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Abstract
Ophidiomyces ophidiicola (Oo) is one of the most relevant fungal pathogens for snakes. It is the etiological agent of ophidi-
omycosis, an emerging disease causing dysecdysis, skin abnormalities, crusting cutaneous lesions, and ulcerations. Despite 
this major tegumentary “tropism”, Oo infection can be systemic and it is capable of inducing visceral lesions. Moreover, 
ophidiomycosis may lead to abnormalities of reproductive physiology, hunting behavior, and thermoregulation, thus increas-
ing the risks of sublethal effects and predation on affected snakes. Oo seems horizontally transmitted and can induce postnatal 
mortality. This article reviews published data on Oo detection and infection in all snake species in countries around the world 
and categorizes these data using new classification parameters. The presence of this fungus has been recorded in 11 states 
(considering the USA as a whole); however, in four states, the mycosis has only been reported in snakes held in captivity. 
Detection and/or infection of Oo has been ascertained in 62 snake species, divided into nine families. The taxa have been cat-
egorized with diagnostic criteria in order to report, for each species, the highest rank of categorization resulting from all cases. 
Therefore, 20 species have been included within the class “Ophidiomycosis and Oo shedder”, 11 within “Ophidiomycosis”, 16 
in “Apparent ophidiomycosis”, and 15 within “Ophidiomyces ophidiicola present”. We also discuss the significance and limits 
of case classifications and Oo’s impact on wild populations, and we suggest methods for preliminary surveillance. Standardized 
methods, interdisciplinary studies, and cooperation between various research institutions may facilitate further Oo screening 
studies, elucidate the unclear aspects of the disease, and protect ophidiofauna from this emerging threat at the global level.
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Introduction

Fungal pathogens are considered an emerging concern for 
wildlife (Fisher et al. 2012). They are usually capable of 
infecting multiple hosts and can be environmentally resistant 

(Reynolds et  al. 2017). For example, mycotic diseases 
caused by Batrachochytrium dendrobatidis, B. salamand-
rivorans, and Pseudogymnoascus destructans are often fatal 
for amphibians and chiroptera (Langwig et al. 2016; Stegen 
et al. 2017; O’Hanlon et al. 2018). Although there are fewer 
specific data regarding reptile populations, these animals 
could also be menaced by infectious diseases. Furthermore, 
at least one-fifth of the evaluated reptile species all over the  
globe are considered endangered (Böhm et al. 2013). Emerg-
ing pathogens, particularly onygenalean fungi, are a matter 
of concern for reptiles worldwide (Paré and Conley 2020), 
both for veterinary practice (Piquet et al. 2018; Paré et al. 
2020) and herpetofauna (Allain and Duffus 2019; Peterson 
et al. 2020). Within Onygenales, fungi affecting reptiles are 
present in genera such as Ophidiomyces, Parananizziopsis, 
Emydomyces, and Nannizziopsis. These fungi have various 
similar morphological and histological features but have 
been recently discovered or split into different species via 
molecular analyses (Sigler et al. 2013; Stchigel et al. 2013; 
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Woodburn et al. 2019). Nannizziopsis and Parananizziop-
sis are genera that affect different Reptilia orders, while 
Emydomyces testavorans only affects chelonians and Ophid-
iomyces ophidiicola (Oo) specifically affects ophidian hosts. 
Among these pathogens, Oo is currently the most studied 
and very likely has the most impact on natural populations 
of reptiles.

History, taxonomy, and phylogenesis of Oo

Since the discovery of Oo, the taxonomy of this fungus has 
changed many times. Other closely related onygenalean 
fungi, also belonging to the former Chrysosporium anamo-
rph of Nannizziopsis vriesii (CANV) complex, have under-
gone similar taxonomic changes (Paré and Sigler 2016). 
Furthermore, the origin of Oo remains unclear since there 
are scattered cases and/or detections in almost every ecozone 
around the world. Whether or not Oo is now ubiquitous in 
terms of distribution, this fungus has probably been present 
for an indefinitely long time outside its native range. Indeed, 
a very recent molecular-based study suggests that the fungus 
has been introduced to North America on multiple occasions 
since the  18th century (see Ladner et al. 2022).

Here we present, in chronological order, reported case 
studies in which Oo has been detected (prospectively or 
retrospectively) in order to highlight and clarify the taxo-
nomic changes that have occurred and to show the reported 
distribution of this organism. In each case presented below, 
the fungus detected or isolated has since been identified or 
reclassified as Oo.

A specimen of Cemophora coccinea collected in Florida 
in 1945, a Crotalus horridus from Wisconsin (1958), and 
a Pantherophis spiloides collected in Tennessee in 1973, 
all showing cutaneous lesions, were preserved in 70% etha-
nol and stored at the University of Wisconsin Zoological 
Museum (Lorch et al. 2021). From these specimens, in 
2021 Lorch and colleagues retrospectively detected Oo with 
molecular and histopathological analysis.

In 1985, researchers isolated a fungus and observed 
hyphae in histology from the subcutaneous lesions of a cap-
tive Python regius from England (Sigler et al. 2013).

Similarly, a fungus was isolated from a specimen of Pan-
therophis guttatus that presented with a subcutaneous nodule 
on the tail in 1986, in New York, USA (Sigler et al. 2013). 
This was confirmed with histological sections exhibiting 
hyphae and arthroconidia.

In 1990, a fatal dermatomycosis in three Boiga irregularis 
wild captured from Guam and housed in Maryland (USA) 
was diagnosed by histopathology and isolation of CANV, 
which was identified according to growth characteristics and 
morphology (Nichols et al. 1999; Sigler et al. 2013).

In the last part of the 1990s, a captive Thamnophis in 
Germany died after showing signs of mycosis in the skin, 
lung, and liver ascribed to Chrysosporium queenslandicum 
after fungal culture and histopathology (Vissiennon et al. 
1999; Sigler et al. 2013).

Two different cultures of CANV were isolated from 
snakes with skin lesions found in Australia: from Acrochor-
dus sp. found in Queensland in 2003 (Sigler et al. 2013) and 
from Hoplocephalus bungaroides found in Victoria in 2010 
(McLelland et al. 2010; Sigler et al. 2013).

A free-ranging Pantherophis obsoletus (considered P. 
alleghaniensis by Lorch et al. 2016a) captured in Georgia 
(USA) in the first half of the 2000s and held for 4 years while 
regularly used in educational exhibitions showed multifocal 
facial granulomas containing fungal hyphae and segmented 
arthroconidiating hyphae (Rajeev et al. 2009; Lorch et al. 
2016a). After isolation and morphological, cultural, and 
molecular characterization, the fungus was classified as 
Chrysosporium ophiodiicola (Guarro, D. A. Sutton, Wickes, 
and Rajeev, sp. nov. (Rajeev et al. 2009).

Starting with a few animals with dermatological lesions and 
mortality in 2006, a severe fungal disease was thought to be one 
of the main causes implicated in the New Hampshire (USA) 
Crotalus horridus population decline (Clark et al. 2011).

