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Large deformation plasticity

From basic relations to finite deformation
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Abstract
The theory of plasticity as a special field of continuum mechanics deals with the irreversible, i.e. permanent, deformation of
solids. Under the action of given loads or deformations, the state of the stresses and strains or the strain rates in these bodies
is described. In this way, it complements the theory of elasticity for the reversible behavior of solids. In practice, it has been
observed that many materials behave elastically up to a certain load (yield point), beyond that load, however, increasingly
plastic or liquid-like. The combination of these two material properties is known as elastoplasticity. The classical elastoplastic
material behavior is assumed to be time-independent or rate-independent. In contrast, we call a time- or rate-dependent
behavior visco-elastoplastic and visco-plastic—if the elastic part of the deformation is neglected. In plasticity theory, because
of the given loads the states of the state variables stress, strain and temperature as well as their changes are described. For
this purpose, the observed phenomena are introduced and put into mathematical relationships. The constitutive relations
describing the specific material behavior are finally embedded in the fundamental relations of continuum theory and physics.
Historically, the theory of plasticity was introduced in order to better estimate the strength of constructions. An analysis based
purely on elastic codes is not in a position to do this, and can occasionally even lead to incorrect interpretations. On the other
hand, the entire field of forming techniques requires a theory for the description of plastic behavior. Starting from the classical
description of plastic behavior with small deformations, the present review is intended to provide an insight into the state of
the art when taking into account finite deformations.
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1 Small deformation theories

Since people have learned to melt and process metals, they
know that these can be deformed under the influence of heat
and large forces and that their properties can change as well.
Whereas in ancient times, the knowledge about these pro-
cesses was only accessible to a few selected people, who
carefully guarded it as art, a rethinking has taken place with
theNewAge.At least since the beginning of industrialization
in Europe, people were forced to investigate the governing
processes and their interrelations more precisely. This was
the beginning of the scientific treatment of plasticity, which,
perhaps somewhat arbitrarily, can be identified with a series
of experiments by the French engineer Tresca towards the
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end of the 19th century1 Tresca [5] as well as later vonMises
[6] introduced a limit in stress space, separating the range of
elastic (or rigid) behavior from that of plastic deformations.
The investigations then beganwith purely phenomenological
considerations to describe the constitutive relations between
the stresses and rates of strain and strains, respectively.

Until about 1940, for the case of small deformations, three
different types of relations were proposed. These were (i) the
Lévy-von Mises equations:

ε̇′ = Λσ ′ , (•)′ = (•) − 1

3
tr(•)I , (1)

for a rigid plastic material2, (ii) the Hencky equations:

1 A somewhat more detailed outline of the history of plasticity can be
found in Refs. [1–4]. Parts of these works were included in the present
review article.
2 Here and in what follows, a prime will mark the deviator of a second
order tensor.
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ε′ = 1 + ϕ

2μ
σ ′ , tr(ε) = 1

3K
tr(σ ) , ε̇′ = 1

2μ
σ̇ ′ . (2)

under loading condition beyond the yield limit and with Eq.
(2)3 during unloading and purely elastic processes, and (iii)
the Prandtl-Reuss equations:

ε̇′ = 1

2μ
σ̇ ′ + Λσ ′ , tr(ε̇) = 1

3K
tr(σ̇ ) , (3)

for loading beyond the yield limit andwith a plasticmultiplier
Λ = 0 for unloadingor purely elastic behavior,whereμ is the
shear modulus and K the bulk modulus. In addition, during
the plastic part of the deformations, preferably von Mises
type yield conditions like

F = tr(σ ′2) − 2 k2 = 0, (4)

were prescribed, where k is the shear yield limit.
It is obvious that Eq. (1) is valid only for plastic defor-

mation. Below the yield limit, and hence Λ = 0, this model
describes a rigid behavior. Thus, representing a special case
of the more general Prandtl-Reuss model for vanishing elas-
tic deformations or for those cases where the latter can be
neglected compared with the plastic deformations. On the
other hand, the ϕ in Eq. (2)1 is a yet unspecified proportion-
ality factor, analogous to Λ.

Subsequently, the two models of Prandtl-Reuss and Hen-
cky3, were a matter of discussion whether they could
adequately reproduce experimental observations. With this
respect, Hill [7] finally stated that the Hencky equations were
unsuitable to describe a complete plastic behavior of a metal,
and further: “None the less, in situations where the load-
ing is continuous, the Hencky equations may lead to results
in approximate agreement with observations. In some prob-
lems, too, total strain theories have certain advantages of
mathematical convenience. It is apparently for this reason
that the Hencky (...) relations have often been used in appli-
cations where the strains are small, particularly by Russian
writers.” It thus turned out that applying the Hencky equa-
tions could be associated with great inaccuracies, especially
in those cases where the loads are prescribed in the form of
non-radial processes. Therefore, this model, which is also
referred to as deformation theory, is no longer used today.

Amore general description of the Prandtl-Reuss equations
can be found in the form

ε̇ = ε̇e + ε̇p = C
−1: σ̇ + �Λ

1

2

∂F

∂σ ′ , (5)

where C is the elastic stiffness tensor for an isotropic mate-
rial, and the colon marks a double contracting product. A

3 In the English literature, these models are also referred to as incre-
mental and total theories.

so-called loading factor � has been introduced taking the val-
ues 1 and 0 during loading and unloading (elastic behavior),
respectively:

� =
{
1, wherever F = 0 and Ḟ = 0 ,

0, wherever F < 0, or where F = 0 and Ḟ < 0 .
(6)

Thus, for a von Mises material with yield condition (4), we
determine

ε̇ = C
−1: σ̇ + �Λσ ′ . (7)

For an isotropic, work-hardening hardening material, where
function k2 in Eq. (4) is described as function of the (accu-
mulated) plastic work wp = ∫

σ : ε̇p dt , this relation is
reformulated as

k2 = k20 + f (wp) . (8)

Now with the help of the consistency condition Ḟ = 0, Λ

can be calculated as4

Λ = 1

H
σ ′: σ̇ ′ , H = 2k2

dk2

dwp
, (9)

where H = H(wp) is a hardening function which has to be
determined from appropriate experiments. With this result,
we finally arrive at

ε̇ = C
−1: σ̇ + �

H
(σ ′: σ̇ ′)σ ′ . (10)

For application, especially for numerical calculations, an
inversion of Eq. (10) is necessary. We therefore multiply it
from the left by C. Thus, C:C−1 = I, where I is the fourth-
order identity tensor, and

σ̇ = C:
(
ε̇ − �

H
(σ ′: σ̇ ′)σ ′) . (11)

Now again multiplying this result from the left by σ ′ yields

σ ′: σ̇ = σ ′: σ̇ ′ = σ ′:C: ε̇ − �

H
(σ ′: σ̇ ′)σ ′:C: σ ′ .

From this, we finally can derive5 the inverted form of Eq.
(10)

σ̇ = C:
(

ε̇ − �σ ′ σ ′:C: ε̇
H + σ ′:C: σ ′

)
. (12)

4 We note that during loading � takes the value 1.
5 This calculation was first carried out in Ref. [7] for the specific case
of an isotropic material with hardening.
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1.1 Some amendments

Numerous modifications of this classical flow rule have been
introduced in the last centuries in various directions:

Firstly, with a modification of the yield condition (4), the
concept of kinematic hardening has been adopted to account
for the Bauschinger effect during cyclic loading. According
to Reuss [8], Prager [9], and Melan [10], we find

F = (σ ′ − α): (σ ′ − α) − 2k2 , α̇ = cε̇p , (13)

where α is the so-called backstress, and c is an additional
hardening parameter. A slightly modified expression for the
plastic part of the power ẇp, namely

s: ε̇p = ẇp , s = σ ′ − α , (14)

leads to a new Prandtl-Reuss equation

σ̇ = C:
(

ε̇ − �s
s:C: ε̇

H̄ + s:C: s
)

, (15)

where, compared with Eq. (11), σ ′ has been replaced by the
reduced deviatoric stresses s and the hardening function H
of Eq. (9)2 by

H̄ = H + 2k2c , (16)

combining the isotropic and the kinematic hardening.
Moreover, to describe in a more appropriate manner the

behavior during cyclic loading and to account for the different
phenomena observed during corresponding experiments, the
linear evolution Eq. (13)2 has been modified by introducing
a second term, e.g.,

α̇ = c
(
ε̇p − α

2k2
ẇp

)
. (17)

This generalization was first discussed in Ref. [11] and then
propagated in several papers (see, e.g., Ref. [12])6.

Applying this modification to the Prandtl-Reuss equation,
we finally arrive at

σ̇ = C:
(

ε̇ − �s
s:C: ε̇

Ĥ + s:C: s
)

, (18)

where now

Ĥ = H̄ − c tr(sα) = H + c[2k2 − tr(sα)] , (19)

6 In several of these works, the progress of the plastic processes is
described by accumulated plastic strains εp rather than by the accu-
mulated plastic work wp. This, however, does not change the results
significantly.

allowing for different evolutions in the tensile and the com-
pressive parts of the hysteresis loop.

