REVIEW ARTICLE

A. Stubner · B. Schauf · S. Duda · R. Kurek · C. Gall · C. Claussen · K. J. Neis · D. Wallwiener · B. Aydeniz

Embolisation of uterine arteries or laparascopic uterine artery ligation as possible treatment of uterine leiomyoma

Published online: 29 April 2004 © Springer-Verlag Berlin / Heidelberg 2004

Abstract Background: Many women with symptomatic uterine leiomyomata wish to preserve their uterus. Novel organ- and fertility-preserving treatment options such as embolisation of uterine arteries or laparascopic uterine artery ligation have frequently been discussed as viable alternatives to myomectomy. This article strives to bring together the conclusions of major studies on novel organ-preserving treatment alternatives for uterine myoma. Methods: Minimally invasive organ-preserving laparascopic myomectomy remains the best treatment option for patients with symptomatic fibroids who wish to retain their uterus. However, in certain cases other options such as embolisation or laparascopic ligation of uterine arteries can serve as viable alternatives *Results*: A failure rate of up to 39% and complications such as reduced fertility because of ovarian failure after transcatheter embolisation of uterine arteries might restrict the use of this method. Conclusions: For postmenopausal women, transcatheter embolisation of uterine arteries is a possible treatment alternative. Laparascopic ligation of uterine arteries and anastomotic sites of uterine arteries with ovarian arteries might also be viable for young women who desire to preserve future fertility. Further data and studies on the long-term follow-up after ligation are yet to come.

A. Stubner \cdot B. Schauf $(\boxtimes) \cdot$ R. Kurek \cdot C. Gall \cdot D. Wallwiener \cdot B. Aydeniz

Universitäts-Frauenklinik Tübingen,

Calwerstr. 7, 72076 Tübingen, Germany e-mail: burkhard.schauf@med.uni-tuebingen.de

S. Duda · C. Claussen Radiologische Universitätsklinik Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany

K. J. Neis Frauenklinik, Klinikum Saarbrücken gGmbH, Am Winterberg 1, Saarbrücken, Germany

Introduction

A great number of leiomyomata can already be detected in women of childbearing age. Since the use of ultrasound has been established, the rate of detection has risen, and at the moment leiomyoma can be found in around 20 to 40% of women of childbearing age. It has been generally agreed upon that myoma in pre- and postmenopausal women should only be treated if they are symptomatic or fast growing. It has to be addressed on a case-by-case basis whether young women with myoma who desire to become pregnant will benefit from surgery before trying to conceive [4, 5]. When deciding if surgical myomectomy is necessary, symptoms such as recurring miscarriages as well as other myoma related complications in pregnancies should be taken into account. This article will concentrate on the advantages and disadvantages of the present minimally invasive organ-preserving treatment options for preand postmenopausal women with symptomatic fibroids.

Surgical treatment of uterine myoma

There is general consensus on how to approach submucous, intramural and subserous fibroids surgically. Figure 1 shows general criteria for choosing suitable treatment options for different types of myoma [6, 5, 19, 21, 47, 43, 46, 44, 15] (see also Fig. 2).