Since 2008, a population of Sistrurus catenatus catena-
tus in Illinois (USA) has started to show signs of Chrys-
osporium ophiodiicola–associated disease linked with mor-
tality (Allender et al. 2011).

A nomenclatural novelty was published by Sigler (2013), in 
which Chrysosporium ophiodiicola was reassigned to the new 
genus Ophidiomyces [Ophidiomyces ophiodiicola (Guarro, 
Deanna A. Sutton, Wickes & Rajeev) Sigler, Hambleton & 
Paré, comb.nov.; Basionym: Chrysosporium ophiodiicola], 
placed phylogenetically within the family Onygenaceae. 
This publication was integrated into another from Sigler 
and collaborators (2013), in which the CANV complex was 
taxonomically reassessed and a number of isolates–several  
of them coming from some of the above-mentioned 
cases–were molecularly characterized and retrospectively 
reclassified as O. ophiodiicola, within onygenacean fungi.

Almost simultaneously in 2013, Stchigel and colleagues 
solved the taxonomic position of a few other Chrysosporium 
pathogenic to reptiles, proposing new species and the fam-
ily of Nannizziopsiaceae. However, O. ophiodiicola (as C. 
ophiodiicola) was placed in Incertae sedis, between Nan-
nizziopsiaceae and Onygenaceae but phylogenetically closer 
to the latter (Stchigel et al. 2013). The entire genoma of an 
Oo isolate was sequenced by Ohkura et al. (2017).

According to the NCBI taxonomy database (Schoch et al. 
2020), Index Fungorum (Kirk 2020), and MycoBank (Robert  
et al. 2013), the currently valid species name is Ophidi-
omyces ophidiicola (Guarro, Deanna A. Sutton, Wickes, 
& Rajeev) Sigler et  al. 2013. The name Ophidiomyces 
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ophiodiicola is considered an orthographic variant and refers 
to a name that does not follow standard rules of orthography.

The NCBI taxonomy database (Schoch et al. 2020), Index 
Fungorum (Kirk 2020), MycoBank (Robert et al. 2013), 
UNITE (Nilsson et al. 2019), CoL/GBIF (GBIF Secretariat 
2019), and BOLD (Ratnasingham and Hebert 2007) all cur-
rently list O. ophidiicola as part of the family Onygenaceae.

To elucidate the phylogenetic relationship between Oo 
isolates, sequences derived from the ITS, ACT, and TEF 
genes of the fungus were aligned, concatenated, and submit-
ted to maximum likelihood estimation and Bayesian analysis 
(Franklinos et al. 2017; Sun et al. 2021). These analyses 
have yielded a phylogenetic tree supporting the existence 
of three clades:

• Clade 1 (named European clade), derived from the UK 
and Czech Republic isolates (Franklinos et al. 2017);

• Clade 2 (named North American clade), consisting of 
isolates from the USA (Franklinos et al. 2017) and two 
isolates from a Naja atra individual native to Taiwan 
(Sun et al. 2021);

• Clade 3 derives from two isolates from a wild Dinodon 
rufozonatum in Taiwan (Sun et al. 2021) and a 1985 iso-
late from the skin lesions of a Python regius held in cap-
tivity in the UK (Franklinos et al. 2017; Sun et al. 2021).

A recent characterization of some isolates highlighted 
that all strains from wild USA snakes belong to Clade 2, 
that seems to originate itself from the older European Clade 
1 (Ladner et al. 2022). Moreover, Oo strains from Taiwan, 
as well as, from captive snakes from Australia, Europe and 
North America were grouped within the outgroup Clade 3 
or within different lineages of Clade 2 also found in East-
ern USA wild snakes, suggesting a spillover via pet trade  
(Ladner et al. 2022).

Common name of the disease

The terminology snake fungal disease (SFD) appeared for the 
first time in 2013, when there was a lack of clear evidence 
of disease association with Oo (Sleeman 2013). The causal-
ity of the disease and the direct link with the pathogen were 
later confirmed by the fulfilment of Koch’s postulates via 
experimental infection of captive-bred Pantherophis gutta-
tus with a cultured fungal isolate (Lorch et al. 2015). In this 
case, Lorch and colleagues (2015) proposed to use the term 
SFD to refer only to Oo infections. The denomination SFD is 
considered by some authors a simplistic name that should be 
rejected and replaced with Ophidiomycosis, Oo infection, or 
Oo mycosis (Paré et al. 2020). This suggestion is also in line 
with the fact that other fungal pathogens occur in snakes and 
some of them are also former members of CANV complex, 
such as Paranannizziopsis spp. (Sigler et al. 2013).

Fungal properties in the environment, 
fungal cultures, and tissues

Various Oo traits, such as the ability to be cultivated on dif-
ferent decaying (autoclaved) organisms, led to the suggestion 
that it is a saprobe fungus (Allender et al. 2015c). Its suit-
ability to different environments is supported by its capability 
of growing in a broad range of pH and temperatures in vitro, 
tolerating air dryness (matric-induced water stress) and most 
natural sulfur compounds, and its ability to use various com-
plex carbon and nitrogen sources (Allender et al. 2015c). The 
microorganism can grow on soil medium (TWRA 2017) and 
can be detected in natural soil (Walker et al. 2019; Campbell 
et al. 2021). However, Campbell and colleagues (2021) showed 
that Oo was able to grow only in sterilized soil and not in soils 
with an active microbial community. Oo growth seems to be 
inhibited by metabolites produced by other fungal taxa and 
via general suppression by whole microbial communities in 
soil (Campbell et al. 2021). Moreover, Campbell et al. (2021) 
revealed that the prevalence of Oo detection was significantly 
higher in hibernacula soils compared with topsoils. This infor-
mation is consistent with the potential role of hibernacula as 
an environmental reservoir, where the pathogen can persist in 
its viable propagule: the conidium (spore).

Propagules are a reproductive state of an organism rep-
resented in this ascomycete by asexual (anamorph) conidia 
(Rajeev et al. 2009; Sigler et al. 2013). In Oo cultures, they 
can be divided into aleurioconidia and arthroconidia (Rajeev 
et al. 2009; Sigler 2013; Sigler et al. 2013). Aleuriospores 
grow on short stalks on the sides of the hyphae from which 
they detach by rhexolytic dehiscence (Fig. 1a). Arthrospores, 
in contrast, are generated by fragmentation of pre-existing 
fertile hyphae (schizolytic dehiscence–Fig. 1b). Aleuroconidia 
are cylindrical to clavate, 2.5–8.3 μm long, and 1.5–2.9 μm 
wide (Fig. 1a; Sigler et al. 2013; Ohkura et al. 2016). Arthro-
conidia have a longer cylindrical form with slightly obtuse 
to truncate ends, ranging from 3 to 12.5 μm in length and 
1.5–3.5 μm in width (Fig. 1b–Sigler et al. 2013). In Oo cul-
tures, vegetative (main) hyphae are septate, branched, thin 
walled, narrow, sometimes with racquet-shaped mycelium, 
and 1.5–2.5 μm wide (Rajeev et al. 2009; Sigler 2013; Sigler 
et al. 2013). Undulating branches of hyphae are sometimes 
seen lateral to the main hyphae (Fig. 1b insert–Sigler et al. 
2013; Ohkura et al. 2016). This is very characteristic for most 
of the former members of the CANV complex (Paré and 
Sigler 2016). The fertile main hyphae and the lateral undulat-
ing hyphal branches can differentiate into chains of adjacent 
arthroconidia (Sigler et al. 2013; Ohkura et al. 2016).