In addition, several kinematic variables can be used, with
the generalization

α =
∑
i

αi , (i = 1, 2, . . . ,n). (20)

Finally, numerous applications of plasticity, e.g., in me-
tal forming processes, made it necessary to extend the
relations to large deformations. Whereas Hencky’s defor-
mation theory from its setting was restricted to applications
within infinitesimal small deformations, this was not the
case for the Prandtl-Reuss theory. Having in mind its set-
ting as a combination of fluid-like and solid-like materials,
its description of the fluid-like part originally was intro-
duced as a relation of the stress σ as function of the
rate of deformation (stretching) tensor D. Thus, it should
be straightforward to replace the rates of the strains in
Eq. (5) by the respective parts of the rate of deformation,
viz.

D = De + Dp . (21)

Applying this to Eq. (3), yields

D′ = 1

2μ
σ̇ ′ + Λσ ′, tr(D) = tr(De) = 1

3K
tr(σ̇ ) . (22)

This, however, would cause at least two new problems
related with the elastic part of the aforementioned decom-
position. A first seminal discussion of the question how to
define in a physically reasonable way the different parts of
strains or strain rates that may contribute to the compos-
ite behavior of an elastic-plastic material was given in Ref.
[13]7.

(1) If the rates of the strain in the foregoing relations are
replaced by the stretching, a relation between strain and
stretching would become necessary, e.g., to determine
the strains in the plastically deformed structure. Provid-
ed such a relation exists. We will see that it took several
decades to properly answer this first question.

(2) Then the question arises, what kind of rate should be
used for the herein incorporated stresses and stress-like
quantities?

(3) Finally, a fundamental question needs to be answered:
In which way should the splitting of the different solid-
like elastic and fluid-like plastic contributions to the
total deformation be applied? Moreover, if strains are
used, which strain measure should be chosen?

7 The interested reader may in particular follow the discussion in Sects.
3 and 4 of this critical review.
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1.2 Cyclic loading

Cyclically varying loads occur in many problems of engi-
neering applications. Already with his work from 1924,
H. Hencky [14] pointed out the necessity of an adequate
treatment. At the time, he explained that, depending on the
specific loading, a cyclic load could give rise to an elas-
tic shakedown or to damage with rupture and subsequent
failure of the structure. These thoughts were taken up again
in the 1930s by many authors [8–10,15] when introducing
kinematic hardening and describing the Bauschinger effect.
Another very simple approach to describe the Bauschinger
effect can be traced back to Ref. [16]. Since the second half
of the last century, such challenging engineering projects as
aircraft constructions, high-speed railways, aerospace struc-
tures and, in particular, the construction of nuclear reactors
have provided a significant stimulus to improve the descrip-
tion of cyclic plasticity phenomena. These developments
required a particularly high level of security for these struc-
tures. Since then, many attempts have been made to include
hardening and recovery, ratchetting, amplitude dependence
of hardening, the influence of non-radial loading, etc., in
model formulations.

One of the first more realistic models that has been widely
used in practice describes a back stress increasing along the
plastic strain rate orientation anddecreasing proportionally to
the back stress itself, refer to Eq. (17). That is, the back stress
evolves toward its limit value specified by a hardening satu-
ration. This model was originally introduced by Armstrong
and Frederick (A-F model) [11] and then generalized by
many authors [17–25]. Comparable results can be achieved
with a multi-surface model such as provided by Mróz [26],
cf. Refs. [27,28]. Ohno and Wang [29] succeeded in sig-
nificantly improving the A-F model by incorporating the
dynamic recovery of theαi . Amendmentswere discussed e.g.
in Refs. [30,31]. Further typical examples of current models
are given as Refs. [32–35]. An extension to model large
deformations and to include temperature effects is described
with Refs. [36–38].

1.3 Influence of temperature and rate dependence

Although from the very beginning plastic behavior of amate-
rial body should be closely related with thermomechanical
energy transformations, e.g., due to the energy dissipation
into heat during plastic work, this effect was for long time
neglected (refer, e.g., to the textbook [7]).

This situation began to change, when in the 1950s and
60s, several researchers studied the thermodynamic founda-
tions of elastoplasticity. In the case of small deformation,
e.g., Prager [39], Ziegler [40], and Naghdi [41] started to
incorporate thermodynamic principles into their consider-
ations. In earlier works, e.g., Green [42] and Prager [43]

already used specific elements of thermodynamics, when
demanding a positive value of the rate of plastic work (plas-
tic power) throughout the whole body. Later these thoughts
were broadened in Refs. [44–47]. More recent contributions
were made in Refs. [48–50], and many others. Experimental
observations describing a temperature dependency of plastic
behavior were reported, e.g., in Refs. [51–54].

In order to consider the temperature dependence of a
material behavior, it is not sufficient to simply insert the tem-
perature into the material description, e.g., as an additional
parameter. The modeling in addition to the fundamental laws
of mechanics has to incorporate also the natural laws of ther-
modynamics.

First, it is assumed that there exists a quantity T , called
the absolute temperature, which is always positive:

T > 0 . (23)

This statement is sometimes referred to as the zeroth law of
thermodynamics.

Second, from the observation of interconvertibility of heat
andmechanical work, it is assumed that themechanical work
done by the external loading and the internal stresses and the
non-mechanical work contributed by the heat flux and the
heat supply are converted into kinetic energy and internal
energy of the material body. Accordingly, a new physical
quantity, the internal energy, is introduced. Let ϕ represent
the internal energy per unit reference volume. Then, from
the energy balance, together with the Euler-Cauchy law of
motion and the continuity equation, the following relation
may be derived:

ϕ̇ = σ : ε̇ − ∇· q + r , (24)

for all possible thermodynamic processes. Here, ∇ is used
to designate the differentiation with respect to the current
position vector. Let n be the outward normal at a point on
a closed material surface. Then q· n > 0 means the efflux
of the heat through the material surface and thus follows the
minus sign in Eq. (24) for the term contributed by the heat
flux q. This is the first law of thermodynamics: the changing
rate of internal energy is furnished by the sumof the (internal)
stress power and the (internal) non-mechanical power due to
heat flux and heat supply r .

Next, based on the observation of the irreversibility of
macroscopic physical phenomena, it is assumed that there
exists a scalar field quantity η measured per unit reference
volume, called specific entropy, so that the following inequal-
ity holds:

η̇ ≥ −∇·
( q
T

)
+ r

T
, (25)
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where η̇ represents the total local dissipation. This inequality
is the second law.

Entropy η and the internal energy ϕ are related to each
other through the first and second laws. To render this relation
direct, alternate forms are derivable by a Legendre transform
introducing the Helmholtz free energy per unit reference vol-
ume:

ψ = ϕ − Tη . (26)

Then, the energy balance (24) may be reformulated as

ψ̇ = σ : ε̇ − ∇· q + r − ηṪ − T η̇ . (27)

Using this relation, we may recast inequality (25)

σ : ε̇ − (ψ̇ + ηṪ ) − 1

T
q·∇T ≥ 0 . (28)

Inequality (25) or its alternate form Eq. (28), also known
as Clausius-Duhem inequality, express the entropy principle
for the irreversibility of physical phenomena in deformable
bodies.

Furthermore, we introduce a quantity D

D = T η̇ − (r − ∇· q) = σ : ε̇ − (ψ̇ + ηṪ ) . (29)

This quantity, known as internal dissipation, provides the
remaining part after the deduction of the total local heating
from the total local entropy rate times the temperature. The
Planck inequality (cf., e.g., Ref. [55])

D ≥ 0 (30)

requires that the internal dissipation should always be non-
negative. It should be positive for a process of dissipative
deformation such as in elastoplasticity.

For a thermomechanical behavior of amaterial body, there
will be a strong coupling between the deformation field, the
stress field, and the temperature field. The material behav-
ior will be characterized by constitutive relations relating
these field quantities and their histories. The thermodynamic
laws as expressed in Eqs. (23–25), or their alternate forms
Eqs. (27) and (28), place restrictions on various kinds of the
material behavior.

We note here that the stress power ẇ = σ : ε̇ per unit
volume in Eq. (24) plays an essential role, especially when
deriving constitutive relations. If thermodynamic consis-
tency of a constitutive relation is analyzed—or in other
words—if the bounds of such consistency with thermody-
namics are examined, the internal dissipationD should fulfill
Planck’s inequality (30).

Since σ and ε̇ constitute the stress power, the stress
and the strain may be regarded as pair of energetically

conjugated quantities [56–58]. Thus, for an elastoplastic
material, e.g., with state variables εe and T , process vari-
ables α and κ = k2(wp, T ), and the Helmholtz free energy
ψ = ψ(εe, T ,α, κ), inequality (30) becomes

D =
{
σ − ∂ψ

∂εe

}
: ε̇e −

{
η + ∂ψ

∂T

}
Ṫ

+ σ : ε̇p − ∂ψ

∂α
α̇ − ∂ψ

∂κ
κ̇ ≥ 0 .

(31)

With this notation, we follow Ref. [59], and only for simplic-
ity, we replace the k2 of prior relations by a process variable
κ , which now may be a function of plastic work and the
temperature.

