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Shallow landslides as drivers for slope ecosystem
evolution and biophysical diversity

Abstract Shallow landslides may be seen as local disturbances that
foster the evolution of slope landscapes as part of their self-
regulating capacity. Gaining insight into how slope ecosystems func-
tion and evolve could make eco-engineering interventions on slopes
more successful. The objective of the present study is to detect traits
of shallow landslide-triggered ecosystem evolution, self-regulation
and biophysical diversity in a small-scale landslide-prone slope in
Northeast Scotland. A protocol was defined to explore the emergence
of landslide-driven slope habitats. This protocol studied plant diver-
sity, species richness and plant biomass differences and their inter-
actions with certain soil and topographic attributes at three slope
strata during two consecutive growing seasons following an assem-
blage of shallow landslide events. Plant species and soil properties
with potential as indicators of the different landslide-driven slope
habitats and landscape evolution were also considered. Shallow
landslides contributed to biophysical diversity and created distinct
slope habitats within the landscape. Habitat differences in terms of
species richness and composition were a direct consequence of the
slope self-regulation. Certain plant species were found to be valid
indicators of landslide-driven biophysical diversity. Soil total nitro-
gen and resistance to penetration were related to slope habitat and
landscape evolution. As expected, plant establishment relied upon
light and nitrogen trade-offs, which in turn were influenced by
landscape topography. The insights derived from this study will be
useful in slope restoration, particularly in harmonising effective
actions with the functioning of landslide-prone ecosystems.
Further research directions to clarify the observed variability and
interactions are highlighted.

Keywords Shallow landslide . Ecosystem . Self-
organisation . Plant diversity . Biophysical diversity . Slope
restoration

Introduction
Landslides are normally seen as catastrophic geomorphological
processes that lead to dramatic losses of soil, human property
and life globally. However, from an ecological perspective, they
are natural disturbance episodes of varying frequency and inten-
sity that contribute to the natural evolution of sloped ecosystems
(Walker and Shield 2013). The ecology of landslides has been
relatively well studied (see Walker and Shield 2013 for review),
but it is still an emergent discipline. During a landslide, nutrient-
rich soil materials usually move downwards due to the action of
gravity (Guariguata 1990; Walker et al. 1996). This leads to the
differentiation of clear slope zones on the basis of the accumula-
tion of soil materials (Velázquez and Gómez-Sal 2008; Elias and
Dias 2009; Walker et al. 2009; Neto et al. 2017). Additionally, the
biophysical diversity of the landslide-prone landscape increases
(Geertsema and Pojar 2007) due to marked changes that can occur
in soil properties and vegetation cover (Shiels et al. 2008; Elias and
Dias 2009) and the emergence of novel topographical shapes
(Cendrero and Dramis 1996).

Shallow landslides increase the openness (Odum 1969) of the
landscape by displacing the topsoil and established vegetation
downwards on the slope at the time of failure (Walker et al.
1996). This is evident in the bare scars and patches produced after
landslides. These landscape gaps present unique ecological fea-
tures (e.g. areas with low levels of light competition between plant
individuals; Walker et al. 1996; Myster and Walker 1997) for colo-
nisation by plants present within the surrounding landscape
(Velázquez and Gómez-Sal 2008). Thus, a given slope will tend to
self-organise after a landslide (Walker et al. 1996) and the most
visible evidence of this can be found in a slope’s re-colonisation by
vegetation (Velázquez and Gómez-Sal 2008) and its subsequent
succession (Myster and Walker 1997; Walker et al. 2010). These
processes tend to be mimicked in human-driven slope restoration
actions (e.g. Norris et al. 2008), but the process of slope self-
regulation after failure and ecological factors leading to successful
slope restoration (other than soil-root reinforcement; e.g. Stokes
et al. 2008) need further exploration (Restrepo et al. 2009).
Moreover, there is a need to establish simple and effective proto-
cols capable of capturing the biophysical diversity and self-
organisation triggered by landslides while providing interpretable
and useful information for slope restoration.

Post-landslide self-organisation processes depend on the emer-
gent biophysical heterogeneity within slope ecosystems (Velázquez
and Gómez-Sal 2007). Knowledge about landslide-derived bio-
physical diversity may improve the success of slope restoration
actions using vegetation (Walker et al. 2009). For example, insight
related to the post-disturbance emergence of distinct slope zones,
or habitats (Velázquez and Gómez-Sal 2008; Neto et al. 2017), and
the associated colonising plants may aid in the choice of different
restoration strategies within the same slope. Insight related to the
environmental factors governing post-slide plant diversity, succes-
sion and establishment may provide useful information to land-
slide engineers and restoration ecologists in order to achieve the
goals of slope restoration actions (e.g. diverse plant cover, dense
plant cover, etc.) or to monitor the subsequent slope evolution.
However, plant interactions with the post-landslide abiotic slope
features must be clarified to enhance the slope restoration success.
These interactions are not yet entirely understood (Rajaniemi et al.
2003; Restrepo et al. 2009), and tools to adequately detect and
interpret them are needed.

Plant-environment relationships can be complex. For example,
plants need to compensate for dramatic differences in resource
(i.e. energy, water and nutrients) availability across the environ-
ment in order to thrive (Chapin et al. 1987; Herbert et al. 2004). In
particular, trade-offs between light and nitrogen seem to be the
key controls in the establishment of plant communities after
disturbance (Walters and Reich 1997; Myster and Walker 1997;
Soto et al. 2017). Nitrogen-rich soils tend to foster the production
of plant aboveground biomass (Urbano 1995). This may enhance
the ability of vegetation to intercept light (Wilson and Tilman 1995;
Walters and Reich 1997), but it also may promote plant
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competition for aboveground resources such as light (Rajaniemi
et al. 2003; Herbert et al. 2004), leading to shifts in the composition
and diversity of plant communities (e.g. Wilson and Tilman 1995).
Light and nitrogen availability may be governed by landslide
dynamics, but also by the landscape topography (e.g. Franklin
1995; Hood et al. 2003; Wang et al. 2015). For instance, slope
orientation (i.e. aspect or azimuth) will determine the amount of
incoming energy (e.g. Gallardo-Cruz et al. 2009), which in turn will
affect photosynthesis, evapotranspiration, soil temperature and
soil moisture content—all crucial variables for plant development.
Slope surface curvature affects plant performance (e.g. Moeslund
et al. 2013) by its influence on subsurface water flow, litter accu-
mulation and soil erosion/deposition rates which, in turn, are
related to soil depth and texture, water holding capacity and
nutrient availability (Heimsath et al. 1997). A slope gradient great-
er than 45° will hinder the establishment of vegetation (Bochet and
Garcia-Fayos 2004), in part not only because such slope will be
prone to instability (i.e. more frequent disturbance; Velázquez and
Gómez-Sal 2008; Lu and Godt 2013), but also because the nutrients
will likely be washed down from steeper zones and accumulate in
flatter areas (Heimsath et al. 1997; Hood et al. 2003; Bertoldi et al.
2006).

