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Abstract
Poromechanics plays a key role in modelling hard and soft tissue behaviours, by providing a thermodynamic framework in
which chemo-mechanical mutual interactions among fluid and solid constituents can be consistently rooted, at different scale
levels. In this context, how different biological species (including cells, extra-cellular components and chemical metabolites)
interplay within complex environments is studied for characterizing the mechanobiology of tumor growth, governed by intra-
tumoral residual stresses that initiate mechanotransductive processes deregulating normal tissue homeostasis and leading to
tissue remodelling. Despite the coupling between tumor poroelasticity and interspecific competitive dynamics has recently
highlighted how microscopic cells and environment interactions influence growth-associated stresses and tumor pathophys-
iology, the nonlinear interlacing among biochemical factors and mechanics somehow hindered the possibility of gaining
qualitative insights into cells dynamics. Motivated by this, in the present work we recover the linear poroelasticity in order
to benefit of a reduced complexity, so first deriving the well-known Lyapunov stability criterion from the thermodynamic
dissipation principle and then analysing the stability of the mechanical competition among cells fighting for common space
and resources during cancer growth and invasion. At the end, the linear poroelastic model enriched by interspecific dynamics
is also exploited to show how growth anisotropy can alter the stress field in spherical tumor masses, by thus indirectly affecting
cell mechano-sensing.

Keywords Tumor growth · Poroelasticity · Cells competition · Volterra-Lotka dynamics · Stability

1 Introduction

Cancer disease occurswhen irreversible pathological changes
cause alterations of cells natural programs. Mutations of
cell cycles induce abnormal proliferation generating inter-
nal forces that are continuously counteracted by the elastic
resistance of the host tissue. As a result, solid tumor
microenvironment becomes a dynamical scenario in which
mechanical stresses, fluid pressure and elastic properties
rapidly coevolve with the development of the mass, by pro-
moting competitive interactions between the resident cell
populations through a process known as mechanical cell
competition [1]. Together with the ascertained stiffening of
solid masses with respect to the host surroundings, the role
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that solid stress plays in many phenomena accompanying
the initiation and the progression of cancer has been notice-
ably recognized [2–4]. The study of inhomogeneous residual
stresses has in fact become a crucial aspect in oncophysics in
order to understand some key mechanisms of tumor patho-
physiology that could help both diagnostics and therapeutic
interventions [5]. In fact, growth-induced stresses alter the
homeostatic properties of the host tissue and cause different
mechanosensitive cellular responses that may lead to dra-
matic degenerations, including central necrosis due to the
abnormal intratumoral pressures compressing lymphatic ves-
sels and the malignant progression of leading cancer cells
driven by anomalous stress gradients at the host-tumor inter-
face and peritumoral vascularization [6,7]. Also, solid stress
acts as a mechanical barrier that contrasts drug inflow by
compromising the effectiveness of cancer therapies [8–10].
For these reasons, the study of the effects of solid stress on
soft tissue homeostasis has been investigated both theoreti-
cally and experimentally, by observing the in vitro growth of
confinedmulticellular spheroids [11–14] as well as bymeans
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of magnetic or mechanical actuators to apply forces on in
vivo systems [2,15]. The underlying mechanisms transduc-
ing a mechanical cue into a biochemical signal are explained
on the basis of some conformational changes and molecular
pathways that modify cancer single-cell properties, which
exhibit a different cytoskeletal stiffness as well as altered
adhesion and motility capabilities [11,16–20]. Therefore,
the understanding of the mechano-responses of cancer sys-
tems, from single-cells to entire masses, could actually lead
to innovative targeting and therapeutic strategies that, by
exploiting the mechanical differences between tumor and
host as a selectivity principle, provide the possibility to
mechanically attack cancer cells by preserving the healthy
surroundings [21–23]. At the tissue level, the synergistic
interplay between bio-chemical and physical signals signifi-
cantly affect the biomechanical response of tumor masses,
their study thus requiring enriched models that incorpo-
rate the most significant physiological events characterizing
the mechanobiology of solid tumor growth [24–27]. As a
consequence, the prediction of the influence that mechani-
cal stresses can have on multiscale heterogeneous systems
and the characterization of the dynamics to which tumor
growth obeys have been investigated with increasing atten-
tion in oncophysics. In this framework, a great variety of
modelling strategies have been proposed, which have from
a side contributed to give some answers to open issues, on
the other hand also highlighting the difficulties to include
all the relevant aspects characterizing the complexity of the
mechanobiology at the basis of the tumor development. In
particular, how tumor invasion governed by cell-cell and cell-
environment dynamics and mechanical stresses do interact
is not yet completely understood [28]. From a mechani-
cal point of view, the macroscopic behaviour of growing
tumors has been from time described by means of linearly
elastic [29] and poroelastic approaches [7,25,30], as well
as by means of hyperelastic models providing finite defor-
mations [9,31,32]. In particular, poroelasticity is crucial to
follow the development of solid stress and interstitial fluid
pressure (IFP) within the tissue, this also allowing to trace
the role of interstitial flows within the solid extracellular
matrix (ECM) in cellular growth and migration [33–35].
However, most of these mechanical approaches include the
effect of volumetric growth in the momentum equation by
considering a priori prescribed growth functions [36] or by
uploading phenomenological macroscopic tumor laws [9],
in this way inevitably losing the key coupling with the
underlying microscopic dynamics. In fact, while the growth-
associated strains affect the stress, often the feedback of
both the environmental stress and the related pressure gradi-
ents on the cells proliferation rate is not taken into account.
More recently, coupledmodelling approaches to characterize
the elastic growth of prostate benign hyperplasia provided
the influence of a mechanical feedback in the diffusion

and the proliferation potential of the solid phase, by addi-
tionally including the interaction with chemicals [37,38].
The interactions among tissue constituents has been traced,
at the macroscale, by means of multiphase models based
on reaction-diffusion equations by accounting for the pres-
ence of microstress and macrostress fields [39–43]. At the
microscale level, several works suggest the adoption of mod-
els analysing the mutual effects in terms of exchanged forces
to simulate cell-cell interaction [43–45], while tensegrity-
based single-cell models have been recently used to also
furnish a way for biomechanically discriminating among
tumor and healthy cells on the basis of the redistribution of
internal pre-stretch [17,46]. At the level of cell aggregates,
statistical mechanics arguments have been used to demon-
strate that cells interactions represent a functional constraint
to the macroscopic tumor growth law [47] and the use of
evolutionary models, in the framework of population ecol-
ogy, has represented a particularly successful strategy to
study the dynamics of cells’ collective interactions through
competitive/cooperative mechanisms, in which however the
feedback from the environmental on cell behaviours seems
to be still absent [48–54]. In the light of these consider-
ations, the full coupling of population dynamics with the
tissue biomechanical response and stress-driven factors in
modelling tumor growth has been the crucial point devel-
oped in very recent works by some of the present authors
[27,55]. Therein, the theoretical prediction of cell interspe-
cific behaviour and the cells-extracellular matrix interaction
have been described by means of a Volterra-Lotka (VL)-like
model following a predator-prey logic, by assuming that can-
cer and healthy cells compete for the shared space and the
available resources. As a matter of fact, this idea has also
recently found confirmation, since the mechanical cell com-
petition for the common space has been demonstrated to be
a process that actually triggers the preferential elimination
of one cell population with respect to others through apopto-
sis, with the generating competitive interactions regulated by
short-range biochemical inductions, mechanical constraints
and compressive forces [1,56–58]. Despite the adoption of a
geometrically and constitutively nonlinear framework allows
to follow the evolution of the tumor mass by accounting for
finite motion and large deformations [55,59], some crucial
information concerning the quality of the dynamical system
are somehow blurred by the high degree of mathematical
coupling between mechanical and species variables in the
system of nonlinear partial differential equations govern-
ing the problem. Therefore, to better elucidate how solid
species behave and to gain further insights about the inter-
play between mechanical and biological factors, we here
recover the linear elasticity in order to benefit of a reduced
mathematical complexity for analysing the stability of the
mechanobiological systems. This is accomplished by show-
ing that the well-known Lyapunov stability criterion can be
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derived from the thermodynamic dissipation principle that
defines the constitutive framework of the poroelastic model
enriched with competitive cells dynamics. By following this
way, we then study the asymptotic behaviour of the species
also with the help of an uncoupling strategy based on the
difference between the elastic and biological characteristic
times involved in the continuity equations. Finally, under the
assumption of linear poroelaticity, some results of numerical
simulations that involve possible anisotropic growth, which
depends on tumor cell density, intratumoral stress distribu-
tion and on how neighbouring cells interact each other during
proliferation by straining the matrix, are shown to point out
the consequences of non-stereologically growing masses in
terms of change in material properties (remodelling) and
tumor stiffening.

