā∞}1{α Ã<F∞( Ã)}S∞( Ã)
]
, ∀A > 0, (20)

S∞( Ā∞) − ( f − F∞( Ā∞)) = 0. (21)

Suppose that the assumption of Propositions 2.3 and 2.4 holds. Proposition 2.3
then implies that as N goes to infinity, ĀN converges to some limit Ā∞ ≥ f . Also,
Proposition 2.3 [(i), (12) and (13)] implies that the debt and stock values also converge
to some F∞(·) and S∞(·). What happens in the limit is shown by the following
proposition and it is somewhat intuitive.

Proposition 2.5 Suppose Ā0 < A1. Then a solution (F∞(·), S∞(·), Ā∞) to (19)–
(21) exists, and it satisfies Ā∞ = f , and F∞(A) + S∞(A) = A for all A. Moreover,
the creditor always chooses postponement whenever default occurs. ��

That is, if parameters imply Ā0 < A1, which typically is the case when α is small,
the creditor always postpones the firm’s repayment following its default and hence
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Table 1 Threshold values of the firm asset

Model I Model II (N = 1) Model III (N = 1) Model IV

(i) α = 0.8

Default threshold 1.194 1.194 1.194 1.194

Postponement threshold – 0.528 0.528 0.552

(ii) α = 0.5

Default threshold 1.678 1.596 1.540 1.000

Postponement threshold – 1.735 1.889 1.980

bankruptcy never happens. As Proposition 2.5 shows, in this case the default threshold
coincides with the face value of the debt f and the sum of the debt and stock values
is equal to the asset value itself, which is the case with the Merton model. However,
Model IV still differs from the Merton model even if the latter is augmented by the
same bankruptcy cost. When the asset value is below f , the payoff to the stockholder
is zero in theMerton model but it is not in our model because the postponement option
is exercised and the firm continues.

The proposition predicts that for some α (e.g. small α due to very firm-specific
asset), default never leads to bankruptcy, so the size of α does not affect the default
threshold nor the security values. In reality, the presence of asymmetric information
between the firm and the creditor is likely to make the creditor force bankruptcy after
the firm defaults a finite number of times. Nevertheless, this endogenously bankruptcy-
free situation is theoretically interesting.

3 Numerical analysis

3.1 Probabilities and values

In this section, we present numerical results. Throughout this section, parameter values
we use are f = 1, r = 0.01, σ = 0.2 and � = 1. Table 1 shows the default and
postponement thresholds for each of the four cases: Model I (N = 0), Model II
(N = 1 without resetting), Model III (N = 1 with resetting) and Model IV (N = ∞).
The tables at the top and at the bottomcorrespond toα = 0.8 andα = 0.5, respectively.
Table 2 shows the 1-year default probability of an outstanding debt and the probabilities
of bankruptcy within 1, 2, 5 and 10 years when the current asset level is A0 = 1, 1.5
and 2. All the probabilities are under the risk-neutral probability measure.14 Figures 1
and 2 show the debt and stock values as a function of the current level of the firm
asset for each of the four versions of our model and also for the “augmented” Merton
model, the Merton model to which bankruptcy cost is added for comparison.

First we look at Model I. As is seen in Table 1, the default threshold, below which
the stockholders choose not to repay debt, depends upon the size of α, showing high

14 Instead, one can set a real drift term to the process of the firm asset value and compute ‘actual’ proba-
bilities. As we focus on comparison across models in this paper, that is not necessary.
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Table 2 Default/bankruptcy probabilities

Probability
of default
in 1 year

Probability of bankruptcy within

1 year 2 years 5 years 10 years

(i) α = 0.8

A0 = 1

Model I (N = 0) 0.826 0.826 0.883 0.932 0.955

Model II (N = 1) 0.826 0.825 0.883 0.932 0.955

Model III (N = 1) 0.826 0.825 0.883 0.932 0.955

Model IV (N = ∞) 0.826 0.765 0.842 0.905 0.936

A0 = 1.5

Model I 0.139 0.139 0.274 0.491 0.640

Model II 0.139 0.139 0.274 0.491 0.640

Model III 0.139 0.139 0.274 0.491 0.640

Model IV 0.139 0.138 0.273 0.490 0.639

A0 = 2

Model I 0.006 0.006 0.042 0.196 0.376

Model II 0.006 0.006 0.042 0.196 0.376

Model III 0.006 0.006 0.042 0.196 0.376

Model IV 0.006 0.006 0.042 0.195 0.376

(ii) α = 0.5

A0 = 1

Model I (N = 0) 0.996 0.996 0.998 0.999 0.999

Model II (N = 1) 0.992 0.000 0.967 0.985 0.991

Model III (N = 1) 0.987 0.000 0.939 0.962 0.976

Model IV (N = ∞) 0.520 0.000 0.000 0.000 0.000

A0 = 1.5

Model I 0.729 0.729 0.813 0.888 0.926

Model II 0.640 0.000 0.545 0.757 0.844

Model III 0.572 0.000 0.446 0.649 0.765

Model IV 0.024 0.000 0.000 0.000 0.000

A0 = 2

Model I 0.204 0.204 0.352 0.559 0.693

Model II 0.141 0.000 0.108 0.383 0.570

Model III 0.105 0.000 0.072 0.298 0.489

Model IV 0.000 0.000 0.000 0.000 0.000

The tables present the probability of default in 1 year and the probabilities of bankruptcy within 1, 2, 5 and
10 years, for three different values for the current level of the firm asset (A0 = 1, 1.5 and 2). The size of α

is 0.8 for (i) and 0.5 for (ii)

values for small α. The reason is that when the firm repays debt partly by issuing a
new debt, the value of this new debt is low if α is small. Therefore, the asset value
itself must be higher to successfully raise the funds that are needed for repayment.
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Fig. 1 Debt values. (i) α = 0.8 (top) and (ii) α = 0.5 (bottom) The figures give the debt values for α = 0.8
and 0.5 as a function of the current asset level