The study of the complex interactions between plants and their
environment requires the use of advanced statistical tools (e.g.
principal component analysis; Borcard et al. 2011). As indicated
earlier, the challenge includes the need to clarify and interpret the
results of statistical analyses to provide understandable and prac-
tical information to landslide engineers and restoration ecologists.
The advent of machine learning techniques, such as regression
trees (Breiman et al. 1984), may aid in the interpretation of com-
plex interactions between plants and their environment (e.g.
Kallimanis et al. 2007; Revermann et al. 2016). Regression trees
have four major benefits: (1) They are more powerful than classical
multiple regressions (as the relationship between response and
predictor variables is not prespecified), (2) they can effectively
model the change in direction of the effect of one factor in

response to the levels of another factor, (3) they are more inter-
pretable than the commonly used ordination techniques, and (4)
they are able to depict the hierarchical structure by which ecosys-
tems are built (Jørgensen 2007).

The goal of this study is to detect early traits of landslide-
triggered ecosystem evolution, self-regulation and biophysical di-
versity in a small-scale landslide-prone coastal slope in Northeast
Scotland. To achieve this, a novel protocol was defined for explor-
ing the emergence of landslide-driven slope habitats. Plant diver-
sity, species richness and plant biomass differences together with
their interactions with certain soil and topographic attributes at
three different slope strata are studied during two consecutive
growing seasons following an assemblage of shallow landslide
episodes. The protocol also assesses potential plant indicator spe-
cies for the different landslide-driven slope habitats and studies
soil properties indicative of slope habitat and landscape evolution.
In the light of the findings and observations, recommendations
related to slope restoration actions are proposed.

Materials and methods

Study site
Plant and biophysical diversity were studied on an accessible
section of a landslide-prone slope during two consecutive growing
seasons (2014 and 2015) following an assemblage of shallow land-
slide events. The slope is located adjacent to Catterline Bay,
Northeast Scotland, UK (WGS84 Long −2.21 Lat 56.90; Fig. 1a),
where multiple small-scale shallow landslides (ca. 100–300 m2;
Fig. 1a) occurred in April 2013 (Kincardineshire Observer 11/
4/2013) as a result of a period of prolonged rainfall .
Consequently, a number of failure zones appeared distributed
close to each other (i.e. less than ca.10 m apart) across the studied
slope (Fig. 1a); their scars were easily identifiable as exposed bare
ground or areas of sparse vegetation. The surveyed section of the
slope was mainly vegetated with early successional plant commu-
nities (i.e. herbs and grasses; Fig. 1b, c) surrounded by a mixture of
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Fig. 1 a Study site location and area of study (dashed frame).White lines indicate the location of shallow landslides occurring in April 2013. b Slope strata (i.e. crest,
middle and toe) and sampling direction within each stratum (white arrows). c Section of the studied slope where the different slope strata are indicated. Aerial image
source: GetMapping (2014)
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areas dominated by herbaceous weeds and grasses, riparian trees
and shrubs (e.g. willow, sycamore, ash, hawthorn) and agricultural
crops of wheat and barley.

The study site has a mean annual temperature of 8.0 °C and
mean annual rainfall of 1232 mm (UK Met Office 2015), character-
istic of a humid temperate climate site (Cfc: subpolar oceanic
climate; Köppen 1884). The topography of the site is dominated
by sloped (25–50°) terrain and cliffs running into the North Sea
(Fig. 1), where often shallow (ca. <2 m), silty sand soils (sand
79.82%; silt 5.85%; clay 3.08%; BS 1377-2: 1990) can be found resting
on sedimentary bedrock (i.e. conglomerate; BGS 1999). Overall, the
studied slope is facing east, southeast and south directions
(Fig. 1a).

Sampling approach
The studied slope was divided prior to sampling into three slope
strata of similar width—i.e. crest (c), middle (m) and toe (t)
(Fig. 1b, c). The criteria employed to stratify the slope were the
accumulation of slope-forming materials following landslides and
the recurrence of shallow landslide (i.e. disturbance) events. The
feature used to delineate the strata was the presence or absence of
landslide scars (Fig. 1c). The middle and toe strata (Fig. 1b, c) were
delineated as the initiation and deposition zones, respectively, of
the shallow landslides occurring in April 2013. The middle stratum
was delimited from the toe for presenting visible landslide scars
(Fig. 1c). The crest stratum, comprising the top part of the studied
slope (Fig. 1c, d), remained stable during the 2013 landslide episode
and has been disturbance-free for a longer time. This can be seen
from the absence of landslip scars and from the establishment of
dense patches of shrub species such as gorse, hawthorn and willow
in some zones (Fig. 1b, c).