2 Thermodynamic framework and stability
of motion in growing systems

The theoretical model used to predict tumor growth com-
bines the classical poroelastic field equations with inelastic
growth through the direct (full) coupling of the porome-
chanical balances with a suitable dynamical system obeying
a Volterra-Lotka logic. In this way, the inelastic defor-
mation due to volumetric growth can be seen as the net
result of the interaction among the biological solid species
that inhabit the tissue. In particular, we start from some
well-established thermodynamic considerations in order to
derive via dissipation principle both the constitutive assump-
tions of the linear poroelasticity and the configurational
thermodynamic forces conjugated with growth deforma-
tion. In addition, in the light of the coupling between the
mechanical problem and species dynamics, the dissipa-
tion principle also allows to find a condition that ensures
both the stability associated with the motion of the solid
constituents and the thermodynamic consistency of the
model. To this purpose, the growing continuum can be
seen as a multi-component system, in which the solid con-
stituents are denoted by a subscript i ∈ S , while the fluid
phase is indicated by the subscript i = F . However, the
high water content in the involved biological species lets
to assume a constant true density (say �) for each con-
stituent, so that the total density of the system remains
unchanged:

ρ = ρS + ρF =
∑

i∈S
� φi + �φF = �, (1)

the sum of all the volumetric fractions giving the unity (in
what follows, the subscript i will exclusively refer to the
solid constituents and the hypothesis of constant density will
be hold true). Growth is an inelastic process that inevitably

implies dissipation. For this reason, the free energy density
ψ is here expressed as the sum of a reversible energy aliquot,
which is linked to the purely poroelastic contribution and
classically depends on the elastic strain, say Ee, and the
fluid content φF [60], and a growth-associated contribution
that is instead a function of the solid species φi . In explicit:

ψ = ψe (Ee, φF ) + ψg (φi ) . (2)

Under the hypothesis of an isothermal process, the balance
of energy can be written by introducing a specific metabolic
energy contribution, say εg , which is directly responsible of
the volumetric growth g. Hence, the first principle of ther-
modynamics reads as:

∫

V
ρ
dU

dt
dv =

∫

V
σ : D dv +

∫

V
εg ġ dv, (3)

where U and V are the internal energy per unit mass
and the volume measure, respectively, while D = Ė =
sym(u̇ ⊗ ∇) is the symmetrical part of the velocity gradi-
ent. In fact, in the linear regime, the total deformation E
and the displacement field u are related each other by the
compatibility equation E = sym(u ⊗ ∇), which can be
decomposed in the sum of the elastic strain and the growth
strain, i.e. E = Ee + γ g (see Refs. [61,62]), where γ

is a tensor of anisotropy that distributes volume growth in
the different directions through specific weight coefficients.
By following well-known approaches of the Thermody-
namics of multicomponent bodies, the entropy imbalance
must account for the energy contribution carried out by the
species transport and internal supply [63]. In the light of
these considerations, the second principle is written down
by separately including a thermodynamic force fg conju-
gated to the rate ġ (representing a volumetric rate of entropy
supply due to growth of the solid species) and a thermo-
dynamic tensor force fγ that is instead associated to the
internal remodelling variables that describe the structural
remodelling caused by deformation and growth [64–66]. Fur-
thermore, by adding up a conductive rate of entropy supply
due to the fluid transport [63], the entropy inequality reads
as:

∫

V

dS

dt
ρ dv ≥

∫

V
fg ġ dv +

∫

V
fγ : γ̇ dv

+
∫

∂V
μF qF · dA, (4)

where qF is the fluid flux vector and μF = ρ−1
F (p − p0)

is the associated fluid chemical potential that allows to
describe energy exchanges due tofluid transport in the control
volume. By subtracting Eq. (4) from Eq. (3), and identify-
ing the free energy per unit volume defined in Eq. (2) as
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ψ = ρ(U − S), the following dissipation inequality can be
obtained:

∫

V
σ : D dv −

∫

∂V
μF qF · dA +

∫

V
εg ġ dv +

−
∫

V
fg ġ −

∫

V
fγ : γ̇ dv ≥ d

dt

∫

V
ψ dv. (5)

To express the former equation in a local form, the Gauss
theorem is applied to the second member of the left side of
Eq. (5), while the chain rule on the right side allows to express
the rate of ψ according to Eq. (2). In this way, it results:

σ : D − ∇μF · qF − μF ∇ · qF + εg ġ − fg ġ − fγ : γ̇

≥ ∂ψe

∂Ee
: Ėe + ∂ψe

∂φF
φ̇F +

∑

i

∂ψg

∂φi
φ̇i . (6)

By both invoking the additive decomposition of the strain
and taking into account the fluid continuity equation:

φ̇F + ∇ · qF = ΓF , (7)

the terms in Eq. (6) can be collected to have:

(
σ − ∂ψe

∂Ee

)
: Ėe +

(
p − p0 − ∂ψe

∂φF

)
φ̇F − ∇μF · qF +

−(p − p0)ΓF + (
σ : γ + εg − fg

)
ġ +

+ (
gσ − fγ

) : γ̇ − ∇φψg · φ̇ ≥ 0, (8)

from which one readily gets the standard constitutive
assumptions for the poroelastic variables

σ = ∂ψe

∂Ee
, (9a)

p = p0 + ∂ψe

∂φF
. (9b)

Equation (8) can be further reduced by taking a Darcy
type flux vector qF = −K∇μF (with K being a defi-
nite positive matrix) and by properly introducing a fluid
source term driven by the static pressure gradient ΓF ∝
p0 − p. In order to make explicit constitutive assump-
tions and obtain a suitable expression for the linear elastic
potential as a function of the poroelastic fields (the strain
tensor and the interstitial pressure, according to most of
the classical models [27,60]), a Legendre transform is per-
formed on ψe in a way to have a dual energy density:

ψ∗
e (Ee, p) = ψe (Ee, φF ) − φF (p − p0). (10)

By then considering its differential form and accounting Eq.
(9b) one has the identity:

dψ∗
e = ∂ψe

∂Ee
: dEe − φF dp = ∂ψ∗

e

∂Ee
: dEe + ∂ψ∗

e

∂ p
dp, (11)

from which

∂ψe

∂Ee
= ∂ψ∗

e

∂Ee
, (12a)

φF = −∂ψ∗
e

∂ p
. (12b)

Equation (12b) together with Eq. (10) let to obtain an explicit
constitutive relation for the fluid content, which reads as
linearizing the incremental fluid fraction dφF , thus writing

φF = φF0 + A : Ee + M−1(p − p0), (13)

in which A = −∂2ψ∗
e /(∂Ee∂ p) and M−1 = −∂2ψ∗

e /∂ p2,
φF0 being the initial fluid fraction at zero elastic strain and
at the reference pressure p0. Hence, the substitution of Eq.
(13) into Eq. (12b) and a direct integration with respect to p
gives:

ψ∗
e = ψ̂ (Ee)−φF0(p−p0)−(p−p0)A : Ee− 1

2M
(p−p0)

2,

(14)

where the energy density term ψ̂ resulting from the inte-
gration can be interpreted as the effective energy aliquot
associated to the solid deformation. Within a linear isotropic
framework, this coincides with the quadratic elastic St.
Venant–Kirchhoff strain energy density, i.e.:

ψ̂ = 1

2
Ee : C : Ee, (15)

with C = ∂2ψ∗
e /∂E2

e = 2μI + λI ⊗ I being the isotropic
fourth order stiffness tensor and thus, together with the rela-
tion (9a)a, the Terzaghi stress principle can be immediately
derived:

σ = C : Ee −A (p− p0), σ e f f = σ +A (p− p0). (16)

In the light of the specific constitutive assumptions here intro-
duced, the dissipation inequality (8) reduces to:

(
σ : γ + εg − fg

)
ġ+(gσ − fγ

) : γ̇ −∇φψg ·φ̇ ≥ 0. (17)