Since this inequality is assumed to hold true for all admis-
sible processes, two equations of state can be deduced as

σ = ∂ψ

∂εe
and η = −∂ψ

∂T
. (32)

In addition, as the time rates of the state variables are inde-
pendent of ∇T , the Clausius-Duhem inequality (28) was
recast into an internal dissipation term and a heat conduc-
tion inequality. The latter requires

− 1

T
q·∇T ≥ 0 . (33)

With these results, the production of free energy becomes

ψ̇ = σ : ε̇e − ηṪ − Di , (34)

where

Di = −∂ψ

∂α
: α̇ − ∂ψ

∂κ
κ̇ (35)

is the dissipation due to the inelastic deformation of the inter-
nal structure. Thus, introducing the balance (27), the entropy
production may be reformulated as

T η̇ = σ : ε̇p + Di − ∇· q + r . (36)

This is guaranteed for arbitrary ε̇e and Ṫ , if the two equa-
tions of state (32) hold. The first term herein is the so-called
inelastic stress power.8

With the help of the equations of state (32), the above result
maybe converted to an evolution equation for the temperature
(refer, e.g., to Ref. [60]). We thus arrive at the equation of
heat production:

cT Ṫ = T
∂σ

∂T
: ε̇e − ∇· q + r + σ : ε̇p + Di − T

∂Di

∂T
, (37)

8 In passing, we note that for an adiabatic process, i.e. for−∇· q+r ≡
0, due to the different sources of dissipation the remaining thermody-
namic process is not isentropic.
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where

cT = −T
∂2ψ

∂T 2

is the specific heat at constant strain.
To complete the equation of heat production, a constitutive

relation for the heat flux q has to be inserted into Eq. (37).
It is a common practice to introduce here Fourier’s law of
isotropic heat conduction

q = −λ∇T , (38)

where λ ≥ 0 is here the so-called thermal conductivity and
such that inequality (33) will take its maximum value.

Fourier’s law means that the heat flux can only take place
in the direction of decreasing temperature. It is obvious that
for one-dimensional problems, this equation reduces to the
parabolic diffusion equation, implying that thermal distur-
bances propagate with infinite velocity. A more appropriate
generalized law has been discussed in Ref. [61]

cτ q̇ + q = −λ∇T , (39)

the so-called Maxwell-Cattaneo relation, where now wave-
like solutions can be obtained from this equation. Accord-
ingly, cτ is the characteristic relaxation time.

We note that both laws of heat conduction constitute rate-
dependent relations and thus introduce a rate dependency
into the description of thermoplasticity, although the setting
of the elastic-plastic material description was introduced as
rate independent.

It iswell known that inmany practical problems, the actual
behavior of a material is governed by plastic as well as vis-
cous effects, e.g., visible as a more or less pronounced strain
rate dependence of respective uniaxial stress-strain curves.
This, however, is contradicting the fundamental assumption
of plasticity, namely, a time independence of the constitu-
tive equations. It is therefore a common practice that for a
material with less rate sensitivity, or for a low velocity of
loading, this dependence is neglected. For many materials,
however, it is observed that these strain-rate effects are more
pronounced after the plastic state has been reached. In these
cases, it may be assumed that the material displays viscous
properties in the plastic range, too. Before yielding, themate-
rial remains elastic, and after yielding, it exhibits viscous as
well as plastic properties. This composite behavior is called
viscoplasticity.

We note that for most materials, the rate sensitivity
increases with the temperature. Thus, it should be clear that
at higher temperatures, these strain-rate effects could not be
neglected.

In viscoplasticity, the development of a mathematical
model heads back to the beginning of the twentieth cen-

tury with Refs. [62–64,66] and some earlier considerations
in Refs. [65,67]. Norton [68] developed a one-dimensional
dashpot model, which linked the rate of (secondary) creep to
the stress. In 1934, Odqvist [69] generalized Norton’s law to
the multiaxial case. Hohenemser and Prager proposed a first
model for slow viscoplastic flow.This model provided a rela-
tion between the deviatoric stress and the strain rate for an
incompressible Bingham solid [70]. Malvern [71] has taken
up these ideas proposing a one-dimensional constitutive law
of the form

E ε̇ = σ̇ + k[σ − f (ε)] . (40)

Here, the plastic strain rate is proportional to σ − f (ε), the
excess of stress over the stress at the same strain in a static
test, and σ = f (ε) expressing the static plastic stress-strain
relation. The basic idea of this so-called overstress descrip-
tion has been adopted later by numerous other authors.

The first IUTAM Symposium on “Creep in Structures”
[72] provided a major development in viscoplasticity. Perzy-
na in Refs. [73,74] and later with his seminal work [75]
introduced a viscosity coefficient that is temperature and time
dependent, e.g.,

ε̇ = 1

2μ
σ̇ ′ + γ 〈Φ(F)〉∂ f

∂σ
, trε̇ = 1

3K
trσ̇ , (41)

whereμ and K are parameters of elasticity and γ is a viscos-
ity constant of the material. The symbol 〈•〉 herein is defined
as:

〈•〉 =
{
0, for F ≤ 0,
•, for F > 0,

(42)

and F is a static yield function:

F(σ , εp) = f (σ , εp)

κ
− 1 , (43)

wherein κ = κ(wp) is a work-hardening parameter.
In cases where the influence of the temperature can no

longer be neglected, these equations are reformulated as

ε̇= 1

2μ
σ̇ ′+γ (T )〈Φ(F)〉∂ f

∂σ
, trε̇= 1

3K
trσ̇+ᾱṪ , (44)

with ᾱ the coefficient of thermal expansion. Here γ and κ ,
and thus F and Φ are temperature-dependent quantities.

2 Step towards finite deformations

Hencky [76] was one of the first to use tensor analysis in
continuum mechanics. He also in Ref. [77] introduced a log-
arithmic strain measure
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h = 1

2
ln B , B = V 2 = FFT, (45)

in today’s notation, and

h = e(0) = 1

2
ln B = 1

2

n∑
σ=1

(ln χσ )Bσ , (46)

where F is the deformation gradient, and χσ and Bσ are
n distinct eigenvalues and corresponding eigenprojections,
respectively, of the left Cauchy-Green tensor B. The symbol
(•)T herein is used to represent the transpose of the second-
order tensor. Moreover, e(0) marks an Eulerian strain out of
the family of the Seth-Hill-Doyle-Ericksen strains [78]:

e(m) = 1

2m

(
Bm − I

)
, (47)

for m = 0.9

The corresponding Lagrangian counterparts are

E(m) = 1

2m

(
Cm − I

)
, (48)

and in particular for m = 0,

H = 1

2
ln C , C = U2 = FTF (49)

are the Lagrangian Hencky strains with the property

H = RThR . (50)

Herein C is the right Cauchy-Green tensor, and according to
the polar decomposition, the deformation gradient F has the
unique left and right multiplicative decompositions

F = V R = RU, RT = R−1, det R = 1 , (51)

whereU and V are right and left stretch tensors, and R is the
rotation tensor. Thus, due to the above correspondence (50),
the Lagrangian Hencky strain H may be interpreted as the
back-rotated Eulerian Hencky strain h.

Hencky introduced Lagrangian and Eulerian descripti-
ons and discussed in this context the importance of time
derivatives occurring in the relevant constitutive laws. For a
Lagrangian analysis, thesewere thematerial timederivatives.
In an Eulerian description, which he preferred for physical
reasons, he noted that the time derivative must be indepen-
dent of the respective rigid body rotation.

9 The proof of this limit is given with Ref. [4].

In Ref. [77], he therefore replaced the time derivative of
the stress tensor by10

σ̇ ⇒ ◦
σ = σ̇ + σW − Wσ . (52)

Herein, the spin tensor (vorticity) W has been introduced as
skew-symmetrical part of the velocity gradient L:

W = 1

2

(
L − LT) , D = 1

2

(
L + LT) , L = ḞF−1.

(53)

Today, we recognize the Jaumann derivative, previously dis-
cussed in Refs. [79,80]. At that time, however, this finding
was ignored. Until much later the idea was taken up again,
e.g. in Refs. [81–87], and others. Prager [88] also mentioned
that “Jaumann’s work does not seem to be well known: the
definition ... is frequently used in the recent literature without
reference to Jaumann.”

2.1 Different objective rates and hypoelasticity

The first who rediscovered the above mentioned problems
of describing finite deformations was Oldroyd [81]. Like
Hencky he introduced convected coordinates and a convected
differentiation with respect to time which must replace the
material derivative when equations of state are transformed
from a convected to a fixed system of reference.

As convected coordinates were used, four different rela-
tions may be given in a spatial description depending on the
different representations of the (second rank) tensor compo-
nents as covariant, contravariant, or mixed quantities. It can
be shown that these different forms are particular cases of the
Lie derivative (refer to Refs. [89,90]). For the stress tensor, a
contravariant description was preferred, and thus the upper-
convected derivative or Oldroyd rate (54)1 was obtained

(δcc/δt)σ = ◦
σ u = σ̇ − σ LT − Lσ ,

(δ·c
c /δt)σ = ◦

σm = σ̇ − σ LT + LTσ ,

(δc·c/δt)σ = ◦
σm = σ̇ + σ L − Lσ ,

(δcc/δt)σ = ◦
σ l = σ̇ + σ L + LTσ ,

(54)

for the Cauchy stresses. Here the superscript or subscript
index c is used as a mnemonic notation to distinguish con-
travariant or covariant, respectively (refer to Ref. [57]).11 In

10 Unfortunately, the original work of Hencky contained a small error.
Instead of the above spin tensor, he used an alternative definition, which
differs by a minus sign. Due to this deviation, however, his derivative
(52) loses its objectivity.
11 We note that in the original literature instead of the small circle a
wavy line was used to designate an objective time derivative. In some
more recent literature, the raising and lowering of the indices c is in
analogy to the accidentals of music notation designated by a sharp (�)
or a flat (�).