A stratified haphazard sampling design (e.g. Hall et al. 2013)
was implemented to collect vegetation samples within each
predefined slope stratum at the apices of the 2014 and 2015 grow-
ing seasons (i.e. mid-July). A 1-m buffer zone from each boundary
was delimited within each stratum to avoid edge effects upon
sampling. The vegetation samples were obtained by using a 0.5-
m2 (1.0 m × 0.5 m) aluminium frame (Fig. 2a). This was placed
with the long side facing the top of the landslide (Myster and
Walker 1997) on locations (i.e. sampling units or quadrats) chosen
by throwing the aluminium frame aimlessly within each slope
stratum. The quadrats were spaced approximately 10 m from each
other along the direction of the contour lines within each slope

stratum (Fig. 1b), ensuring an adequate spatial coverage of the
studied slope. The whole slope section annotated in Fig. 1a was
sampled, as landslide scars were observed throughout. All of the
plant material found within the aluminium frame (i.e. quadrat)
was clipped to the ground surface (USDA-NRCS 1997) using a
sickle. The harvested vegetation was tied into bundles and
transported to the laboratory for further processing (see BPlant
identification, dry biomass determination and species abundance^
section). In total, 59 quadrats were surveyed: 25 in 2014 (c = 8;
m = 8; t = 9) and 34 in 2015 (c = 12; m = 9; t = 13).

The geographical position of each quadrat was recorded with a
Garmin Monterra™ GPS. Soil samples were collected with a core
auger from each quadrat at a depth ranging between 0 and 15 cm
below the ground level (b.g.l.) for determination of soil organic
matter (SOM; Lost on Ignition Method; Schulte 1996) and soil total
Kjeldahl nitrogen (TKN; Bremner 1965). The soil resistance to
penetration (SRP; kPa) was measured at each quadrat with a static
cone penetrometer (60° vertex angled cone; 1.5-cm2 basal cone
area; BS 1377-4: 1990) at four different soil depths (i.e. 0, 15, 30
and 40 cm b.g.l.), from which the mean soil SRP was obtained.
Each soil depth was reached by carefully removing the overlaying
soil with a soil core auger, before pushing the cone into the soil up
to its base and reading the stress (i.e. SRP) from the dial gauge.

The slope gradient of each quadrat was measured with a hand
inclinometer while the topographic attributes aspect, hillshade
(azimuth: east—i.e. morning sun position, when clear skies were
more frequent during the sampling period; solar angle 45°—i.e.
mean solar angle during the sampling period) and profile curva-
ture (Fig. 2) were retrieved from a high-resolution (point spacing
2 × 2 m), photogrammetrically derived digital surface model
(GetMapping 2014) using the recorded GPS coordinate points.
The topographic attributes were used for analysis of the effects
of topography on plant diversity metrics (see BPlant diversity
metric determination^ and BEnvironmental covariate effect on
plant diversity, species richness and biomass^ sections).

Plant identification, dry biomass determination and species abundance
The plant material (vascular plants only) harvested in each bundle
(see BSampling approach^ section) was separated by hand into
species for subsequent identification. The identification process
was carried out to the family and species level using a plant
identification key (Bonnier and De Layens 2002) and the Atlas of
the British and Irish flora (BRC 2016). The vegetation remnants
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Fig. 2 Explanatory illustration for the topographic attributes. Aspect or azimuth is the compass direction that the slope faces. Hillshade is derived from the aspect and
determines which areas of the terrain are shaded in relation to a predefined position and inclination of the sun. A higher hillshade value refers to more sun exposure. The
surface curvature is the amount by which the terrain surface deviates from being flat, acquiring a positive value when concave and negative when convex
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that could not be classified (e.g. remains of grass, herbs leaf and
litter) were pooled together and labelled as mixed biomass. All
plant material was placed on aluminium trays tagged with the
species and location and oven-dried at 70 °C for 48 h, after which
the vegetation dry biomass was recorded using a digital scale
(±0.1 g). The species abundance (Ab; %) at each quadrat was then
calculated as the percentage of dry biomass of a given species with
respect to the total biomass within a given quadrant (i.e. sample
unit), including the mixed biomass.

Plant diversity metric determination
Plant diversity was assessed by estimating the Shannon-Wiener

index (H
0 ¼ − ∑

S

i¼1
pilnpi; pi: proportion of biomass belonging to the

ith species; S: total number of species; Shannon and Weaver 1964)
and Pielou’s evenness (J’ = H′/H′max; Mulder et al. 2004) and by
computing the cumulative and average species richness (i.e. α-
diversity; Magurran 2004) for the three considered slope strata (i.e.
crest, middle, toe). To do so, species presence-absence contingency
tables (i.e. incidence matrix; e.g. Gotelli and Chao 2013) were built
for computing H′ and species richness with the packages ‘vegan’
(Oksanen et al. 2016) and ‘rich’ (Rossi 2011), respectively, in the
statistical software R 3.2.1 (R Core Team 2015). The cumulative
species richness (S) was computed as the cumulative richness
encountered over the quadrats belonging to a given slope stratum
and sampling year. Species richness per unit area (Sa) was obtain-
ed by dividing S over the total sampled area per slope stratum and
year (i.e. number of quadrats × 0.5 m2; see BSampling approach^
section). The average species richness (Sav) was estimated as the
mean richness over the sampled quadrats per stratum and year. To
explore stratum differences in terms of species richness and assess
consistency of sampling effort, sample-based rarefaction curves
(Gotelli and Colwell 2011; Chao and Jost 2012) were implemented
by plotting cumulative randomised species richness against
bootstrapped (Efron 1979) sampling intensity for the three evalu-
ated strata with the R package rich (Rossi 2011).

Differences between slope strata
Slope strata differences in terms of plant diversity (i.e. H′ and J’)
were quantified using Kruskal-Wallis tests at 95 and 99% confi-
dence levels in R 3.2.1 (R Core Team 2015). The same procedure
was used to evaluate strata differences in terms of Sa, SRP, SOM,
TKN and total aboveground plant dry biomass. Sampling year
differences (i.e. 2014 vs. 2015) in terms of the previous variables
were evaluated in the same manner. Differences in cumulative
species richness were assessed by a randomisation (i.e. permuta-
tion) test (e.g. Richardson and Richards 2008) with the R package
rich (Rossi 2011); this test does not control for differences in
sampling effort (i.e. number of samples or sample units) between
the three strata but instead returns the probability of different
species richness among the compared strata. Significant differ-
ences were considered when the probability was beyond 95%.
Moreover, differences in terms of the species composition and
relative abundance distribution (i.e. β-diversity; Anderson et al.
2011) between the three considered slope strata were evaluated
u s i n g t h e B r a y - C u r t i s ( B - C ) s i m i l a r i t y i n d e x
(i.e. BC ¼ 1− 2cij=si−sj

��
; cij: number of common species between

two sites and si and sj: total number of species counted at both

sites; Somerfield 2008), which ranges between 0 and 1 (i.e. a B-C
value of 0 denotes identical sites).