These terms are evidently not independent, since the coupling
suggests a relation between the volumetric growth strain g
and the vector of the biological species. However, they carry
different information that allow to discuss them separately.
The first two terms are in fact associated to kinematical
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effects of growth and let to assume an expression for the
thermodynamical forces conjugated to growth and remod-
elling. In particular, the growth volumetric strain is driven
by both mechanical and metabolic factors and the config-
urational force conjugated to the growth can be expressed
as fg = σ : γ + εg . This relation (that also resem-
bles the Eshelbian stress-energy tensor classically derived
in nonlinear formulations [27,67]) highlights the role of a
chemical sources in triggering volume growth, mediated by
the weighted sum of the stresses that can invite or inhibit
some growth kinetics in the different directions. In case of
isotropic growth γ = 1/3 I, so that the growth results to
be driven by the hydrostatic pressure σ hyd . Analogously,
also stress-driven anisotropy coefficients could be in general
assumed by considering the Kirchhoff-type stress fγ = gσ
as conjugated pair [65,68,69]. These relations qualitatively
suggest that growth takes place in presence of available
metabolic resources, in a way to be sustained also in a
stressed (e.g. compressed) environment, where mechanical
impairments could occur. In fact, the respect of Eq. (17)
would imply that the lack of metabolites and unfavourable
compression would either arrest the growth or cause resorp-
tion processes, by orienting the growth towards less stressed
compartments. Also, these driving forces allow the intro-
duction of suitable feedback mechanisms thanks to which
it is possible to set the coupling between the mechanical
variables and the fitness functions of biological species. In
particular, one can assume a direct influence of the mechan-
ical stress on the growth, by introducing non-constant VL
coefficients able to describe how cells intrinsic rates feel
the environmental stress through specific mechano-sensing
parameters. The reduced dissipation (17) finally gives the
condition ∇φψg · φ̇ ≤ 0. This dissipation inequality can
be connected to the stability of the species dynamics. In
fact, the emerged inequality represents the well-known Lya-
punov stability criterion [70], which relates the stability of
the biological dynamics to the existence of a positive-definite
Lyapunov function in the positive octant of the phase field
that vanishes at the equilibrium points and such that its
time derivative is locally negative semi-definite in a neigh-
bourhood of the candidate attractor points. Inequality (17)
then actually states a substantial equivalence between the
thermodynamical and stability of the multi-species dynam-
ics, in the light of the fact that the entropy principle can
be attributed to the study of the stability of the Lyapunov
function of the generalized VL system at hand, a key par-
allel for the present application that has been also deeply
investigated (without considering mechanical coupling) in
the field of ecological models in Ref. [71]. By virtue of
the Lyapunov stability theorem assessments, one can sup-
pose that, in the neighbourhood of an equilibrium point φ∗,
the dissipation potential can assume the following expres-
sion:

ψg
(
φi , φ

∗
i

) =
∑

i={T ,H ,M}

(
φi − φ∗

i

)+ φ∗
i ln

(
φ∗
i

φi

)
,

ψ̇g =
∑

i={T ,H ,M}

(
φi − φ∗

i

)
Γi , (18)

in which the general form of the evolution equations of the
solid constituents φ̇i = φi Γi has been involved, the func-
tion Γi representing the fitness function of the i-th species,
whose expression will be specified in what follows for both
the interacting cells and the ECMwith reference to the partic-
ular problem. Also, Eq. (18) recalls the Boltzmann entropy
formula. In order to define a specific dissipation function
for the species, the study of the stationary points is then
required.

3 Tumor growth resulting from
poroelasticity enriched by predator-prey
cell dynamics

Cancer disease involves a cascade of pathological genomic
alterations that compromise, often irreversibly, ordinary cel-
lular programs and functionalities. These mutations are
accompanied by the progressive modification of the extra-
cellular environmental conditions, defined by immune
response, matrix metabolism as well as stiffness, mechan-
ical and biochemical gradients. The growth of solid tumors
can be treated physically as a mechanical process in which a
heterogeneous mass expands within (or against) a surround-
ing host tissue. Tumor expansion is in fact controlled by
internal driving stresses, which are counterbalanced by the
mechanical (elastic) resistance provided by the surrounding
environment. Internal stresses are mostly originated by the
abnormal proliferation of cancer cells, whose viability and
distribution depend on the intratumoral availability of nutri-
ents. This implies that the physical forces pushing the tumor
ahead do not involve the sole surface tension and the pressure
of the surrounding medium, but also explicit active cellu-
lar forces in the momentum balance that, in turn, activate
mechanosensing cellular responses. With the aim to model
the complex machine of the host-tumor interaction in grow-
ing solid tumors, we here adopt an enriched poroelasticity
approach in which the mechanically activated stress fields,
fluid pressure and nutrient walkway are all coupled with spa-
tially inhomogeneous and time-varying bulk growth. This
growth is induced by competitive dynamics occurring at the
microscopic scale level among healthy cells, cancer cells
and ECM (projected at the macroscale through their cor-
responding volume fractions) and modelled by introducing
ad hoc non-linear Lotka/Volterra-like equations. The basic
idea is that cancer and healthy cell species do not compete
directly, as it would happen in a pure predator-prey logic,
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but instead contend the common resources and the available
space. Cells competition leads to the preferential elimina-
tion of a cell population by the other, mediated by specific
environmental conditions and interspecific communication
pathways [1,47]. The introduction of these effects enriches
previously proposed elastic and poroelastic models [28,30]
by explicitly introducing the actual competition among cell
species and by reproducing the experimentally observed cou-
pled dynamics in which the presence of one species tends to
somehow limit the development of the other one. This aspect
is here described in explicit as a behavioural phenomenon
occurring in the cells community without prescribingmacro-
scopic tumor growth laws. In fact, in the proposed model,
mutual interactions in turn modify the intrinsic growth rates
of the cell populations and leads to spatially inhomoge-
neous elastic and residual stresses as well as non-uniform
IFP distributions. In the present treatment, however, in order
to elucidate in the simplest way the key aspects of the
dynamics at hand, further elements that would imply a direct
competition between cancer and healthy cells depending on
additional factors, such as the anti-oncogenic potentials of
some immune cells or the aggressiveness of pre-malignant
cells which become malignant as a result of mutation pro-
cesses, will be voluntarily neglected.

3.1 Governing equations of linear poroelasticity
incorporating growth

By recalling the constitutive equations of linear poroelasticity
[60], the strain tensor E, defined on a closed subset Ω ⊂ R

3

in presence of volumetric growth, can be written as

E = S : σ e f f + γ g, (19)

where γ g is the growth strain tensor previously introduced,
with g ∈ R being the volumetric growth strain function and
the matrix γ = diag {γk} containing the anisotropic multipli-
ers for each principal direction so that tr (γ ) = ∑

k γk = 1.
The matrix S represents the drained compliance fourth rank
elasticity tensor (the superscript (d) will be avoided) while
σ e f f is the effective stress tensor resulting from Eq. (16). Its
definition includes the Cauchy stress tensor σ and the inter-
stitial fluid pressure p (IFP), while A is commonly referred
as theBiot effective stress coefficient symmetric tensor, equal
to A = (

I − C · S(m)
) : I, in which C = S

−1 is the drained
stiffness tensor and S(m) is the matrix-associated compliance
fourth-order tensor, while I and I respectively indicate the
fourth-rank identity tensor and the second-rank identity vec-
tor (in Voigt notation). By deriving the stress tensor σ from
Eq. (19) and in absence of body forces and neglecting inertia
terms, the stress equations of motions in three dimensions
read as

σ = C : Ee −
(
I − C · S(m)

)
: I (p − p0), (20a)

∇ · σ = 0, σ = σ T, (20b)

in which Ee = (E − γ g) is the elastic part of the defor-
mation. By combining Eq. (20b) with compatibility Eq.
(19b), together with the hypothesis of considering an elastic
isotropic material (also implying that A = AI), the quasi-
static balance of linear momentum can be written as:

μ∇ · (∇ ⊗ u)T + (μ + λ)∇ (∇ · u) +
−2μ (∇ · γ g + γ · ∇g) − λ ∇g − A∇(p − p0) = 0,

(21)

with A = 1 − K/K (m), K and K (m) being the drained
and matrix bulk moduli, while μ = E/[2(1 + ν)] and
λ = E/ [(1 + ν) (1 − 2ν)] are the Lamé moduli. The other
basic field variable of poroelasticity is the dimensionless
(under the hypothesis of constant density) variation in fluid
content ζ that, according to the constitutive Eq. (13), can be
linearly related to the elastic strain and to the pore pressure
[60]:

ζ = φF − φF0 = A : S : σ + M−1(p − p0)

= A : (E − γ g) + Cef f (1 − A : B) (p − p0), (22a)

Cef f = I :
(
S − S

(m)
)

: I − ϕ
(
1/K (F) − I : S(m) : I

)
.