Next, comparing Fig. 1(i) and (ii) indicates that the debt value is lower when α is
low. Similarly, comparing Fig. 2(i) and (ii) indicates that the stock value is also lower
when α is low. The reason for the lower debt value is straightforward; low α means
low bankruptcy/liquidation value and hence low debt value. On the other hand, the
bankruptcy/liquidation value itself does not matter to the stockholders so the reason
for the lower stock value is not so obvious. The reason is that low α leads to high
default threshold, which in turn makes future bankruptcy more likely. In comparison
with the Merton model, our N = 0 model shows lower stock values as are seen in
Fig. 2(i)–(ii). The Merton model, while we augment it with the same bankruptcy cost,
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Fig. 2 Stock values. (i) α = 0.8 (top) and (ii) α = 0.5 (bottom) The figures give the stock values for
α = 0.8 and 0.5 as a function of the current asset level

does not involve refinancing so the default threshold still remains f . In contrast, the
default threshold in our model exceeds f and hence default/bankruptcy becomes more
likely, which in turn lowers the stock value compared with the Merton model.

Next we look into Model II (N = 1). As is seen by comparing Models I and II
in Table 2(i) and Fig. 1(i) and 2(i), the effect of allowing for maturity extension on
debt/stock values and default/bankruptcy probabilities is almost zero when the asset
recovery rate is high (α = 0.8). If α is high, liquidation on default is not so costly
and is attractive most of the time. Table 1(i) indicates that the creditor chooses to
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exercise the postponement option only when the firm’s asset value is extremely low.
In such situations, however, the debt and stock values are very low anyway. In contrast,
when α is low, introducing the postponement option has a large impact. Figures 1(ii)
and 2(ii) show that the debt and stock values of Model II are significantly higher
than those of Model I. Also, Table 2(ii) shows that for Model II, the probabilities
of bankruptcy within 1, 2, 5 and 10 years are lower than for Model I. As is seen in
Table 1(ii), when α is as low as 0.5, the postponement threshold is higher than the
default threshold. Therefore, whenever default occurs, the creditor routinely postpones
the repayment, which is the case described in Proposition 2.3. This simply makes the
1-year bankruptcy probability zero. The mechanism for the reduction of the 2-year
bankruptcy probability is more complex; it is not only because the probability of
the first-year bankruptcy is zero but also because the postponement option has made
the default threshold lower. The introduction of postponement into the model lowers
future bankruptcy risk and raises the present debt and stock values. Since our model
assumes refinancing that uses these debt and stock, the increase of their values makes
the default risk (i.e., the default threshold) go down.15 If the firm does not default for
the first year, then the creditor keeps the postponement option for the second year. In
this way, the second-year bankruptcy probability further goes down.

Now we examine Model III (N = 1) in comparison with Model II (N = 1) when
α = 0.5, to see the impact of the reset assumption. First, Table 1(ii) shows a lower
default threshold for Model III, and correspondingly, Table 2(ii) shows a smaller 1-
year default probability for Model III. When the present asset values are 1, 1.5 and 2,
the 1-year default probabilities for Model II are 0.992, 0.640 and 0.141, respectively,
while they are 0.987, 0.572 and 0.105 for Model III. The reset assumption directly
lowers future bankruptcy risk, raises the debt and stock values, making refinancing
easier, and lowers the default threshold. Moreover, 2-year bankruptcy probabilities of
the model with reset, (0.939, 0.446, 0.072) are lower than those of the model without
it (0.967, 0.545, 0.108). This is not only because the 1-year default risk is lower in the
former model, but also because of the following reason. Once the creditor exercises
the postponement option in the N = 1model without reset, then it becomes the N = 0
model, and the default threshold increases from Ā1 to Ā0. On the other hand, as we
saw in Proposition 2.4, in the model with resetting, even if the creditor exercises the
postponement option, the default threshold does not change. So the probability of
bankruptcy conditional on one default in the past is lower in the model with resetting.
At first look, one may expect that whether there is resetting or not does not matter
much to short-term risk of default or bankruptcy. The fact is that the reduction in the
long-term bankruptcy risk by reset assumption raises the present stock value, making
refinancing easier, and in turn reduces the short-term default/bankruptcy risk.

The above effect is even bigger for larger N . In the extreme case of N = ∞
and α = 0.5, that is the endogenously bankruptcy-free case of Proposition 2.5, the
bankruptcy probability is zero and debt/stock values are even higher. Also, the default
threshold coincideswith the principal of the debt. These factsmake themodel resemble
the Merton model at high asset values. At a low asset level, our N = ∞ model gives a

15 The causality explained here is for the sake of intuition. In reality, everything is determined simultane-
ously as the solution to the system of integral equations.
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higher stock value than Merton because the payoff to the stock holder when the asset
value is below the debt principal is zero in theMerton model but not zero in our model.

3.2 Asset volatility and stock/debt values

In this subsection, we investigate the relation between the volatility of the firm asset,
σ , and the debt and stock values. First we look at the stock value. In the standard
Merton model, the stock price is the Black-Scholes price of an European call option
for which the underlying asset is the firm asset. Therefore, high asset volatility yields
high stock price. In particular, when the asset value is around the at-the-money level,
high volatility leads to high stock value because the potential gain to stockholders
becomes large while the potential loss is bounded. When the asset level is deep-in-
the-money, the increase in the asset volatility affects the stockholders’ potential gains
and losses in a similar way, leading to very little effect on the stock value.

The effect of change in σ on the stock value in ourmodel is presented in Fig. 3 (top).
In this figure, the vertical axis is the partial derivative of the stock value with respect to
σ evaluated at σ = 0.2, and the horizontal axis is the current level of the firm asset.16

Because qualitative features are similar across Models I-III, we focus on Model I. In
the low asset region, the derivative is always positive, indicating that the increase in σ

leads to the increase in the stock value. That is, when the firm asset level is relatively
low, the aforementioned positive effect of volatility on the stock value in the standard
Merton model is also present in our model of refinancing. The effect is larger due to
the refinancing multiplier between the stock value and the default probability.