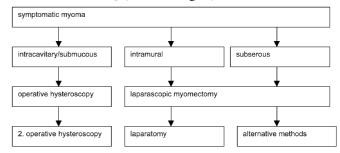


Fig. 1 Organ-preserving surgical treatment options

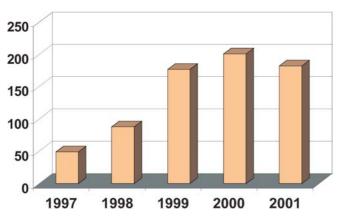
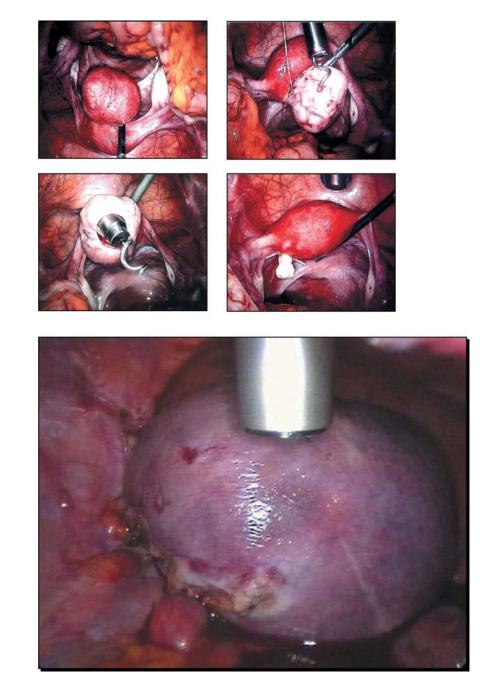



Fig. 2 Rates of organ-preserving myomectomy at the University Hospital of Tübingen

Fig. 3 Laparascopic myomectomy Intracavitary and submucosal fibroids accessible by hysteroscopy should be dissected by operative hysteroscopy [7, 8, 19, 42, 44]. Laparoscopic myomectomy as a minimally invasive method is generally considered to be the treatment of choice for other types of myoma (Fig. 3). Subserous fibroids today are always easily dissected by laparscopy without carrying a high risk of complications [6]. In either of these cases, no increase in risks for following pregnancies can be found, even in the course of vaginal delivery.

In the case of intra- or transmural myoma, however, treatment is clearly more demanding. Here, it is the size of the myoma that determines the treatment option. If myoma are small and solitary, they are normally asymptomatic and dissection therefore may not be necessary.

70

Patients with bigger myoma should undergo surgery for two reasons. First, whilst myoma are benign for the major part, in rare cases rapidly growing myoma are malignant [20]. Second, even solitary myoma can cause symptoms such as menorrhagia, hyper- or dysmenorrhoea or pelvic pain, once they have reached a certain size. Depending on the degree of experience of the surgeon, laparascopic organ-preserving myomectomy is a viable option for many women with solitary leiomyoma.

Nonetheless, in cases of multiple myoma, where preservation of the uterus is the aim, in general, laparatomy is necessary. When choosing organ-preserving myomectomy, patients should be counselled as to possible risks, such as the possibility that clinically occult/not visible myoma at the point of surgery might require future surgical intervention. In addition, due to transmural opening of the uterus, which is frequently necessary, uter-ine dehiscence might be a serious complication during a following pregnancy. Therefore, after transmural myomectomy, patients should be informed that future births will require primary cesarean section.

In postmenopausal patients or patients who do not desire future fecundity, hysterectomy may be offered as the definitive treatment for symptomatic fibroids [21]. In most cases, minimally invasive surgery by laparascopically assisted hysterectomy is also possible.

However, for various reasons many women wish to avoid hysterectomy and ask for alternative solutions. In this article we have attempted to answer the question about which organ-preserving treatment options are available to these patients.

Treatment of leiomyoma by restriction of blood circulation

Since 1995, patients with symptomatic intramural fibroids have been able to be treated by embolisation of uterine arteries [17, 30] (Figs. 4, 5, 6). Laparascopic ligation of uterine arteries can be regarded as a possible alternative [22, 23]. Gynaecologists counseling patients asking for alternative treatment to surgical myomectomy or hysterectomy are confronted with these novel alternatives.

Embolotherapy was first performed by radiologists in 1995, using 500–900-micron particles injected bilaterally into the uterine arteries to the point of complete occlusion of the uterine arteries or the occlusion of the vessels feeding the myoma.

Since the publication of descriptions of the principles of interventional embolotherapy [30] and the efficacy of this treatment, there have been several case reports of typical complications [1, 3, 13, 25, 27, 29, 35, 36, 37, 38, 50]. Thereafter, studies with greater numbers of patients describing the whole range of complications were published.