(22b)

This relation allows to rewrite the fluid mass conservation
equation as:

∂ζ

∂t
+ ∇ · qF = ΓF ,

ΓF = κv [pv − p − � (πv − πι)] − κl (p − pl) , (23)

where qF = −(1/υF )K∇ p, with υF denoting the fluid
viscosity and K the intrinsic permeability symmetric ten-
sor, whereas ΓF is a source/sink term (fluid mass supply
per unit volume) introduced to account for the fluid inter-
change from the leaky capillaries to the absorbing lymphatic
vessels within the interstitial space at the microcirculation
level, modelled according to the Starling’s theory. In par-
ticular, fluid movement within the microvascular beds is
governed by the hydrostatic gradient between the IFP and
the capillary pressure (pv − p)[10], contrasted by the dif-
ference between capillary and interstitial osmotic pressures
(πv − πι)weighted by a reflection coefficient� . In addition,
the effect of lymphatic drainage in the opposite direction
is included, driven by the difference between the IFP and
lymphatic vessels pressure pl [72–74]. Pressure gradients
in ΓF are mediated by two conductivity coefficients, named
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κv and κl respectively. Other characteristic poroelastic con-
stants appearing in Eq. (22a) and used to define the inverse
of the Biot modulus M−1 are the effective compressibil-
ity factor Cef f , in which the porosity ϕ and the fluid bulk
modulus K (F) are also included (the fluid is supposed to
be incompressible, so that 1/K (F) → 0), and the Skemp-
ton compliance difference tensor B, linked by the following
relationships:

M−1 = Cef f (1 − A : B) , (24a)

B = 1

Cef f
S : A = 1

Cef f

(
S − S

(m)
)

: I. (24b)

In Eq. (24a), the Skempton tensor reduces to B = (B/3) I
because of the isotropy assumption, with B =(
1/K − 1/K (m)

)
/Cef f , tending to the unity for fluid-

saturated materials, as well as for K (m) approaching to K (F),
whether or not the fluid and the matrix are assumed incom-
pressible, in this case being the porosity ϕ actually uneffec-
tive. By further introducing the undrained elastic constants as

S
(u) = S − S : (A ⊗ B) (25)

and by also invoking isotropy, the scalar Biot effective stress
coefficient A obtained in Eq. (21) can be expressed in terms
of undrained and drained constants and the Skempton coef-
ficient B

S
(u) = S − A B

3
S : (I ⊗ I) = S − A B

3

1 − 2ν

E
(I ⊗ I) ,

A = 3

B

(
ν(u) − ν

)

(1 − 2ν)
(
1 + ν(u)

) .
(26)

Then, by focusing on a spherically symmetric case to have
the deformations Eq. (19) be written as E = diag {∂u/∂r ,
u/r , u/r} and the multiplier γ = diag {γr , (1 − γr ) /2,
(1 − γr ) /2}, the stress-strain-pore pressure constitutive
Eq. (20a) take the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σr = E

(1 + ν) (1 − 2ν)

×
[
(1 − ν)

∂u

∂r
+ 2ν

u

r
− (ν + (1 − 2ν) γr ) g

]

− 3

B

(
ν(u) − ν

)

(1 − 2ν)
(
1 + ν(u)

) (p − p0),

σθ = σφ = E

(1 + ν) (1 − 2ν)

×
[
u

r
+ ν

∂u

∂r
− 1

2
(1 − (1 − 2ν) γr ) g

]

− 3

B

(
ν(u) − ν

)

(1 − 2ν)
(
1 + ν(u)

) (p − p0),

(27)

in agreement with literature formulations regarding the
characterization of porous materials and the anisotropic
expansion of linear elasticity by means of prescribed growth
laws [28,75]. By starting from the definition of the isotropic
Skempton coefficient B in Eq. (24b), analogous passages let
to find Cef f = A/(K B) = 9

(
ν(u) − ν

)
/
[
B2E

(
1 + ν(u)

)]
,

so that the constitutive relation for fluid content ζ in Eq. (22a)
combined with the expression of the Biot modulus given
by Eq. (24a) becomes

ζ = 3

B

(
ν(u) − ν

)

(1 − 2ν)
(
1 + ν(u)

) (ε − g)

+ 9
(
ν(u) − ν

)

B2E
(
1 + ν(u)

)
[
1 −

(
ν(u) − ν

)

(1 − 2ν)
(
1 + ν(u)

)
]

(p − p0)

(28)

with ε = trE, the latter relation showing how the growth g
counteracts the dilation of pore spaces that could be occupied
by the growing solid phase, which is also directly responsible
of the nutrient consumption carried by the fluid. The adopted
framework then allows to express the governing equations
of the poromechanical problem (26) and (28) by involving
a minimal set of measurable constitutive parameters, i.e. the
drained moduli E and ν, the undrained Poisson ratio ν(u) and
the Skempton coefficient B.

3.2 Mechanical and interspecific coupling and
specialization of the competitive interactions

By recalling that the growth strain field appearing in the
poroelastic constitutive Eqs. (27) and (28) is an explicit func-
tion of the solid species, i.e. g = g (φ), where the vector φ

collects the volumetric fractions of the constituents involved
in the dynamics, in this case represented by the healthy and
tumor cells and the ECM, sayφH ,φT andφM , the poroelastic
field Eqs. (20b) and (23) are finally coupled with the dynam-
ical system leading to write the mass balances in the form
⎧
⎪⎪⎨

⎪⎪⎩

∇ · σ = 0,
∂ζ
∂t − ∇ ·

(
K
υF

∇ p
)

= ΓF ,

∂φ
∂t = φΓ g.

(29)

Herein, Γ g = {Γi }, i = (T , H , M) represents the vec-
tor of the net rates of the solid species responsible of the
growth term g, whose expression explains the particular
way in which the species interact each other within the
environment. To this aim, by focusing on the competition
between cancer and healthy cells interacting with the ECM
in a shared environment by challenging for the common
resources,VLequations have been here employed to describe
the dynamics among the species. Evolutionary game theory
and population ecology are widely used in the literature to
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model some cell-cell and cell-immune system interactions
[51,53,54,76]. Here, the proposed strategy enriches these
dynamics with the possibility of providing the coevolution of
the environmental changes through non-constant parameters
and poromechanical variables. In agreement with the pre-
vious nonlinear formulations of the model [27,55], whose
outcomes are also confirmed by recent works demonstrat-
ing that tumor heterogeneity and cell-cell interactions within
a shared space constrain cellular proliferation by affecting
the macroscopic tumor progression [1,47], mutual inhibit-
ing inter-species parameters are introduced to trace back
the competition that each species exerts on the other one
by affecting the growth rate. In particular, with reference to
the particular case of spherically symmetrical solid tumors,
system (29) can be specialized by providing functional cou-
plings in the system of equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂r

(
∂u

∂r
+ 2

u

r

)
−
(
1 + ν

1 − ν

)
[γr g + A

3K
(p − p0)] = 0, (30a)

∂ζ

∂t
= kF

r2
∂

∂r

(
r2

∂ p

∂r

)
+ κv [pv − p − � (πv − πι)] − κl (p − pl ) ,

(30b)
∂φT

∂t
= φT ΓT = φF ηT φT (1 − αT T φT − αT HφH − αT MφM ) ,

(30c)
∂φH

∂t
= φH ΓH =φF ηH φH (1−αHT φT −αHHφH − αHMφM ) ,

(30d)
∂φM

∂t
= φM ΓM = βT φT +βHφH −δMφM (αMT φT +αMHφH ) .