Oo incubation on potato dextrose agar (PDA) at 25–30 °C 
for 14–21 days results in colonies with a diameter varying 
from 31 to 60 mm (Rajeev et al. 2009; Sigler et al. 2013; 
Ohkura et al. 2016; Sun et al. 2021) and its growth tends to 
be inhibited at 35 °C (Sigler et al. 2013; Sun et al. 2021). 
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Oo growth is limited at 15 °C (5-mm diameter after 14-day 
incubation–Rajeev et al. 2009); however, the fungus is able 
to survive freezing (Paré and Sigler 2016). Colonies appear 
whitish-to-light yellow (Fig. 1c, d; Rajeev et al. 2009; Sigler 
et al. 2013). At 25 °C, the colonies are flat, dense, and pow-
dery-to-velvety (e.g., Fig. 1d; Rajeev et al. 2009; Sun et al. 
2021), and at 30 °C they frequently appear zonate (e.g., 
Fig. 1c–Sigler et al. 2013).

To date, only the form of hyphae or arthroconidia has 
been recognized in histological sections of Oo. Histologi-
cally, the hyphae are usually intralesional and have parallel 
walls, a diameter up to 5 μm, transverse septa, and frequent 
acute-angle branching (Fig. 2a, c, d–Baker et al. 2019). In 
contrast, arthroconidia in histological section are approxi-
mately 2 × 4 μm, cylindrical, and are found intralesionally in 
fission formation (separating from fertile hyphae) and/or in 

compact clusters (Fig. 2b, b insert–Baker et al. 2019). The 
latter aggregates/clusters are called arthroconidial tufts and 
are sometimes found at the air-tissue interface at the surface 
of the lesion or within granulomas (Paré and Sigler 2016). 
Arthroconidia are also produced in vivo in the skin surface 
of hosts and the presence of arthroconidial tufts (arthroco-
nidiation) at this location is considered by Paré and Sigler 
(2016) to be “practically pathognomonic for infection with 
one of these fungi” (i.e., former members of the CANV 
complex).

The air-tissue interfaces at the skin or within internal 
organs, such as bronchi (Dolinski et al. 2014), are the most 
common localization for aggregate-forming arthrospores 
(Fig. 2a; Dolinski et al. 2014; Haynes et al. 2021; Last et al. 
2016; Baker et al. 2019). This is consistent with the intrinsic 
infective propagule nature of dermatophyte arthroconidia 

Fig. 1  Microscopic (a and b) and macroscopic (c and d) features of 
Ophidiomyces ophidiicola (Oo) cultures. a Microscopic morphology 
Oo aleurioconidia (arrows) growing on short stalks on the sides of the 
hyphae from which they will detach by rhexolytic dehiscence (isolate 
UAMH number 10769). b Cylindrical fission arthroconidia created 
by schizolytic dehiscence (fragmentation) of fertile hyphae (isolate 

UAMH number 11295). b (Insert) undulate hyphae growing laterally 
to the main hyphae (isolate UAMH number 11295). c and d Colonies 
of Oo shown on PDA at 30 °C after 21 days of incubation (c zonate, 
powdery colony–isolate UAMH number 10769; d flat, dense, velvety 
colony–isolate UAMH number 11295). Photos courtesy of Lynne 
Sigler and UAMH Centre for Global Microfungal Biodiversity
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and their propensity to be dispersed in the environment 
(Patel et al. 2017). To the authors’ knowledge, no Oo aleuro-
conidia have been described in histological sections.

Pathogenesis of ophidiomycosis

It is very likely that natural Oo infection of healthy snakes 
occurs via contact with symptomatic/asymptomatic carri-
ers or contaminated substratum. Although interruption of 
the continuity of the epidermis (e.g., wounds, abrasions, or 
ulcerations) is not necessary to provoke fungal invasion and 
subsequent macroscopic lesions, it seems to increase the 
frequency of such signs (Lorch et al. 2015). The dermato-
mycosis can involve individual scales (e.g., Bickinese 2009) 
or extensively affect the surface of dorsal, ventral, and head 
scales (e.g., Mckenzie et al. 2020a).

Results of different experimental infections have confirmed 
that the fungus is able to infect via conidium, regardless 
which cutaneous/para-cutaneous route is chosen (Allender  
et al. 2015a; Lorch et al. 2015; McKenzie et al. 2020b). 
Inoculation of conidia via topical application on nasolabial 
pits (Allender et al. 2015a), topical bandage on different 
parts of the tegument, with or without skin abrasion (Lorch 
et al. 2015), or subcutaneous injection (McKenzie et al. 
2020b) resulted in mild-to-severe effects (McKenzie et al. 
2020b).

The survival rate of exposed snakes from the above-
mentioned experimental studies (Allender et  al. 2015a; 
Lorch et al. 2015; McKenzie et al. 2020b) varies from 0 
to 87%, mostly due to different experimental designs (e.g., 
inoculation route and amount of conidia inoculated). For 
example, while in the Lorch et al. (2015) study, the disease 
did not progress toward life-threatening stages, resulting 

Fig. 2  Histological features of Ophidiomyces ophidiicola (Oo) in 
cutaneous tissues. a Histological section of scale tip showing Oo 
hyphae. Note the hyphal aggregate in the ventral region of the scale, 
likely developing into an arthroconidial tuft through fission and 
arthroconidiation. PAS staining. b Arthroconidia (arrows) located 

at the air-tissue interface. PAS staining of a 5 µm section. b (Insert) 
Arthroconidia (arrows) in 5-µm section stained with Grocott. c Oo 
hyaline hyphae showing parallel walls, transverse septa, and acute-
angle branching. PAS staining. d Intralesional Oo hyphae in Grocott-
stained section
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in no “natural” deaths, McKenzie and colleagues (2020b) 
also challenged infected snakes with brumation, leading to a 
higher mortality rate. These data suggest that brumation and 
lower temperatures may have a negative impact on survival 
in snakes with fungal infections.