The treatment outcome has been evaluated with regard to the differences in size of myoma and reduction of volume of the uterus, the impact on fibroid-related abnormal uterine bleeding and the overall satisfaction of the patients. Short-term evaluations have shown an im-

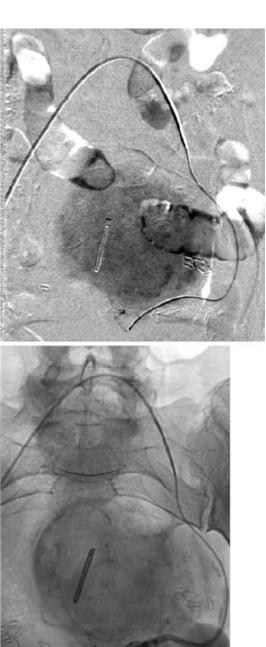


Fig. 4 Embolisation of uterine arteries. Angiography before and after embolisation

provement of clinical symptoms observed in 80–95% of cases. Overall, 90% of patients were satisfied after embolotherapy [2, 9, 13, 14, 17, 28, 32, 33, 34, 49] (Table 1).

In November 2002, Walker et al. published the largest study in this field assessing 400 patients who had undergone embolotherapy [41]. Here, patients showed a great degree of satisfaction after embolisation of the uterine arteries. In 84% of patients, uterine bleeding could be reduced, and in 79% there were fewer perimenstrual symptoms. Furthermore, 12% of the women achieved successful pregnancy after embolotherapy. The rate of peri- or postoperative complications was 8.5%. Beside minor side

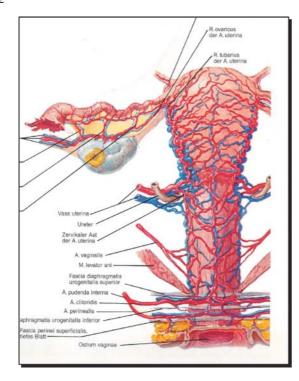


Fig. 5 Vascularisation

effects such as minor infection, severe complications such as pulmonary embolism, arterial or venous thrombosis or embolism of other organs such as the ovaries have been reported because of aberrant/dispersed microspheres. Severe complications as mentioned above have occurred in only 0.5 to 2% of the cases.

At the same time, Broder published results of a study comparing the long-term outcomes of 51 patients after embolotherapy with 38 patients with abdominal myomectomy 5 years after their procedures [9]. Thirty-nine percent of embolisation patients had to have further invasive treatment because of reoccurrence of fibroid-related symptoms, whereas only 3% of myomectomy patients required surgical intervention in the intervening years.

Publications of Friese [12] or Günther [14] from 2002 assess the efficacy of transcatheter embolotherapy and complications common with this treatment. Most of the severe complications were likely to be caused by the dispersal of microns leading to occlusion of other vascular systems. Other complications were caused by uterine and vascular puncture itself. The most frequent complication, described in around 80% of patients after uterine artery embolisation, is pelvic pain involving significant analgesia requirement and longer inpatient stay. Other typical side effects mentioned are headaches and nausea. In addition to these transient and minor problems, some rare but severe complications have been reported. In 2–5% of the cases, for example, septic necrosis or protracted infections required emergency hysterectomy. Twenty-one of these patients died of overwhelming septicimia although they had full treatment [39]. What is more, some cases of postoperative ovarian failure, amenorrhoea or

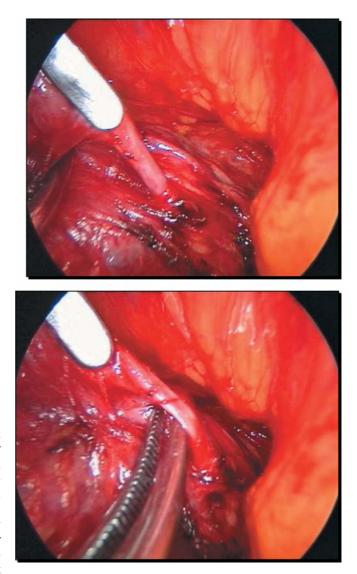


Fig. 6 Preparation of vessels before clipping

endometrial atrophy have been reported that resulted in reduced fertility.