123



O. T. Bruhns

the above, the remaining three forms are with Eq. (54)4 the
Cotter-Rivlin or lower-convected rate according to Ref. [91].
Moreover, due to the symmetry of the Cauchy stress tensor,
the two mixed descriptions coincide.

In a comprehensive work on the foundations of elasticity
andfluid dynamics, Truesdell [92] discussed the general form
of a material where the rate of stress is related to the rate of
deformation. Applying the principle of invariance against a
rigid rotation, he arrived at the following expression for the
rate of stress:

◦
σ = σ̇ − σ LT − Lσ + σ tr(D) (55)

in a spatial description, where
◦
σ is named a relative time flux.

It is evident that this is the same result as Oldroyd’s upper-
convected rate, where the differential operation is applied to
the weighted Cauchy stress Jσ , where J is the Jacobian of
deformation and J̇ = J tr(D).

Thus, the defining relation for the simplest law satisfying
this principle is

◦
σ = A : D , (56)

where the material tensor A may be a function of σ . This
class of materials is named hypoelastic bodies with the prop-
erties that in general they neither have a preferred state nor
a preferred stress (refer to Ref. [93]). We note that Ref. [85]
emphasized that “this new theory does not employ any con-
cept of strain.”

As a special case, an isotropic hypoelastic body of grade
zero is considered, where the right-hand side of Eq. (56)
appears to be independent of σ [93]. In the simplest case,
this expression will depend upon the rate of deformation in
the same way as the stress depends upon the strain in the
classical elasticity theory, viz.

◦
σ = 2μD + λtr(D)I , (57)

where hereμ and λ are the Lamé constants. It was shown that
these equations reduce to those of classical linear elasticity
under the usual assumptions of infinitesimal deformations.

Under the assumption of invariance against a rigid body
motion, Refs. [83,84] arrived at a description for the rate of
stress in the formof the Jaumann rate.12 Hill [94] finally com-
bined the convected derivatives of Eq. (54) and the Jaumann
rate by introducing a relation

◦
σ = σ̇ + σW − Wσ − m(σ D + Dσ ) , (58)

12 Noll called this a general invariance requirement principle of isotropy
of space, whereas Thomas used the term absolute time derivative.

which turns over to the Jaumann rate (52), the Oldroyd rate
(54)1, and the Cotter-Rivlin rate (54)4, respectively, for m =
0, 1,−1. Hill indeed preferred the Kirchhoff stress τ , which
is the weighted Cauchy stress Jσ , rather than the Cauchy
stress σ itself.

During ensuing years, possible relations between hypoe-
lasticity and elasticity were discussed extensively. From this
discussion, it turned out that most hypoelastic materials
fail to have the properties of an elastic let alone a hyper-
elastic (Green elastic) material. It was Bernstein [95] who
showed that hypoelastic rate constitutive relations have to
meet specific integrability conditions to gain the properties of
an elastic material. Nevertheless these rates—preferably the
Jaumann rate—were widely accepted and used, even in com-
mercial computer codes. This preference of the Jaumann rate
maybedue toPrager [88],who in an elementary discussion of
different at the time existing stress rates andwith the objective
to avoid non-uniqueness in the definition has introduced an
additional restriction which has to be satisfied during plastic
processes. Then the stress is at yield limit and the yield func-
tion is zero. The yield function should be stationary when
the stress rate vanishes. This implies that the invariants of
the stress tensor should be stationary, too. Applying this sta-
tionary condition to the above introduced stress rates, Prager
argued that the convected (non-corotational) rates presented
with the Oldroyd rates and the Truesdell rate could not be
recommended, as these rates do not imply stationarity of the
stress invariants.

Thus, with the Jaumann rate the above Prandtl-Reuss the-
ory, in particular, the J2-flow theory with a von Mises-type
yield function (4), was developed bymany researchers. How-
ever, the foundation of this classical theory was shaken by an
unexpected discovery of spurious phenomena like the shear
oscillations. It seems that Lehmann [96]was the first to reveal
that a rigid-plastic J2-flow theory with kinematic hardening
would predict an oscillating shear stress response to mono-
tonically progressing simple shearing13.

Ten years later, this phenomenon was rediscovered in Ref.
[97]. On the other hand, Dienes [98] demonstrated that a sim-
ilar phenomenon would emerge for the hypoelastic rate Eq.
(57) which was assumed to describe purely elastic behavior.
The question on how to avoid these unexpected results, how-
ever, is then often reduced to a search for a proper definition
of the objective rate. Dienes used the Green-Naghdi rate or
polar rate (refer to Refs. [99,100]) where the material time
derivative is applied to a rotated stress tensor, thus replacing
the vorticity W of the Jaumann rate by a skew-symmetric
rate of rotation ΩR with

13 Unfortunately, this paper was written in German and submitted for
publication to a Romanian journal in 1968. Due to severe production
problems in those days, the article appeared not until 1972. These cir-
cumstances may explain why this paper was widely ignored.
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◦
σ R = σ̇ + σΩR − ΩRσ , ΩR = ṘRT. (59)

In an entirely comparable way, e.g., the spin ΩE and
the rotation RE of the Eulerian triad may be used to define
another objective rate:

◦
σ E = σ̇ + σΩE − ΩEσ , ΩE = ṘERET. (60)

This rate is sometimes called Sowerby-Chu rate (refer to Ref.
[101]). It may be clear that numerous additional objective
rates could be defined, e.g. simply by combining the above
mentioned rules.

The hypoelastic rate Eq. (57) is intended for finite elas-
tic deformation behavior. Although it may be clear that the
small deformation case yields the conventional elastic rela-
tion, i.e., Hooke’s law, essential difference emerges for the
direct extension of Eq. (22) to finite deformations. Typical
examples were presented in Refs. [102,103]. Kleiber [102]
also discussed non-radial cyclic processes of a hypoelastic
material with a Jaumann derivative and observed a signif-
icant linearly increasing accuracy loss with the number of
cycles. It was stated that within several cycles (with not
uncommon rotations) the solution could lead to an energy
error comparable with the maximum energy attained dur-
ing the cycle, “thus rendering the results totally useless”,
as the accumulated energy should vanish at the end of a
closed cycle for an elastic material. In view of this result,
he concluded that it might be doubtful that the use of an
objective rate on the left-hand side of Eq. (56) (with a con-
stant material tensor A) would yield more accurate results
than those corresponding to a simple (non-objective) mate-
rial time derivative.

Another unexpected finding was made Simo and Pister
[89], who demonstrated that for each of the, at that time,
well-known objective rates, except for certain unrealistic par-
ticular cases for elastic constants, thewidely used hypoelastic
rate Eq. (57) fails to be exactly integrable. Since this finding,
a general tendency was to believe that this non-integrability
property would likely be true for all possible rates (see, e.g.,
Refs. [104,105]). This would imply that the classical Eule-
rian elastoplasticity and the Prandtl-Reuss theory might be
self-inconsistent in the sense of formulating elastic behavior
via the hypoelastic equation.

Only recently it was demonstrated that both problems,
namely, the shear oscillation and the non-integrability of the
hypoelastic relation (57), were closely related. To prove this,
a new objective time derivative had to be defined which,
applied to a yet undetermined Eulerian strain measure, could
give the stretching D. It was shown that this strain was the
Hencky strain h and the new time derivative, in turn, was
the logarithmic rate. Only with this logarithmic rate applied
to σ , Eq. (57) could be integrated to give an elastic rela-
tion.

2.2 The logarithmic rate and related properties

The development of the logarithmic rate as a remedy out
of the above-mentioned dilemma has started with the wish
to resolve the following questions: Can the stretching D be
represented as a direct flux of an Eulerian strain measure,
say e? And could this eventually be the logarithmic strain?
Although the stretching is frequently referred to as the rate of
deformation tensor or the Eulerian strain rate, it was believed
for a long time that the former would not be the case (see,
e.g., Refs. [57] and [106]).

With respect to the latter, there were different attempts
to relate the logarithmic Hencky strain h to the stretching
D. Hill [56] showed that the material time derivative of the
Lagrangian counterpart Ḣ equals RTDR within a second-
order term (see also Refs. [57,107]). With respect to the
Eulerian logarithmic strain, Hoger [108], like Refs. [58,106]
earlier, stated that h does not have a conjugate stress. The
proof, however, was somewhat flawed as the material time
derivative of ln V introduced in Ref. [108] failed to be objec-
tive (see also Ref. [109]). Instead, she should have introduced
an objective time derivative and thus broaden the definition
of conjugacy introduced in Ref. [56].

Gurtin and Spear [110] and Hoger [111] derived condi-
tions when under very specific circumstances the Jaumann

rate of the logarithmic strain (ln V )
◦
equals the stretching. It

was shown, e.g., that a condition DV = V D would be nec-
essary and sufficient for this case. Moreover, it was shown

that (ln V )
◦
would be a very good approximation to D for

sufficiently small deformations, a result which already has
been demonstrated in Ref. [80]. Inspired by these works and
using an explicit formula for the gradient of the general strain
measure e with respect to the stretch tensor V (see in Refs.
[112,113]), Xiao et al. [114] could prove that an objective
corotational rate of the logarithmic strainmeasure ln V could
be identical with the stretching tensor D and furthermore that
in all possible strain measures, only ln V would enjoy this
property, i.e. any corotational rate of any other strainmeasure
could not be identical with D.