(30e)

Cell-specific Eqs. (30c) and (30d) recall the classical VL-like
ones. However, differently from the classical VL equations
in which coefficients are all constant, in order to realisti-
cally describe the competitive dynamics among cell species
and ECM in tumor spheroids, two main aspects here sug-
gest to adopt varying coefficients in the VL equations. In
fact, since cells activity takes place in presence of nutri-
ents, supposed to be homogeneously dissolved within the
fluid, the proliferation rates are here proportional to the vari-
able fluid content φF = φF0 + ζ . Additionally, the role that
mechanical stress has in controlling cell proliferation is also
taken into account. Several literature studies in fact inves-
tigate with increasing interest the importance of anomalous
mechanical compression in controlling tumorprogressionvia
apoptosis, due to the increased cell packing and reduced pro-
liferation, as well as by regulating cancer cells migration
towards less compressed districts through the activation of
specific biochemical pathways [1–4,11,13,14]. In order to
include mechanotransduction processes in the system, spe-
cific ηT and ηH are modelled as inhomogeneous parameters
that result to be a function of the hydrostatic stress perceived
by the cells σ hyd = trσ/3. Hence, given that hydrostatic
compression inhibits the intrinsic cell rates ηT and ηH in

Fig. 1 Transition function modelling the mechanical feedback of
hydrostatic compression on cells proliferation

a way that if σ hyd exceeds a critical threshold value σ
hyd
cr

cells experience quiescence, and by assuming that both can-
cer and healthy cells are virtually indistinguishable in such
a state, the cell proliferation rates are supposed to reduce to
a common lower growth rate ηq . In agreement with recent
literature works proposing a role for a certain homeostatic
pressure in controlling competitive cell interactions [1,58],
themechano-sensing behaviour ismodelled here by adopting
the transition function displayed in Fig. 1, whose expression
reads as follows:

ηK = ηK0SK =

= ηK0

⎧
⎨

⎩
ηq

ηK0
+
(
1 − ηq

ηK0

)
exp

[
χσ

(
σ hyd − σ

hyd
cr

)]

1 + exp
[
χσ

(
σ hyd − σ

hyd
cr

)]

⎫
⎬

⎭ ,

ηK0 = TK
−1ln2, (31)

where K = {T , H}, χσ is a constant and the coefficients ηT0
and ηH0 represent the nominal replication rates, depending
upon the doubling times TT and TH of tumor and healthy
cell species, respectively, lying in the range 17-40 hours for
the most of cell types, as also experimentally determined
[55,77]. The quiescent metabolic rate ηq is a reduced non
zero metabolic coefficient accounting for the fact that quies-
cent cells preserve a basal metabolic activity until favourable
environmental conditions are restored [78]. To account for
competition, the growth rates ηT and ηH are then penalized
through the VL-coefficients αI J , with {I , J } = {T , H , M},
the case I = J denoting self-inhibiting terms while the coef-
ficients with I �= J providing the constrains due to species
mutual interactions. Accordingly, the mutual competition
terms αHT and αT H weight the way in which a cell species is
influenced by the presence of the other one, while the coeffi-
cients αHM and αT M measure the occupation degree of the
ECM in the space contended by cells. The coefficients αT T

and αHH are self-competition terms accounting for the car-
rying capacity of each cellular species. These coefficients
can be considered constant and not affected by the mechan-
ical stress, this because quiescence does not likely influence
the aggressive mutagenic phenotype of cancer cells against
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normal cells. All these considerations let to describe a suf-
ficiently complex population dynamics with respect to the
standard VL models, being the game of interaction affected
by the environmental parameters as well as by the possibility
of changing the game strategy through the modulation of the
intrinsic rates in order to find the fittest way to survive. The
third interspecific Eq. (30e) represents the balance of ECM
inwhich biochemical differences between healthy and tumor
ECM components are neglected and therefore the resulting
overall ECM fraction, φM , dynamically depends on synthe-
sis and degradation processes promoted by cells, through the
production characteristic rates βT and βH , and the loss rate
δM , weighted by the coefficients αMT and αMH . In addition,
to also take into account that, within a tumor, abnormal IFP
rise can occur because ordinary lymphatic drainage mecha-
nisms are altered due to enzymes-mediated degradation and
stress-induced collapse [74], the conductivity parameter κl
is assumed to decrease with the tumor fraction according to
the law:

κl = [1 − (φT − φT0)] κln, (32)

with κln being an assigned constant denoting the nominal
value of drainage conductivity in normal tissues. Finally, the
net growth strain term (assuming a common density) can be
defined in terms of the solid constituents as:

g = φT + φH + φM − (φT 0 + φH0 + φM0), (33)

the additional subscript 0 indicating the volumetric fractions
of tumor and healthy cells and matrix, respectively, at the
conventional initial time t = 0. The values of the parameters
used in the simulations are all summarized in Table 1. Before
presenting case studies, it is worth to discuss some impor-
tant considerations regarding the stability of the dynamics
describing cancer cell invasion, by studying the related equi-
librium points and by applying the stability principle to the
coupled system (30).

4 Stability of cancer invasion

The linear formulation of the model allows for noticeable
simplifications with respect to the nonlinear dynamics pro-
posed in previous works by some of the present authors
[27,55], because the degree of coupling between mechani-
cal and species variables is here reduced. This is particularly
advantageous for discussing the equilibria and stability of the
system (30). In order to study the stability of the dynamics
in a slender way, it is here proposed to separate the first two
poroelastic nonhomogeneous PDEs from the multispecies
equations on the basis of their characteristic times. In fact, the
first two poroelastic Eqs. (30a), (30b) are intrinsically gov-

erned by the speed of the elastic medium (that is proportional
to

√
K/�) and by the rise/decay times of the interstitial pres-

sure τ+
p ≈ (κv M)−1 and τ−

p ≈ (κl M)−1, all of the order
of the seconds or fraction of seconds. On the other hand,
cells dynamics processes will adapt nearby their attractors
presumably in a slower manner, because of both the greater
biological intrinsic proliferation times (of the order of sev-
eral hours or days) and the VL mutual interactions. On these
bases, by condensing the poroelastic field variableswithin the
vector S = {u, p}, the dynamic-coupled differential equa-
tions (30) can be rewritten in the following way

{
L(S, Ṡ) = Π (S,φ) ,

φ̇ = Γ g (S,φ) ,
(34)

that highlights the interplay between fast variables S and
slow variables φ, since, regardless of how time can be scaled,
the relative rates will verify the condition ‖ Ṡ ‖∞�‖ φ̇ ‖∞,
while L(·) and Π(·) collect the linear operators of equations
(30a), (30b). This implies that, for rescaled times t ′ compa-
rable with the characteristic times ofS, one can obtain a fast
subsystem (FS) corresponding to

{
L(S, Ṡ) = Π

(
S,φ; t ′) ,

φ̇ = 0,
(35)

where the species variables responsible for the macroscopic
growth do not vary, while, for rescaled times t ′′ compati-
ble with the (slowest) characteristic time of the cells, a slow
subsystem (SS) can be instead written down as

{
L(S, Ṡ) = 0,

φ̇ = Γ g
(
S,φ; t ′′) . (36)

The dynamics of the original system can be explained
in terms of the interlaced evolution of the respective fast
and slow subsystems. This simplifying assumption also sup-
ports the previously made hypothesis according to which
uncoupled poroelastic and species potentials were consid-
ered in Eq. (2), the functions ψe and ψg depending on the
poroelastic variables and the species vector, respectively,
and their respective rates being de facto separable since
they can be performed by mutually fixing the growth level
or the stress conditions. By then considering a constant φ

in the FS, the problem (35) reduces to a classic poroelas-
tic problem with a prescribed growth-associated inelastic
strain, whose stability can be ascribed to the well-established
ellipticity of the governing equations of standard poroelas-
ticity. At the cell characteristic time scales, Eq. (36) let to
study the stability of the species for prescribed microenvi-
ronmental conditions. In fact, under this hypothesis, when
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species oscillate in the neighbourhood of their stable attrac-
tors, stress and fluid do not significantly vary in a way
that the stability condition (17) of the growth trajectories

∇φψg · ∂φ

∂t ′′
|(Ee,p

) ≤ 0 (37)

can be satisfied by holding the state variables Ee and φF

at a certain constant value, say {Ee, φF } (or, equivalently,
{Ee, p}). In the light of the theorem proposed by Tuljapurkar
(see Ref. [79]), this condition is equivalent to study the local
stability of the species motion around a given equilibrium
point φ∗ in the phase space delimited by the tetrahedron
I = {(φT , φH , φM ) ∈ R