In around 6% of patients, fibroid size could not be reduced despite correct embolisation. During long-term observation, 39% of patients required further intervention because fibroids were growing again [9]. One of the main reasons for frequent treatment failure might be anastomoses of uterine arteries with ovarian arteries, which cannot be occluded by bilateral embolisation of the uterine arteries [25].

In 2003 Sena-Martins et al. published similar results of a study evaluating the effects of treatment by embolization of the uterine artery in 32 women with symptomatic fibroids. He reports of a significant reduction in uterine and dominant myoma volume as well as decreased menstrual volume (90%) and shortened menstrual duration (81%). Adverse effects such as pain immediately after embolotherapy were described in 100% of patients. 34% of pa-

Table 1 Major studies on transcatheter embolisation of uterine leiomyoma	transcatheter en	nbolisation of uter	rine leiomyoma		
Author	Number of patients	Follow-up time	Symptoms	Improvement of initial symptoms	Side effects, complications
Worthington-Kirsch et al. (1998) [49]	53	3 months	Bleeding disorder (100%), pelvic pain (58%), anaemia (41%)	Improvement of bleeding disorder and anaemia (88%), of pelvic pain (94%), average volume	Postembolisation syndrome (24 pa- tients); nausea/vomiting (22 patients);
Hutchins et al. (1999) [18]	305	12 months	Menorrhagia, pelvic pain	Average volume reduction of the uterus (48%), improvement of menorrhagia, pelvic pain in 92% after 12 months, hysterectomy in six cases, in five	No severe complications
Goodwin et al. (1999) [13]	60	16.3 months	Bleeding disorder, pelvic pain	cases inyonectomy Average volume reduction of uterus and myoma for 42.8 and 48.8%; improvement of clinical symptoms in 81%	Postembolisationsyndrome in six cases; one case of amenorrhoea; one case of protracted infection with subsequent
Vashisht et al. (2000) [40]	21	12 months	Menorrhagia (66%), abdominal tension (33%)	Improvement of bleeding disorders in 9/13 cases, improvement of abdominal tension in 2/7 cases, 1	invertectionity One case of lethal overwhelming sep- ticimia
Ravina et al. (2000) [32]	286	6 months	Bleeding disorders, pelvic pressure	pregnancy Reduction of myoma volume of 60%, significant improvement of uterine bleeding in 80%, 18	No severe complications
Pelage et al. (2000) [28]	80	24 months	Uterine bleeding, pelvic pain	pregnancies Improvement of menorrhagia in 90%, three preg- nancies	Septical necrosis of myoma requiring hysterectomy in one patient; permanent
Siskin et al. (2000) [28]	49	3 months	Bleeding disorder, anae- mia, abdominal tension	Average reduction of uterine volume of 47.5%, general improvement of symptoms in 88% of	anenonmoca m rour parents Pelvic pain, nausea/vomiting
Brunereau et al. (2001) [10]	58	3–24 months	Bleeding disorder, pres- sure, pelvic pain	After 1 year 2/27 patients with no change, 3/27 improvement, 22/27 reduction of uterine size in 260, and mucomo in 510, without competence	In three cases fever, headaches, nausea/ vomiting
Andersen et al. (2001) [2]	62	12 months	Menorrhagia, pain	20% and of injoint in 21% without symptoms in two cases no change, reduction of bleeding in 21 patients (70%), less pelvic pain in 18 patients (61%), less pelvic pressure, reduction of uterine volume of 68%, one pregnancy	Endometritis in one patient, allergies in four patients, haematoma due to vas- cular puncture in two patients

Dt. Ärzteblatt 99 (2002), No. 26, A 1829

74

Table 2 Embolisation of uterine arteries vs. laparascopic clipping. Results of a study by Olaf Istre for the European Society of Gynaecological Endoscopy assessing 49 premenopausal patients with symptomatic myoma. \rightarrow less postoperative pain after clipping

	Embolisation	Clipping
Reduction of volume	33% after 3 months, 30% after 6 months	30% after 3 months, 39% after 6 months
Bleeding Pain (score) Requirement of analgesia Further invasive treatment required	$\downarrow \uparrow \uparrow 2$	\downarrow \rightarrow 3

tients suffered from fatigue. There was one case of surgical myomectomy because of myoma degeneration.