This result was gained by broadening the work-conjugacy
relation introduced in Ref. [56]:

ẇ = tr(SĖ) = tr(τ D) . (61)

A stress S and a strain E are said to be a conjugate pair, if
tr(SĖ) represents the stress power ẇ. A classical solution
of this problem is given with S = F−1τ F−T as second
Piola-Kirchhoff stress and the Lagrangian Green strain E.
Relation (61) now has been generalized by introducing a pair
of objective Eulerian stress and strain measures, say (s, e),
both symmetric, and an Eulerian spin:

Ω∗ = −Q∗T Q̇∗ = Q̇∗TQ∗ , (62)
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where Q∗ is a proper orthogonal tensor.
In an Ω∗-frame relative to a fixed background frame, this

pair becomes (Q∗s Q∗T, Q∗eQ∗T). Then the inner product

(Q∗s Q∗T) : (
˙

Q∗eQ∗T) is formed by the observer in the
Ω∗-frame just as an observer in the fixed background frame
does for a Lagrangian stress and strain pair.

Following the idea of Hill, which is concernedwith a fixed
background frame, the observer in the Ω∗-frame feels that
the pair (s, e) is anΩ∗-work-conjugate pair if the above inner
product furnishes the stress power, i.e.

(Q∗s Q∗T) : (
˙

Q∗eQ∗T) = s :◦e ∗ = ẇ, (63)

where
◦
e ∗ is the corotational rate of the strain defined by the

spin Ω∗,

◦
e ∗ = ė + eΩ∗ − Ω∗e . (64)

A corotational rate of an Eulerian tensor need not be objec-
tive. The spin tensors defining objective corotational rates are
called material spins [78]. We now want to know whether or
not a strain measure e and a material spin Ω∗ can be found
such that the objective corotational rate of e defined by Ω∗
is identical with the stretching D, i.e.,

◦
e ∗=ė+eΩ∗−Ω∗e=D , e = h and Ω∗=Ω log. (65)

It turned out that this expression, where both the strain and
the spin can be chosen arbitrarily, holds if and only if e is
the logarithmic strain h = ln V .14 The main idea in finding
Eq. (65) was inspired by the wish to express in an Eulerian
description of the energy balance the stress power as a func-
tion of Cauchy stress and an objective rate of a conjugate
strain.

It turned out that Eq. (65) has a unique continuous solution
for the logarithmic spin:

Ω log=W+
n∑

σ �=τ

[
1 + (χσ /χτ )

1−(χσ /χτ )
+ 2

ln(χσ /χτ )

]
Bσ DBτ . (66)

We note that explicit basis-free and unified expressions for
Ω log have been presented with Refs. [114,116].

The spin Ω log given by Eq. (66) is referred to as the log-
arithmic spin because of its unique relationship with the
logarithmic strain. For an objective Eulerian tensor A, the
corotational rate defined by the logarithmic spin, i.e.,

◦
A log ≡ Ȧ + AΩ log − Ω logA (67)

14 It seems that a direct precursor of Eq. (65) is relation (2.13) with
Eqs. (2.11) and (2.15) in Ref. [115], which says that the Jaumann rate
of h should exactly give D in some cases; see also Refs. [110,111].

is called the logarithmic rate of A. Then, Eq. (67) together
with the relationship (65) yields the following exact kine-
matical relationship between the Hencky strain h and the
stretching D:

D = ◦
h log = ḣ + hΩ log − Ω logh . (68)

It seems that Lehmann et al. [117] were the first to establish
relationship (68) in discussing the work-conjugacy between
the Cauchy stress σ and Hencky strain h.15

With reference to the idea of Kleiber [102], e.g., a hypoe-
lastic model of grade zero with different known objective
rates has been subjected to different non-radial cyclic pro-
cesses in strain space. It turned out from the calculations of
the corresponding stresses that only a hypoelastic body with
a logarithmic rate exhibits the properties of an elastic mate-
rial, where no dissipation should be observed at the end of
a cycle, i.e., where the stresses should return to their initial
values (refer to Lin [123], Lin et al. [124] and Meyers et al.
[125,126]).

If several evolution equations for tensor-valued variables
are used, e.g., for a description with kinematic hardening,
several objective rates might be discussed. To avoid contra-
dictions, Xiao et al. [127] showed that any other additional
objective rate included in the set of constitutive relations has
to be of the same kind. This is especially true for the rates
of internal variables included in the evolution equations of
these variables.

3 Large deformations

In the late 1970s Green and Naghdi [99] established a
rigorous theory of plasticity in the framework of modern
continuum mechanics, where the restrictions on the general
form of the constitutive relations were derived from thermo-
dynamic principles. The kinematical basis of this work was
the assumption that the total strain could be decomposed into
the sum of an elastic-like and a plastic strain tensor, respec-
tively. Although in their paper the plastic strain has been
introduced as a primitive variable and the elastic-like strain
is merely defined by the difference of the total strain and this

15 Almost at the same time several groups were seeking a solution for
this problem, namely to express the stretching D as an objective rate of
an Eulerian strain. It is reported that P.A. Zhilin 1995 starting from a
quite different idea came to a conclusion comparable to Eq. (68). Unfor-
tunately, however, his result remained unpublished then (refer to Ref.
[118]). Later, Eq. (68) was also discovered by Reinhardt and Dubey
[119,120]. This relationship was derived in the general sense of study-
ing Eq. (65) independently, and its intrinsic uniqueness property was
thus revealed for the first time in Refs. [78,114,121,122] from different
contexts. Regrettably, Profs. Lehmann, Guo, and Zhilin were not able
to realize the publication of their works and their seminal ideas.
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plastic variable, it is a common practice to refer to this sum as
an additive decomposition of the strain tensor into its elastic
and plastic parts.

Besides the additive decomposition of the stretching dis-
cussed so far, an alternative approach to a finite deformation
theory was presented in Refs. [128,129]. This approach was
shortly later modified Refs. [130,131] by adding so-called
director triads and the notion of an isoclinic intermediate
configuration. In contrast to Green and Naghdi’s approach in
these papers a multiplicative decomposition of the deforma-
tion gradient into elastic and plastic parts is assumed.

3.1 Basic facts for a deforming continuous body

We now switch to some relevant facts in finite deformation
kinematics of continua. For a deformable body in the pure
mechanical sense, as basic field variables, the deformation
gradient F and the Cauchy or true stress σ at each particle
characterize the local deformation state relative to a reference
configuration and the local stressed state, respectively. Let X
and x = χ(X, t) be the reference and the current position
vector of a material particle, respectively. Then, the defor-
mation gradient is given by (see also Sect. 2 of this article)

F = ∂χ

∂X
. (69)

We consider the local deformation state occurring at the
infinitesimal neighborhood of each particlewith dX and dx,
the reference and the current line element, respectively. At
the infinitesimal neighborhood of each particle, we have the
transformation formula between the line elements:

dx = F dX, det F > 0 . (70)

The particle velocity and the velocity gradient are v = ẋ and
L, respectively.

A general class of strain measures is defined through a
smooth increasing function g(χ)with g(1) = g′(1)− 1

2 = 0,
where the χσ are the distinct eigenvalues of either B or C.
Their forms can be given by (see Eqs. (47) and (48))

e(m) = g(B) =
n∑

σ=1

g(χσ )Bσ = 1

2m
(Bm − I) ,

E(m) = g(C) =
n∑

σ=1

g(χσ )Cσ = 1

2m
(Cm − I),

(71)

defining Lagrangian and Eulerian strain tensors. Two impor-
tant examples are the Green strain of Lagrangian type for
m = 1

E(1) = E = 1

2
(C − I) = 1

2
(FTF − I) (72)

and the Hencky strains of Lagrangian and Eulerian type with
Eqs. (46) and (49) for m = 0.

This class would be further generalized if we introduce as
additional requirements

lim
χ→∞ g(χ) = ∞ , lim

χ→0
g(χ) = −∞ , (73)

and thus take into account in a more realistic way the phys-
ical properties of a deforming body. This, however, would
exclude several classical measures, e.g., the Green strain Eq.
(72), and underline the importance of the Hencky strain.

Recently, in Ref. [132] a further generalization was intro-
duced inwhich a combination of two functionswas proposed:

g(χ) = 1

m1 + m2
(χm1 − χ−m2) , m1m2 ≥ 0 . (74)

With various strainmeasures, various stressmeasuresmay
be introduced via the unified concept of work conjugacy.
This idea was exemplified in Ref. [58] and fully developed in
Refs. [56,57,94]. Hill [57] also introduced the notion of work
conjugacy, although work rate or stress power are discussed
(see also the Appendix of Ref. [56]).

3.2 Eulerian formulations with the logarithmic rate

This subsection is primarily devoted to the development of
the Prandtl-Reuss relations—or in other words—the additive
decomposition of the stretching during the 1980s when with
the rapid development of fast and powerful computers in
conjunction with efficient numerical methods (e.g. the FEM)
new trends in plasticity were initiated.

The basic Prandtl-Reuss relations (refer to Eqs. (21) and
(22)) were formulated in Sect. 1. Several steps towards a
more general theory were undertaken shortly later. To this
end scalar-valued and second-order tensor-valued internal
variables have been introduced tomodel these phenomena by
means of the evolution of these variables. Thus, the history of
a process is represented by these internal variables and their
history. Here, we also should mention Refs. [133,134] where
starting out from the additive decomposition (21) a rate-type
description of elastic-plastic behavior was introduced. Scalar
and tensorial internal variables were used to account for the
isotropic and kinematic hardening during plastic flow. The
elastic part is modeled as hypoelastic material with De lin-

early related to an objective corotational rate of the stress
◦
σ ,

i.e.,

◦
σ = C: De . (75)

Herein, Tokuoka has taken a Jaumann rate—without men-
tioning this source.
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Thus, the extension of Eqs. (21) and (22) seems to be
canonical. Likewise, however, it should be borne inmind that
neither thematerial time derivatives incorporated in the solid-
like elastic part of Eq. (22) meet the principle of objectivity
nor does a hypoelastic material in general really behave like
an elastic material.

