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Abstract
To improve the global stiffness and conveniently build a model of a compliant mechanism with spatial multiple degrees of

freedom (DOF), the topology optimization method, combined with the isomorphic mapping matrix, is proposed in this

paper for structure synthesis of a 6-DOF spatial compliant mechanism. By using the differential approximation method, the

Jacobian matrix of the Stewart prototype platform is calculated as the isomorphic mapping matrix, and its eigenvalues and

eigenvectors are considered. Combining the isomorphic mapping matrix with the solid isotropic material with the

penalization topology optimization method, the topological model of the 6-DOF spatial compliant mechanism is con-

structed, and a topological structure of the 6-DOF spatial compliant mechanism is derived which has the same differential

kinematic characteristics as the Gough–Stewart prototype platform. Piezoelectric actuators are mounted inside the topo-

logical structure during the three-dimensional printing manufacturing process, and its driver directions are in accordance

with the driver configuration directions of the Gough–Stewart prototype platform. The effectiveness of the proposed

method for topological structure synthesis of the 6-DOF spatial compliant mechanism is demonstrated through several

numerical examples and experimental studies.

Keywords 6-DOF spatial compliant mechanism � Stewart prototype platform � Isomorphic mapping � Jacobian matrix �
Topology optimization

1 Introduction

Compared with traditional rigid mechanisms, compliant

mechanisms have the characteristics of less parts, light

weight and fewer joints, which result in reduced friction,

wear, impact, vibration and noise in the movement of

mechanisms, and the utility mechanism can improve the

precision of the mechanisms, increase the reliability, and

reduce the maintenance cost [1]. In the past two decades,

the important components of a compliant mechanism, such

as a flexible beam, flexure hinge and structural synthesis

composited by these components, have become the focus

of research [2–5]. In order to establish a mathematic model

of a compliant mechanism composed of these components,

an equivalent stiffness method called pseudo-rigid-body

method had been proposed. For example, Yu and Zhu [6]

proposed a 5R pseudo-rigid-body model for inflection

beams in compliant mechanisms, and Zhu and Yu [7]

proposed two types of pseudo-rigid-body models to simu-

late the large deflection of a flexible beam with an inflec-

tion point in different configurations. Based on finite

elements analysis and on the principle of minimum

potential energy, Jin et al. [8] presented a numerical

method for analyzing the pseudo-rigid-body model of

compliant mechanisms consisting of the finite elements and

springs. The pseudo-rigid-body method has been widely

used to design and analyze the process of compliant

mechanisms [9–13].

Due to large deformation, a large-deflection slender

beam is usually used for the structure synthesis of com-

pliant mechanisms. However, it is difficult to construct the

spatial multiple degrees of freedom (multi-DOF) compliant

mechanism with complex geometric constraint conditions.

How to realize multi-DOF for micro-displacement move-

ment in micro-/nano-manufacturing fields is a problem that
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needs to be solved urgently. To solve this problem, the

topology optimization method is proposed and applied to

the structure synthesis of compliant mechanisms. The main

advantage of topology optimization is that the optimal

design is automatically suggested for prescribed design

domains, boundary conditions and functional specifica-

tions. There is no need to pre-determine the number of

links or the location of the flexural joints in the device [14].

In the past decades, many different techniques, such as the

homogenization method [15], solid isotropic material with

penalization (SIMP) method [16–18], level set method

[19, 20], evolutionary structural optimization (ESO)

method [21, 22] and others [23–25], have been developed.

To a great extent, structure synthesis methods of spatial

compliant mechanisms are faced with many complicated

factors, especially the following two main issues.

(1) As the topology optimization methods are adapted to

the structure synthesis of multi-DOF spatial compli-

ant mechanisms, the topological results show that the

topological structure is a hingeless configuration.

The pseudo-rigid-body modeling method for a tradi-

tional flexible beam is not applicable to the spatial

compliant mechanism derived by the topology

optimization method.

(2) The kinematic characteristics of spatial compliant

mechanisms are very complex because we need to

consider the three-dimensional (3D) constraints,

forces and displacements simultaneously.

The structure synthesis of parallel mechanisms brings

inspiration to the solution to the topology optimization

problems for spatial compliant mechanisms. This approach

can achieve the topology optimization theory, shape and

dimension of spatial compliant mechanisms from the

design specification directly, without using a known rigid-

body mechanism. In other words, this approach adapts the

Jacobian matrix of a parallel mechanism which has the

mapping relationship between the operation space and the

joint space, and it may be applied during the topology

optimization process.

The Gough–Stewart platform with 6-DOF has been

widely used in different mechatronic devices since 1965

[26]. Due to the square matrix with 6 9 6 dimensions, the

forward/backward matrices of the Gough–Stewart platform

can be calculated conveniently. Therefore, compared with

the spatial structure of the Gough–Stewart platform,

researchers have tried to use the flexible hinge replacement

method to reconstruct a spatial compliant mechanism with

the same kinematic characteristics as the Gough–Stewart

platform [27, 28]. In furtherance of this research, Zhao

et al. [29] proposed a parallel compliant mechanism with

six universal-prismatic-universal-revolute (UPUR) flexible

joints to achieve a long-range, six-axis force sensor; the

force Jacobian matrix is obtained by using screw theory in

two cases of the ideal state, and the state of flexibility of

each flexible joint is considered. However, the structure

design method with hinge replacement cannot fundamen-

tally solve the problem of overall structural stiffness

reduction caused by the accumulation of flexible hinges.

Furthermore, it is difficult to establish the equivalent

mapping relationship by using the pseudo-rigid-body

method between the rigid-elastic model composed of

flexible hinges and the rigid-body model.

To overcome these shortcomings, a novel structure

synthesis method considering the topology performance for

6-DOF compliant mechanisms is presented in this paper.