In the high asset region, on the other hand, our model exhibits a negative effect of σ
on the stock price, unlike theMertonmodel. This is because ourmodelwith refinancing
is different fromMerton in that the default threshold is no longer constant but depends
on the magnitude of asset volatility. While the increase in the asset volatility has the
direct positive effect on stock price that is present in the Merton model, it also lowers
the debt value around the default threshold and hence increases the default threshold,
which turns into a negative effect on the stock value. When the asset value is deep-
in-the-money, the latter effect dominates the former, and thus high σ lowers the stock
value.

Next we examine the relation between σ and the debt value. In the standard Mer-
ton model without bankruptcy cost, the debt price resembles the short-selling of the
(Black-Scholes) European put option for which the underlying asset is the firm asset.
Therefore, in the standard Merton model, high asset volatility always yields low debt
price. With the presence of bankruptcy cost, however, that is not always the case. In
particular, in the Merton model augmented with bankruptcy cost α < 1, one can show
that there is a cutoff asset level Â such that ∂ F(A)/∂σ > (<)0 if A < (>) Â. That is,
if the current asset level is sufficiently low, high volatility yields high debt value. This
is due to the discontinuity that α causes. When the asset level is in the low region so
the costly bankruptcy is likely, the benefit of high volatility is larger than the down-

16 The partial derivatives are computed numerically: the equilibrium stock and debt values are computed
for σ = 0.195 and σ = 0.205, and the rate of change is computed.
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Fig. 3 Partial derivative of stock and debt values with respect to σ Numerical first-derivatives of the stock
(top) and debt (bottom) values with respect to σ evaluated at σ = 0.2. The x-axis is the current asset value.
(α = 0.5)

side of high volatility because high volatility means a good chance of avoiding costly
bankruptcy. This is a direct channel through which the increase in σ has a positive
effect on the debt value for the low asset region.

In the model with refinancing (Model I), there is also a rather indirect channel
through which higher volatility can lead to higher debt value. As we saw, higher
volatility leads to higher stock value when the asset level is relatively low. In the model
with refinancing, higher stock value implies a better chance of successful refinancing,
lowering the default probability and increasing the debt value. Moreover, because the
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positive effect of high volatility on the stock value in the model of refinancing is even
larger when there is a possibility of maturity extension, so is its indirect impact on the
debt value [see Model II and III in Fig. 3 (bottom)].

One common statement in the field of corporate finance is that stockholders are
risk-takers as residual claimants while debt holders avert risk and prefer safe business.
This is not necessarily the case in models with bankruptcy cost and refinancing. When
the asset value is high, stockholders may prefer lower business risk to avoid bad
refinancing conditions. When the asset value is relatively low, creditors may prefer
higher business risk because that raises the stock value, makes successful refinancing
more likely, and lowers the default/bankruptcy probability.

4 Conclusion

In this article we study a structural model of corporate credit risk in which the debt
repayment is made by refinancing. We further extend the model by incorporating the
creditor’s option to extend the date of debtmaturity, partlymotivated by the observation
that under Japan’smain creditor system, themain creditor of a firm often postpones the
firm’s repayment on default. In our refinancing model without such a postponement
option, the lower asset recovery rate α leads to higher bankruptcy risk and lower
debt/stock values. While introducing the creditor’s postponement option has a very
limited effect when α is high, it reduces bankruptcy risk and raises the debt/stock
values significantly when α is low.

Our model sheds light on some easily overlooked channels through which the pos-
sibility of flexible maturity extension affects the default and bankruptcy probabilities
of a firm. One such channel is a multiplier effect of refinancing on default proba-
bilities; an initial reduction of bankruptcy risk by the possibility of flexible maturity
extension raises debt/stock prices, facilitates refinancing, and further pushes down the
default/bankruptcy risk. Another channel is the effect of reduction in the long-run
bankruptcy risk on the short-run bankruptcy risk. This effect was found in the compar-
ison of Models II and III. That is, an arrangement that seemingly decreases only the
long-run risk can also lower the short-run risk because the former affects the current
security prices, which matter to the latter in the process of refinancing.

In this article we assume that the amount of debt is exogenously fixed. In a more
realistic environment, it should be the decision of a firm that solves the optimal capital
structure problem facing advantages of debt (e.g. tax benefit) and disadvantages of
debt (e.g. cost of bankruptcy). Whether our existence proof can be extended to such
an environment is not known. Nevertheless, our simple framework serves a basis for
the argument that both refinancing and renegotiation such as maturity extension are
important to corporate risk analysis.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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Appendix: Proofs

First we show two preliminary lemmas and then prove propositions in order.

Lemma 4.1 (Extension of the Blackwell sufficient condition for contractions)
Let X be a subset of the Euclidean spaceRD and ψ be a real-valued function on X. Let
V be the set of real-valued continuous functions on X whose distance from ψ is finite,
where the metric between two functions is given by d(g, k) ≡ supA∈X |g(A) − k(A)|.
Also, the metric between two vectors of N functions, G = (g1, . . . , gN ) ∈ V N and
K = (k1, . . . , k N ) ∈ V N , is defined as d∞(G, K ) ≡ maxM∈{1,...,N } d(gM , k M ). V N

is a complete metric space. We say G ≤ K if gM (A) ≤ k M (A) for all A ∈ X and all
M ∈ {1, . . . , N }. Consider for each M = 1, . . . , N, a mapping TM : V N → V and
let T = (T1, . . . , TN ). Suppose that T : V N → V N satisfies the following;

(i) (monotonicity): G ≤ K ⇒ T G ≤ T K ; and
(ii) (discounting): for all G ∈ V N and a = (a1, . . . , aN ) ∈ R

N++, there exists β ∈
(0, 1) such that T (G + a) ≤ T G + β(maxM aM )e, where e ≡ (1, 1, . . . , 1)

′
.

Then T is a contraction with modulus β.