Indicator species analysis
Potential plant indicator species for the three considered slope
strata (i.e. crest, middle, toe) were identified by estimating the
indicator value (Dufrene and Legendre 1997) of each encoun-
tered plant species with the R package ‘indicspecies’ (De
Caceres and Legendre 2009). Indicator value (IndVal) is an
index related to the species abundance (Ab) that measures
the association between species and a particular habitat (De
Caceres 2013) or stratum. Thus, indicator value is the product
of species specificity (A) and fidelity (B) (Dufrene and
Legendre 1997), where A is the probability that the surveyed
site (i.e. sampling unit) belongs to the target habitat given the
fact that the species have been found there and B is the
probability of finding the species in units belonging to a par-
ticular habitat. Hence, indicspecies’ functions first estimate
IndVal between the species and each habitat and then look
for the habitat corresponding to the highest association value.
The statistical significance of this relationship is tested using a
randomisation (i.e. permutation) test (De Caceres 2013). Species
preferences for a given slope habitat, or stratum, were also
evaluated with the previous approach. Additionally, the extent
that a given habitat is covered by a plant indicator was quan-
tified by estimating coverage (De Caceres et al. 2012), which is
the proportion of sampling locations belonging to a given
habitat where one or another plant indicator (i.e. a species or
a species combination) is found.

Environmental covariate effect on plant diversity, species richness and
biomass
The effects of the environmental covariates (i.e. soil resistance
to penetration (SRP), soil organic matter (SOM), soil total
Kjeldahl nitrogen (TKN), slope gradient, hillshade, aspect
and profile curvature) on plant diversity (H′), species richness
and plant dry biomass were first evaluated using Pearson’s
correlation test in R 2.3.1. To infer more complex and hierar-
chical effects of the environmental covariates and include
slope stratum (i.e. factor or qualitative variable) as a predictor
variable, regression trees (Breiman et al. 1984; Prasad et al.
2006) were fitted between the three considered response var-
iables (i.e. H′, species richness and plant dry biomass) mea-
sured in each quadrat and the environmental covariates using
the R package ‘rpart’ (Therneau et al. 2015). In total, six
regression trees were implemented: two for each response
variable, with one set including SRP as covariate and only
considering information collected during the 2015 campaign
and another set without SRP and considering information
from both years (i.e. 2014 and 2015) since SRP was only
measured in 2015 and may obscure the effect of other relevant
attributes. Outcomes derived from regression trees were plot-
ted as dendrograms. The position of each node (i.e. tree leaf)
within the tree, or dendrogram, is the hierarchical contribu-
tion of a given predictor variable (i.e. environmental covari-
ate) to the prediction of the response variable (i.e. H′, species
richness or plant dry biomass). The terminal nodes of the
dendrogram contain the mean response. The regression trees
were pruned using a complexity parameter of 0.06 to avoid
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overfitting, reduce the number of final nodes (e.g. Prasad
et al. 2006) and enhance the clearness of the outcomes. The
goodness of fit from the regression trees was evaluated with
a random holdback method (i.e. the model was fitted with
70% of the original data and then validated with the 30%
remaining) by estimating the coefficient of determination
(R2) and residual mean square error (RMSE) and then plot-
ting the objective functions between observed and predicted
values (e.g. Malone 2013).

Results

Plant diversity, species richness and slope strata
The dominant vegetation found on the studied landslide-
prone slope (Fig. 1a) comprised herbs and grasses. The
undisturbed portions of the slope (i.e. stable during the last
landslide event and not surveyed herein) generally presented
woody vegetation species such as willow, hawthorn, sycamore
and ash.

Plant diversity (Table 1; Fig. 3a), evaluated in terms of H′,
ranged from 1.19 to 1.41 with a relatively high species even-
ness in all cases (J’ > 0.6; Table 1) and did not present
significant differences between the slope strata (H ′ :
χ2 = 0.52, df = 2, p = 0.77; J’: χ2 = 0.52, df = 2, p = 0.77)
or the years (χ2 = 0.04, df = 1, p = 0.84). However, the
cumulative species richness (S; i.e. α-diversity; Table 1;
Fig. 3b) showed an increasing trend down the slope strata
gradient, with S being significantly higher (p < 0.05) at the
toe (t) (Table 1; Fig. 3b) when compared to the crest (c) for
the 2014 campaign (Table 1; Fig. 3b). The species richness per
unit area (Sa; Table 1) did not present statistically significant
differences between the strata (χ2 = 2.57, df = 2, p = 0.28),
although the middle stratum showed the highest value for
both sampling campaigns (Table 1). Overall, the toe stratum
had more plant species in both years, particularly not only
compared to the crest stratum (11 and 6 in total, 2014 and
2015, respectively) but also compared to the middle stratum
(2 and 1 in total, 2014 and 2015, respectively). In the 2015
campaign, the middle stratum had in total seven species
more than the crest. The species composition differences
(i.e. β-diversity) between the slope strata tended to be more
similar for the 2014 campaign (B-Cc-m 0.24; B-Cc-t 0.28; B-
Cm-t 0.39) than for the 2015 (B-Cc-m 0.40; B-Cc-t 0.52; B-Cm-t

0.59), with the toe stratum being the most different in both
cases. On the basis of the rarefaction curves (Fig. 3b), the
sampling intensity was fair for the toe and middle strata; the
rarefaction curves just started to reach the asymptote. For
the crest stratum, however, the asymptote was reached, in-
dicating that species pool was well covered with the sam-
pling intensity employed (Fig. 3b).