Firstly, a new extension of the topology optimization

technique with a six-inputs-six-outputs conditions is pro-

posed using the SIMP method. Secondly, as a supplement

to the traditional topology optimization method, the Jaco-

bian matrix of the Gough–Stewart platform [30–33] is used

as the isomorphic mapping matrix between the 6-DOF

compliant mechanism and conventional Gough–Stewart

platform, and then, this mapping matrix is applied to the

topological process. By using this method, the kinematic

characteristics of 6-DOF compliant mechanism are con-

sistent with the conventional Gough–Stewart platform.

In the present paper, the main aim is to introduce the

topology optimization theory combining the isomorphic

mapping matrix with the SIMP method as an effectiveness

design method for structure synthesis of spatial compliant

mechanisms. The rest of this paper is organized as follows.

The basic idea of the proposed method is firstly introduced

in Sect. 2. Section 3 illustrates the Jacobian matrix of the

conventional Gough–Stewart platform. Section 4 describes

how to formulate, build and solve the model of topology

optimization with the Jacobian matrix. Section 5 gives the

experiment results and simulations to verify the proposed

method. In addition, the vibration modal analysis with

three orders is conducted. Finally, discussions and con-

clusions are presented in Sect. 6.

2 Basic idea of the proposed method

The general Stewart–Gough parallel manipulator consists of

a base platform, a moving platform, and six limbs connected

at six distinct points on the base platform and the moving

platform respectively, as shown in Fig. 1a, and it is used to

implement ultra-high-precision tasks under large external

loads (e.g., flight simulator) mainly due to their high stiffness

and high load carrying capacity. However, the backlash or

joint clearance of the rigid hinge may reduce the accuracy.

To overcome this shortcoming, the flexure hinge replace-

ment method is used to reconstruct the structure of the

Gough–Stewart platform, as shown in Fig. 1b.
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The stiffness of the mechanism obtained by the flexure

hinge replacement method is obviously lower than that of

the conventional parallel mechanism with rigid hinges,

which is related to the vibration of the mechanism during

movement. On the other hand, topology optimization is a

kind of optimization method based on the minimization of

mechanism flexibility, and the configuration of a mecha-

nism derived by this method can improve the overall

stiffness of the mechanism. This idea has been confirmed

by our previous research [34]. Based on the relationship

between the constraints and the motion characteristics of a

parallel mechanism given by Ref. [35], there are no con-

straints on the moving platform. In order to avoid a driver

configuration singularity, the multi-inputs in topology

optimization should be presented according to the con-

ventional driver configuration of the Gough–Stewart par-

allel mechanism. A design domain of a 6-DOF spatial

compliant mechanism is shown in Fig. 2.

A cube structure with 200 mm � 200 mm � 200 mm is

selected as the design domain of topology optimization,

and the multi-inputs are set according to the driver con-

figuration form of conventional Gough–Stewart platform.

The objective of the minimum compliance problem is to

find a material element density distribution qe that maxi-

mizes the structural deformation under the prescribed

support and loading conditions. The driver configurations

of the Gough–Stewart platform are placed inside the design

domain as the piezoelectric PbZrTiO3 (PZT) actuator

installation locations. According to the screw theory, the

number of constraints on the outputs of the topological

optimization domain equals zero, so we give three ranges

of translation and three ranges of rotations according to the

actual expected output values of the 6-DOF compliant

mechanism, respectively. It is shown in Fig. 2.

Another problem we have to solve is how to build the

kinematic model of a 6-DOF compliant mechanism. The

premise of a kinematic model established by using the

Fig. 1 Different structures of the Gough–Stewart platform. a Gough–Stewart platform with rigid hinges, b Gough–Stewart platform with flexure

hinges
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pseudo-rigid-body method can be described by flexible

joints. However, the hinge (or joint) and beam form does

not exist in the topological structure, so the pseudo-rigid-

body method is not suitable for the topological kinematic

modeling. On the other hand, as we know, the Jacobian

matrix represents the mapping relationship between the

operation space and the joint space. Therefore, if we can

use the Jacobian matrix of the corresponding parallel pro-

totype mechanism in the design process of topology opti-

mization, then the kinematics model of the parallel

prototype mechanism can be used as the kinematics model

of the compliant mechanism. This novel method can also

be extended to the topology optimization design for a

compliant mechanism with an arbitrary DOF.

3 Kinematics Jacobian matrix of the Gough–
Stewart platform

Consider a 6-DOF conventional Gough–Stewart platform, as

shown in Fig. 2a. Each link has a prismatic actuator (driver).

The links are joined at the ends to the base platform (BP) and

moving platform (MP) by a universal and a spherical joint,

respectively. Let the connection points of the i-th link on the

BP and MP be denoted by Ai and Ci, respectively. Also, let

the two coordinate frames o� xyzf g and o0 � uvwf g be

attached to the BP and MP at the points o and o0, respectively.

The kinematics design problem involves determination of

coordinates of the connection point for each link. Hence, six

design parameters are associated with each link. Thus, a

6-links, non-redundant, parallel mechanism has 36 design

parameters, which are required to be evaluated so that the

design criterion is satisfied. But, since the number of these

design parameters is quite large and governing equations are

nonlinear, their values must be determined numerically.

3.1 Traditional solution method for a kinematics
Jacobian matrix of the Gough–Stewart
platform

The Gough–Stewart platform is a fully parallel kinematic

linkage system that has major mechanical differences from

typical serial link robots. Its closed kinematic chain and

parallel linkage structure give it great rigidity and a high

force-to-weight ratio. However, due to the lack of efficient

algorithms for solving the kinematics equations, its potential

application as a robotic manipulator is difficult to realize. In

this paper, as the motion characteristics with a micro-/nano-

scale of the 6-DOF compliant mechanism, we focus on the

Jacobian matrix with displacement. A simplified algorithm

was proposed by Liu et al. [36] to solve the forward kine-

matics of the Gough–Stewart platform by solving only three

nonlinear simultaneous equations. Assuming that the output

position vector of the Gough–Stewart platform is defined as

u ¼ a b c dx dy dzð ÞT
; and the coordinate trans-

formation homogeneous equation is presented by using the

Denavit–Hartenberg (D–H) method as shown below

From the loop formed with the position vector oo0
�!

and

the position vectors of link i, we have

oo0
�!