Ravina et al. most recently performed UAE on 454 patients with menorrhagia or bulk-related symptoms due to myoma. Follow-up examination showed a reduction in fibroid size in 55% of patients at six months and 70% after one year. 27 Women became pregnant. However, principal complications were amenorrhoea and fibroid sloughs.

As to the efficacy of uterine artery embolization for symptomatic adenomyosis there is still controversy. Cases of pyoadenoma with sepsis and focal bladder necrosis after embolotheraby for adenomyosis have been reported.

Laparascopic restriciton of blood circulation

A new alternative approach leading to effective restriction of blood circulation in leiomyoma is bilateral laparascopic ligation of both uterine arteries and anastomotic sites of uterine arteries with ovarian arteries [22, 23]. One of the major advantages of this method is that complications due to dispersal of occluding particles into other parts of the body can be avoided. Clipping or bipolar coagulation of uterine arteries and anastomotic sites can be performed under sight control. Further advantages of a laparascopic approach are that other causes of clinical symptoms such as pelvic pain may be diagnosed and treated simultaneously. Moreover, although malignancy of myoma is rare, in some cases malignancy has been overlooked in the course of embolotherapy [20]. During laparascopy, on the contrary, misdiagnosing can easily be avoided by taking biopsies if there are doubts about the dignity of fibroids.

February 2001 saw the publication of a prospective study on 87 patients who underwent laparascopic bipolar coagulation of uterine vessels and anastomotic sites with the ovarian vascular system [23]. The results showed a low rate of intraoperative complications as well as symptomatic improvement in 90% of patients. Reductions of around 76% in the dominant fibroid size and 4% in the uterine volume were sonographically demonstrated.

On behalf of the European Society of Gynecologic Endoscopy, O. Istre recently published a study assessing the risk-benefit ratio of both uterine artery embolisation and laparoscopic ligation of uterine vessels (Table 2). With both treatments, fibroid size was reduced equally well. Furthermore, as to loss of blood or the frequency of further invasive treatment needed, there were no differences between both of these methods. However, there was a statistically significant difference in pain intensity and
 Table 3 Problems of embolisation and laparascopic ligation of uterine arteries

Embolisation		
Necrosis of myoma and its consquences		
Prolonged inpatient stay for high-dose analgesia		
Non-selctive embolisation and uncontrolled occlusion of ovarian		
or tubarian anastomoses		
·No histology		
High rates of further invasive treatment		
·High rate of complications		
·Non-standardised procedures		
•No long-term follow-up of endocrine consequences available at		
present		
•Ovarian failure and unwanted loss of fertility		
Endometrial atrophy		
·Underdiagnosis of malignancy (rate of sarcoma 0.5%)		
Revascularisation		
Laparascopic ligation		
·No standardisation		
·Low level of evidence, low number of cases		
Only few studies on long-term outcome, but low rates of compli- cations and easily accessible during staging laparascopy		

the requirement of analgesia. Patients after embolisation of the uterine arteries needed significantly more analgesia than patients after laparascopic clipping of the uterine vessels. Park et al. evaluated the efficacy of laparascopic uterine artery ligation and uterine artery embolisation with similar results [26]. In assessing 40 patients and evaluating specimens obtained from biopsies taken after each procedure, they suggest that uterine artery embolisation results in tissue necrosis, whereas the corresponding result of uterine artery ligation is apoptosis, i.e., programmed cell death.

Full-term pregnancies have been achieved in a small number of patients after either embolisation or ligation of uterine arteries [11, 31, 32]. Yet, as there have been several publications reporting amenorhoea, endometrial atrophy and ovarian failure, it is necessary to inform patients that embolisation of uterine arteries might result in reduction or loss of fecundity [3, 36, 38]. Therefore, embolotherapy cannot be considered as an alternative option for young women who desire future fertility. Table 3 summarizes the problems of embolisation and ligation of uterine arteries.