Proof For any G, K ∈ V N and M = 1, . . . , N , we have gM = k M + (gM − k M ) ≤
k M + d(gM , k M ). So,

T

⎛

⎜
⎝

g1

...

gN

⎞

⎟
⎠ ≤ T

⎛

⎜
⎝

k1 + d(g1, k1)
...

k N + d(gN , k N )

⎞

⎟
⎠ ≤ T

⎛

⎜
⎝

k1

...

k N

⎞

⎟
⎠ + β max

j
d(g j , k j )

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ ,

where the first inequality comes from monotonicity and the second from discount-
ing. Hence for each M , we have TM G − TM K ≤ β max j d(g j , k j ). Switching the
role of G and K gives TM K − TM G ≤ β max j d(g j , k j ). Thus d(TM G, TM K ) ≤
β max j d(g j , k j ) for all M . This implies maxM d(TM G, TM K ) ≤ β max j d(g j , k j ),
or d∞(T G, T K ) ≤ βd∞(G, K ). ��
Lemma 4.2 (Comparative statics of the fixed point of parameterized contraction)
Let (V N , d∞) be the metric space defined in Lemma 4.1. Let T θ : V N → V N ,
where θ ∈ 
 ⊂ R+ is a parameter. Assume that for each θ, T θ is a contraction
that satisfies Blackwell’s monotonicity condition. Denote its fixed point as H(·; θ) =
(h1(·; θ), . . . , hN (·; θ)). Assume that T θ satisfies the parameter-monotonicity: for any
θ1 < θ2 and G ∈ V N ,

(
T θ1G

)
(x) <

(
T θ2G

)
(x),∀x,

where the inequality is element-wise. Then H(·; θ) is strictly increasing in θ , namely,

H(x; θ1) < H(x; θ2),∀θ1 < θ2,∀x .
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Proof Choose an arbitrary K ∈ V N . Define sequences of functions by H0 =
G0 = K , Hn = T θ1 Hn−1 and Gn = T θ2Gn−1, n = 1, 2, . . .. Then by parameter-
monotonicity of T θ , we have H1 ≤ G1. Suppose Hn ≤ Gn . Then Hn+1 = T θ1 Hn ≤
T θ1Gn < T θ2Gn = Gn+1, where the first inequality comes from Blackwell’s
monotonicity and the second from the parameter-monotonicity. Since Hn → H(·; θ1)

and Gn → H(·; θ2), we have H(·; θ1) ≤ H(·; θ2). To show strict inequality, note that
H(·; θ1) = T θ1 H(·; θ1) ≤ T θ1 H(·; θ2) < T θ2 H(·; θ2) = H(·; θ2). ��

Proof of Proposition 2.1 Define the total market value of the firm as H0(·) ≡ F0(·)+
S0(·). Summing up (3) and (4) gives

H0(A) = e−r�E Ã|A
[
1{ Ã≥ Ā0} H0( Ã) + 1{ Ã< Ā0}α Ã

]
, (22)

and (5) becomes

H0( Ā0) = f. (23)

To show the existence of the solution of our interest, define a mapping by the
right side of (22). Formally, define a complete metric space V as in Lemma 4.1 with
X = R++ and ψ(A) = A. (That is, ψ is identity function on R++.)17 Define a
mapping T Ā

0 : V → V by replacing Ā0 in the r.h.s. of (22) with an arbitrary threshold
Ā:

(
T Ā
0 g

)
(A) ≡ e−r�E Ã|A

[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā}α Ã

]
. (24)

Indeed, T Ā
0 g ∈ V is true as we can show that for any g ∈ V , the distance between

T Ā
0 g and the identity function ψ(A) = A is finite: that is,

(
T Ā
0 g

)
(A) − A = e−r�E Ã|A

[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā}α Ã

]
− A

= e−r�E Ã|A
[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā}α Ã

]
− e−r�E Ã|A[ Ã]

= e−r�E Ã|A
[
1{ Ã≥ Ā}(g( Ã) − Ã) + 1{ Ã< Ā}(α Ã − Ã)

]

= e−r�E Ã|A
[
1{ Ã≥ Ā}(g( Ã) − Ã)

]
− (1 − α)e−r�E Ã|A

[
1{ Ã< Ā} Ã

]
,

where the first termof the last line is finite because g ∈ V , so is the second termbecause
0 ≤ E[1{ Ã< Ā} Ã] ≤ Ā. We show T Ā

0 is a contraction by approaching Blackwell’s
sufficient condition for contraction. Formonotonicity, suppose h(A) ≤ g(A),∀A > 0.

17 Since the expectation is in terms of the risk-neutral measure (1), e−r�E Ã|A[ Ã] = A holds. Therefore,
Eq. (22) has an obvious solution αA, which is not in space V .
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Then
(

T Ā
0 h

)
(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}h( Ã) + 1{ Ã< Ā}α Ã

]

≤ e−r�E Ã|A
[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā}α Ã

]
=

(
T Ā
0 g

)
(A), ∀A > 0.

For discounting, suppose g ∈ V and a > 0. Then

(
T Ā
0 (g + a)

)
(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}

(
g( Ã) + a

)
+ 1{ Ã< Ā}α Ã

]

= e−r�E Ã|A
[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā}α Ã

]
+ e−r�aE Ã|A

[
1{ Ã≥ Ā}

]

≤
(

T Ā
0 g

)
(A) + βa

where β ≡ e−r�E Ã|A[1{ Ã≥ Ā}] < 1. Therefore T Ā
0 is a contraction on V , and by the

contraction mapping theorem, it has a unique fixed point, denoted h0(·; Ā) ∈ V . (Note
that the solution to (22) is a special case and H0(·) = h0(·; Ā0).)

Now we show that h0(A; Ā) is strictly increasing in A and satisfies αA <

h0(A; Ā) < A for all A > 0 by approaching Corollary 1, p52 of Stokey Lucas
Prescott. Define sets

W ≡ {g ∈ V : nondecreasing andαA ≤ g(A) ≤ A for all A > 0}; and
W

′ ≡ {g ∈ V : strictly increasing andαA < g(A) < A for all A > 0}.