¼ oAi
�!þAiCi

��!þo0Ci

��!
ð2Þ

or

p ¼ Ri þ li � ri; ð3Þ

where Ri, li and ri denote the position vector oAi
�!

from the

point o to the point Ai, the position vector AiCi
��!

from the

point Ai to the point Ci and the position vector o0Ci

��!
from

the point Ci to the point o0, respectively.

Applying the dot product of li to both sides, Eq. (3) can

be arranged with respect to li as below

l2i ¼ pþ ri � Rið Þ � pþ ri � Rið Þ; ð4Þ

where p is the displacement vector from the center of the

base platform to the center of the moving platform.

Assuming that the initial frame parameters are represented

by superscript 0 yields

p2 ¼ x0
o0 y0

o0 z0
o0

� �T
TM
B

�

�

�

�

�

�

2

;

r2
i ¼ x0

Ci
y0
Ci

z0
Ci

� �T
TM
B

�

�

�

�

�

�

2

;

R2
i ¼ x0

Ai
y0
Ai

z0
Ai

� �T
�

�

�

�

�

�

2

:

ð5Þ

Following the same procedure for the other five kine-

matics links, the constraint function for the entire system

can be derived as

TM
B ¼ Rot x; að ÞRot y; bð ÞRot z; cð ÞTrans x; dxð ÞTrans y; dy

� �

Trans z; dzð Þ

¼

cosbcosa �cosbsinc sinb dx

sinasinbcoscþ cosasinc �sinasinbsincþ cosacosc �sinacosb dy

�cosasinbcoscþ sinacosc cosasinbsincþ sinacosc cosacosb dz

0 0 0 1

2

6

6

6

4

3

7

7

7

5

:
ð1Þ
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Dl21
Dl22
Dl23
Dl24
Dl25
Dl26

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼

l21 � l01
� �2

l22 � l02
� �2

l23 � l03
� �2

l24 � l04
� �2

l25 � l05
� �2

l26 � l06
� �2

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

¼

f1 a; b; c; dx; dy; dz
� �

f2 a; b; c; dx; dy; dz
� �

f3 a; b; c; dx; dy; dz
� �

f4 a; b; c; dx; dy; dz
� �

f5 a; b; c; dx; dy; dz
� �

f6 a; b; c; dx; dy; dz
� �

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: ð6Þ

To solve these equations, Tang et al. [37] proposed a

numerical method based on an equivalent model for the

Gough–Stewart platform forward kinematics problem by

using the iteration method. In this method, the critical

values of the allowable errors ei of a; b; c; dx; dy; dz are

given, respectively. The iterations terminate when the

posed difference Dli is smaller than ei for all i ¼ 1; 2; . . .; 6.

3.2 Differential equivalent analysis method
for a kinematics Jacobian matrix
of the Gough–Stewart platform

The conditions of displacement output are set with the

rotation value of the angle being [0, 1 9 10-7] rad and the

translation value of the displacement being [0, 1 9 10-8]

mm. Taking into account the differential kinematics char-

acteristics of the conventional Gough–Stewart platform

with rigid hinges, without loss of generality, the coordinate

transformation homogeneous Eq. (1) can be rewritten by

T0M
B ¼ Rot x; að ÞRot y; bð ÞRot z; cð ÞTrans x; dxð ÞTrans y; dy

� �

Trans z; dzð Þ

¼

1 �c b dx

c 1 �a dy

�b a 1 dz

0 0 0 1

2

6

6

6

4

3

7

7

7

5

:

ð7Þ

Substituting the initial coordinate parameters of Ci into

Eq. (7) yields

C0x
iC0y

iC0z
i

� �T¼ Ci
x Ci

y Ci
z

� �T
T0M

B

¼
Ci
x � cCi

y þ bCi
z þ dx cCi

x þ Ci
y � aCi

z þ dy

�bCi
x þ aCi

y þ Ci
z þ dz

 !T

:
ð8Þ

As Dli ¼ l0i � li and l0i ¼ C0
iAi

��!
¼ C0x

i � Ax
i

� �2þ C
0y
i

�

h

�A
y
i Þ

2 þ C0z
i � Az

ið Þ2�
1
2; the differential equivalent method is

adapted as follows

l0i ¼ li þ Dli ) l0i2 ¼ l2i þ 2Dli � li þ Dl2i ; assumed

Dl2i ! 0; then Dli ¼
1

2li
l02i � l2i
� �

;
ð9Þ

where li are the initial lengths of links; according to Fig. 1,

they are equal to each other. Substituting Eq. (8) with the

initial vector coordinate parameters into Eq. (9) yields

Dli ¼
1

2l
Ci
x � cCi

y þ bCi
z þ dx � Ai

x

� �2
�

þ cCi
x þ Ci

y � aCi
z þ dy � Ai

y

� �2

þ �bCi
x þ aCi

yþCi
z þ dz � Ai

z

� �2

� Ci
x � Ai

x

� �2þ Ci
y � Ai

y

� �2

þ Ci
z � Ai

z

� �2
	 
�

:

ð10Þ

Simplifying Eq. (10), we obtain

Dli ¼
1

2l
a Ci

zA
i
y � Ci

yA
i
z

� �

þ b Ci
xA

i
z � Ci

zA
i
x

� �

h

þ c Ci
yA

i
x � Ci

xA
i
y

� �

þ dx Ci
x � Ai

x

� �

þ dy Ci
y � Ai

y

� �

þ dz Ci
z � Ai

z

� �

i

:

ð11Þ

Equation (11) can be rewritten as a matrix form

Based on Fig. 2, the initial coordinates are shown in

Table 1.