Conclusion

Minimally invasive organ-preserving laparascopic myomectomy remains the best treatment option for patients with symptomatic fibroids who wish to retain their uterus. However, in certain cases other options such as embolisation or laparascopic ligation of uterine arteries might serve as viable alternatives. For postmenopausal women, transcatheter embolisation of uterine arteries is a possible treatment alternative. Laparascopic ligation of uterine arteries and anastomotic sites of uterine arteries with ovarian arteries might also be viable for young women who desire to preserve future fertility.

References

- Al-Fozan H, Tulandi T(2002) Factors affecting early surgical intervention after uterine artery embolization. Obstet Gynecol Surv 57:810–815
- Andersen PE, Lund N, Justesen P, Munk T, Elle B, Floridon C (2001) Uterine artery embolization of symptomatic uterine fibroids. Initial success and short-term results. Acta Radiol 42:234–238
- 3. Amato P, Roberts AC (2001) Transient ovarian failure: A complication of uterine artery embolization. Fertil Steril 75: 438–439
- Aydeniz B, Wallwiener D, Kocer C, Grischke EM, Diel IJ, Sohn C, Bastert G (1998) Der Stellenwert myombedingter Komplikationen in der Schwangerschaft (n=474). Z Geburts Neonatol 202:154–158
- Aydeniz B, Grischke EM, Kurek R, Bastert G, Wallwiener D (1999) Change of the spectrum of uterus preserving myoma surgery. Gynecol Endocrinol [Suppl 1] 13:54
- Aydeniz B, Schauf B, Kurek R, Schiebeler A, Riedinger K, Tepper-Wessels K, Messrogli H, Bastert G, Wallwiener D (2002) Die operative Laparoskopie: Weiterentwicklung und Komplikationsraten. Geburtsh Frauenheilk 62:269–273
- Aydeniz B, Gruber IV, Schauf B, Meyer A, Wallwiener D (2002) A multicenter survey of complications associated with 21,676 operative hysteroscopies. Eur J Obstetr Gynecol Reproduc Biol 104:160–164
- Aydeniz B, Schauf B, Wallwiener D (2002) Wie sicher ist die operative Hysteroskopie? Geburtsh Frauenheilk 62:799–801
- Broder MS, Goodwin S, Chen G, Tang LJ, Costantino MM, Nguyen MH, Yegul TN, Erberich :(2002) Comparison of longterm outcomes of myomectomy and uterine artery embolization. Obstet Gynecol 100:864–868
- Brunereau L, Herbreteau D, Gallas S (2001) Uterine artery embolization in the primary treatment of uterine leiomyomas: technical features and prospective follow-up with clinical and sonographic examinations in 58 patients. Amer J Roentgenol 175:1267–1272
- Chen YJ, Wang PH, Yuan CC, Yang MJ, Yen YK, Liu WM (2002) Successful pregnancy in a woman with symptomatic fibroids who underwent laparoscopic bipolar coagulation of uterine vessels. Fertil Steril 77:838–840
- 12. Friese K (2002) Perkutane Transkatheterembolisation von Uterusmyomen. Dt Ärzteblatt 99:1826–1827
- Goodwin S, McLucas B, Lee M et al (1999) Uterine artery embolization for the treatment of uterine leimoyomata: midterm results. J Vasc Interv Radiol:1159–1165
- Günther RW, Siggelkow W, Vorwerk D, Neulen J, Rath W (2002) Behandlung von Uterusmyomen durch perkutane Transkatheterembolisation. Dt Ärzteblatt 99:1828–1835
- 15. Gynecologic Endoscopic Surgery. Herendael B, Wallwiener D, Rimbach S (eds), Schattauer, Stuttgart, New York
- 16. Huang LY, Cheng YF, Huang CC, Chang SY, Kung FT (2003) Incomplete vaginal expulsion of pyoadenomyoma with sepsis and focal bladder necrosis after uterine artery embolization for symptomatic adenomyosis: case report. Hum Reprod 18:167– 171