Consistent stratum differences were also encountered in terms
of SRP (Table 1; Fig. 3c), which was statistically higher (i.e. higher
SRP) at the toe (χ2 = 9.59, df = 2, p < 0.01). The total soil nitrogen
(TKN; Table 1; Fig. 3d) was statistically higher at the toe
(χ2 = 12.16, df = 2, p < 0.01) in 2015, although it remained
relatively unchanged during the studied years (χ2 = 3.64, df = 1,
p = 0.06). Similarly, the total plant dry biomass (Table 1; Fig. 3f)
was statistically higher (χ2 = 11.96, df = 2, p < 0.05) at the crest for
2015, although no differences were found between the sampled Ta
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years (χ2 = 2.08, df = 1, p = 0.15). Conversely, the SOM did not
show differences among the studied strata (SOM: χ2 = 2.05, df = 5,
p = 0.84) or the years (χ2 = 0.84, df = 1, p = 0.36), although, in
general, it showed higher levels at the crest (Fig. 3e).

Plant indicator species for slope habitats
The indicator species analysis detected six potential plant indica-
tors (Table 2) out of 42 encountered plant species (i.e. γ-diversity)
across 22 botanical families with different habitat (or stratum)

preferences (Table 3). The crest and toe presented a single species
each with high specificity (i.e. A) and moderate and low fidelity
(i.e. B) and high and moderate coverage, respectively (Table 2).
However, the middle habitat showed four potential indicator spe-
cies with very high specificity but low fidelity and, in combination,
relatively high coverage (Table 2). The toe habitat presented the
highest number of species (i.e. 9) that were found only within it,
while the middle and crest habitats only had two specific plant
species each (Table 3). The two plant species with the highest
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Fig. 3 a Plant diversity boxplots indicating the variation in terms of the Shannon index (H′) across the studied slope strata and field campaigns. b Rarefaction curves
indicating the cumulative species richness for the studied slope habitats and field campaigns. c Soil resistance to penetration (SRP; kPa) boxplots indicating its variation
between the studied slope strata for the 2015 field campaign. d Soil total Kjeldahl nitrogen (TKN; mg g−1) boxplots indicating its variability across the studied slope
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encountered abundance over the entire study site (Fig. 1a) were
Arrhenatherum elatius (Ab = 5.39%) and Rumex obtusifolius
(Ab = 5.32%).

Effect of environmental covariates on plant diversity, species richness
and biomass

Correlation tests
Results derived from Pearson’s correlation tests (Fig. 4a, b)
showed a strong negative correlation between plant dry bio-
mass and SRP (r = −0.68; Fig. 4b) and a low correlation with
the rest of the evaluated environmental covariates. Plant di-
versity (H′) exhibited a moderate positive correlation with
SRP, SOM and TKN (Fig. 4a, b); a moderate negative corre-
lation with the plant dry biomass (r = −0.31; Fig. 4a); and no
correlation with the topographic attributes (i.e. slope, shade,
aspect, curvature). The cumulative species richness showed a
low positive correlation (r = 0.28; Fig. 4a) with TKN and did
not show a clear relationship with the topographic attributes
or plant biomass.

Regression trees
The fitted regression trees (Fig. 5a–f) show a significant good-
ness of fit in all cases (Fig. 6a–f; Table 4). The importance of
each predictor variable within the regression trees after prun-
ing is shown in Table 4. It is worth noting that the factor
variable ‘slope stratum’ was treated as a surrogate of nitrogen
differences across the slope strata for the final interpretation
of the regression trees (see BEnvironmental covariate effect
and useful recommendations for slope restoration^ section).
This approach was adopted to provide a quantitative meaning
to the factor slope stratum, and it is supported by the strong
strata differences in terms of TKN (Fig. 3d; Wilcke et al.
2003).

Plant diversity Slope aspect and hillshade were the main control-
ling variables of plant diversity (H′) when data from both field
campaigns were combined (Table 4; Fig. 5a). Aspect (Fig. 2) was the
unique predictor (Fig. 5a) for plant diversity when the slope faced
southerly (i.e. aspect = 180; Fig. 2) directions. For easterly facing
directions (i.e. 90 < aspect < 170; Fig. 2), however, other variables
were more limiting for plant diversity, in particular TKN (Fig. 5a).
Additionally, soil organic matter (SOM) gained relevance when the
slope was not fully insolated (i.e. hillshade <255; Fig. 2) (Fig. 5a).

Slope gradient, TKN and curvature were the most important
predictor variables for plant diversity when data from the 2015
campaign were used (Table 4; Fig. 5b). TKN was a more relevant
predictor when the slope gradient was lower than 28° (Fig. 5b).
However, curvature was a better predictor when slope gradient
was greater than 28° (Fig. 5b), and the more convex the curvature
(i.e. more negative in value; Fig. 2), the more this attribute con-
trolled plant diversity.

Species richness TKN and slope stratum were the most rele-
vant predictors for species richness (Table 4; Fig. 5c, d). The
fitted trees for species richness clearly identified the crest
stratum as a distinct habitat when both years (i.e. 2014 and
2015) were combined (Fig. 5c) and the middle slope stratum
with respect to the toe and crest strata when 2015 data were
used (Fig. 5d). As for the toe and middle habitats, when the
combined set of measurements was used (Fig. 5c), hillshade
value hierarchically determined the curvature effect. When
shading was greater (i.e. hillshade lower than 255; Fig. 2), a
convex curvature (i.e. negative in value; Fig. 2) was more
limiting to species richness. Conversely, when insolation was
higher (i.e. higher value of hillshade; Fig. 2), a concave curva-
ture (i.e. positive in value; Fig. 2) was shown to affect the
species richness.

Plant biomass Slope aspect, stratum and soil resistance to
penetration (SRP) were the most relevant covariates for plant
biomass (Table 4; Fig. 5e, f). As slope orientation became less
favourable for irradiation with respect to southerly orienta-
tions (i.e. easterly directions; 90 < aspect < 170; Fig. 2), the
stratum became more important (Fig. 5e) for plant biomass. A
lower SRP was directly related to a higher plant biomass
(Fig. 5f).