3≥0 : φT + φH + φM < 1 −
φF (Ee, p)}. In addition, it is noticed that the localization
of the entropy inequality requires that the stability of the
species trajectories can be expressed (at each point P of the
open domain Ω of the problem) by means of the ordinary
condition:

∀ ε > 0 and ∀P ∈ Ω,

∃ δ(ε) > 0 : ‖φ|t ′′=0+ − φ∗‖ < δ →
‖φ|t ′′≥0+ − φ∗‖ < ε. (38)

Therefore, by focusing on the radially symmetric problem set
by Eq. (30), let us introduce a dimensionless variable defined
as z = r/b + ηT0t ′′ to so obtain the following ordinary
differential equation (ODE) subsystem of three-species LV
equations:
⎧
⎪⎨

⎪⎩

dφT
dz = q

(
Ee, p

)
φT (1 − αT T φT − αT HφH − αT MφM ) ,

dφH
dz = q

(
Ee, p

)
γ̃H0φH (1 − αHT φT − αHHφH − αHMφM ) ,

dφM
dz = β̃T φT + β̃HφH − δ̃MφM (αMT φT + αMHφH ) ,

(39)

in which tilde denotes the initial LV coefficients divided by
ηT 0,while the functionq > 0 takes into account the influence
of the poromechanical coupling term, in which both fluid
pressure and elastic strain are fixed at the slow time scale of
species oscillation. The positivity of the coupling function q
derives by observing that both themechanosensing transition
function (31) and the fluid phase assume non negative values,
the complete saturation of the pore space being avoidedin the
light of the linear constitutive assumption providing small
porosity variations. The three-species system (39) let to
determine in a more direct way both the physically and bio-
logically consistent equilibrium points and the trajectories

lying in the domain I. This is also guaranteed by consider-
ing positive initial conditions for the species, which ensures
that the positive octant is invariant and that all the trajectories
of motion keep bounded in this (0,R+)×(0,R+)×(0,R+),
as shown by Itik and Banks [53] through the help of two lem-
mas that are here reported for completeness:

Lemma 1 With all positive initial conditions, the solutions
of the system (39) lie in (0,R+) × (0,R+) × (0,R+) . This
follows by observing that each coordinate hyper-plane is
invariant.

Lemma 2 The solutions of Eq. (39) with initial values in
(0,R+) × (0,R+) × (0,R+) are bounded from above in
(0,R+) × (0,R+) × (0,R+) for all t ≥ 0.

Then, starting from Eq. (39), the Jacobi matrix JΓ =
∇φΓ of the linearized system results to be (tildes are here-
inafter omitted for the sake of simplicity):

J Γ =
⎡

⎣
q(1 − αT HφH − φMαT M − 2φTαT T ) −qαT HφT −qαT MφT

−qαHTφH q(1 − 2αHHφH − αHMφM − αHTφT ) −qαHMφH

βT − αMTφM βH − αMHφM −αMHφH − αMTφT

⎤

⎦

(40)

Steady-state points are found by setting Γ = 0. The phys-
ically admissible points which can potentially occur describe
the following exclusive situations of interest.

1. Cells fractions extinction. This first situation is depicted
by three equilibrium points, which can be written as
φ∗
1 = {φ∗

T1 = 0, φ∗
H1 = 0, φ∗

M1}. The value φ∗
M1 can be

determined in the two first cases respectively as 1/αHM

and 1/αT M , while it is undetermined in the last case.
Then, the first points can be included in the last one so that
a sole equilibrium φ∗

1 ⊂ I can be analyzed. Basically, in
the particular case in which cells approach the extinction,
this state describes a situation in which the solid matrix
remains unchanged in absence of cell activity. This is also
due to the fact that, for example, no self-degradation had
been provided in the model through an intrinsic decay
rate.

2. Healthy fraction dominance. This situation is associated
to the steady state φ∗

2 with expression

{
φ∗
T 2 = 0, φ∗

H2 = 1

αHH

(
1 − βHαHM

δMαMH

)
, φ∗

M2 = βH

δMαMH

}

(41)

and corresponds to a system in its healthy stage, without
invading tumor species.
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3. Tumor fraction dominance. The equilibrium point (say
φ∗
3) is given by

{
φ∗
T 3 = 1

αT T

(
1 − βTαT M

δMαMT

)
, φ∗

H3 = 0, φ∗
M3 = βT

δMαMT

}

(42)

and it is associated to a completely tumor stage, in which
space is fully invaded by cancer cell.

4. Solid species coexistence. These (two) points have a
longer expression in terms of model coefficients, and
are here simply denoted as φ∗

4 = {φ∗
T4, φ

∗
H4, φ

∗
M4} and

φ∗
5 = {φ∗

T 5, φ
∗
H5, φ

∗
M5} for the sake of simplicity.

With reference to parameters adopted (see table Table 1),
a situation of strong dominance occurs for the tumor species.
The introduction of the aggressive tumor species with a fit-
ness function that, in relation to the modified LV coefficients,
prevails on the healthy counterpart, turns the ECM-healthy
cell coexistence (i.e. in absence of tumor species) into
an unstable equilibrium. In particular, the insurgence of a
predator species within the ecosystem possessing the given
characteristics heavily affects a condition of normal home-
ostasis. Provided that points in 1) and 4) have no physical
interest for the consideration at hand (in particular, equilibria
4) lead to not acceptable solutions for the adopted parame-
ters), this corresponds to observe that the tumor presence
generates an unstable direction in correspondence of point
2), for which the perturbation of the condition φT = 0 brings
the system in a new equilibrium state characterized by cancer
dominance. The eigenvalues associated to points 2) and 3)
(say y2 and y3) are:

y2 = JΓ (φ∗
2 ) =

{
−q (δMαMH − βHαHM )

δMαMH
, − δMαMH − βHαHM

αHH
,

q [αHH (δMαMH − βHαT M ) + αT H (βHαHM − δMαMH )]

αHH δMαMH

}
,

y3 = JΓ (φ∗
3 ) =

{
−q (δMαMT − βT αT M )

δMαMT
,− δMαMT − βT αT M

αT T
,

q [αT T (δMαMT − αHMβT ) + αHT (βT αT M − δMαMT )]

δMαMT αT T

}
.

(43)

The projections in the phase space of Fig. 2a,b respectively
show equilibria φ∗

2 and φ∗
3 in their planes, i.e. φT = 0 and

φH = 0. In particular, focusing on Fig. 2a, the projections of
phases trajectories in the plane φT = 0 exhibit a convergent
trend towards the point φ∗

2 . This dynamics thus connotes nor-
mal homeostasis in the healthy districts, the plane φT = 0
constituting a stable subspace for state 2), described by the
two dimensional stable subspace E2 = span{v21, v22}, where
v21 and v22 are the eigenvectors corresponding to the eigen-
values y2 with negative real part (illustrated by the blue

arrowsofFig. 2a).Out-of-plane perturbations, i.e. the appear-
ance of tumor cells, will intercept new trajectories that lead
the system to a new malignant equilibrium. In particular, the
third eigenvalue y23 has positive real part for the adopted LV
coefficients and also given that q is strictly positive, and thus
generates an unstable out-of-plane direction v23 according to
the first Lyapunov stability theorem (represented in Fig. 2a
by means of a red arrow). Therefore, the activation of the
tumor fitness function, as also clearly highlighted in Fig. 2c
in which the cell phase space for φM = φ∗

M2 is represented,
strongly diverts the trajectories of the biological species from
the healthy subspace (the φH -axis, in this case) by pointing
towards the tumor stage. This means that the healthy condi-
tion cannot be maintained within the body points at incipient
cancer invasion. On the other hand, in the tumor regions of
the domain, the equilibrium φ∗

3 results a stable attractor with
�{y3} < 0. As shown in Fig. 2b in the plane φH = 0,
trajectories converge to a stable tumor node, out-of-plane
perturbations not producing escaping trajectories. This can
be also observed in the cells phase space of Fig. 2d (in which
φM = φ∗

M3), where trajectories towards the healthy axis are
absent and the tumor attractor keeps stable. The influence
of intratumoral compression on species intrinsic dynamics is
reported in Fig. 3. In particular, by considering afixed amount
of fluid, that, in a linear regime, does not exhibit significant
variations, the evolution of species trajectories for the healthy
and cancer dominances has been analysed for three selected
values of the mechanosensing curve SK , representative of
high, intermediate and low stress conditions, respectively.
From results in Fig. 3, it clearly emerges that the velocity of
cell species is strongly reduced by higher hydrostatic pres-
sures, the flow lines appearing practically orthogonal to the
cells axis in this situation, while trajectories progressively
point to their respective nodes with increasing speed when
environmental stress is relieved.