- Hurst BS, Stackhouse DJ, Matthews ML, Marshburn PB (2000) Uterine artery embolization for symptomatic uterine myomas. Fertil Steril 74:855–869
- Hutchins F, Worthington-Kirsch RL, Berkowitz R (1999) Selective uterine artery embolization as primary treatment for leiomoyomata uteri. J Am Assoc Gynecol Laparosc 6:279–284
- Köchli OR, Wallwiener D, Brandner P, Bratschi HU, Bronz L, Burmucic R, Eberhard M, Gallinat A, Hohl MK, Hucke J, Keckstein J, Kolmorgen K, Müller DJ, Nagele F, Neis KJ, Römer T, Schmidt EH, Tercanli S, Lindemann HJ (2000) Consensus of diagnostic and operative hysterectomy. In: Hysteroscopy. State of the art. Gynecol Obstet [Suppl] vol 20. Karger, Basel, pp 182–187
- Krämer B, Wallwiener D, Hönig A, Solomayer E-F (2003) Malignitätsverdacht bei riesigem Uterusmyom. Geburtsh Frauenheilk 63:160–162
- Lefebvre G, Vilos G, Allaire C, Jeffrey J, Arneja J, Birch C, Fortier M, Wagner MS (2003) The management of uterine leiomyomas. J Obstet Gynaecol Can 25:396–418
- Liu WM (2000) Laparoscopic bipolar coagulation of uterine vessels to treat symptomatic leiomyomas. J Am Assoc Gynecol Laparosc 7:125–129
- Liu WM, Ng HT, Wu YC (2001) Laparoscopic bipolar coagulation of uterine vessels: a new method for treating symptomatic fibroids. Fertil Steril 75:417–422
- 24. Myers ER (2002) Uterine artery embolization: What more do we need to know? Obstet Gynecol 100:847–848
- 25. Nikolic B, Spies JB, Abbara S (1999) Ovarian artery supply of the uterine fibroids as a cause of treatment failure after uterine artery embolization: a case report. J Vasc Interv Radiol 10:1167–1170
- 26. Park KH, Kim JY, Shin JS, Kwon JY, Koo JS, Jeong KA, Cho NH, Bai SW, Lee BS (2003) Treatment outcomes of uterine artery embolization and laparoscopic uterine artery ligation for uterine myoma. Yonsei Med J 44:694–702
- Payne JF, Robboy SJ, Haney AF (2002) Embolic microspheres within ovarian arterial vasculature after uterine artery embolization. Obstet Gynecol 100:883–886
- Pelage JP, Le Dref O, Soyer P, Kardache M, Dahan H, Abitbol M, Merland JJ, Ravina JH, Rymer R (2000) Fibroid-related menorrhagia: treatment with superselective embolization of the uterine arteries and midterm follow-up. Radiology 215:428– 431
- Pollard RR, Goldberg JM (2001) Prolapsed cervical myoma after uterine artery embolization. A case report. J Reprod Med 46:499–500
- Ravina JH, Herbreteau D, Cirura-Vigneron N (1995) Arterial embolisation to treat uterine myomata. Lancet 346:671–672
- Ravina JH, Vigneron NC, Aymard A, Le-Dref O, Merland JJ (2000) Pregnancy after embolization of uterine myoma: report of 12 cases. Fertil Steril 73:1241–1243
- Ravina JH, Aymard A, Ciraru-Vigneron N, Ledreff O, Merland JJ (2000) Arterial embolization of uterine myoma: results apropos of 286 cases. J Gynecol Obstet Biol Reprod 29:272– 275
- 33. Siggelkow W, Günther R, Neulen R, Rath W (2002) Die perkutane Katheterembolisation—eine innovative Behandlungsalternative bei Uterusmyomen? Geburtsh Frauenheilk 62:131– 138
- 34. Siskin GP, Tublin ME, Stainken BF, Dowling K, Dolen EG (2001) Uterine artery embolization for the treatment of adenomyosis: clinical response and evaluation with MR imaging. Amer J Roentgenol 177:297–302
- Spies JB, Spector A, Roth AR, Baker CM, Mauro L, Murphy-Skrynarz K (2002) Complications after uterine artery embolization for leiomyomas. Obstet Gynecol 100:873–880
- Stringer NH, Grant T, Park J (2000) Ovarian failure after uterine embolization for treatment of myomas. J Am Assoc Gynecol Laparosc 7:395–400
- 37. Stringer NH, DeWhite A, Park J, Ghodsizadeh A, Edwards M, Kumari NV, Stringer EA (2001) Laparoscopic myomectomy