W is a closed subset of V and the Corollary of SLP implies that if T Ā
0 (W ) ⊂ W

′
then

h0(·; Ā) ∈ W
′
. Suppose g ∈ W and 0 < A < A

′
. Then

(
T Ā
0 g

)
(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā}α Ã

]

< e−r�E Ã|A′
[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā}α Ã

]
=

(
T Ā
0 g

)
(A

′
),

where the inequality results from the fact that Ã is log-normally distributed conditional
on A (or A

′
) and that g ∈ W implies the inside of the expectation operator is non-

decreasing, non-constant function. Also we have

(
T Ā
0 g

)
(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā}α Ã

]

≤ e−r�E Ã|A
[
1{ Ã≥ Ā} Ã + 1{ Ã< Ā}α Ã

]
< e−r�E Ã|A[ Ã] = A,

and,

(
T Ā
0 g

)
(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā}α Ã

]

> e−r�E Ã|A
[
1{ Ã≥ Ā}α Ã + 1{ Ã< Ā}α Ã

]
= αA,
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where the inequality is because g ∈ W ⊂ V implies g( Ã) > α Ã for sufficiently large
Ã’s. Hence we have T Ā

0 (W ) ⊂ W
′
. Thus h0(·; Ā) ∈ W

′
.

As a special case, we have α Ā < h0( Ā; Ā) < Ā. We show that h0( Ā; Ā) is
continuous as a function of Ā. First, regard h0(·; Ā) as a mapping that maps Ā > 0 to
h0(·; Ā) ∈ W

′
. It is not hard to show that this mapping is continuous, or Ān → Ā ⇒

supx>0

∣
∣h0(x; Ān) − h0(x; Ā)

∣
∣ → 0, so we have

|h0( Ān; Ān) − h0( Ā; Ā)| ≤ |h0( Ān; Ān) − h0( Ān; Ā)| + |h0( Ān; Ā) − h0( Ā; Ā)|
≤ sup

x>0
|h0(x; Ān)−h0(x; Ā)|+|h0( Ān; Ā)−h0( Ā; Ā)|→0

as Ān → Ā (the second term goes to zero because h0(· ; Ā) ∈ V ). Therefore h0( Ā; Ā)

is continuous as a function of Ā. Hence a variation of the intermediate value theorem
implies that there exists Ā∗ such that h0( Ā∗; Ā∗) = f , and this Ā∗ satisfies α Ā∗ <

f < Ā∗. This concludes the existence of Ā0 together with H0(·) ≡ h0(·; Ā0). This
gives F0(·) by (6) and S0(·) = H0(·) − F0(·). ��
Proof of Proposition 2.2 It suffices to show the following general statement. Consider
Eqs. (6)–(7) with Ā0 replaced by an arbitrary threshold B̄0:

F0(A; B̄0) = αA�(−x1) + f e−r��(x2), where (25)

x1, x2 = log
(

A/B̄0
) + (

r ± σ 2/2
)
�

σ
√

�
. (26)

Then there exists B1 such that F0( Ã; B̄0) − α Ã � 0 ⇔ Ã � B1,∀ Ã.
For proof, define function G(A) ≡ F0(A; B̄0) − αA. We have limA→0 G(A) = 0

and limA→∞ G(A) = −∞. Let φ(·) be the density function of �(·). From (25)–(26),
we have

G
′
(A) = α�(−x1) − αAφ(−x1)

∂x1
∂ A

+ f e−r�φ(x2)
∂x2
∂ A

− α. (27)

Definition of x1 and x2 implies ∂x1/∂ A = ∂x2/∂ A = (Aσ
√

�)−1, x2 = x1 −
σ
√

�, and φ(x2) = φ(x1)er� A/B̄0. Substituting these into (27) yields

G
′
(A) = (�(−x1) − 1)α + 1

B̄0

φ(x1)

σ
√

�

(
f − α B̄0

)
.

Note that limA→0 G
′
(A) = 0 and limA→∞ G

′
(A) = −α. Also, φ

′
(x) = (−x)φ(x)

implies G
′′
(A) = φ(x1)

Aσ
√

�
(−α − x1K ), where K ≡ 1

σ
√

�

(
f

B̄0 − α
)

> 0. Let A
′
be the

asset level such that x1 = −α/K . Then A < A′ ⇔ x1 < −α/K ⇔ G
′′
(A) > 0. This

together with limA→0 G
′
(A) = 0 and limA→∞ G

′
(A) = −α imply that there exists

A
′′

> A
′
such that A < A

′′ ⇔ G
′
(A) > 0, A = A

′′ ⇔ G
′
(A) = 0 and A > A

′′ ⇔
G

′
(A) < 0. But then this together with limA→0 G(A) = 0 and limA→∞ G(A) = −∞
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implies that there exists A
′′′

> A
′′
such that A < A

′′′ ⇔ G(A) > 0, A = A
′′′ ⇔

G(A) = 0 and A > A
′′′ ⇔ G(A) < 0. Thus B1 ≡ A

′′′
concludes the proof. ��

Proof of Proposition 2.3 Defining H N (·) ≡ F N (·) + SN (·) for all N ∈ N and sum-
ming up (8) and (9) lead to

H N (A) = e−r�E Ã|A
[
1{ Ã≥ ĀN }H N ( Ã)

+1{ Ã< ĀN }
(

1{α Ã≥F N−1( Ã)}α Ã + 1{α Ã<F N−1( Ã)} H N−1( Ã)
)]

. (28)

Also, (10) becomes

H N ( ĀN ) = f. (29)

F0(·), H0(·) and Ā0 are already given in Model I. Given F N−1 and H N−1, define a
mapping T Ā

N : V → V by the r.h.s of (28) with ĀN replaced by an arbitrary threshold
Ā;

(
T Ā

N g
)

(A) ≡ e−r�E Ã|A
[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā}L N−1( Ã)

]
, (30)

where

L N−1( Ã) ≡ 1{α Ã≥F N−1( Ã)}α Ã + 1{α Ã<F N−1( Ã)}H N−1( Ã). (31)

We show the claim by induction. For N = 1, (30)–(31) become

(
T Ā
1 g

)
(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā}L0( Ã)

]
, (32)

L0( Ã) = 1{α Ã≥F0( Ã)}α Ã + 1{α Ã<F0( Ã)}H0( Ã). (33)

For monotonicity suppose h(A) ≤ g(A),∀A > 0. Then

(
T Ā
1 h

)
(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}h( Ã) + 1{ Ã< Ā}L0( Ã)

]

≤ e−r�E Ã|A
[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā}L0( Ã)

]
=

(
T Ā
1 g

)
(A).