The skin lesions that develop during experimental cuta-
neous Oo exposures include regional swelling, scale edema 
and discoloration/yellowing, lesion enlargement and coales-
cence, vesicle formation, and serocellular crusting (Lorch 
et al. 2015; McKenzie et al. 2020b). Crusts can detach 
revealing erosions and ulcers (Lorch et al. 2016a; Meier 
et al. 2018). Similarly, abnormal scales may progressively 
turn into dermal granulomas that subsequently become 
eroded or ulcerated (Baker et al. 2019). Other cutaneous 
signs that are also seen in naturally infected animals (e.g., 
Franklinos et al. 2017; Pohly 2020) include dysecdysis, 
wrinkling, desquamation, and necrotic/brownish scales 
(Fig. 3–e.g., Lorch et al. 2016a; Meier et al. 2018; Sun et al. 
2021).

When the inflammation is mild, cutaneous lesions usu-
ally show only heterophilic infiltration, while in moderate 
cases of inflammation, the white blood cell population is 

mixed, including lymphocytes and macrophages. More 
severely inflamed lesions may also involve the underlying 
skeletal muscles (see McKenzie et al. 2020a, b).

Increased frequency of ecdysis has been described in 
some Oo cases in free-ranging snakes (e.g., Tetzlaff et al. 
2015; Meier et al. 2018), although ecdysis was not sig-
nificantly different in snakes exposed via subcutaneous 
inoculation (below the dermis) under controlled condi-
tions (McKenzie et al. 2020b). Furthermore, the moulting 
process can apparently clear fungal infections restricted to 
the superficial epidermis (Lorch et al. 2015). However, it is 
unlikely that the shedding process can remove the fungus 
when it reaches the α-layer of the epidermis, as in this case 
it has already crossed the mesos layer, an important barrier 
preventing water loss (Jacobson 2007), and has become a 
deeper infection.

Once past the epidermis, the fungus can cause multifo-
cal dermal or hypodermal granulomas that contain a central 
area of necrosis and are often visible externally as nodules 
(Allender et al. 2011; Ohkura et al. 2016). This pattern sug-
gests a possible hematogenous spread within the dermis 
(McKenzie et al. 2020b).

Fig. 3  Cutaneous gross signs 
consistent with Ophidiomyces 
ophidiicola mycosis commonly 
observed in Natrix helvetica 
positive at molecular detection 
(Apparent Ophidiomycosis). 
(a) Crusty lesions, dysecdysis, 
scales distortion, wrinkling 
and discolouration on the head 
region. (b) Scales margin ero-
sion on the gular region. (c) 
Focal lesion with crusty and 
necrotic aspect. Note the pres-
ence of surrounding displaced 
or oedemic scales. (d) Crusting 
and marginal erosion of ventral 
scales. (e) Healed dorsal scales 
(previously affected by crusty 
lesions) showing scars and 
wrinkling. (f) Healed ventral 
scales (previously affected by 
crusts/erosions) showing scars 
and wrinkling. Photo credits: (a, 
b, c, d) Courtesy of Steven J. R. 
Allain and Becki Lawson; (e, f) 
Courtesy of Grégoire Meier
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Some subcutaneous fungal granulomas can reach the 
coelomic cavity, the coelomic fat pad, and the kidneys, by 
spreading through connective tissues and epaxial skeletal 
muscles (Robertson et al. 2016; Steeil et al. 2018a, b).

Non-tegumentary granuloma formation associated with 
naturally occurring or experimental infections can involve 
several structures (disseminated ophidiomycosis), including 
air sacs, bronchi, lungs, trachea, esophagus, stomach, mes-
entery, gingiva, salivary glands, eyes, coelomic fat, ovaries, 
kidneys, liver, and spleen (Allender et al. 2011; Dolinski 
et al. 2014; McKenzie et al. 2020b; Pohly 2020; Robertson 
et al. 2016; Steeil et al 2018a; Vissiennon et al. 1999). In 
the latter cases, the presence of fungal elements within the 
granulomas was not always reported. This may be due to 
liquefaction of the necrotic cores or low sensitivity of the 
dyes used, but could also indicate an absence of Ophidi-
omyces infection. For this reason, the association between 
cutaneous and visceral infection remains unclear (Pohly 
2020). However, Oo’s ability to cause systemic infections 
is supported by the presence of fungal elements consist-
ent with this pathogen in the liver (McKenzie et al. 2020b; 
Vissiennon et al. 1999), serosal vessels adjacent to gastro-
enteric tract (McLelland et al. 2010), and lungs (Dolinski 
et al. 2014; Robertson et al. 2016; Vissiennon et al. 1999). 
Furthermore, some disseminated cases have been attributed 
to mycotic septicemia or fungal emboli (Vissiennon et al. 
1999; McLelland et al. 2010; Robertson et al. 2016) and a 
case of fungal invasion into the hepatic vessels associated 
with thrombosis has been documented with histopathology 
(Vissiennon et al. 1999).

Nevertheless, despite the data suggesting hematogenous 
spread (e.g., McKenzie et al. 2020b), the pathogenesis of 
systemic Ophidiomyces invasion, and an eventual adap-
tive immune response of the host, remains uncharacterized 
(Pohly 2020).

A cohort study by Pohly (2020) using 23 wild-caught 
naturally infected Nerodia sipedon insularis found histo-
pathological evidence of subclinical disease (early (acute) 
or resolving (chronic) inflammation and infection) in close 
to 50% of cases. These data suggest that subclinical lesions 
may be almost as abundant as macroscopic ones, raising the 
problem of false negatives when Oo is only present at the 
subepidermal or visceral level.

In the same study by Pohly (2020), the most prevalent 
comorbidity associated with ophidiomycosis was a consider-
able decrease in visceral adipose tissue, suggesting that the 
mortality due to this fungal infection might be caused by a 
secondary and continuous negative energy balance, as com-
monly occurs in chronic diseases that stimulate catabolism 
via pro-inflammatory cytokines (Wang and Ye 2015).

Postnatal mortality due to rapid ophidiomycosis devel-
opment has been reported in different taxa of housed wild 
snakes from North America (Britton et al. 2019; Stengle 

et al. 2019). In these cases, Oo was likely transmitted by 
direct contact from the dams to the offspring during or after 
birth, in both viviparous and oviparous species. Clinical 
signs in neonates can be subtle or absent, unlike in the par-
ents (Britton et al. 2019).

Skin microbiota and ophidiomycosis

On the one hand, the microbiota in vertebrates is funda-
mental in defence against pathogens as it can interact with 
noxious microorganisms through competition for space and 
resources, release of antifungal compounds/antagonists, 
modulation of the host immune response, and/or stabilization 
of the microbial community to increase defence mechanisms 
(Harris et al. 2006; Lauer et al. 2007; Bletz et al. 2013; Park 
et al. 2014; Smeekens et al. 2014; Woodhams et al. 2014). 
On the other hand, microbial diversity can be disrupted 
by an invading pathogen (Barman et al. 2008; Round and  
Mazmanian 2009). For example, B. dendrobatidis (the cause 
of amphibian chytridiomycosis) induces changes in the skin 
microbiome in wild frogs (Jani and Briggs 2014) and B. 
salamandrivorans induces changes in the skin microbiome 
in fire salamanders during experimental infection (Bletz 
et al. 2018). Although the protective function of cutaneous 
symbiotic microbes has been widely studied in amphibian 
diseases, data regarding snakes and Ophidiomyces infection 
is relatively scarce.