By substituting the parameters given by Table 1, the

Jacobian matrix can be derived as

J¼

49:03 0 0 0 �0:098 0:49

24:52 �42:49 0:0052 �0:085 �0:049 0:49

�24:52 �42:49 �0:0052 �0:085 0:049 0:49

�49:03 0 0 0 0:098 0:49

�24:52 42:49 0:0052 0:085 0:049 0:49

24:52 42:49 �0:0052 0:085 �0:049 0:49

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

ð13Þ

Dl1
Dl2
Dl3
Dl4
Dl5
Dl6

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼ 1

2l

C1
z A

1
y � C1

yA
1
z C1

xA
1
z � C1

z A
1
x C1

yA
1
x � C1

xA
1
y C1

x � A1
x C1

y � A1
y C1

z � A1
z

C2
z A

2
y � C2

yA
2
z C2

xA
2
z � C2

z A
2
x C2

yA
2
x � C2

xA
2
y C2

x � A2
x C2

y � A2
y C2

z � A2
z

C3
z A

3
y � C3

yA
3
z C3

xA
3
z � C3

z A
3
x C3

yA
3
x � C3

xA
3
y C3

x � A3
x C3

y � A3
y C3

z � A3
z

C4
z A

4
y � C4

yA
4
z C4

xA
4
z � C4

z A
4
x C4

yA
4
x � C4

xA
4
y C4

x � A4
x C4

y � A4
y C4

z � A4
z

C5
z A

5
y � C5

yA
5
z C5

xA
5
z � C5

z A
5
x C5

yA
5
x � C5

xA
5
y C5

x � A5
x C5

y � A5
y C5

z � A5
z

C6
z A

6
y � C6

yA
6
z C6

xA
6
z � C6

z A
6
x C6

yA
6
x � C6

xA
6
y C6

x � A6
x C6

y � A6
y C6

z � A6
z

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

a
b
c
dx
dy
dz

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼ J

a
b
c
dx
dy
dz

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: ð12Þ
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To ensure the homogeneity and decoupling of the

Jacobian matrix, the orthogonal and right matrix defor-

mation method (QR) is used to derive the orthogonal

matrix, eigenvalues and eigenvectors.

The orthogonal matrix can be calculated by Matlab

software, which yields

Q ¼

�0:5773 0 0 �0:4083 �0:7071 �0:0014

�0:2887 �0:5 0:5 0:6324 �0:1294 �0:0003

0:2887 �0:5 �0:5 0:0747 �0:2777 �0:5779

0:5773 0 0 0:1494 �0:5588 0:5763

0:2887 0:5 0:5 0:0747 �0:2777 �0:5779

�0:2887 0:5 �0:5 0:6324 �0:1294 �0:0003

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

ð14Þ

And the eigenvalues Evalue and eigenvectors Evector are

also calculated as

Evalue

¼

�84:9282 0 0 0 0 0

0 84:98 0 0 0 0

0 0 0:0104 0 0 0

0 0 0 0 0 0

0 0 0 0 �0:0057 0

0 0 0 0 0 �0:2849

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

;

ð15Þ

Evector

¼

1 0 0 0 0:0004 0:0015

0 1 0 �0:002 0:0018 0:0008

0 0 1 0 0:2645 0:0611

0 0 0 1 �0:9448 �0:5256

0 0 0 0 0:1932 0:8184

0 0 0 0 0 0:2242

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

:
ð16Þ

4 Topology optimization model of the
6-DOF spatial compliant mechanism

In this paper, a cube optimization design domain is selected as

Fig. 2, and the Gough–Stewart prototype platform is placed

inside this cube in order to determine the placement position of

the six PZT actuators. During the topology optimization

process, there are two key problems that need to be solved, that

is, one is the how to integrate the Jacobian matrix with the

topology optimization method, and the other is how to put the

PZT actuators inside the topological structure when 3D

printing technology is used to manufacture the topological

structure. Our solution to the second problem is to put the PZT

actuators in the slot when the reserved actuator slot is about to

be closed, and the SIMP method to integrate the Jacobian

matrix of the 6-DOF Gough–Stewart prototype platform will

be used to solve the first problem.

4.1 Finite element method based on transfer
characteristic between force/macro
and strain/micro

The isomorphic Jacobian mapping matrix proposed as

previously can be used to express the mapping relationship

between macro inputs and outputs, that is, it can be ensured

that the topological configuration after topology opti-

mization can be consistent with the Gough–Stewart pro-

totype platform, and then the model of the 6-DOF spatial

compliant mechanism can be established. To realize

macro/micro unification during the topology optimization

process, three steps need to be considered as follows.

Kinematic characteristics of the topological structure of

6-DOF complaint mechanisms can be consistent with the

Stewart prototype platform. To realize macro/micro unifi-

cation during the topology optimization process, three steps

need to be considered as follows:

Step 1: The stress and strain generated by the six driving

forces provided by the PZT actuators need to be solved,

and they are the initial conditions for solving the stress and

strain between the element meshes.

Step 2: The finite element method is adapted during the

topology optimization process, and the SIMP method will

be used in this paper.

Step 3: The final stress/strain results of element meshes

should correspond to the output displacements to achieve

unified micro and macro motion characteristics, and the

convergence condition is satisfied by the given Jacobian

mapping matrix between the input forces and output

displacements.

Table 1 Initial coordinate of each point connected with a moving and base platform

Connected to moving platform Ci
x Ci

y Ci
z

Connected to base platform Ai
x Ai

y Ai
z

C1 0 60 200 A1 0 100 0

C2 51.96 30 200 A2 86.67 50 0

C3 51.96 -30 200 A3 86.67 -50 0

C4 0 -60 200 A4 0 -100 0

C5 -51.96 -30 200 A5 -86.67 -50 0

C6 -51.96 30 200 A6 -86.67 50 0
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4.1.1 Transfer from the driving forces to stress/strain
of element meshes

Under the action of external force, the object will produce

deformation and internal force at the same time, and the

deformation will be stopped when the internal force and the

external force are kept in balance. Without loss of gener-

ality, according to the mesh grid with a hexahedral ele-

ment in the topology optimization method, we assume that

the driving force acts on a micro element with a hexahe-

dral. The i-th driving force can be denoted as

Fi ¼ fix fiy fizð ÞT
, i ¼ 1; 2; . . .; 6 and the macro

expression between the driving force and displacement is

satisfied as follows

Fi ¼ fix fiy fizð ÞT

¼
kix 0 0

0 kiy 0

0 0 kiz

2

6

4

3

7

5

dx

dy

dz

2

6

4

3

7

5

¼ K � u v wð ÞT;
ð17Þ

where u v wð ÞT
is the function of displacement with

3D space; K ¼
kix 0 0

0 kiy 0

0 0 kiz

2

4

3

5 is the whole elastic matrix.