Discussion

Signs of landslide-driven slope ecosystem dynamics
Landslide-derived geomorphological processes led to the differen-
tiation of the slope ecosystem into three clearly defined habitats
(see BPlant diversity, species richness and slope strata^ section;
Velázquez and Gómez-Sal 2008; Neto et al. 2017). This differenti-
ation supported the division of the studied slope into three
predefined strata (see BSampling approach^ section) and resulted

Table 2 Plant species indicators for the different studied slope strata or habitats. A species specificity, B species fidelity, IndVal species indicator value, p value
statistical significance level, Coverage proportion of sampled quadrats belonging to a given habitat where one or another plant indicator (i.e. species or a species
combination) was found. For the middle habitat, the combined coverage is shown

Habitat Indicator A B IndVal p value Coverage (%)

Crest Galium aparine 0.83 0.65 0.74 0.001 80.00

Middle Lythrum salicaria 0.76 0.65 0.70 0.001 76.47

Chamerion angustifolium 1.00 0.18 0.42 0.019

Geranium robertianum 1.00 0.18 0.42 0.015

Dryopteris pseudodisjuncta 0.99 0.18 0.42 0.038

Toe Plantago lanceolata 0.96 0.27 0.51 0.007 59.09
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from an increase in biophysical diversity (Geertsema and Pojar
2007).

The increase in biophysical diversity was evident in terms of
the encountered differences in SRP (Fig. 3c). The toe habitat
showed a much higher SRP than the crest (Fig. 3c). This outcome
may be related to landslide-driven changes in the local soil tex-
ture, porosity and density (Geertsema and Pojar 2007) which, in
turn, are linked to the geotechnical properties of the slope-
forming materials (see BStudy site^ section) exposed after the
shallow landslide episodes. Settlement and consolidation process-
es fostered by wetting and drying meteorological cycles after the
landslide events could have increased the soil density at the toe
(Craig 2004; Head and Epps 2011). The plastic nature of the bare
soil, related to the soil fine fraction (see BStudy site^ section), may
have contributed to an increase in soil firmness at the middle
stratum following wetting and drying cycles (Consentini and Foti
2014). As a result, SRP increased in the exposed strata subject to
slope failure (i.e. middle and toe). Alternatively, SRP differences
(Fig. 3c) could be due to other landscape evolution processes
triggered by landslides (see in the following; Walker et al. 2009).

The differences in species richness between the slope strata
(Table 1; Fig. 3b) could be interpreted as a sign of landscape
evolution (Dale et al. 2005; Velázquez and Gómez-Sal 2008). For
example, species richness was lower at the crest, which has been
stable for a longer period than the other two studied slope zones
(Fig. 3b). The disturbance-free periods could have facilitated the
establishment and succession of plant communities (del Moral
and Jones 2002). Once plant communities were established, com-
petitive exclusion may have arisen (Wilson and Tilman 1995),
decreasing species richness (Herbert et al. 2004). The absence of
disturbance would have facilitated the formation of slope soil
(Myster and Walker 1997; Smale et al. 1997), fostered by the
incorporation of plant-derived decaying organic matter (Fig. 3e),
thus improving the soil structure (Bronick and Lal 2005) and
reducing the SRP (Fig. 3c; Franzluebbers 2002). Nonetheless, we
believe that the temporal expansion of this study could contribute
towards the elucidation on whether our observations can be
interpreted as signs of hillslope evolution.

Conversely, landslide recurrence may have led to an increase in
species richness (Velázquez and Gómez-Sal 2009) in the middle
and toe strata (Table 1; Fig. 3b; Neto et al. 2017). Lower levels of
plant competition found in the nutrient-rich gaps produced by
shallow landslides support this observation (Walker et al. 1996). In
particular, the lack of herbaceous plant competition for light with
higher-order plants (e.g. woody species) could be the reason for
the higher comparative species richness found after disturbance in
landslide-prone zones (e.g. Myster and Walker 1997; Rajaniemi
et al. 2003; Soto et al. 2017).

The active role of shallow landslides on slope ecosystem dif-
ferentiation was also shown by the accumulation of nitrogen at
the lowest slope stratum (i.e. toe; Fig. 3d; Wilcke et al. 2003). It is
highly likely that this was a result of the downward movement of
nutrient-rich soil volumes following slope failure, albeit nitrogen
leaching from the crest soil after rains could be possible as well
(e.g. Hood et al. 2003). Based on this result, nitrogen could be the
key abiotic factor that facilitated the establishment of vegetation
within the gaps opened up by landslides (Walker and del Moral
2003; Shiels et al. 2008) and one of the main factors triggering
further ecosystem dynamics (e.g. Herbert et al. 2004). The higherTa
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nitrogen levels observed in the two lower slope strata in 2014
(Fig. 3d) could explain the higher plant biomass observed there
(Fig. 3f; Gross and Collins 2000; Herbert et al. 2004) if adequate
nitrogen mineralisation is assumed (Urbano 1995). TKN differ-
ences between the two sampling campaigns (Fig. 3d), supported
by correlated plant biomass differences (Fig. 3f), may reflect con-
sumption of nitrogen by the plant community established on the
slope after disturbance: the higher levels of soil nitrogen allowed
more plant biomass development during 2014 (Dalling and Tanner
1995; Rowe et al. 2006). As a result, the levels of soil nitrogen
decreased in the subsequent season (Fig. 3d; Niklaus et al. 2001)
and led to lower biomass production (Fig. 3f). Nonetheless, soil
nitrogen could have also led to an increase in belowground plant
competition and, consequently, in reduction of plant aboveground
biomass (Rajaniemi et al. 2003; Herbert et al. 2004), as seen in the
results from 2015 (Fig. 3d, f) and supported by the correlation tests
(Fig. 4a). These processes may have led to a decrease in plant
diversity (Gross and Collins 2000; Rajaniemi et al. 2003), hinted at
in the results from the toe stratum in 2015 when compared to 2014
(Fig. 3a, b).

Plant diversity metrics as signs of slope ecosystem self-organisation
Species richness differences between the slope strata (see BPlant
diversity, species richness and slope strata^ section; Fig. 3b) may
result from the self-regulating capacity of the slope ecosystem after
disturbance (Neto et al. 2017). The downward movement of
nutrient-rich materials and the way that plant communities re-
spond (e.g. through competing for light and nutrients) played a
key role in the self-organisation process (Walker et al. 1996), as
discussed earlier (see 4.1). As a result, species richness showed

evident differences between the slope strata (Table 1; Fig. 3b).
These were consistent with the findings of other authors (e.g.
Armesto and Pickett 1985; Myster and Walker 1997; Walker et al.
2006; Elias and Dias 2009; Velázquez and Gómez-Sal 2009; Neto
et al. 2017) and with the intermediate disturbance hypothesis
(Connell 1978).