Allender and colleagues (2018) showed that the bacte-
rial and fungal microflora in a population of wild Sistrurus 
catenatus were disrupted in snakes with a swab positive 
for Oo. The pathogen, when present, was the dominant 
fungal species and the community structure of bacterial 
species was different in the Oo-positive samples (Allender 
et al. 2018): for example, the genera Janthinobacterium 
and Serratia were significantly more abundant, whereas 
Cellulosimicrobium and Rhodococcus were significantly 
reduced. Moreover, Oo was also present in skin locations 
distant from the lesions, suggesting a reorganization of 
the microbiota across the whole tegument (Allender et al. 
2018).

The microbial skin assemblage of snakes and related 
interactions with Oo have also been spatially characterized 
by Walker et al. (2019). Their study showed that the micro-
flora of snake skin was partially distinct from the environ-
mental microbial communities and that the ophidian species 
was strongly predictive of the skin microbiota at various 
spatial extensions. Oo was a strong predictor of snake-skin 
microbial assemblages and its load was associated with dif-
ferent bacterial taxa (Walker et al. 2019). This result is also 
supported by the fact that 16 bacterial strains from the skin 
microflora of Coluber constrictor and Crotalus horridus 
individuals showed inhibitory effects against Oo (Hill et al. 
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2018), consequently altering the composition of microbial 
communities when present.

Physiological and behavioral changes linked 
to Oo infection

Ophidiomyces infection has not only physical costs but also 
affects the behavior of ophidians in the wild. Generally, 
snakes are secretive species and the equilibrium between 
their activities, such as foraging, thermoregulation, and 
predator avoidance, depends on various aspects related to 
the species and physiological status. Conditions impairing 
health, such as ophidiomycosis, may influence the activities 
carried out by infected serpentes.

Using different methods, it has been shown that infected 
Natricidae and Viperidae seem more sedentary compared 
with uninfected individuals (Tetzlaff et al. 2017; McKenzie 
et al. 2021). Mycosis can influence the visibility of an indi-
vidual and can be translated into more or less time spent on 
pursuing an activity. The exposure to a visual encounter was 
higher in infected individuals of two species of water snakes 
(Natricidae-McKenzie et al. 2021) but was lower in infected 
Viperidae (Tetzlaff et al. 2017) compared with uninfected 
ophidians. This contrast can be explained by the different 
methods and environments used by different species to for-
age (e.g., pursuit vs. ambush predation) or variations in the 
season and temperature during the different surveys.

Temperature has a fundamental role during pathological 
conditions in reptiles, for example, in snakes that show a 
behavioral fever response by raising their preferred body 
temperature through active thermoregulation when chal-
lenged with a pyrogen or pyrogenic pathogen (Burns et al. 
1996; Zimmerman et al. 2010). When Pantherophis gutta-
tus snakes are immunochallenged with lipopolysaccharide 
(LPS), a pyrogen that activates the immune system, their 
predator-avoidance sheltering behavior is deprioritized in 
favor of thermoregulation outside the shelter (Todd et al. 
2016). Behavioral fever has been anecdotally observed 
during late autumn (Clark et al. 2011; Tetzlaff et al. 2017) 
and winter months (McBride et al. 2015) in wild animals 
affected by, or showing signs of, Oo infection. This behavio-
ral response during colder seasons may improve the immune 
response by obtaining a better cell-mediated response rais-
ing temperature to the preferred optimal zone and, syner-
gistically, could slow fungal growth by subjecting Oo to 
unfavorable higher temperatures. However, as shown in the 
lab, behavioral fever might have negative consequences due 
to predation within infected populations (see Sperry et al. 
2021).

Ophidiomycosis appears to also influence reproduction 
in a sublethal manner. The disease resulted in suppression 
of the hypothalamo-pituitary–gonadal axis in infected S. 

miliarius females (Lind et al. 2018a). The hormones pro-
duced by this axis promote spermatogenesis and vitellogen-
esis in different seasons (summer and spring, respectively). 
During these periods, affected snakes have significantly 
lower levels of testosterone and estradiol compared with 
healthy conspecifics (Lind et al. 2018a). Although a direct 
link between infection and possible reproductive impairment 
has not yet been found, these results, along with the strong 
negative correlation between infection severity and body 
condition index (BCI), suggest that Ophidiomycosis might 
reduce individual fitness and silently affect mating success.

Body weight and snout-vent-length (SVL) are not strong 
predictors of Ophidiomycosis (see Chandler et al. 2019; Long 
et al. 2019; McKenzie et al. 2020b). However, calculating a 
BCI from these measurements may be helpful to compare 
groups of individuals within a population (see McCoy et al. 
2017; Dillon 2020). Although there are many ways to cal-
culate BCIs (e.g., ratio and residual indices), most methods 
generally predict energy reserves, usually in the form of fat 
(Labocha et al. 2014). Some Oo-infected individuals have 
an increased resting metabolic rate, likely associated with 
mounting an immune response (Agugliaro et al. 2020). This 
is consistent with the higher energetic costs faced by affected 
individuals who are often found with decreased visceral adi-
pose tissue at necropsy (Pohly 2020) or with significantly 
reduced BCIs (McCoy et al. 2017; Lind et al. 2018b, c). 
Moreover, an increased concentration of circulating gluco-
corticoids–indicating an increased stress response–found in 
free-ranging symptomatic individuals (Lind et al. 2018c) can 
contribute to this decrease in fat reserves (Pohly 2020). The 
infected individuals may need an increased body tempera-
ture/behavioral fever (Agugliaro et al. 2020) and may have an 
ongoing positive feedback loop of declining condition (Lind 
et al. 2018c). In this way, they could face a compromised 
ability to predate and fulfil their basic energy intake require-
ments (Lorch et al. 2015), which, in turn, may worsen their 
physical condition and lead to silent death. Nonetheless, one 
study reported that BCIs and fitness did not significantly dif-
ferentiate between Oo qPCR negative and positive individu-
als in a specific population (Dillon 2020). This highlights that 
the response to the pathogen likely differs among species due 
to different environments, climates, and seasonal dynamics.

Ophidiomycosis appears to have a certain seasonality, in 
which the overwintering period, temperatures, and hiber-
nacula potentially play key roles in the manifestation and 
transmission of the disease.