For discounting, take any g ∈ V and a > 0. Then

(
T Ā
1 (g + a)

)
(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}

(
g( Ã) + a

)
+ 1{ Ã< Ā}L0( Ã)

]

= e−r�E Ã|A
[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā}L0( Ã)

]

+ e−r�aE Ã|A
[
1{ Ã≥ Ā}

]
=

(
T Ā
1 g

)
(A) + βa
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where β ≡ e−r�E Ã|A[1{ Ã≥ Ā}] < 1. Blackwell’s condition of discounting holds

because β is strictly smaller than one. By Blackwell’s theorem, T Ā
1 : V → V is a

contraction. Denote its unique fixed point as h1(·; Ā) ∈ V . Define sets

W1 ≡ {g ∈ V : nondecreasing and H0(A) ≤ g(A) ≤ A for all A > 0}; and
W

′
1 ≡ {g ∈ V : strictly increasing and H0(A) < g(A) < A for all A > 0}.

Take Ā ≤ A1. By the same corollary as we used in Proposition 2.1, if we show
T Ā
1 (W1) ⊂ W

′
1 then we have h1(·; Ā) ∈ W

′
1. So consider T Ā

1 g ∈ T Ā
1 (W1) for an

arbitrary g ∈ W1. By the assumption Ā ≤ A1, (32)–(33) reduce to

(
T Ā
1 g

)
(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā} H0( Ã)

]
. (34)

Since H0 is strictly increasing and g ∈ W1, the expression inside the above expec-
tation operator is increasing in Ã and hence T Ā

1 g is strictly increasing. As was shown
before, we have ∀A > 0, H0(A) < A. Also, g ∈ W1 implies ∀A > 0, g(A) ≤ A.
This implies ∀A > 0, (T Ā

1 g)(A) < A. Furthermore, we have

(
T Ā
1 g

)
(A) ≥ e−r�E Ã|A

[
H0( Ã)

]

> e−r�E Ã|A
[
1{ Ã≥ Ā0} H0( Ã) + 1{ Ã< Ā0}α Ã

]
= H0(A).

Therefore we have T Ā
1 g ∈ W

′
1, and hence T Ā

1 (W1) ⊂ W
′
1, and thus h1(·; Ā) ∈ W

′
1.

That is, h1(·; Ā) is strictly increasing and satisfies ∀A > 0, H0(A) < h1(A; Ā) < A.
In particular, H0( Ā) < h1( Ā; Ā) < Ā. A version of the intermediate value theorem
implies that there exists A∗ such that h1(A∗; A∗) = f , and A∗ satisfies f < A∗ < Ā0.
So let Ā1 ≡ A∗ and H1(·) ≡ h1(·; Ā1). Under our assumption Ā0 < A1, it follows
that Ā1 < A1. That is, if Ã < Ā1 so that the stockholder with N = 1 chooses default,
it is always the case that Ã < A1 so the creditor chooses to extend the maturity.18

Next we show H1(·) > H0(·). First, note that H1 and H0 are fixed points of the
following two contractions, respectively:

(
T Ā1

1 g
)

(A) = e−r�E Ã|A
[
1{ Ã≥ Ā1}g( Ã) + 1{ Ã< Ā1} H0( Ã)

]

(
T Ā0

0 g
)

(A) = e−r�E Ã|A
[
1{ Ã≥ Ā0}g( Ã) + 1{ Ã< Ā0}α Ã

]
.

Because H0 ∈ W ′, we have α Ã < H0( Ã) for all Ã. Therefore, Ā1 < Ā0 implies

that ∀g ∈ V,∀A > 0,
(

T Ā0

0 g
)

(A) <
(

T Ā1

1 g
)

(A). Hence, applying Lemma 4.2 to


 = {0, 1} proves H1(·) > H0(·).

18 Our computation shows that Ā0 < A1 is true for small α.
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Using this, we show F1(·) > F0(·). This is true because

F1(A) = e−r�E Ã|A
[
1{ Ã≥ Ā1} f + 1{ Ã< Ā1} max(α Ã, F0( Ã))

]

≥ e−r�E Ã|A
[
1{ Ã≥ Ā1} f + 1{ Ã< Ā1}α Ã

]

> e−r�E Ã|A
[
1{ Ã≥ Ā0} f + 1{ Ã< Ā0}α Ã

]
= F0(A), (35)

where the second inequality follows from f < Ā1 < Ā0 < f/α. This in turn implies
F1(A)(> F0(A)) > αA, for sufficiently small A > 0 (Proposition 2.2). Now, note
that

S0(A) = e−r�E Ã|A
[
1{ Ã≥ Ā0}(H0(A) − f )

]
(36)

S1(A) = e−r�E Ã|A
[
1{ Ã≥ Ā1}(H1(A) − f ) + 1{ Ã< Ā1}S0( Ã)

]
. (37)

Since Ā0 > Ā1 and H1 > H0, we have S1 > S0. Let A2 ≡ min{ Ã > 0 :
F1( Ã) − α Ã = 0}. Proposition 2.2 and F1(·) > F0(·) imply A1 < A2 and that
F1( Ã) > α Ã for Ã ∈ (0, A2). Therefore, oncewe show Ā2 < Ā1(< Ā0 < A1 < A2),
it will follow that whenever the stockholder with N = 2 chooses defaulting, the
creditor chooses to extend maturity.