And then, the micro-deformation in element meshes will

be studied in order to connect with macro-displacement

caused by driving forces. The coordinate transformation

can deduce to locate a point into the evenly shaped triangle

network. The projection plane and micro-deformation are

shown in Fig. 3a, b, respectively.

By using the Taylor series expansion formula and

neglecting the higher-order small quantity, the deformation

coordinates values for the points projected on the X–Y

plane are given by

A0 xþ u; yþ vð Þ; B0 xþ dxþ uþ ou

ox
dx; yþ vþ ov

ox
dx

� 


;

C0 xþ uþ ou

oy
dy; yþ dyþ vþ ov

oy
dy

� 


:

ð18Þ

So, the length of line segment AB projected on the x axis

is calculated, yielding

d dxð Þ ¼ A0B0��!
� AB
�! ¼ u xþ dx; yð Þ � u x; yð Þ ¼ ou

ox
dx:

ð19Þ

Similarly, we have

d dyð Þ ¼ ov

oy
dy; d dzð Þ ¼ ow

oz
dz: ð20Þ

4.1.2 Stress/strain transfer between element meshes

The basic idea of the finite element method is to divide the

continuum into finite elements connected at the nodes, and

then approximate the unknown field functions on the whole

solution domain by approximating the assumed functions

in each element. Therefore, the stress and strain transfer

between the elements becomes an important factor during

the topology optimization process. The equilibrium equa-

tion expressed by displacement is given by

E

1 � m2

o2ui

ox2
þ 1 � m

2

o2ui

oy2
þ 1 þ m

2

o2vi

oxoy

� 


¼ �f i ¼ �ki ui vi wið ÞT:

ð21Þ

Compared with Eq. (17), the initial displacement caused

by external force Fi can be transferred by stress and strain

inside of element meshes.

A

B
C

D
x

z

y

o

x

y

o
u u(x+d x,y)

v

v(x,y+dy)

u(x,y+dy)

v(x+d x,y)

A
B

C

A

B

C

αyx

αxy

a b

Fig. 3 Relationship between the macro-displacement caused by driving force and the infinitesimal micro-deformation using the projective plane

method. a Projective plane, b deformation with stress and strain
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4.2 Topological model of the 6-DOF spatial
compliant mechanism

In the initial stage of topology optimization, a reference

domain X in R3 should be chosen to allow by definition the

applied loads and boundary conditions. In the topological

design domain, the material distribution problem is for-

mulated with optimal shape, design formula, and solved

according to the load or support constraints. The reference

domain X is discredited into n elements, and the relative

density qe of material corresponding to the e-th element is

a design variable. The objective function of these design

variables is used for modifying the stiffness matrix so that

it can be interpreted as a density of material. The penalized

proportional stiffness model is given by

Eijkl xð Þ ¼ q xð ÞpE0
ijkl; p[ 1;

R

V
q xð ÞdV 6 X; 0 6 q xð Þ� 1; x 2 V ;

ð22Þ

where q xð Þ is the density of the design function, E0
ijkl

represents the material properties of a given isotropic

material, and Eijkl xð Þ is the stiffness tensor which is a

variable over all the design domain and is modified by the

optimal algorithm; it is equivalent to the left side of

Eq. (20) in the projective plane. V denotes the design

domain which is satisfied with V 2 X, the design volume

(not including the non-design area or fixed domain) is

evaluated as
R

V
q xð ÞdV , and Eijkl xð Þ is given by the density

interpolates with constraint conditions, yielding

Eijkl q ¼ 0ð Þ ¼ 0; Eijkl q ¼ 1ð Þ ¼ E0
ijkl: ð23Þ

According to the isotopic material properties and 3D

topology optimization admissible, the power of p satisfies

that

p�max 15
1 � m0

7 � 5m0
;

3

2

1 � m0

1 � 2m0

� �

; ð24Þ

where m0 is the Poisson ratio with the given stiffness tensor

of the isotopic material. Generally, it is chosen to be

greater than 3.

The important problem is that the 6-DOF compliant

mechanism includes the multiple force inputs and dis-

placement outputs. The couple between each force input

and displacement output should be considered at the initial

condition of the topology optimization process as Eq. (15).

The model of the 6-DOF spatial compliant mechanism can

be given by two cases as following.

Case one. The Jacobian matrix is not considered during

the topology optimization process

min c qeð Þ ¼ ui vi wið Þf i ui vi wið ÞT¼ Bf iB
T;

s.t. F ¼
P

6

i¼1

P

n

e¼1

qpeke

� 


u ¼ KU, e ¼ 1; 2; . . .; n;

R

V
qe xð ÞdV 6 X; 0\qmin\qe\1 ;

ð25Þ

where the design domain is divided into n elements by

using a hexahedral structure, and K is the global stiffness

matrix and satisfies K ¼
P6

i¼1

Pn
e¼1 ke

� �

. qmin is a lower

bound of the density in order to prevent the possible sin-

gularity; generally, it is set qmin ¼ 1 � 10�3.

By using the projective plane and the adjoint method,

the function c qeð Þ is rewritten by adding the zero function

c qeð Þ ¼ fTu� ~uT ku� fð Þ: ð26Þ

Because of the symmetry and consistency of the design

structure, we do not use a subscript to represent the dif-

ferent force inputs and displacement outputs, and ~u is any

arbitrary fixed real vector.