In ectotherms, abiotic factors, such as temperature, are 
crucial variables that force the animal to balance the ener-
getic cost of its activities. Immune system efficiency is also 
influenced by external factors and intrinsic physiological 
variables, such as the amount of energy reserves that can 
be spent on its maintenance. For a reptile, the immunocom-
petence required to tackle an infection is highly dependent 
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on thermoregulation of the body temperature (Todd et al. 
2016; Origgi and Tecilla 2020). Therefore, the temperature 
variations that occur during seasonal shifts may lead a snake 
to down-regulate immune function (McCoy et al. 2017), 
especially when energetic reserves are limited and cannot be 
addressed to defend against pathogens such as Oo. McCoy 
and colleagues (2017) found that Ophidiomycosis severity 
scores in non-hibernating Sistrurus miliarius individuals 
of both sexes in Central Florida peaked when atmospheric 
temperature was lower (mostly in February). This can be 
explained by the increased costs of thermoregulation com-
promising the efficiency of the immune system. In the same 
species at the same location, Lind et al. (2018c) showed that 
plasma corticosterone was higher with more severe infec-
tions, but was also higher in winter and autumn before the 
exacerbation of clinical signs. The hypothesis formulated by 
Lind and colleagues (2018c) is highly plausible: an increased 
stress response, due to seasonal stressors such as low tem-
peratures and lower resource acquisition, acts synergistically 
with an increasing need to allocate resources (e.g., reproduc-
tion, growth, and immune function) to establish a vicious 
cycle that drives a seasonal pattern of disease. Furthermore, 
this positive feedback loop, acting season over season, may 
increase host susceptibility, and therefore, exacerbate Ophidi-
omycosis severity and lead to the deteriorating conditions 
observed in the population through winter (Lind et al. 2018c).

In brumating snake populations, overwintering may have 
a pivotal role in the manifestation of Ophidiomycosis and 
survival of the snakes. Individuals have been anecdotally 
observed to more commonly show signs of disease and 
poor conditions just after emerging from brumation or dur-
ing winter months, when they should be hibernating (Clark 
et al. 2011; McBride et al. 2015; Guthrie et al. 2016; Lorch 
et al. 2016a). The higher prevalence of Oo and increased 
detection of clinical signs after the brumation period, as 
well as a lower prevalence during the active season, was 
confirmed by Dillon (2020) in Pantherophis vulpinus from 
Ontario, Canada. Additionally, from the same study, four 
out of six snakes tracked during overwintering only showed 
lesions after brumation (Dillon 2020). In KY, the prevalence 
of pathogens and the presence of lesions in different species 
of wild snakes follow the same trend, being higher in spring 
and lower toward autumn (McKenzie et al. 2019). This 
may occur because low temperatures do not permit snakes 
to mount an effective immune response or to increase the 
frequency of shedding (to prevent the fungus from reach-
ing deeper layers of the tegument), or because the pathogen 
may have higher virulence during certain seasonal variations 
(McCoy et al. 2017). Similarly, results from McKenzie and 
colleagues (2020b) showed that more than half of exposed 
Pantherophis guttatus died during brumation and that all 
the inoculated ophidians housed in a room simulating spring 
(19–24 °C) died in the post-brumation period.

For ophidians that brumate, hibernacula may have an 
important role in pathogen transmission. Transmission dur-
ing overwintering (i.e., in the shared hibernacula) is credible 
because snakes that were negative for Oo prior to brumation 
emerged with the disease (Long et al. 2019; Dillon 2020). 
In the study by McKenzie and colleagues (2020b), one out 
of 12 non-inoculated snakes that brumated together with 
inoculated animals showed positive qPCR results and char-
acteristic inflammatory skin lesions, but no fungal evidence 
nor gross lesions (case classified as Oo present) suggest-
ing horizontal transmission by direct contact or contamina-
tion from the environment. Even though this pattern was 
not observed in the other 11 snakes, the authors could not 
rule out whether there was a clearing of infection before the 
death of the individual or a contamination without infection 
(McKenzie et al. 2020b). However, it is plausible that Oo 
transmission in hibernacula is more driven by direct con-
tact between animals than by contamination via shared dens, 
since soil microbiota is known to suppress the pathogen in 
the environment (Campbell et al. 2021).

Ophidiomyces ophidiicola impact on snake 
populations

Although ophidiomycosis is now considered a wide threat 
to snake populations, the specific effect on free-ranging 
snakes is poorly known (McKenzie et al. 2021). Many stud-
ies focused on the detection of Oo in single individuals and, 
therefore, our understanding of the real impact of this dis-
ease on natural populations is far from complete (Allender 
et al. 2015c).

In the USA, where most studies on ophidiomycosis have 
been conducted, several examples show Oo’s potential 
impact on natural populations. A population of Crotalus 
horridus suffered a severe decline in 2006 and also showed 
clinical signs consistent with ophidiomycosis (Clark et al. 
2011). Similar effects were observed in a population of Sis-
trurus catenatus that showed more than 90% mortality of 
individuals in which the fungus was detected (Allender et al. 
2018). An observed mortality event in 2009 in a popula-
tion of Nerodia sipedon insularis in Lake Erie was linked 
to the detection of Oo (Lorch et al. 2016a). Despite a previ-
ous positive trend, the population declined by an estimated 
18% the year following the outbreak (Lorch et al. 2016a). 
Chandler et al. (2019) registered a concerning Oo preva-
lence (≥ 50%) in Drymarchon couperi populations, a species 
that has already declined across much of its range (USFWS 
2018; Chandler et al. 2019).

Controversially, McKenzie et al. (2021) reported a high 
percentage of snakes apparently affected by ophidiomyco-
sis in assessed populations (37.9% of Regina septemvittata; 
20.5% of N. sipedon), without identifying the effects of Oo 
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infection on their survival. Likewise, Dillon (2020) reported 
that Ophidiomycosis (Oo detected in a snake with clinical 
signs consistent with the disease–apparent Ophidiomycosis) 
has no direct effects on the fitness of a population of Pan-
therophis vulpinus in Morpeth, Ontario, Canada. Ophidians 
with ophidiomycosis were not more likely to die and did 
not exhibit drastically different movement patterns compared 
with uninfected snakes (Dillon 2020). However, infected 
snakes may have a higher risk of predation and ophidians 
that tested positive by real-time PCR had larger home ranges 
than snakes that tested negative (Dillon 2020).

Beyond the North American continent, the number 
of published studies is low. For example, in Europe, the 
impacts of ophidiomycosis remain unknown due to the lack 
of health surveillance and long-term monitoring data (Böhm 
et al. 2013; Franklinos et al. 2017).

Standardized approaches

Standardized methods are essential to harmonize results 
and tackle an emergent infectious disease that may threaten 
ophidian species all over the world. In approximately a dec-
ade of targeted research, different diagnostic approaches and 
scores have been used by different researchers.

Diagnostics

Molecular biology methods, such as conventional or quanti-
tative PCR, are the fastest and most reliable method to assess 
the presence of fungal DNA.

Different sets of primers for the molecular detection of 
Oo via quantitative or conventional PCR assays have been 
established:

• Bohuski et al. (2015) designed primers targeting internal 
transcribed spacer region 2 (ITS2) and intergenic spacer 
region (IGS) within the ribosomal RNA (rRNA) gene of Oo;

• Allender et al. (2015b) designed primers targeting inter-
nal transcribed spacer region 1 (ITS1) within the fungal 
rRNA gene;

• Lorch et al. (2021) designed primers targeting mitochon-
drial NADH dehydrogenase subunit 1 (nad1) of Oo.