after failure of uterine artery embolization. J Am Assoc Gynecol Laparosc 8:583–586

- Tropeano G (2003) Permanent amenorrhea associated with endometrial atrophy after uterine artery embolization for symptomatic uterine fibroids. Fertil Steril 79:132–135
- Vashisht A, Studd J, Carey A, Burn P (1999) Fatal septicaemia after fibroid embolisation. Lancet 354:307–308
- Vashist A, Studd JWW, Carey AH, McCall J, Burn PR, Healy JC, Smith JR (2000) Fibroid embolization: a technique not without significant complication. Brit J Obstet Gynaecol 107: 1166–1170
- 41. Walker WJ, Pelage JP (2002) Uterine artery embolisation for symptomatic fibroids: clinical results in 400 woman with imaging follow up. BJOG 109:1262–1272
- 42. Wallwiener D, Pollmann D, Rimbach S, Stolz W, Sohn C, Bastert G (1993) Operative Hysteroskopie in der Fertilitätschirurgie. Gynäkol Prax 17:109–122
- 43. Wallwiener D, Rimbach S, Pollmann D, Bastert G (1993) Organ preserving surgery and GNRH. Arch Gynecol Obstet 254:333–334
- 44. Wallwiener D, Aydeniz B, Rimbach S, Rabe T, Diel J, Bastert G (1994) Myomtherapie. Minimal invasive Operationstechniken und GnRH-Analoga-Applikation. In: Schweppe KW, Bastert G, Alt D, Klosterhalfen (eds) GnRH-Agonisten in der Behandlung von Endometriose und Uterus myomatosus. Zuckschwerdt, pp 61–66

- 45. Wallwiener D, Rimbach S, Kaufmann M, Aydeniz B, Sohn C, Bastert G, Conradi R (1994) Hysteroskopische Endometriumablation zur Vermeidung einer Hysterektomie bei "High-Risk"-Patientinnen. Geburtsh Frauenheilk 9:498–501
- 46. Wallwiener D, Maleika A, Rimbach S, Pollmann D, Bastert G (1995) Differentialdiagnostische Aspekte der Laparoskopie aus gynäkologischer Sicht: In: Pier A, Schippers E (1995) Minimal Invasive Chirurgie. Grundlagen, Technik, Ergebnisse, Trends. Thieme, pp 139–142
- 47. Wallwiener D, Aydeniz B, Rimbach S, Diel IJ, Grischke EM, Rabe T, Bastert G (1996) Der Wandel des Spektrums uteruserhaltender Myomoperationen unter Einbeziehung von Endoskopie und dualer Myomtherapie. Gynäkol Geburtsh Rundsch 36:118–132
- Wang CJ, Yen CF, Lee CL, Soong YK (2002) Laparoscopic uterine artery ligation treatment of symptomatic adenomyosis. J Am Assoc Gynecol Laparosc 9:293–296
- Worthington-Kirsch RL, Popky GL, Hutchins FL (1998) Uterine arterial embolisation for the management of leiomyomas: quality-of-life assessment and clinical response. Radiology 208:625–629
- Yeagley TJ, Goldberg J, Klein TA, Bonn J (2002) Labial necrosis after uterine artery embolization for leiomyomata. Obstet Gynecol 100:881–882