Skip to main content

Advertisement

Log in

Spectral-domain optical coherence tomography and scanning laser polarimetry in glaucoma diagnosis

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate glaucoma diagnostic capability of the retinal nerve fiber layer (RNFL) imaging by spectral-domain optical coherence tomography (Cirrus OCT) and scanning laser polarimetry (GDx VCC).

Methods

We imaged 88 glaucomatous and 77 healthy eyes using both devices. Areas under the receiver-operating characteristic curves (area under the curves, AUCs) and sensitivities at fixed specificities of average, superior, and inferior RNFL thickness were compared. Likelihood ratios (LRs) and diagnostic agreement based on normative classifications yielded by both devices were determined.

Results

The best performing parameter was the nerve fiber indicator (NFI) in GDx VCC and inferior RNFL thickness in Cirrus OCT (AUC = 0.912, 0.961, P = 0.045). The AUCs of the Cirrus OCT were significantly higher than those of GDx VCC in all parameters. Most of the parameters in Cirrus OCT were more sensitive than GDx VCC in the detection of glaucoma at fixed specificity values. Cirrus OCT had an infinite LR with abnormal classification results in both average and superior RNFL thickness. There was good agreement between the two instruments with respect to abnormal classifications (kappa, 0.611–0.766)

Conclusion

Both Cirrus OCT and GDx VCC RNFL measurements showed good glaucoma diagnostic capabilities. Cirrus OCT showed higher sensitivities than GDx VCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 1991;109:77–83.

    CAS  PubMed  Google Scholar 

  2. Zeyen TG, Caprioli J. Progression of disc and field damage in early glaucoma. Arch Ophthalmol 1993;111:62–65.

    CAS  PubMed  Google Scholar 

  3. Da Pozzo S, Iacono P, Marchesan R, Fantin A, Ravalico G. Scanning laser polarimetry with variable corneal compensation and detection of glaucomatous optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2005;243:774–779.

    Article  PubMed  Google Scholar 

  4. Da PS, Marchesan R, Ravalico G. Scanning laser polarimetry-a review. Clin Experiment Ophthalmol 2009;37:68–80.

    Article  Google Scholar 

  5. Jaffe GJ, Caprioli J. Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 2004;137:156–169.

    Article  PubMed  Google Scholar 

  6. Han I, Jaffe G. Comparison of spectral- and time-domain optical coherence tomography for retinal thickness measurements in healthy and diseased eyes. Am J Ophthalmol 2009;147:847–858.

    Article  PubMed  Google Scholar 

  7. Medeiros FA, Zangwill LM, Bowd C, Weinreb RN. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 2004;122:827–837.

    Article  PubMed  Google Scholar 

  8. Brusini P, Salvetat ML, Zeppieri M, Tosoni C, Parisi L, Felletti M. Comparison between GDx VCC scanning laser polarimetry and Stratus OCT optical coherence tomography in the diagnosis of chronic glaucoma. Acta Ophthalmol Scand 2006;84:650–655.

    Article  PubMed  Google Scholar 

  9. Chung YS, YH Sohn. The relationship between optical coherence tomography and scanning laser polarimetry measurements in glaucoma. Korean J Ophthalmol 2006;20:225–229.

    Article  PubMed  Google Scholar 

  10. Kanamori A, Nagai-Kusuhara A, Escano MF, Maeda H, Nakamura M, Negi A. Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage. Graefes Arch Clin Exp Ophthalmol 2006;244:58–68.

    Article  PubMed  Google Scholar 

  11. Zareii R, Soleimani M, Moghimi S, Eslami Y, Fakhraie G, Amini H. Relationship between GDx VCC and Stratus OCT in juvenile glaucoma. Eye 2009;23:2182–2186.

    Article  CAS  PubMed  Google Scholar 

  12. Bagga H, Greenfield DS, Feuer W, Knighton RW. Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Am J Ophthalmol 2003;135:521–529.

    Article  PubMed  Google Scholar 

  13. Reus NJ, Lemij HG. Diagnostic accuracy of the GDx VCC for glaucoma. Ophthalmology 2004;111:1860–1865.

    Article  PubMed  Google Scholar 

  14. Bagga H, Greenfield DS, Feuer WJ. Quantitative assessment of atypical birefringence images using scanning laser polarimetry with variable corneal compensation. Am J Ophthalmol 2005;139:437–446.

    Article  PubMed  Google Scholar 

  15. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837–845.

    Article  CAS  PubMed  Google Scholar 

  16. Jaeschke R, Guyatt GH, Sackett DL. Users’ guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. JAMA 1994;271:703–707.

    Article  CAS  PubMed  Google Scholar 

  17. Schuman JS, Pedut-Kloizman T, Hertzmark E, et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 1996;103:1889–1898.

    CAS  PubMed  Google Scholar 

  18. Blumenthal EZ, Williams JM, Weinreb RN, et al. Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology 2000;107:2278–2282.

    Article  CAS  PubMed  Google Scholar 

  19. Paunescu LA, Schuman JS, Price LL, et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest Ophthalmol Vis Sci 2004;45:1716–1724.

    Article  PubMed  Google Scholar 

  20. Budenz DL, Chang RT, Huang X, et al. Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2005;46:2440–2443

    Article  PubMed  Google Scholar 

  21. Lleó-Pérez A, Ortuño-Soto A, Rahhal MS, et al. Intraobserver reproducibility of retinal nerve fiber layer measurements using scanning laser polarimetry and optical coherence tomography in normal and ocular hypertensive subjects. Eur J Ophthalmol 2004;14:523–530.

    PubMed  Google Scholar 

  22. Iacono P, Da Pozzo S, Fuser M, et al. Intersession reproducibility of retinal nerve fiber layer thickness measurements by GDx-VCC in healthy and glaucomatous eyes. Ophthalmologica 2006;220:266–271.

    Article  PubMed  Google Scholar 

  23. Medeiros FA, Doshi R, Zangwill LM, Vasile C, Weinreb RN. Longterm variability of GDx VCC retinal nerve fiber layer thickness measurements. J Glaucoma 2007;16:277–281.

    Article  PubMed  Google Scholar 

  24. Leung CK, Cheung CY, Lin D, Pang CP, Lam DS, Weinreb RN. Longitudinal variability of optic disc and retinal nerve fiber layer measurements. Invest Ophthalmol Vis Sci 2008;49:4886–4892.

    Article  PubMed  Google Scholar 

  25. Mai TA, Lemij HG. Longitudinal measurement variability of corneal birefringence and retinal nerve fiber layer thickness in scanning laser polarimetry with variable corneal compensation. Arch Ophthalmol 2008;126:1359–1364.

    Article  PubMed  Google Scholar 

  26. Horn F, Mardin C, Laemmer R, et al. Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2009;50:1971–1977.

    Article  PubMed  Google Scholar 

  27. Vizzeri G, Weinreb RN, Gonzalez-Garcia AO, et al. Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol 2009;93:775–781.

    Article  CAS  PubMed  Google Scholar 

  28. Leung CK, Cheung CY, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 2009;116:1257–1263.

    Article  PubMed  Google Scholar 

  29. Park SB, Sung KR, Kang SY, Kim KR, Kook MS. Comparison of glaucoma diagnostic capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 2009;127:1603–1609.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Kook.

About this article

Cite this article

Lee, S., Sung, K.R., Cho, J.W. et al. Spectral-domain optical coherence tomography and scanning laser polarimetry in glaucoma diagnosis. Jpn J Ophthalmol 54, 544–549 (2010). https://doi.org/10.1007/s10384-010-0870-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-010-0870-5

Keywords

Navigation