We will reformulate the Prandtl-Reuss relations for large
deformation within the context of an Eulerian description.
Therefore, in Eqs. (22) and (5) we replace the material time
derivative by a logarithmic rate and moreover, for physical
reasons, the Cauchy stress σ by the Kirchhoff stress τ = Jσ ,
namely

D = De + Dp = C
−1: ◦

τ log + �Λ
1

2

∂F

∂τ
. (76)

This leads to a constitutive relation whose hypoelastic part
De is exactly integrable to deliver an elastic relation:

he = C
−1: τ . (77)

In the same way, if, e.g., according to Eq. (13)2 an addi-
tional tensorial variable α is introduced, with reference to
Prager’s stationarity condition, this should read

◦
α log = cDp , (78)

since Ref. [135] could show that in an Eulerian description, if
different rates are used, these rates must be the same, namely,
logarithmic rates.

Finally the evolution equation for the scalar-valued inter-
nal variable κ may be taken as

κ̇ = ẇp = τ : Dp , (79)

corresponding to Eq. (14).
As yield condition the v. Mises condition (13)1 will be

used with

F = (τ ′ − α): (τ ′ − α) − κ2 = 0 . (80)

From the condition of consistency Ḟ = 0, we thus get

∂F

∂τ
: ◦
τ log + ∂F

∂α
: ◦
α log − 2

dκ

dwp
ẇp = 0 . (81)

Introducing here Eqs. (78) and (79) allows to eliminate
expression Λ from Eq. (76):

D = De + Dp = C
−1: ◦

τ log

+ �(τ ′ − α): ◦
τ log

2cκ + dκ

dwp τ : (τ ′ − α)
(τ ′ − α) . (82)

These are the Prandtl-Reuss equations for a material with
linear kinematic and non-linear isotropic work hardening.

For a temperature-dependent material, we will finally
adopt the hyperelasticity of the above derived relation (77).
Thus, following the procedure outlined before for small
deformations, a complementary thermo-hyperelastic poten-
tial W̄ (τ , T )may be introduced, such that the reversible part
of the logarithmic strain he is derivable from this potential
with respect to the work-conjugated stress τ , i.e.,

he = ln V e = ∂W̄ (τ , T )

∂τ
, (83)

and its time derivative

De = ∂2W̄ (τ , T )

∂τ 2 : ◦
τ log + ∂2W̄ (τ , T )

∂τ∂T
Ṫ . (84)

This thermoelastic potential W̄ (τ , T ) is part of a comple-
mentary free enthalpy function g = g(τ , T ,α, κ) per unit
reference volume (refer to Ref. [59]):

g = ϕ − Tη − τ : he , (85)

containing a formal elastic Hencky strain he. Then, the
energy balance relation may be formulated as

ġ = τ : D − J∇· q + r − ηṪ − T η̇ − ˙
τ : he . (86)

Hence, similar as for small deformations, we may recast the
Planck inequality (30) in the form

D = τ : Dp − (ġ + ηṪ ) − ◦
τ log: he ≥ 0 . (87)

Upon introducing here

ġ = ∂g

∂τ
: ◦
τ log + ∂g

∂T
Ṫ + ∂g

∂α
: ◦
α log + ∂g

∂κ
κ̇, (88)

the above inequality takes the form

D = −
{
he + ∂g

∂τ

}
: ◦
τ log −

{
η + ∂g

∂T

}
Ṫ

+ τ : Dp − ∂g

∂α
: ◦
α log − ∂g

∂κ
κ̇ ≥ 0, (89)

and the corresponding equations of state are

he = − ∂g

∂τ
and η = − ∂g

∂T
. (90)

The complementary thermoelastic potential W̄ (τ , T ) is
part of this enthalpy function g = g(τ , T ,α, κ) (see Ref.
[136]). We now introduce the above state equations into Eq.
(88)
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ġ = −he: ◦
τ log − ηṪ − Di , (91)

to describe the enthalpy production, where

Di = − ∂g

∂α
: ◦
α log − ∂g

∂κ
κ̇, (92)

is the dissipation due to the inelastic deformation of the inter-
nal structure. Introducing here the balance into Eq. (86), the
entropy production may be reformulated:

T η̇ = τ : Dp − J∇· q + r + Di . (93)

With the help of the above state equations, this result may be
converted to an evolution equation for the temperature:

cT Ṫ = −T
∂he

∂T
: ◦
τ log − J∇ · q + r + τ : Dp + Di

−T
∂Di

∂T
, (94)

where

cT = −T
∂2g

∂T 2 ,

is the specific heat.
Towards modeling different elastoplastic features of a

material, suitable forms of the elastic potential W̄ in the elas-
tic rate Eq. (84) and of the yield function (80) in the flow rule
should be presented in a sense consistent with experimen-
tal facts. It may be essential to note that a given form of W̄
is merely applicable for a certain range of deformation and
would have no relevance to any realistic material behavior
in an extreme case far beyond this range, irrespective of the
fact that from a formal mathematical standpoint, it may be
well defined over the whole range of deformation.

A simple isothermal form of the complementary potential
W̄ is quadratic and referred to as Hencky elastic potential,
namely,

he = ∂W̄ (τ )

∂τ
= C

−1: τ . (95)

Prior to the initial yielding, the integration produces a finite
strain hyperelastic equation of Hookean type:

h = ∂W̄ (τ )

∂τ
= C

−1: τ . (96)

Equation (96) is known as Hencky’s elastic equation [137].
It is known that this equation can well represent moderate
elastic deformationswith each principal stretch fallingwithin
the range [0.7,1.3]. Beyond this range, however, Eq. (96)

would be no longer applicable [138] and merely of formal
sense.

The logarithmic rate in its present form (67) is not
undisputed, especially when applied to large elastoplastic
deformations, e.g., in metal forming. Very recently, Jiao and
Fish [139] have presented a generalization of this rate, intro-
ducing their so-called kinetic logarithmic spin:

Ωklog = W + Alog(Bk(τ ), D) , (97)

replacing in the sum on the right-hand side of Eq. (66) the left
Cauchy green tensor B by a new variable Bk , as function of
the stress τ . To this end, V k =

√
Bk is defined as exponential

function of the Hencky elastic potential (95)

V k = exp [he(τ )] . (98)

This kinetic extension is intended to avoid errors that may
occur when calculating a cyclic process with extremely high
loading and unloading using the logarithmic rate. We note,
however, that at least one requirement for applying the log-
arithmic rate was violated in this comparison: The reference
frame should be kept fixed.

3.3 Lagrangian formulations with plastic strain

In contrast to the aforementioned Eulerian formulation, a
Lagrangian-type formulation of finite deformations was pro-
posed in Ref. [99].16 This theory represents the first effort
towards a rigorous treatment of finite elastoplasticity within
the framework of continuum thermodynamics.

As extension of the classical small deformation theory to
finite deformations, a perhaps more direct idea is to use a
finite strain measure and its conjugate stress. Let A be any
given Lagrangian strain. Then we may define

A = Ae + Ap , (99)

where Ae and Ap are labeled elastic and plastic parts of A,
respectively, with the intention that in conjunction with the
conjugate stress of A, they will be used as basic variables to
formulate an elastic relation and a flow rule.

It is known that the additive separation of a total strain into
elastic and plastic parts is restricted to very particular cases.
In general, such separationmight be of formal sense only. On
account of the difficulties involved in defining a plastic strain,
Green and Naghdi [99] introduced a strain-like variable of
Lagrangian type, denoted Ep, and regarded it as a primitive
variable, “stating certain of its properties but not defining
it explicitly, and thus relegated its explicit identification to
special assumptions or situations.”

16 For details, we refer to Ref. [13].
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This variable is associated with the total Green strain E
as given in Eq. (72). Well understanding the limited applica-
bility of the additive separation of E, they did not interpret
the difference E − Ep as an elastic strain or part but as an
alternative convenient variable used for well-motivated pur-
poses.

With the plastic strain Ep as additional variable, the set of
basic variables entering the constitutive formulations will be
given by (E, Ep,α, κ). Note that herein α and κ are internal
variables representing the progress of the plastic deforma-
tions by suitably defined evolution equations. In accord with
the general setting of their theory, the tensor-valued internal
variable α is introduced as back stress of Lagrangian type
to model the Bauschinger effect, whereas the isotropic hard-
ening is modeled through the evolution of κ . Alternatively,
the sets (E − Ep, Ep,α, κ) as well as (S, Ep,α, κ) may be
useful for certain specific purposes. For instance, the latter is
used in a stress-space formulation.