Next we turn to N = 2 case andmore general N by induction. For N = 2, (30)–(31)
become

(
T Ā
2 g

)
(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā}L1( Ã)

]
(38)

L1( Ã) ≡ 1{α Ã≥F1( Ã)}α Ã + 1{α Ã<F1( Ã)}H1( Ã). (39)

Fix the threshold so that Ā ≤ Ā1. Then Ā ≤ Ā1 ≤ A1 < A2. In this case, Ã < Ā ⇒
Ã < A2 ⇒ F1( Ã) > α Ã holds, and hence (38)–(39) reduce to

(
T Ā
2 g

)
(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g( Ã) + 1{ Ã< Ā} H1( Ã)

]
.

Define sets

W2 ≡ {g ∈ V : nondecreasing and H1(A) ≤ g(A) ≤ A for all A > 0}; and
W

′
2 ≡ {g ∈ V : strictly increasing and H1(A) < g(A) < A for all A > 0}.

By similar arguments, it can be shown that T Ā
2 (W2) ⊂ W

′
2. So the fixed point

is h2(·; Ā) ∈ W
′
2. Hence H1(A) < h2(A; Ā) < A for all A > 0, or in particular,

H1( Ā) < h2( Ā; Ā) < Ā. This implies that there exists Ā2 such that h2( Ā2; Ā2) = f
and f < Ā2 < Ā1. Because Ā2 < A2, the creditor always chooses to extend maturity.
Let H2(·) ≡ h2(·; Ā2) and show H2(·) > H1(·) and F2(·) > F1(·), and so on. ��
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Proof of Proposition 2.4 We look for a solution in which the creditor always chooses
to exercise the maturity extension option whenever M ≥ 1. So assume that in (14)–
(15) α Ã < F N ,M−1( Ã) always holds whenever Ã < ĀR,N , which should be verified
later. Also, let H N ,M (A) ≡ F N ,M (A) + SN ,M (A). Equations (14)–(15) then reduce
to

F N ,M (A) =
⎧
⎨

⎩

e−r�E Ã|A
[
1{ Ã≥ ĀR,N } f + 1{ Ã< ĀR,N }α Ã

]
if M = 0

e−r�E Ã|A
[
1{ Ã≥ ĀR,N } f + 1{ Ã< ĀR,N }F N ,M−1( Ã)

]
if M ≥ 1

(40)

H N ,M (A) =
⎧
⎨

⎩

e−r�E Ã|A
[
1{ Ã≥ ĀR,N }H N ,N ( Ã) + 1{ Ã< ĀR,N }α Ã

]
if M = 0

e−r�E Ã|A
[
1{ Ã≥ ĀR,N }H N ,N ( Ã) + 1{ Ã< ĀR,N }H N ,M−1( Ã))

]
if M ≥ 1

.

(41)

For a given N , (41) implies that N + 1 equations, H N ,0, . . . , H N ,N , are dependent
on one another. Therefore, we must construct a contraction mapping that is applied to
a vector of N + 1 functions. Define a mapping P Ā : V 1+N → V 1+N by the r.h.s. of
(41) with ĀR,N replaced by an arbitrary threshold Ā that is no greater than Ā0:

P Ā
0 (g0, . . . , gN )(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}α Ã
]
, M = 0 (42)

P Ā
M (g0, . . . , gN )(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}g
M−1( Ã))

]
, M ≥ 1.

(43)

P Ā satisfies monotonicity and discounting. Monotonicity is straightforward. For dis-
counting, note that for M = 0 and a ∈ R

1+N++ ,

P Ā
0 (g0 + a1, . . . , gN + aN )(A)

= e−r�E Ã|A
[
1{ Ã≥ Ā}(g

N ( Ã) + aN ) + 1{ Ã< Ā}α Ã
]

= e−r�E Ã|A
[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}α Ã
]

+ e−r�aN E Ã|A
[
1{ Ã≥ Ā}

]

≤ P Ā(g0, . . . , gN )(A) + β max
j

a j ,

where β = e−r�E Ã|A[1{ Ã≥ Ā}] < 1. For M ≥ 1,

P Ā
M (g0 + a1, . . . , gN + aN )(A)

= e−r�E Ã|A
[
1{ Ã≥ Ā}(g

N ( Ã) + aN ) + 1{ Ã< Ā}(g
M−1( Ã) + aM−1)

]

= e−r�E Ã|A
[
1{ Ã≥ Ā}g

N ( Ã)

+1{ Ã< Ā}g
M−1( Ã)

]
+ e−r�

(
aN E Ã|A

[
1{ Ã≥ Ā}

]
+ aM−1E Ã|A

[
1{ Ã< Ā}

])

≤ P Ā
M (g0, . . . , gN )(A) + β max

j
a j ,

123



Credit risk analysis with creditor’s option to extend… 301

where β = e−r� < 1. By Lemma 4.1, P Ā is a contraction. Define sets Z
′
1 ⊂ Z1 ⊂

V 1+N by

Z1 ≡ {(g0, . . . , gN ) : H0(A) ≤ g0(A)

≤ · · · ≤ gN (A) ≤ A,∀A, and g′s are nondecreasing.}

and

Z
′
1 ≡ {(g0, . . . , gN ) : H0(A) < g0(A) < · · · < gN (A)

< A,∀A, and g′s are strictly increasing.}.

Then since Ā ≤ Ā0, for any G = (g0, . . . , gN ) ∈ Z1, we have

P Ā
0 (g0, . . . , gN )(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}α Ã
]

≥ e−r�E Ã|A
[
1{ Ã≥ Ā0} H0( Ã) + 1{ Ã< Ā0}α Ã

]
= H0(A),

[see Eq. (22)], and

P Ā
0 (g0, . . . , gN )(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}α Ã
]

< e−r�E Ã|A[ Ã] = A.