Naturally, all these considerations are related to the chosen
set of coefficients. The variation of the coefficients αI J , δI
and βI may generate different scenarios, in which altered
dynamics may occur exhibiting different stable attractors
(like the ones related to the cells coexistence that addition-
ally include oscillating patterns that are not obtained here, or
the one related to the tumor extinction in which the healthy
species is able to survive to a given ad hoc treatment) also in
presence of a tumor-type fitness function in the species rates.
All the coefficients in fact reflect some cell-cell and cell-
ECM interactions occurring at the microscopic scale level
and may be actually interpreted as the net result of multi-
ple reactions-based processes. There could be therefore the
possibility of directly modelling these interactions by means
of a more complex multiscale approach in which chemical
balances are included, these ones working as intermediate
regulators of the cross-talks among populations at the tissue
scale. In this way, the eventual competition between tumor
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Fig. 2 a Representation (projection) of the phase portrait in the plane φT = 0, with focus on the equilibrium point φ∗
2 . b Representation of the

phase in the plane φH = 0, that evidences the equilibrium point φ∗
3 . c Projection of the phase portrait in the plane φM = φM2∗. The stable manifolds

(blue arrows) directed in direction φT = 0 and the unstable manifold (red arrow) driving trajectories towards the tumor invasion stage are here
clearly distinguishable. d Tumor dominance stage, constituting a stable attractor

and immune system could be also taken into account, by so
envisaging a perturbation of these mechanisms, in particular
by explicitly adding antagonist species like drugs in order
to analyze the variations of the tumor strategy coefficients
and capture possible changes into the system fate through
the analysis of its asymptotic behaviour.

5 Effect of growth anisotropy in spherical
tumormasses

By focusing again on a spherically symmetric case, themodel
canbe studiedby analyzing the evolutionof a growinghetero-
geneous sphere with radius b in which internal distributions
of the solid species are assigned at the initial time, by finding
numerical solutions to the system (30) in the five unknowns
{u, p, φT , φH , φM }, being the sole radial non zero displace-
ment component and all the functions depending upon r and
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Fig. 3 Influence of the stress conditions on species flow. The phase portrait in the plane φT = 0 showing the equilibrium point φ∗
2 (top row) and

the phase portrait in the plane φH = 0 evidencing the point φ∗
3 (bottom row) are displayed for three selected values of the mechanosensing curve

SK , representative of high, intermediate and low compression levels, respectively

time t . An internal inclusionwith radius ri → 0 is considered
in order to avoid singularities, by there prescribing a vanish-
ing displacement. At the external radius r = b, traction-free
conditions are considered, i.e. σr (b, t) = 0. In addition, no
Darcy fluxes occur at r = b and r = ri . With reference
to the initial conditions, solid species distributions, pressure
and displacement have been prescribed at the starting time
ti = 0+ as follows:

φM (r , ti ) = φM0, φT (r , ti ) = φT0 = φT 0Di (r),

φH (r , ti ) = φH0 = φH0(1 − Di (r)),

p (r , ti ) = p0, u (r , ti ) = 0.

(44)

Herein Di (r) = {1 + exp [χr (r − a) /b]}−1 is the ini-
tial distribution function of the tumor species, where χr is a
smoothing coefficient and a is the initial tumor front, while
the constants φT 0 and φH0 are the amplitudes of the ini-
tial tumor and healthy phases. These conditions imply that
no residual stress is provided in the initial configuration.
Numerical simulations, performed bymeans of the NDSolve
package in Wolfram Mathematica®[80], were carried out
by varying the value of the growth anisotropy coefficient

γr . This anisotropy multiplier, which also affects the growth
in the circumferential directions because of symmetry, is a
coupling parameter taking into account the fact that growth
along a given direction occurs by exerting mechanical strain
and somehow translates the cellular patterns assumed by the
interacting cells during the growth process. By here assum-
ing γr to be constant, its value is taken as variable between
1/3, which characterizes a case of isotropic growth in which
the strain induced by the mass change equally deforms the
solid matrix in the principal directions, and the limit case
of γr = 0. The latter value would instead correspond to a
situation in which cells grow by mainly straining in the cir-
cumferential direction, the neighbouring cells mechanically
interacting each other within each spherical layer and the
tumor accretion occurring through the progressive forma-
tion of so called cell cords that radially invade the space, as
exhibited by specific cellular patterns in some multicellular
tumor spheroids (see Ref. [81]). These two limit situations
clearly produce different stress distributionswithin the tumor
microenvironment. In particular, by looking at Fig. 4, the
anisotropization of the growth induces higher intratumoral
compressions, whose magnitudes result to be up to two-fold
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Fig. 4 Radial (upper row) and circumferential (lower row) stresses at different times and for varying anisotropy coefficient γr

of those ones obtained from the isotropic case classically
assumed. This difference can be explained observing that
layered growth is characterized by a stronger circumferen-
tial mechanical interaction between cells belonging to the
same stratum, which in turn generates a tightening effect
that elastically wraps the inner districts of the spheroid by so
intensifying the level of intratumoral compression. It is worth
noting that, although cell mechanosensing is here assumed to
exclusively depend on the hydrostatic part of the stress, pos-
sible growth anisotropies indirectly affect cells proliferation
through the level of induced residual stresses, thus repre-
senting a further indirect mechanical feedback in the light of
the established fully coupled framework. Also, an increased
hydrostatic compression would also affect the elastic prop-
erties of the tumor. In fact, the residual stress imprisoned
in the tumor spheroid is known to promote the material
remodelling of the host tissue stiffness [59]. In particular, the

hydrostatic pressure influences the local bulk modulus, with
a consequent effect on the evaluation of the effective bulk
response of the mass as well. In the present case, the tight-
ening associated to the anisotropy patterns would deepen the
stiffening of the tumor, which is one of the most apparent
features characterizing solid tumor growth in soft tissues.
Such an effect would be crucial to be investigated for the
implications that the accurate prediction of intratumoral solid
stresses and mechanical stiffness have on both anti-cancer
interventions and diagnostic procedures. Actually, the varia-
tion in mechanical properties is in fact a determinant marker
in hardness-based cancer detection and, although durometry
is still a qualitative and not completely engineered method,
the clinical palpation remains one the most adopted prac-
tices to individuate the presence and to assess the grade of
non metastatic masses and tumor nodules [82,83].
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Fig. 5 Distribution of the tumor, healthy and ECM volumetric fractions at different times, in the limit case γr = 0 (on the left) and γr = 1/3 (on
the right)

Fig. 6 Relative IFP increase and variation of fluid fraction, in the limit case γr = 0 (on the left) and γr = 1/3 (on the right)

The magnitude of the stresses also affect the species
development through the mechanical feedback previously
described. As shown in Fig. 5, the tumor species fast grow
within in the tumor region and slightly starts to invade the
surrounding host tissue. Also, by comparing the two limit
situations, tumor volumetric fraction results to bemore inhib-
ited by the pressure in the anisotropic case, while no relevant
changes occur in the outer healthy surroundings. In the pre-
sented simulation, the growth of the tumor amount results
greater than its migration potential, meaning that the tumor
cells (for the assigned initial state) tend to “bulky” prolifer-
ate in the internal zone by penalizing the healthy constituents
and by saturating the available space before diffusing. Exper-
imental observations report that tumor migration is strongly
enhanced by the level of mechanical compression, which
induces border cancer cells to augment their motility [84].
In the present case, an initially unstressed environment was
assigned, this implying that the stress within the spheroid
can be considered still sustainable by the internal proliferat-
ing cells.