Fungal DNA can be extracted from various samples. Dry 
swabs represent the most used method, although wet swabs 
have also been used (see McKenzie et al. 2019). It is highly 
recommended to resample the snakes by swabbing multi-
ple times with different applicators because the percentage 
of qPCR false negatives on material collected with a single 
swab is remarkably high (> 70%–Hileman et al. 2018). The 
ophidians should be swabbed along the entire length of the 

body several times using mild pressure, and, when sympto-
matic, lesions should be additionally swabbed using moderate 
pressure (see Baker et al. 2019). Swabs from ophidians with 
cutaneous clinical signs are more likely to test positive than 
those from asymptomatic individuals (Hileman et al. 2018; 
Long et al. 2019). However, asymptomatic animals may have 
an undetected subepidermal or visceral Oo infection (Pohly 
2020). Almost full agreement of fungal copies/ng DNA was 
found in the qPCR results from swabs, tissue biopsies, and 
exuviae, suggesting that each of these samples is reliable and 
allows fungal detection with molecular methods (Baker et al. 
2019; Dibadj et al. 2021). Moults can be homogenized and 
analyzed via qPCR, sometimes highlighting false negatives 
resulting from previous swabs (e.g., McKenzie et al. 2020b).

Fungal culture is necessary for Oo isolation. Inoculations 
of tissue samples, such as skin, exuviae, or cutaneous lesions 
(e.g., Glorioso et al. 2016), on culture media enriched with 
antibiotics are required for this method (Baker et al 2019). 
Skin/lesion swabs are often considered not useful for this 
diagnostic task (Davy et al. 2021).

The following media are suitable for inoculation and 
incubation of samples to isolate Oo:

• DTM (dermatophyte test medium): 30 °C for 20 days 
(Lorch et al. 2015);

• SDA (sabaroud dextrose agar): room temperature  
(or 22–25  °C) for 10–20 days (Bohuski et  al. 2015; 
Dolinski et al. 2014; Allender et al. 2015c; Last et al. 
2016; Rzadkowska et al. 2016);

• PDA (potato dextrose agar): 30–35 °C for 21 days (Sigler 
et al. 2013);

• ICG (inhibitory mould agar with chloramphenicol and 
gentamicin): 25 °C, followed by sub-cultivation on PDA 
for morphological characterization (Sun et al. 2021).

The morphological traits used to identify Oo in fungal 
culture are described in “Fungal properties in the environ-
ment, fungal cultures and tissues” section and in the cited 
literature. This method has some disadvantages (Pohly 
2020): the complexity of identifying the isolates based on 
morphologic characteristics, the slow growth of Oo, the dif-
ficulty of isolating Oo from small samples, and the growth 
of other commensal fungi in the media. Nevertheless, fungal 
culture seems necessary for the extraction of fungal genomic 
DNA to use for identification, such as 18S rRNA ITS DNA 
sequencing (Dolinski et al. 2014), and molecular phyloge-
netic analysis (Franklinos et al. 2017; Sun et al. 2021).

Histopathology has a pivotal role in confirmation of 
Ophidiomycosis. Skin tissues from necropsies or biopsies 
are usually used for this task. After fixation, embedding, 
sectioning, and dewaxing, sections on slides are routinely 
stained with hematoxylin eosin (HE). Although HE is a 
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useful dye to analyze microscopic lesions and characteris-
tics, it might not highlight fungal hyphae and arthroconidia. 
For this purpose, other histochemical stains, including sil-
ver stains such as Gomori’s (Grisnik et al. 2018; McKenzie 
et al. 2020a, b), Grocott-Gomori’s (McBride et al. 2015; 
Ohkura et al. 2016), Grocott’s (Allender et al. 2011; Lorch 
et al. 2021), or Jones’ (Sun et al. 2021) methenamine silver 
stains or periodic acid–Schiff (e.g., Last et al. 2016; Lorch 
et al. 2021; Sun et al. 2021) have been used to characterize 
the morphology of fungal elements (Fig. 2–see “Discussion 
and future perspectives” section for further information).

Detection in the field

Clinical signs seem to be a strong predictor of Oo presence  
during investigation in the field, at least from spring to  
summer in some locations of Eastern USA (McKenzie et al. 
2019; Fuchs et al. 2020).

Ultraviolet fluorescence has proved to be effective as a 
non-invasive and field-applicable screening tool for Ophidi-
omycosis (Vivirito et al. 2021), as it has in the past for other 
emerging fungal diseases, such as white-nose syndrome 
in bats (Turner et al. 2014). This technique highlights skin 
lesions in snakes exposed to UV light (365 nm) and, although 
it seems effective only on snakes with apparent ophidiomy-
cosis, offers the advantage of being fast, reliable, affordable, 
and useful in the preliminary phase of the screening process, 
in particular, to identify individuals and skin areas for fur-
ther diagnostic testing (Vivirito et al. 2021). Further studies, 
including stricter diagnostic criteria, should be conducted to 
obtain a more accurate validation of UV light as a diagnostic 
method for Ophidiomyces because this technique was only 
compared and validated with qPCR results and not with his-
tological analysis (Vivirito et al. 2021).v

Environmental DNA (eDNA), a highly sensitive method 
for species detection, is rapid and potentially cost-effective 
(Ficetola et al. 2008). It has been useful in monitoring fungal 
pathogens in freshwater systems directly from water sam-
ples (Strand et al. 2014) and it is sometimes more effective 
than conventional methods (Wittwer et al. 2018). Baker et al. 
(2020) tested eDNA for the first time as a survey method to 
simultaneously identify the DNA of S. catenatus and Ophid-
iomyces using water samples from over-wintering refugia. 
Despite local abundance of snakes and fungus at the sites 
investigated (Allender et al. 2016), they only detected S. 
catenatus DNA in few samples and did not detect Ophidi-
omyces. These results suggest that eDNA may not offer more 
advantages compared with other sampling methods (Baker 
et al. 2020). Many environmental factors may have adversely 
affected fungal detection in this study and, therefore, other 
studies are needed to evaluate the effectiveness of this tech-
nique for monitoring Ophidiomyces (Baker et al. 2020).

Case classification

Parsing cases of Oo detection and infection into specific 
classes are necessary to assess the susceptibility of different 
ophidian hosts.

The Canadian Wildlife Health Cooperative (CWHC) 
threat assessment defines suspected and confirmed cases 
(CWHC 2017), outlined later by Davy and colleagues (2021). 
Briefly, criteria provided for diagnosis of ophidiomycosis are 
the following (CWHC 2017; Davy et al. 2021):

(D.i) only molecular or culture-based detection of Oo 
allows the “detected” diagnosis;
(D.ii) the presence of gross signs with (D.ii.i) molecular/
culture-based detection of Oo or (D.ii.ii) histological con-
firmation of hyphae consistent with Oo will classify the 
case as “suspected Ophidiomycosis”;
(D.iii) molecular/culture-based detection of Oo and his-
tological confirmation of hyphae consistent with Oo will 
lead to “Ophidiomycosis” diagnosis.