Derivative c qeð Þ with to respect qe, we obtain that

oc qeð Þ
oqe

¼ fT � ~uTk
� � ou

oqe
� ~uT ok

oqe
u: ð27Þ

It can be rearranged as

oc qeð Þ
oqe

¼ �~uT ok

oqe
u; ð28Þ

where ~u satisfies the adjoint equation fT � ~uTk
� �

¼ 0.

Assuming that ~u is equal to u, the differentiating of

compliance c qeð Þ is simple as

oc qeð Þ
oqe

¼ �pqp�1
e uT ok

oqe
u. ð29Þ

Obviously, the sensitivity of density is negative for all

elements.

Case two. Multiple-force inputs-displacement outputs

with a Jacobian matrix are considered.

In case two, maximization of the fundamental eigen-

value is used as design functions for dynamic loads,

yielding

min c ~xð Þ¼FTU ~xð Þ¼
P

6

i¼1

P

6

j¼1

~UT
j ~xð ÞKUi ~xð Þ¼

P

n

e¼1

P

3

i¼1

P

3

j¼1

~UT
ej ~xj
� �

qpekeUei;

max
q

gmin ¼ min
i¼1;2;:::;6

gi

� �

;

s.t. K�giMð Þui ¼ 0;
s.t. x¼ x1;x2; . . .;xnð ÞT; x2Rn;06 x6 1;

v ~xð Þ¼ ~xT � v� �v;

F¼ JD �U;F¼ f1; f2; . . .; f6ð ÞT; U¼ dx;dy;dz;a;b;c
� �T

;
R

V
qe xð ÞdV 6X;0\qmin\qe\1;

ð30Þ
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where ~x is the design variable denoting the density filter

function and given by ~xi ¼
P

j2n Hijvjxj
P

j2n Hijvj
, Hij is a weight factor,

K is the global stiffness matrix and ke is the element

stiffness matrix. v ¼ v1; v2. . .vn½ �T is element volume, �v is

the iterative convergence objective respect to the design

volume V , gi is the eigenvalue given by Eq. (16) according

to the Stewart prototype platform and ui is the eigenvector

given by Eq. (15); M is the mass matrix.

With derivative gi with respect to qe, the sensitivity of

the eigenvalue can be derived

ogi
oqe

¼ uT
i

oK

oqe
� gi

oM

oqe

� 


ui: ð31Þ

The eigenvector has been normalized with respect to the

kinetic energy and satisfies uT
i Mui ¼ 1, and the sensitivi-

ties of eigenvalues opposed to the sensitivities of the

compliance objective may take negative as well as positive

values.

The sensitivity of the volume constraint v ~xð Þ and com-

pliance are given by derivation with respect to the design

variable xe, yielding

ov ~xð Þ
oxe

¼
X

n

i¼1

ov ~xð Þ
o~xi

o~xi
oxe

;

oc ~xð Þ
o~xi

¼ FT oU ~xð Þ
o~xi

¼ U ~xð ÞTK ~xð Þ oU ~xð Þ
o~xi

;

ð32Þ

where FT � U ~xð ÞTK ¼ 0 satisfies the adjoint equation, and
oK ~xð Þ
o~xi

þ K ~xð Þ oU ~xð Þ
o~xi

¼ 0 when the derivative is with respect to

~xi.
And then Eq. (32) can be rewritten by

oc ~xð Þ
o~xi

¼ �U ~xð ÞT
p~xp�1

i E0K
0
iU ~xð Þ; ð33Þ

where ui is the nodal displacement of the i-th element, and

k0
i is definitely positive.

oc ~xð Þ
o~xi

\ 0: ð34Þ

The sensitivity of the objective function is

given by

oc ~xð Þ
oqe

¼
o
P

6

i¼1

P

6

j¼1

~UT
j ~xð ÞKUi ~xð Þ

 !

oqe

¼
o
P

6

j¼1

~UT
j ~xð Þ

oqe
K þ

X

6

j¼1

~UT
j ~xð Þ oK

oqe

0

B

B

B

@

1

C

C

C

A

X

6

i¼1

Ui ~xð Þ

þ
X

6

j¼1

~UT
j ~xð Þ oK

oqe

X

6

i¼1

Ui ~xð Þ þ K

o
P

6

i¼1

Ui ~xð Þ

oqe

0

B

B

@

1

C

C

A

�
X

6

j¼1

~UT
j ~xð Þ oK

oqe

X

6

i¼1

Ui ~xð Þ: ð35Þ

According to the Jacobian matrix JD derived by QR

decomposition of the Stewart prototype platform, without

loss of generality, the force inputs are assumed independent

from the design variables, which yields

oK

oqe

X

6

j¼1

~UT
j ~xð Þ þ K

o
P

6

j¼1

~UT
j ~xð Þ

oqe
¼ 0;

oK

oqe

X

6

i¼1

UT
i ~xð Þ þ K

o
P

6

i¼1

UT
i ~xð Þ

oqe
¼ 0

ð36Þ

with K ¼
P

n

e¼1

qpeke, the sensitivity of the objective function

is derived as follows

oc ~xð Þ
oqe

¼ �
X

n

e¼1

X

6

i¼1

X

6

j¼1

p ~UT
j ~xð Þqp�1

e keUi ~xð Þ: ð37Þ

4.3 Solution of the topology optimization model

By using Lagrange multipliers, the updated iteration of

the multi-inputs-multi-outputs in 3D space can be built

by

qðkþ1Þ
e ¼

minfðmþ 1ÞqðkÞe ; 1g; if minfð1 þ mÞqðkÞe ; 1g� ðDðkÞ
e Þ1qðkÞe

ðDðkÞ
e Þ1qðkÞe ; if maxfð1 � mÞqðkÞe ; qming\ðDðkÞ

e Þ1qðkÞe

maxfð1 � mÞqðkÞe ; qming; if ðDðkÞ
e Þ1qðkÞe �maxfð1 � mÞqðkÞe ;qming ;

8

>

<

>

:

ð38Þ
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Meshing, finite
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Fig. 4 Flowchart of the iteration procedure

Fig. 5 Topologies for the 6-DOF spatial compliant mechanism under different iterative steps and the topological structure (case one).

a Topological structure at the iteration 1 step. b Topological structure at the iteration 8 step. c Topological structure at the iteration 12 step.

d Topological structure of the 6-DOF spatial compliant mechanism
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where m is the constant value with moving constraint,

and m ¼ 0:1�0:3. 1 is the damping factor, and

1 ¼ 0:4�0:5.