The abnormal proliferation of tumor cells also affects the
level of interstitial fluid pressure. As displayed in Fig. 6, the
IFP riseswithin the tumor interior somehowproportionally to
the tumor densitywith respect to the isotropic and anisotropic
limit coefficients. IFP gradients generate an outward flux at
the tumor-host interface that causes the centrifugal diversion
of the fluids carrying nutrients and thus contributes to slow
down the proliferative potential of inner cells. However, by
looking at Fig. 6, the variation in fluid content does not follow
the IFP and exhibits an inverse behaviour, the intratumoral
fluid loss for γr = 0 greater than the one observed when
γr = 1/3. Such an impairment is due to the fact that, recalling
the poroelastic constitutive relation connecting pore strain,
pressure and fluid content, in the former case the pores are
much more compressed by the higher stresses and increase
the fluidwalkway throughout the solidmatrix by accelerating
cells inactivation in the tumor core. In the isotropic case,
stress-drivenflowdiversion is lower, this also ensuring amore
prolonged supply of nutrients to the internal cell layers.
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Fig. 7 a Calibration of the mechano-sensing feedback on proliferative and apoptotic cell rates on the basis of available literature measurements
(data re-adapted fromRef. [13]). bComparison between proliferative and apoptotic tumor fractions at twoweeks, in case of unconfined and confined
growth, respectively (with ηK = 1.42−1 and ηa = 1.95−1). c Comparison of the theoretically predicted and experimentally obtained variations of
apoptotic index as a function of the applied pressure level, calculated for colon carcinoma multicellular spheroids derived from mouse CT26 cell
lines (experimental data adapted from Ref. [85])

6 Some experimental evidences on
stress-dependent apoptosis in the
competitive interactions

The presented model can be enriched by introducing stress-
dependent apoptosis terms into the interspecific interplays,
which allows to directly compare our theoretical predictions
with available literature findings in which it is observed in
vitro how compressive stress induces a reduction of cell
proliferative potential and, in turn, drives cell towards apop-
totic stages [12,13,85]. Therefore, by assuming that stress
influences apoptotic rates through a mechanism comple-
mentary to the way in which it affects division rates, we
re-parametrized themechano-sensing function SK inEq. (31)
on the basis of the relationship between pressure and cell
apoptotic rates provided byMontel et al. [13] for colon carci-
noma cell spheroids derived frommouse CT26 cell lineages,
in which collected data varied with an analogous trend, as
also shown in Fig. 7a. In the competitive system, cell rates
can be modified by considering in explicit the mutation of
tumor and healthy species into an apoptotic state as intra-
tumoral compression increases. By then indicating with the
superscript a the updated functions, each cell specific rate
in Eq. (30) becomes Γ

(a)
K = ΓK − ηa(1 − S(a)

K )φKφ
(a)
K ,

with K = {T , H}, where the φ
(a)
K denote the apoptotic

counterparts of each phenotype obeying the additional bal-
ances ∂t (φ

(a)
K ) = ηa(1 − S(a)

K )φKφ
(a)
K . By using proper

cell-specific intrinsic rates, numerical simulations were car-
ried out by considering a case of isotropic growth and by
imposing different pressures at the external boundaries, i.e.
σr (b, t) = −pext , so as to reproduce analogous stress
conditions with respect to those described in the case of
multicellular spheroids grownwithin gel environments under

controlled pressures. Theoretical predictions in Fig. 7b show
that, inside the tumor, isotropic compression induces a preva-
lence of the apoptotic fraction, while the active tumor cells
move towards the periphery by forming a proliferative ring at
the tumor-host interface. These outcomes reproduce themor-
phological pattern exhibited by a vast variety of solid tumor
spheroids that grow in vitro under non-zero stress states by
forming apoptotic cores, in which caspase-3 activity is often
over-expressed with respect to the surrounding rim, which is
instead mainly occupied by dividing cells [86]. The relative
apoptotic percentage obtained from computations well repli-
cates the experimental data reported in Fig. 7c and referred
to the case of colon carcinoma cell spheroids subjected to
different levels of external pressure [13,85]. These results
demonstrate that the presented strategy, by employing a min-
imal set of constitutive parameters and characteristic cell
rates, can help to shed light on the way of consistently mod-
elling the interlaced roles of mechanics and interspecific cell
competition within tumor microenvironments to predict the
development of solid tumors and related residual stress fields.

7 Conclusions

With the aim to predict the evolution of growth-induced
stresses, stress gradients and pressures inside growing solid
tumors, mechanical models need to be coupled with dynam-
ical systems able to trace back the most relevant interactions
among the biological constituents determining tissue devel-
opment by accounting for the presence of competition terms
and chemo-mechanical feedbacks. In this regard, theAuthors
proposed a coupled nonlinear theory in which poroelas-
ticity and interspecific Volterra-Lotka dynamics allowed to
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Table 1 Summary of the model parameters (exp.= experimentally determined from data in Ref. [55])

Parameter Value Unit Source

Material properties, poroelastic and conductivity coefficients

E 8 kPa Exp.

ν 0.4 [–] Exp.

ν(u) 0.4999 [–] [60]

B 1 [–] [60]

A 0.991407 [–] Exp.

M 1.78753 MPa Exp.

k0 4.13 × 10−8 cm2 · mmHg−1 · d−1 [7,9]

kv 2.8 × 10−5 mmHg−1 · d−1 [9,72]

κl0 1.33 × 10−5 mmHg−1 · d−1 [74]

pv 25 mmHg [9,72]

� 0.91 [–] [9,72]

πv − πl 10 mmHg [9,72]

Cells rates and competition coefficients

TT = TH 22 h [90]

αHM = αT H = αT M 1 [–] [53,54,76]

αT T 1.3 [–] [53,54,76]

αHH 3 [–] [53,54,76]

αHT 2 [–] [53,54,76]

βT .05 d−1 [91]

βH 0.1 d−1 [91]

δM αMT = δM αMH 0.25 d−1 [91]

φT 0 = φH0 0.15 [–] Assumed

φM0 0.4 [–] Assumed

a 3 mm Assumed

b 10 mm Assumed

characterize the growthof spheroidal solid tumors, byprovid-
ing experimental confirmations of the predicted stresses and
remodelling [27,55].By starting from theproposed approach,
the present work proposed a mechanically linear framework
in order to reduce the degree of coupling and study the
stability of the dynamics related to tumor growth in the three-
species model. The model was also exploited to highlight
that the eventual presence of growth anisotropy, depend-
ing on how neighbouring cells interact during proliferation
by deforming the matrix, can lead to higher intratumoral
stresses with consequences on the remodelling of the mass.
This result could be further investigated also by resort-
ing to nonlinear simulations and a more complex coupling
that provides the use of stress-governed evolution laws of
the anisotropic multipliers in order to account for their
spatial and temporal inhomogeneities. Moreover, the macro-
scopic description of tumor progression provided in the
present paper could be enriched by including inhomoge-
neous interspecific coefficients that actually depend on the
main biochemical species involved in the signalling path-

ways of the mechanotransductive processes that are initiated
by physical events such as stress, flow pressure and substrate
rigidity [15,16,87]. In particular, by following a multiscale
approach, the interplay between molecular and mechanical
signals could be modelled by considering ad hoc introduced
reaction-based equations tracing the activation of selected
biochemical mediators that govern, at the microscale level,
internal cell reconfigurations as well as the cell-cell and
the cell-environment interactions. Additionally, the same
proposed strategy might be applied to test in silico the effec-
tiveness of drug agents in competing dynamics with cells
and tissues as well as to design drugs at the scales of interest.
All these aspects would lead to a more accurate character-
ization of tumor mechanical microenvironment that is one
of the most challenging aspects of mechanobiology. In fact,
the prediction (and understanding) of the response of tumor
systems, from the single-cell scale to the mass continuum
level, still represents a crucial breakthrough for implement-
ing engineered strategies to selectively target cancer cells
as well as for conceiving and optimizing mechanically-
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based protocols of anti-cancer treatments in the field of the
precise medicine for oncology. To this purpose, the mod-
elling of mechanosensing via mechanical cell competition,
by including stress-dependent interplays, could contribute
to elucidate still unclear dynamics or even to envisage new
ways for altering the tumor fate through the use of ad hoc
mechanical stimuli, by so reorienting the species evolution
towards controlled states, as also shown through comparison
of theoretical predictions and experimental evidences. For all
these reasons, it is felt that the coupling between Continuum
Mechanics, cell competitions and evolutionary laws could
help to unveil still concealed mechanisms regulating tumor
growth as well as other different multiscale/multiphysics
biological processes in which the evolution of living sys-
tems within their environment is governed by the interplay
between mechanical and biochemical events [61,88,89].
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