Next, we have

P Ā
1 (g0, . . . , gN )(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}g
0( Ã)

]

> e−r�E Ã|A
[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}α Ã
]

= P Ā
0 (g0, . . . , gN )(A),

and

P Ā
1 (g0, . . . , gN )(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}g
0( Ã)

]

≤ e−r�E Ã|A[ Ã] = A,

where the inequality is strict if g0 < A. Furthermore, for M ≥ 2,

P Ā
M (g0, . . . , gN )(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}g
M−1( Ã)

]

≥ e−r�E Ã|A
[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}g
M−2( Ã)

]

= P Ā
M−1(g

0, . . . , gN )(A),
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where the inequality is strict if gM−2 < gM−1, and

P Ā
M (g0, . . . , gN )(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}g
M−1( Ã)

]

≤ e−r�E Ã|A[ Ã] = A,

where the inequality is strict if gM−1 < A. Lastly, we have

P Ā
0 (g0, . . . , gN )(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}α Ã
]

< e−r�E Ã|A′
[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}α Ã
]

= P Ā
0 (g0, . . . , gN )(A

′
)

if A < A
′
, and

P Ā
M (g0, . . . , gN )(A) = e−r�E Ã|A

[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}g
M−1( Ã)

]

< e−r�E Ã|A′
[
1{ Ã≥ Ā}g

N ( Ã) + 1{ Ã< Ā}g
M−1( Ã)

]

= P Ā
M (g0, . . . , gN )(A

′
)

so the result of the mapping is strictly increasing. All the above together imply that
applying P Ā on Z1 repeatedly N times guarantees (P Ā)N (Z1) ⊂ Z

′
1. Therefore, the

fixed point of P Ā, say (hN ,0(·; Ā), . . . , hN ,N (·; Ā)), is in Z
′
1. That is, for all A > 0,

H0(A) < hN ,0(A; Ā) < · · · < hN ,N (A; Ā) < A (44)

and in particular

H0( Ā) < hN ,0( Ā; Ā) < · · · < hN ,N ( Ā; Ā) < Ā. (45)

Letting ĀR,N be such that hN ,N ( ĀR,N ; ĀR,N ) = f , we have

(α ĀR,N < α Ā0 <) f < ĀR,N < Ā0. (46)

Also, (44) holds for this particular threshold and we have H0(A) < hN ,0(A; ĀR,N )

< · · · < hN ,N (A; ĀR,N ) < A, or

H0(A) < H N ,0(A) < · · · < H N ,N (A) < A. (47)

Now we turn to debt values. We have

F N ,0(A) = e−r�E Ã|A
[
1{ Ã≥ ĀR,N } f + 1{ Ã< ĀR,N }α Ã

]
(48)

> e−r�E Ã|A
[
1{ Ã≥ Ā0} f + 1{ Ã< Ā0}α Ã

]
= F0(A) (49)
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where the inequality comes from ĀR,N < Ā0 < f/α. Also

F N ,1(A) = e−r�E Ã|A
[
1{ Ã≥ ĀR,N } f + 1{ Ã< ĀR,N }F N ,0( Ã)

]
(50)

> e−r�E Ã|A
[
1{ Ã≥ ĀR,N } f + 1{ Ã< ĀR,N }α Ã

]
= F N ,0(A), (51)

where the inequality comes from ( Ã < ĀR,N < Ā0 < A1) ⇒ (F N ,0( Ã) > F0( Ã) >

α Ã). By induction, we have F N ,M (·) > F N ,M−1(·), M = 1, . . . , N . By letting
AN ,M ≡ min{ Ã > 0 : F N ,M ( Ã) − α Ã = 0}, we have ĀR,N < Ā0 < AN ,1 <

AN ,2 < · · · . Therefore the initial assumption that the creditor always chooses to
extend the maturity has been confirmed. Since SN ,M (·) = H N ,M (·) − F N ,M (·), we
have

SN ,0(A) = e−r�E Ã|A
[
1{ Ã≥ ĀR,N }(H N ,N ( Ã) − f )

]
, (52)

so SN ,0 is nonnegative-valued and strictly increasing. Also

SN ,1(A) = e−r�E Ã|A
[
1{ Ã≥ ĀR,N }(H N ,N ( Ã) − f ) + 1{ Ã< ĀR,N }SN ,0( Ã)

]

> SN ,0(A). (53)

where the inequality follows (52). Then by induction, we have SN ,M > SN ,M−1 for
M = 1, . . . , N . ��
Proof of Proposition 2.5 We impose Ā∞ = f and verify it later. Let V be the set
of functions defined on R++ that are positive-valued and bounded by f . Define a
mapping T∞ : V → V by

(T∞g) (A) ≡ e−r�E Ã|A
[
1{ Ã≥ f } f + 1{ Ã< f } max(α Ã, g( Ã))

]
.

The monotonicity of T∞ is obvious and the discounting follows from

(T∞(g + a)) (A) = e−r�E Ã|A
[
1{ Ã≥ f } f + 1{ Ã< f } max(α Ã, g( Ã) + a)

]

≤ e−r�E Ã|A
[
1{ Ã≥ f } f + 1{ Ã< f } max(α Ã + a, g( Ã) + a)

]

= e−r�E Ã|A
[
1{ Ã≥ f } f + 1{ Ã< f }(max(α Ã, g( Ã)) + a)

]

= (T∞g)(A) + βa,

where β = e−r�E Ã|A[1{ Ã< f }] < 1. Therefore, by the Blackwell sufficient condition,
a unique fixed point exists, denoted F∞(·). Moreover, for all A > 0, we have

F∞(A) > e−r�E Ã|A
[
1{ Ã≥ f } f + 1{ Ã< f }α Ã

]

> e−r�E Ã|A
[
1{ Ã≥ Ā0} f + 1{ Ã< Ā0}α Ã

]
= F0(A).
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Hence F∞ > F0. That is, if we define A∞ ≡ inf{ Ã > 0 : F∞( Ã) < α Ã}, then
we have Ā∞ = f < Ā0 < A1 < A∞. That is, Ã < Ā∞ ⇒ α Ã < F∞( Ã); whenever
default occurs, the creditor chooses postponement. In this case, summing up (19) and
(21) gives

F∞(A) + S∞(A) = e−r�E Ã|A[F∞( Ã) + S∞( Ã)].

Given that the expectation is with respect to the risk-neutral probability measure,
the obvious solution is F∞(A) + S∞(A) = A for all A > 0. Then, it is verified that
Ā∞ = f satisfies the definition of the default threshold, namely S∞( Ā∞) − ( f −
F∞( Ā∞)) = 0. ��
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