The set (E, Ep,α, κ) of basic variables is representing a
strain-space formulation (see, e.g., Refs. [140–142]).17

In general, it is assumed that the conjugate stress of the
Green strain E, i.e., the second Piola-Kirchhoff stress tensor
S, is determined by the foregoing set of basic variables. This
leads to the total stress-strain relation

S = Ŝ(E, Ep,α, κ) , (100)

where Ŝ is a tensor-valued constitutive function relying on
all four variables. It is assumed that this tensor function is
twice differentiable and establishes a one-one relationship
between the stress tensor S and the total strain E. Then, the
inverted form of Eq. (100) yields

E = Ê(S, Ep,α, κ) . (101)

In addition, g(E, Ep,α, κ) is a yield function in a strain-
space formulation. It is assumed that the time derivative of
each of the three variables Ep,α, and κ is linear in Ė with
coefficients that are functions of the whole set of variables.
Thus, the flow rule is given by

Ėp = ζ

(
∂g

∂E
: Ė

)
	(E, Ep,α, κ) , (102)

where 	 is a tensor-valued constitutive function, and ζ is the
plastic multiplier differentiating elastic behavior (including
unloading) from elastic-plastic one by taking the values 0
and 1, respectively.

The loading-unloading criterion in strain space is shown
to possess a simple, unified form for perfect elastic-plastic

17 For a discussion of the pros and cons of the strain-space formulation,
we refer to Ref. [13].

as well as hardening and softening behavior (see, e.g., Ref.
[13]). The evolution equations for the hardening variable κ

and for the back stress α are given in the forms:

κ̇ = ζ

(
∂g

∂E
: Ė

)
λ(E, Ep,α, κ) , (103)

α̇ = ζ

(
∂g

∂E
: Ė

)
β(E, Ep,α, κ) . (104)

Here, λ and β are additional scalar- and tensor-valued con-
stitutive functions.

Within the general context of the aboveLagrangian theory,
Naghdi and coworkers made a rigorous, systematic study of
the consequences implied by the work postulate and broad-
ened the scope of Ilyushin’s postulate, introducing

t f∫
t0

S: Ė dt ≥ 0 , (105)

for every homogeneous finite strain cycle. From this postu-
late, the essential structure of the Green-Naghdi theory was
derived. For simplicity, these results here are presented in the
absence of a back stress α.

It is demonstrated that there is a stress potential ψ̂(E,

Ep, κ) such that the general relation (100) for the stress
response is reduced to

S = ∂ψ̂

∂E
. (106)

In a general context, Refs. [143,144] have demonstrated that
such a relation holds true with ψ̂ being a fully general elastic
potential relying on the “prior history of inelastic deforma-
tion” and with (S, E) any given work-conjugate pair.

Moreover, it is shown that the constitutive function 	(E,

Ep, κ) characterizing the flow rule is related to the yield
function g(E, Ep, κ) and the stress potential ψ̂(E, Ep, κ) as
well as the hardening function λ(E, Ep, κ) in the following
manner:

σ̂ ≡ ∂2ψ̂

∂Ep∂E
: 	 + ∂2ψ̂

∂κ∂E
λ = −γ

∂g

∂E
, (107)

where γ is an undetermined scalar function relying on (E,

Ep, κ). From the above, it follows that the tensor-valued con-
stitutive function 	(E, Ep, κ) is obtainable from three scalar
constitutive functions, i.e., the yield function g(E, Ep, κ),
the stress potential ψ̂(E, Ep, κ), and the hardening function
λ(E, Ep, κ), if the second gradient ∂2ψ̂/∂Ep∂E is invert-
ible.

A direct relation between the stress rate and the total strain
rate is derivable

Ṡ = K:L: Ė , (108)
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and its inverse is (see, e.g., Ref. [13])

Ė = (K:L)−1: Ṡ , (109)

where L is the tensor of elasticity and K is a second fourth-
order material tensor

L=∂2ψ̂

∂E2 , K=I+ζ σ̂ ⊗ ∂f

∂S
= I + ζ

(
σ̂ ⊗ ∂g

∂E

)
:L−1 .

(110)

Here, f = f(S, Ep, κ) is the yield function in stress space,
which is obtained by substituting the inverted form (101) into
the yield function g = g(E, Ep, κ) in strain space, and the
fourth-order tensor I is the identity transformation over the
symmetric second-order tensor space.

The critical point within this theory is mainly hidden in
its setting, namely, in the additive splitting of the total strain
E to determine the elastic-like quantity Ee, if the plastic
strain is introduced as a primitive variable Ep. This point
has been addressed first in Ref. [128] and has led to a long
discussion about the admissibility or even the significance
of the additivity of strains in a finite deformation theory, in
order to achieve an effective uncoupling of elastic and plastic
properties. In this respect, we refer, e.g., to Refs. [145,146].

A second issue is related with the specific free Helmhol-
tz energy function ψ̂(E, Ep, κ) or ψ̂(E − Ep, Ep, κ) in an
alternative form which is incorporated as an essential quan-
tity of this theory. It might be not clear how this function
apart from some very special caseswill be determined.While
forms of this energy function for elastic and even thermoelas-
tic solids are well established, the introduction of plastic, i.e.
irreversible, processes into this function will produce new if
not intractable problems.

3.4 Formulations with unstressed configurations

In recent years the multiplicative separation of elastic-plastic
deformations has become popular and found increasing
applications in the phenomenological study of finite elasto-
plasticity. This was initiated by Refs. [128,129], and use was
made by Refs. [147–149], and [150] et al., albeit it may be
traced back to earlier works by Refs. [151–153], and [154],
et al.; see Ref. [155] and the references therein.

It is not derived merely from the direct extension of the
small deformation case but motivated by physical consider-
ations. The central idea is the notion of a local intermediate
unstressed configuration at each particle defined by an imag-
inary destressing process. If such configuration could be
defined, then at each particle elastic and plastic deformations
could be separated from the total elastic-plastic deformation
in a definite and accurate manner.

Extending our previous considerations, we consider a
continuous material body with initial configuration B0

experiencing finite elastic-plastic deformations in the cur-
rent configuration B. According to Ref. [145], we may
introduce a straining-destressing experiment: “Following
elastic-plastic deformation from the undisturbed configura-
tion X to x, destressing to zero stress occurs from x to p
· · · . Since the configuration p is unstressed, the elastic strain
there is zero and the strain in p is therefore totally plastic.”
Here, X and x are the position vectors of a generic material
particle in the initial and current configurations B0 and B,
respectively, and p is the position vector of the same particle
in the unstressed configuration.

In the above cited statement, the total elastic-plastic defor-
mation F from X to x is actually undergone by the material
body, while the plastic deformation from X to p and the
elastic deformation from p to x, denoted Fe and Fp, are
introduced by an imaginary destressing procedure and hence
not actually undergone by the material body. Fe and Fp will
serve as additional deformation-like variables. The question
as to how the destressing procedure is achieved is at the
moment left open and will be discussed later.

The deformation gradient F is related to a local affine
configuration and based upon the notion of line elements at
the infinitesimal neighborhood of a particle. Following Ref.
[145], the deformation of a material line element dX in the
aforementioned straining-destressing experiment is given by

d p = Fp dX , dx = Fe d p , → dx = F dX ,

(111)

In the above, dx and d p are the (actual) spatial line element
in the current configurationB and the line element in the fic-
titious unstressed configuration, which are the counterparts
of the material line element dX inB0 after experiencing the
actual elastic-plastic deformation and the plastic deforma-
tion induced by the destressing procedure, respectively. The
transformation relations yield the widely used multiplicative
separation:

F = FeFp . (112)

Once the above separation could unambiguously be estab-
lished, the elastic and plastic deformations Fe and Fp would
be separated exactly from the total elastic-plastic deforma-
tion F and hence endowedwith the desired physical features.
Therefore, Fe and Fp could be employed as additional vari-
ables to realize physically pertinent formulations of elastic
and plastic behavior. However, a central issue with the sepa-
ration is the non-uniqueness in the following sense: If Fe and
Fp obey the separation (112), then the same may be true for
FeQT and QFp with an arbitrary rotation Q. This means
that the rotational parts of Fe and Fp, i.e., Re and Rp, would
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be rendered indeterminate. In other words, a non-unique sep-
aration (112) would fail to separate the just-mentioned two
rotations, refer to Ref. [156].

Sometimes the rotational parts incorporated in Fe and Fp

and even in F are loosely said to be superimposed rigid body
rotations. This expression may produce an impression as if
these rotations might be not so essential. However, essential
difference exists between each such rotation and any truly
rigid body rotation. The latter is constant at all points in a
body and should have no effect on both basic equations of
motion and constitutive formulations of material behavior,
whereas the former varies from point to point and exhibits
essential effects on both. In fact, the rotational parts of F and
Fe and Fp are inseparable parts of deformations and defor-
mation rates and incorporated in constitutive formulations
for both elastic and plastic behaviors.

The decoupling represented by Eq. (112) enables us to
accomplish a direct formulation of elastic behavior. Now,
the Kirchhoff stress τ may be specified by a single variable,
i.e., the elastic deformation Fe. Emphasizing the substantial
invariance property of the elastic moduli in the process of
elastic-plastic deformations, Lee [129] assumed the follow-
ing invariable elastic relation:

τ = 2Fe
∂ψ

∂Ce
Fe

T . (113)

Note that all elastic domains correspond to the same elastic
potential ψ = ψ(Ce) with Ce = Fe

TFe. This means that
the elastic behavior will be described by that for the initial
elastic domain prior to the occurrence of yielding.