In terms of species composition, the Bray-Curtis similarity
index (see BPlant diversity, species richness and slope strata^
section) highlighted a distinct toe habitat during both sampling
campaigns and showed clear differences between 2014 and 2015
(see BPlant diversity, species richness and slope strata^ section).
This may suggest an increasing system complexity as the land-
scape starts recovering from disturbance (Odum 1969; Myster and
Walker 1997; Velázquez and Gómez-Sal 2009). The relatively high
species evenness (J’) encountered (Table 1) indicates an absence of
dominant species and, thus, may suggest an early successional
stage within the plant community of our study site (Mulder et al.
2004).

The plant diversity (H′) on the study site (Table 1; Fig. 3a)
was below or within the range reported by other diversity
studies focusing on grasslands (e.g. Bochet and Garcia-Fayos
2004; Kahmen et al. 2005; Spehn et al. 2005; Pohl et al. 2009).
Although plant diversity (H′) did not differ between slope
strata (Table 1; Fig. 3a), the observed H′ values with respect
to the ones provided in the literature could suggest an ade-
quate plant colonisation and establishment on the studied
slope. Many plant species found (Table 3) were common weeds
(BRC 2016), usually present on disturbed grounds, indicating
that most of them entered the community from the adjacent
landscape (Velázquez and Gómez-Sal 2008). Overall, the species
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assemblage was relatively similar between the studied slope
strata (Table 3) indicating that many species could have been

dormant in the displaced soil materials as seeds or propagules
(e.g. Myster and Walker 1997).
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Relating these observations to the self-regulation of a slope
after disturbance, some ideas can be drawn regarding the early
stages of human-driven restoration actions on slopes, which usu-
ally include planting a single or few plant species. More than 40
plant species were identified in the initial stages of slope coloni-
sation in this study (Table 3), suggesting that planting with a
higher species diversity would be more ecologically relevant. In
some instances, landslide-derived gaps can be overwhelmed by
alien species that make the most of the low levels of plant compe-
tition in these patches to the detriment of native species (Catford
et al. 2012). In this regard, two alien species were found within the

studied slope with a relative high abundance (Table 3): Heracleum
maximum and Viburnum acerifolium. This highlights an impor-
tant issue to consider when planning planting strategies.

Plant species as indicators of landslide-driven biophysical diversity
Plant indicator species results (Table 2) corroborated the differentia-
tion of the slope into distinct habitats and provided further support to
the notion that landslides may increase biophysical diversity. For
instance, the principal indicator for the middle slope habitat,
Lythrum salicaria, is a herbaceous species belonging to wet habitats
and slow-flowing creeks (BRC 2016). As the slope failed, the phreatic
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zone was exposed in some areas within the slope’s middle zone,
creating an entire foreign aquatic habitat that did not exist before
within our slope ecosystem. Likewise, the indicator for the crest
habitat, Galium aparine, might have thrived as a consequence of
small mammals, such as rabbits, dispersing its seeds over the crest
habitat (BRC 2016). Despite the former speculation, the crest of the
slope remained stable during the last slope failure episode (see BStudy
site^ section), allowing the prolonged stability to host mammals (i.e.
rabbits, cats andmice), as noticed by the authors during the sampling
campaigns.Moreover, the plant indicator species identified for the toe
habitat, Plantago lanceolata, may suggest modifications to the slope
geochemistry, as many of the species identified within the slope
(Table 3) are generally associated with calcareous or basic (i.e. pH
>7) soils (BRC 2016), while Plantago lanceolata generally thrives on
more acidic soils (i.e. pH <7). The outcomes derived from the plant
indicator analysis (Tables 2 and 3), however, should be taken with
caution as the fidelity (i.e. B; Table 2) for most of the identified
indicators was low, and the coverage (Table 2) did not reach 100%.
Nonetheless, the use of the plant indicator species analysis (Dufrene
and Legendre 1997; De Caceres and Legendre 2009) presented here
opens up an exciting possibility to explore landslide-derived habitats
and establish different slope restoration and management strategies
in accordance with the features of a given slope habitat.

Environmental covariate effect and useful recommendations for slope
restoration
Our results are consistent with the hypothesis that slope topography
has a significant effect on establishment and dynamics of vegetation
(e.g. Bochet and Garcia-Fayos 2004; Gallardo-Cruz et al. 2009;
Moeslund et al. 2013; Stein et al. 2014) after landslides. Terrain
attributes such as slope gradient, aspect, hillshade and curvature
(Fig. 2) play a vital role in the establishment of vegetation as they are
intimately related to the availability of natural resources (e.g. nutri-
ents, light, water) to plants (e.g. Fu et al. 2004; Gallardo-Cruz et al.
2009; Yu et al. 2015). These effects were seen after fitting regression
tree models (Table 4; Figs. 5a–f and 6a–f), which showed hierarchies
of importance among topographical attributes and with their asso-
ciated environmental covariates, such as light and nitrogen (see
BRegression trees^ section). The effect of the evaluated environ-
mental covariates varied depending on the vegetation metric to be
predicted (Table 4), the direction of change of one factor in response
to the level of another factor and the amount of information
employed to fit the regression tree (i.e. 2014–2015: Fig. 5a, c, e;
2015: Fig. 5b, d, e). It is worth noting that the factor variable slope
stratumwas treated as a surrogate of nitrogen differences across the
slope strata for the final interpretation of the regression trees, as
indicated in BRegression trees^ section. Overall, five main aspects
related to post-landslip establishment of plant communities on
slopes were confirmed with the regression trees:

1. Soil nitrogen and light availability have a strong effect on
plant diversity (H′; Fig. 5a, b), species richness (Fig. 5c, d)
and plant biomass (Fig. 5e, f) as noted previously in the
literature (e.g. Myster and Walker 1997; Rajaniemi et al.
2003; Herbert et al. 2004; Pykälä et al. 2005; Shiels et al.
2008; Gallardo-Cruz et al. 2009; Soto et al. 2017).