D
ðkÞ
e is given by the expression

DðkÞ
e ¼ max 0;� oc ~xð Þ

oqe

� 


=ðKðkÞVeÞ; ð39Þ

where K kð Þ is the Lagrange multiplier with the volume

constraint at the k-th step iteration, and Ve is the element

volume of k-th step iteration.

The iteration procedure is shown in Fig. 4.

5 Topological structure of the 6-DOF spatial
compliant mechanism

In this section, the configuration of the actuators in 3D

space will be considered for manufacture, and then the way

that the six actuators are embedded in the topological

structure will be determined. The prototype structure of the

Gough–Stewart platform is adapted and shown as Fig. 2,

and the six directions according to the prototype structure

are accepted as six force inputs. Six holes along the

direction of the installation of piezoelectric actuators are

set to the non-design area. When the height of the 3D

printing process is parallel to the piezoelectric actuator, the

3D printing process will be terminated, and the PZT

actuator is packaged in a topological structure

simultaneously.

The design domain is a cube of dimension 200 mm 9

200 mm 9 200 mm discredited with 2000 eight-node ele-

ments with a hexahedral structure. The composition material

of the 6-DOF spatial compliant mechanism is defined with a

Young’s modulus of 2.06 9 10-5 F/mm2 and Poisson’s ratio

of 0.3. The 6 force inputs are assumed as Fin1 ¼ Fin2 ¼
� � � ¼ Fin6 ¼ 180 N, the volume restriction is 20% of the

given design domain, and for the elastic workpiece, a value

of 2 � 106 mN/m is assigned to the spring constant.

5.1 Topological structure of case study one

In case one, we only consider the multiple force inputs and

displacement outputs using the SIMP topology optimization

method, and the constraints of the displacement outputs are

limited in 1 � 10�5 mm or 1 � 10�6 rad scope. The six PZT

actuators are installed along the same directions with the

drivers of the Stewart prototype platform in order to avoid

singularity.

The optimization results for the 6-DOF spatial com-

pliant mechanism are presented below. Figure 5 includes

the optimal topologies. Figure 6 displays the convergence

process, and the stress nephogram is shown in Fig. 7.

Extracting displacement data from each iterative step, the

displacement values of the moving platform caused by the

overall elastic deformation of the material are shown as Table 2.

5.2 Topological structure of case two

In case two, we also only consider the multiple force inputs

and displacement outputs using the SIMP topology opti-

mization method, and the constraints of the displacement

outputs are limited in 1 � 10�5 mm or 1 � 10�6 rad scope.

The six PZT actuators are installed along the same direc-

tions with the drivers of the Stewart prototype platform in

order to avoid singularity.

Fig. 6 Typical convergence history for the 6-DOF spatial compliant

mechanism (case one)

Fig. 7 Stress nephogram of the topological structure of the 6-DOF

spatial compliant mechanism with a maximum stress of 0.4254 and

minimum stress of 7.728 9 10-6 (case one)
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The optimization results for the 6-DOF spatial compliant

mechanism of case two are presented below. Figure 8 includes

the optimal topologies. Figure 9 displays the convergence

process, and the stress nephogram is shown as Fig. 10.

By extracting displacement data from each iterative

step, the displacement values of the moving platform

caused by the overall elastic deformation of the material

with case two are shown as Table 3.

Compared the displacement and rotational values

between case one and two, we can find that the displace-

ments and rotational angles order of magnitude are close to

each other in two cases, and it is decided by the initial

Table 2 Displacement values of the moving platform of the 6-DOF spatial complaint mechanism caused by the overall deformation of the

material (case one)

Iteration

step

Displacement along

the x axis direction

(mm)

Displacement along

the y axis direction

(mm)

Displacement along

the z axis direction

(mm)

Rotation around

the x axis (rad)

Rotation around

the y axis (rad)

Rotation around

the z axis (rad)

1 3.4713 9 10-8 1.1250 9 10-7 3.2891 9 10-3 -1.0616 9 10-9 3.1459 9 10-10 3.6343 9 10-16

2 3.7326 9 10-8 1.0961 9 10-7 2.2367 9 10-3 -1.0126 9 10-9 3.3569 9 10-10 5.3152 9 10-14

3 3.9938 9 10-8 1.0673 9 10-7 1.1842 9 10-3 -9.6363 9 10-9 3.5678 9 10-10 1.0594 9 10-13

4 4.4729 9 10-8 1.2375 9 10-7 9.8587 9 10-4 -1.1280 9 10-9 4.0591 9 10-10 3.3201 9 10-13

5 4.9519 9 10-8 1.4076 9 10-7 7.8752 9 10-4 -1.2923 9 10-9 4.5503 9 10-10 5.5807 9 10-13

6 5.0124 9 10-8 1.4511 9 10-7 8.2690 9 10-4 -1.3411 9 10-9 4.6124 9 10-10 9.7293 9 10-13

7 5.0729 9 10-8 1.4946 9 10-7 8.6628 9 10-4 -1.3900 9 10-9 4.6745 9 10-10 1.3878 9 10-12

8 5.0098 9 10-8 1.5118 9 10-7 9.1270 9 10-4 -1.4102 9 10-9 4.5919 9 10-10 1.3024 9 10-12

9 4.9467 9 10-8 1.5290 9 10-7 9.5913 9 10-4 -1.4303 9 10-9 4.5094 9 10-10 1.2171 9 10-12

10 5.1076 9 10-8 1.5998 9 10-7 9.6931 9 10-4 -1.4937 9 10-9 4.6365 9 10-10 1.0958 9 10-12

Fig. 8 Topologies for the 6-DOF spatial compliant mechanism under the different iterative steps and the topological structure (case two).

a Topological structure at the iteration 1 step. b Topological structure at the iteration 8 step. c Topological structure at the iteration 12 step.

d Topological structure of the 6-DOF spatial compliant mechanism
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convergence conditions of the topology optimization pro-

cess, and the values of the displacements and rotational

angles are consistent with the given parallel prototype

manipulator with Jacobian mapping matrix.