The foregoing non-uniqueness renders Eq. (113) incom-
plete. To eliminate this, an extra condition was introduced
(see, e.g., Refs. [128,129] and [156])18:

Fe
T = Fe . (114)

and then the elastic relation (113) in the case of isotropy
would become

τ = 2Be
∂ψ

∂Be
. (115)

Wenote that in this specific case,we also haveCe = V 2
e =

FeFe
T = Be, i.e., the left and right Cauchy-Green tensors

are equal. Moreover, for an isotropic material, V e, Be, and
∂ψ/∂Be have the same principal axes so that the products
are commutative.

The relation (113), in particular Eq. (115), assumes the
standard form for the classical hyperelastic relation, which
is usually regarded to describe the elastic behavior included

18 Here, Re = I was used. An alternative approximation has been
introduced in Ref. [157] with Wp = 0.

in but separated from the elastic-plastic behavior as a single
entity.

For a physically pertinent formulation of plastic flow, it
is desirable to have a proper separation of the total deforma-
tion rate D into elastic and plastic parts, as shown in Eq. (21).
Although the separation (112) could realize the decoupling of
elastic and plastic deformation except for an arbitrary rota-
tion, a definite deformation rate separation based on it has
proved to be not so clear and simple. In fact, we have

D = sym(ḞeFe
−1) + sym(Fe ḞpFp

−1Fe
−1)

�= sym(ḞeFe
−1) + sym(ḞpFp

−1) ,
(116)

where the last two terms may be called the elastic and plastic
deformation rates and will be denoted D̄e and D̄p.

The above inequality shows that the total deformation rate
D cannot be split into the sumof the two rates D̄e and D̄p.We
also refer to the discussions of Refs. [158–163]. Moreover,
the non-uniqueness property of Eq. (112) leaves each rate
term in Eq. (116) unspecified. With Fe = V eRe and Fp =
RpUp, the following relations make this clear:

ḞeF−1
e = V̇ eV−1

e + V e ṘeRe
TV−1

e ,

ḞpF−1
p = ṘpR p

T + RpU̇pU−1
p R p

T.
(117)

They show that each rate term in Eq. (116) is essentially
dependent on either the elastic rotation Re or the plastic
rotation Rp or on both. To resolve this difficulty, additional
assumptions and procedures would be needed. It has been
shown (see Refs. [145,162]) that the deformation rate sep-
aration (21) may be re-established by assuming the extra
condition (114) and defining the elastic and plastic deforma-
tion rates by

De = K̂
−1: (Ḃe + BeW − WBe),

Dp = K̂
−1: (2V e D̄pV e) , (118)

with K̂ a fourth-order tensor given by

K̂i jkl = 2(Be)ikδ jl = 2(Be) jlδik . (119)

With the deformation rate separation described above, the
isotropic elastic relation (115) may be reformulated in an
equivalent Eulerian rate form as given by

De = (L̂: K̂)−1: ◦
τ J , (120)

where
◦
τ J is the Jaumann rate of τ and

L̂i jkl = 2δik

(
∂ψ

∂Be

)
jl

+ 2(Be)im

(
∂2ψ

∂B2
e

)
mjkl

. (121)
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We note that the material tensor N = L̂ : K̂ herein has the
same major and minor symmetry properties as the elasticity
tensor L, namely, Ni jkl = Nkli j = Ni jlk = N j ikl .

It appears that within the context of the general constitu-
tive formulation sketched above, the consequences implied
by the work postulate have not yet been derived. Results have
been given, e.g., in Refs. [164,165], assuming maximal plas-
tic dissipation principles. In this case, the normality rule is
accepted as a plausible assumption, but the convexity prop-
erty of the yield surface may or may not be assumed. With
the normality rule, the total stress rate-strain rate relationship
is established as follows:

D =
(
N + ζ

1

h

∂f

∂τ
⊗ ∂f

∂τ

)
: ◦

τ J , (122)

where f = f(τ ,α, κ) is the yield surface in stress space and
h is a hardening function, which can be derived from the
normality rule for the plastic deformation rate Dp, the con-
sistency condition of plasticity, and the evolution equations
of the internal variables α and κ . For details we refer e.g. to
Ref. [1]. As before ζ is a plastic multiplier, differentiating
the cases of loading and unloading.

Similar to the situation with the Green-Naghdi theory, a
long discussion evolved about different issues related with
this multiplicative decomposition or the Lee theory.19

3.5 Director triads and isoclinic configurations

With the particular assumption (114), a complete elastic-
plastic formulation may be established, but it is confined
to the case of an isotropic elastic potential ψ . Towards a
more general treatment, one approach is to use director tri-
ads and isoclinic configurations, which originated fromRefs.
[170,171] and the following works [130,131,163,172,173].
The main idea is quoted as follows: “... to determine in some
way the orientation of the present (stressed or released) con-
figuration, so that an orientation variable must be added to
the state variables. We shall use the following mode of ori-
entation. We consider a material plane of unit normal n, and
in this plane a material direction m (a unit vector). The ele-
ment is oriented ... by the orthonormal triad formed from m
and n, and which will be called a director triad” [173] and
then “we assume that at time t the material element is very
rapidly unloaded ... This unloading process is elastic ... We
thus obtain a present released configuration (κ) which is only
defined up to an arbitrary rotation.” This ideamay be realized
by selecting a triad formed by three orthonormal vectors, say,
ξ = (d1, d2, d3), for each material element. Embedded in

19 This discussion was primarily between the two schools and their
followers and lasted several years. We therefore refer to Refs. [166–
169] and the instructive discussion therein.

the present released configuration, i.e., the unstressed con-
figuration, such a triad ξ is rotating as the former is changing,
so that it determines the orientation of the former by speci-
fying the related rotation. Such a triad is said to be a director
triad. Further, if a particular director triad ξ0 = (d01, d

0
2, d

0
3)

is chosen in such a manner that it always keeps the same
orientation with respect to the fixed axes, then it may be
called an isoclinic triad. Accordingly, the unstressed config-
uration with the orientation specified by an isoclinic triad ξ0
is referred to as an isoclinic configuration.

Evidently, the isoclinic configuration with a well defined
isoclinic triad ξ0 results in a unique separation (112), and
as such the elastic and plastic deformations Fe and Fp

are accordingly specified. Now the constitutive relations
are formulated in a somewhat different way. It is assumed
that the potential ψ relies on both the elastic Green strain
Ee = 1

2 (FeTFe − I) and the internal variables, whereas the
yield function f depends on the stress

Se = F−1
e τ F−T

e , (123)

and the internal variables. Here Se is the so-called Mandel
stress, acting on the unstressed intermediate configuration.
Then, the elastic relation (113) is converted to

Se = ∂ψ

∂Ee
. (124)

Besides, the flow rule is non-symmetric and formulated for
ḞpF−1

p in a 9-dimensional space.20

The formulation with an isoclinic triad ξ0 may, finally,
be changed to a more general type with an arbitrary direc-
tor triad ξ = Qξ0 and a rotation variable Q. Such general
results involve the corotational rate relative to the triad ξ , and
the rotation Q will enter as an additional variable into each
constitutive function.

An observation on the notion of director triad is as fol-
lows. Let ξ be an arbitrary director triad embedded in the
unstressed configuration. At the initial instant t0, it is given
by the fixed triad ξ0 in the undeformed configuration B0.
Since a director triad is always orthogonal at any instant t ,
i.e., di · d j = 0 for i �= j , and Eq. (111)1 yields di = Fpd0i ,
we deduce d0i · (Fp

TFp)d0j = 0 for i �= j . This implies that

the three orthonormal vectors d0i are just the eigenvectors of

the plastic stretch Up =
√
FT

p Fp. From this and the right

polar decomposition of Fp, we may infer

20 There might, however, be some doubt about the physical pertinence
of such non-symmetric flow rule in a 9-dimensional space. It would
imply that nine, instead of six, rate equations governing plastic flow
should be needed even in the case of infinitesimal deformation, except
for some particular cases. We also refer to Ref. [172] and the discussion
therein.
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Fp = RpUp, Up =
3∑

i=1

λ
p
i d

0
i ⊗ d0i .

In the above, the plastic rotation Rp is arbitrary for a general
director triad, whereas it is constant for an isoclinic triad.

This resultwouldmean that the principal axes of theplastic
stretch Up always keep unchanged, and this might be a too
strong restriction. It could be eliminated by assuming that the
rotation of the director triad at each particle to be independent
of the deformation of thematerial element at this particle. But
this would not only offer no assistance in clarifying the issues
concerning the separation (112) but also go beyond the scope
of a classical continuum. In fact, no director triad, let alone
an isoclinic triad, could be defined in a classical continuum.
Generally, any three mutually orthogonal line elements at
each particle in the initial configuration could not always
maintain the orthogonality property, since any line element
in the unstressed configuration, no matter whether real or
imaginary, should obey the basic kinematic relation (111).

However, the above remarkwould in noway invalidate the
constitutive formulation in the foregoing. Actually, the lat-
ter may be independent of the notion of director triad, albeit
it was thought to be the starting point. Here, the essential
point might be that three additional conditions or relations
would be needed to eliminate the non-uniqueness of the sep-
aration (112). A flow rule for ḞpF−1

p in a 9-dimensional
space would furnish adequate constitutive relations speci-
fying Fp. As such, however, three additional constitutive
relations incorporated in the non-symmetric flow rule for
ḞpF−1

p would have to be introduced, as compared to a sym-
metric flow rule for Dp.

Numerous modifications of the above concepts were
reported in the literature of the last almost 50 years. Therein,
also their implementation into robust and efficient numerical
codes and the improvement of the latter became increasingly
important.
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