2. The amount of incoming light with respect to the level of soil
nitrogen can regulate plant diversity (Fig. 5a, c) and biomass
(Fig. 5e). Thus, trade-offs may occur between light andTa
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nitrogen (Fig. 5a, c, e; e.g. Walters and Reich 1997; Rajaniemi
et al. 2003; Herbert et al. 2004; Soto et al. 2017) and their effect
upon plant communities must be evaluated together.

3. Slope topography governs the availability of both nitrogen
(Weintraub et al. 2015) and light (Gallardo-Cruz et al. 2009)
(Fig. 5a, b, e, f). The spatial availability of nitrogen can be
limited by the topographical exposure (i.e. slope gradient and
curvature; Chapman 2000), where a higher slope gradient and
a more convex curvature (i.e. negative in value; Fig. 2) will
constrain the formation of soil and the accumulation of nutri-
ents (Fig. 5b; Heimsath et al. 1997; Bertoldi et al. 2006;
Weintraub et al. 2015). On a landslide-prone slope, however,
landslide dynamics will exert a greater control over the avail-
ability of nitrogen (e.g. Guariguata 1990; Walker et al. 1996;
Myster and Walker 1997; Velázquez and Gómez-Sal 2008) than
the topographical exposure, supported here by the differenti-
ation of the studied slope into habitats (Figs. 3d and 5c, e, f;
Walker et al. 1996; Velázquez and Gómez-Sal 2008; Neto et al.
2017). With regard to light availability, we used the hillshade
parameter in our approach, knowing that it is intended as a
cartographical representation option to enhance the graphical
representation of the study site topography (e.g. Zu 2016) and,
therefore, carried little ecological meaning. Although its use
provided relevant results, for the future, it would be advisable
to employ indices aiming at estimating solar radiation input in
order to better clarify the effect of light on plant communities
(e.g. topographic radiation index; Piedallu and Gegout 2008).

4. Topographical exposure may also control plant diversity (i.e. H
′ and richness; Table 1; Fig. 5b, d). High slope gradients and
convexity (Fig. 2) may have a negative impact on plant estab-
lishment (Bochet and Garcia-Fayos 2004). As a result, it is
likely that plant communities will develop less in zones of high
topographical exposure (i.e. more prone to shallow landslides;
Lu and Godt 2013), where the diversity of early successional
species will be maintained at relatively high levels (Velázquez
and Gómez-Sal 2008) compared to more stable zones under-
going plant succession (e.g. crest of the studied slope and
undisturbed sections of the slope).

5. The SRP is a viable and readily measurable indicator of slope
habitat (Fig. 3c) and plant biomass (Fig. 5f). Soil penetrability is
related to soil structure (Franzluebbers 2002): a lower SRP (i.e.
higher penetrability) will be indicative of better soil physical
conditions for plant establishment (Bengough and Mullins
1990) and, therefore, for more plant biomass development. It
is worth noting that plant biomass development is of high
interest in terms of slope stabilisation with plants (e.g.
Gonzalez-Ollauri and Mickovski 2016).

Overall, the earlier outcomes indicate that regression trees are a
viable tool for evaluating and understanding the hierarchical com-
plexity of slope ecosystems, which may not be fully detected with
Pearson’s correlation test (Fig. 4a, b). The information obtained
from the regression trees (Fig. 5a–f) can be directly applied in the
implementation of slope restoration strategies against shallow
landslides involving the use of vegetation (e.g. Norris et al. 2008;
Mickovski 2014; Tardio and González-Ollauri 2016). For example, a
balanced application of soil amendments (e.g. nitrogen and OM-
rich compost) on shaded zones of the slope could foster the

establishment of a dense and more diverse early-stage plant com-
munity (e.g. Walters and Reich 1997; Elmarsdottir et al. 2003; Rowe
et al. 2006) or root systems (Mickovski and Ennos 2003; Gonzalez-
Ollauri and Mickovski 2016). Care must be taken on slope zones
presenting high topographical exposure to obtain adequate vege-
tation establishment. On these zones, human-driven revegetation
strategies, such as facilitation (e.g. Brooker et al. 2008), could be
implemented. Information related to SRP could be used to imple-
ment soil tillage on certain slope zones to improve the physical
properties of soil (Bronick and Lal 2005), which, combined with
the application of soil amendments, can facilitate the establish-
ment of a dense plant cover (e.g. Bengough and Mullins 1990;
Wilson and Tilman 1995) on the slope.

Conclusions
In the light of our results and observations, we can conclude that

& Shallow landslides are dynamic geomorphological processes con-
tributing to biophysical diversity and able to distinguish the land-
scape into different slope habitats even at small spatial scales.

& The slope habitats can be distinct in terms of plant species richness
and compositional differences, as well as in terms of soil properties
such as nitrogen content and resistance to penetration.

& Differences in plant species richness throughout the slope
habitats are a direct consequence of the slope ecosystem self-
regulating capacity after disturbance.

& Soil nitrogen and light availability have a strong effect on plant
establishment (i.e. plant diversity, richness and biomass) after
disturbance.

& Landscape topography and landslide dynamics play an impor-
tant role on soil nitrogen and light availability and, hence, on
landscape evolution and its self-regulating capacity.

& Certain plant species may be good indicators of landslide-
driven biophysical diversity.

& The effects of the environmental covariates on plant diversitymetrics
can be effectively appraised with regression tree models.

A comprehensive novel approach has been presented here to
detect traits of ecosystem evolution, self-regulation and biophysi-
cal diversity triggered by shallow landslides. We acknowledge that
the results presented herein refer to a particular site with specific
environmental conditions and to a limited monitoring time.
Further research along the lines presented in this study and, over
longer periods of time, larger spatial scales is needed to shed more
light on how shallow landslide-prone ecosystems evolve after slope
disturbance. Undoubtedly, the approach presented herein pro-
vides a good basis to explore shallow landslides within an ecolog-
ical perspective and to apply the resulting knowledge into the
sustainable restoration of landslide-prone slopes.
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