5.3 Vibration modal analysis with the first four
orders

The vibration modal is the most important factor in precision

manufacturing, and it can provide accurate information for the

location of sensors. By using the Optistruct software, the first

four orders of the vibration modal are proposed with the same

load input conditions and boundary constraint conditions. The

first four orders of the vibration modal of case one and case

two are shown as Figs. 11 and 12, respectively.

The results shows that the natural frequency between

case one and case two is almost close to each other. This

highly natural frequency can suppress the vibration of the

proposed spatial compliant mechanism and reduce the

uncertainty of the precision positioning.

6 Discussions

In this paper, an isomorphic Jacobain mapping matrix derived

by the differential kinematic method with the Gough–Stewart

prototype platform is proposed. Compared with the Gough–

Stewart prototype platform, a differential approximation

method is adapted to calculate and construct the Jacobian

matrix of the Gough–Stewart prototype platform. Its eigen-

values and eigenvectors are derived to build the topological

model of 6-DOF spatial compliant mechanisms. By using this

isomorphic mapping matrix combined with the topology

optimization method, we can easily establish the kine-

matic/dynamic model of 6-DOF spatial compliant mecha-

nisms with topological structure which cannot be realized by

Fig. 9 Typical convergence history for 6-DOF spatial compliant

mechanism (case two)

Fig. 10 Stress nephogram of the topological structure of 6-DOF

spatial compliant mechanism with the maximum stress 0.3739, and

minimum stress 4.780 9 10-5, respectively (case two)

Table 3 Displacement values of the moving platform of 6-DOF spatial complaint mechanism caused by the overall deformation of the material (case two)

Iteration

steps

Displacement along

with x axis direction

(mm)

Displacement along

with y axis direction

(mm)

Displacement along

with z axis direction

(mm)

Rotational

around with

x axis (rad)

Rotational

around with

y axis (rad)

Rotational around

with z axis (rad)

1 3.4713 9 10-7 1.1250 9 10-6 3.2891 9 10-2 -1.0616 9 10-8 3.1459 9 10-9 3.6339 9 10-15

2 3.9560 9 10-7 1.0586 9 10-6 9.7858 9 10-3 -9.5254 9 10-9 3.5437 9 10-9 -2.5981 9 10-12

3 4.2075 9 10-7 1.1075 9 10-6 1.8402 9 10-3 -9.5561 9 10-9 3.7157 9 10-9 -7.0765 9 10-12

4 4.9822 9 10-7 1.3530 9 10-6 5.5717 9 10-4 -1.1623 9 10-8 4.2807 9 10-9 -5.2919 9 10-12

5 5.5800 9 10-7 1.4848 9 10-6 8.1551 9 10-4 -1.2878 9 10-8 4.8532 9 10-9 9.0040 9 10-12

6 6.2713 9 10-7 1.6470 9 10-6 7.0320 9 10-4 -1.4424 9 10-8 5.4854 9 10-9 1.2110 9 10-11

7 6.9438 9 10-7 1.8230 9 10-6 7.0875 9 10-4 -1.6163 9 10-8 5.9969 9 10-9 2.2618 9 10-11

8 7.8341 9 10-7 2.0164 9 10-6 7.1108 9 10-4 -1.7769 9 10-8 6.6174 9 10-9 2.2031 9 10-11

9 8.7902 9 10-7 2.2107 9 10-6 1.9624 9 10-4 -1.9595 9 10-8 7.4673 9 10-9 5.8540 9 10-11

10 9.8962 9 10-7 2.3817 9 10-6 8.7717 9 10-4 -2.1625 9 10-8 8.5793 9 10-9 3.4827 9 10-11
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the pseudo-rigid-body method. Piezoelectric actuators are

mounted inside the topological structure during the 3D

printing manufacture process, and its driving directions are in

accordance with the driver directions of the Gough–Stewart

prototype platform. The SIMP method is used for the solving

topological model which combined the multiple force inputs

and multiple displacement outputs with the isomorphic

mapping Jacobian matrix. The sensitivity of volume, penalty

and compliance with respect to the design function are pro-

posed. In summary, we can draw the following conclusions.

(1) The topological model of a 6-DOF spatial compliant

mechanism is constructed by the combination of a

SIMP optimization model and the Jacobian isomor-

phic mapping matrix of the Gough–Stewart

prototype platform, and the topological structures

in two cases are derived in this paper.

(2) The differential kinematics, including displacements

and rotational angles of the moving platform, are

calculated with the two cases, and simulation results are

given to analyze the isomorphic kinematic character-

istic between the topological structures of a 6-DOF

spatial compliant mechanism with the Gough–Stewart

prototype platform. Simulation results show that the

topology optimization method proposed in this paper is

effective.

(3) The topological structure of the 6-DOF spatial

compliant mechanism with isotropic material is

repaired and imported by using Hypermesh@ software

for executing finite element static analysis, and then

Fig. 11 Four orders of vibration modal for the topological structure of case one. a First order with a maximum of 15.83, b second order with a

maximum of 16.66, c third order with a maximum of 19.86, d fourth order with a maximum of 25.79
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the sign and order of magnitude are consistent in all

directions. It is validated that the integer part of the

experimental results are sufficiently accurate to rep-

resent the design method of topology optimization

with a Jacobian isomorphic mapping matrix derived

from the prototype parallel mechanism for the struc-

ture synthesis of spatial compliant mechanisms.
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