Likewise, Baker and colleagues (2019) proposed the fol-
lowing diagnostic criteria:

(B.i) “Ophidiomyces present” when a positive molecular/
culture-based detection is not accompanied by gross or 
histological alteration consistent with Oo infection;
(B.ii) “possible Ophidiomycosis” when (B.ii.i) histology 
demonstrates fungal hyphae consistent with Oo infection 
without arthroconidia or (B.ii.ii) when there are gross 
lesions but PCR/culture was not performed, was equivo-
cal, or negative, or histopathology showed no fungal ele-
ments in lesions;
(B.iii) “apparent Ophidiomycosis” when (B.iii.i) there are 
gross (cutaneous) clinical signs and positive molecular/
culture-based detection but histopathology was not per-
formed or (B.iii.ii) histopathology is consistent with Oo 
infection (only hyphae without arthroconidia) and there 
is a positive molecular/culture-based detection;
(B.iv) “confirmed Ophidiomycosis” is the diagnosis if 
histopathology highlights intralesional hyaline fungal 
hyphae and arthroconidia and the PCR or culture is posi-
tive (no relevance is given to macroscopic signs consist-
ent with Oo infection).

While these criteria are very similar, there is a signifi-
cant difference: Baker et al. (2019) require the intralesional 
presence of arthroconidia to “confirm” the diagnosis of 
ophidiomycosis.

It is fundamental to adopt a consistent, standardized 
approach to this classification in order to harmonize all future 
investigations.
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Scoring systems

Various scoring systems have been established to harmonize 
results within single studies. Baker and colleagues (2019) 
have published a system that scores the severity of macro-
scopic infections. It includes the type, location, number, and 
size of tegument lesions and gives a result ranging from 0 to 
12. Interpretation of the results and categorization into minor, 
moderate, or severe infections should be specified using real 
observations in a determined species (Baker et al. 2019).

A scoring system for microscopic cutaneous lesion sever-
ity has been devised by McKenzie and collaborators (2020a). 
It considers the histological features of a tissue, including 
inflammation, necrosis, and erosion, resulting in a score rang-
ing from 0 to 8 that leads to the assignment of a histologic 
grade, 0 (absent), I (mild), II (moderate), or III (severe), to a 
skin section (McKenzie et al. 2020a).

To harmonize anatomopathological results from a cohort 
study, Pohly (2020) used a standardized method to detect and 
classify the severity of cutaneous and systemic lesions start-
ing from the above-mentioned scoring systems. Each snake 
was divided into 12 regions including head, cloaca, tail, and 
nine equal sections from the base of the head to the cloaca. 
For each region, the macroscopic external lesions were local-
ized, uniquely identified, and used to calculate the infection 
severity score of the whole carcass according to Baker et al.  

(2019). After necropsy, visceral adipose bodies were classified  
as adequate or minimal and internal organs, the whole head, 
and a circumferential section from each region were fixed 
with 10% neutral-buffered formalin (Pohly 2020). Routine HE 
staining permitted sections from each region to be histopatho-
logically investigated for fungal presence and graded (0–3) for 
microscopic lesions, following McKenzie et al. (2020a). The 
circumferential sections allowed Pohly (2020) to also analyze 
osseous tissues. Summing the grade of each of the 12 sec-
tions, the whole body cutaneous severity grade could reach a  
maximum of 36 (Pohly 2020). Moreover, anatomopathological  
examination of visceral organs was performed (Pohly 2020). 
Although this systematic mapping protocol might need time 
and resources, it can be a valuable approach to investigate the 
disease in pilot studies or in small populations and to detect 
subclinical infections.

Materials and methods

The peer reviewed scientific literature, conference papers, 
abstracts, student theses, books, and posters on ophidiomyco-
sis sensu lato were screened from inception to June 30, 2021 
through PubMed and Embase bibliographic databases (Fig. 4). 
The following keyword string was used for the systematic lit-
erature search: ["ophidiomycosis" OR "Ophidiomyces" OR 

Fig. 4  Study selection
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"ophiodiicola" OR "ophidiicola" OR "Snake Fungal Disease" 
OR ("Snake" AND “Chrysosporium”) OR ("snake” AND 
“fungal disease") OR (“snake” AND “fungal infection”) OR 
(“snake” AND "keratinophilic fungus") OR (“snake” AND 
“mycosis”)]. To search for information regarding the presence 
of arthroconidia in histological sections, the following terms 
were also considered: “spores” (e.g., Allender et al. 2011; 
TWRA 2017; Guzman Vargas et al. 2020); “cylindrical” or 
“rectangular”; and/or “arthrospores” (e.g., Last et al. 2016;  
Hill et al. 2018; TWRA 2017). Duplicates were removed 
using Mendeley Desktop software (Version 1.19.8). Fur-
ther literature was searched through secondary sources (e.g., 
Google Scholar) or identified by examining the references of  
the downloaded manuscripts.

The pre-screened documents were then further assessed 
to collect literature specifically dealing with cases of snakes 
affected by Oo and/or presenting clinical symptoms. In the 
selected papers, a screen was performed for each snake, in 
relation to clinical and/or laboratory investigations carried 
out to ascertain the presence of Oo and/or ophidiomyco-
sis, including different types of PCR, DNA sequencing, and 
culture from cutaneous swab or tissue samples as well as 
histopathology and clinical signs.

All the information resulting from the screening was used 
to create Appendix 1, which shows all the snake species, 
and their organization at family level according to Zaher 
et al. (2019), in which the presence of the fungus has been 
confirmed. Data collected for each species includes case 
classification, geographical locations, bibliographic refer-
ences, and threat level according to the International Union 
for Conservation of Nature (IUCN) red list.

We have based our revision on the “case classification” by 
Baker et al. (2019), CWHC (2017), and Davy et al. (2021), 
excluding cases without molecular identification of the fungus. 
We interpreted detection of Oo as positive only when con-
firmed with molecular assays (PCR or DNA sequences from 
tissue sample/swab or generated from Oo isolates), excluding 
the diagnoses based only on fungal morphology in histological 
sections or cultures. Snakes for which the fungal presence was 
diagnosed only on the basis of clinical evidence or histopatho-
logical findings (e.g., Bustos et al. (2018), reporting an alleged 
case from Argentina) were not included in Appendix 1.

Hence, ophidians positive for the fungus following molec-
ular analysis only have been classified as “Oo present” (as 
in B.i and D.i–see section “Case classification”); cases in 
which gross signs were consistent with the disease along with 
molecular detection of Oo have been classified as “apparent 
Ophidiomycosis” (as in Biii.i and D.ii.i–see section “Case 
classification”); cases with Oo molecular positivity and histo-
logical presence of intralesional hyaline fungal hyphae (with-
out arthroconidia) were classified as “Ophidiomycosis” (as 
in B.iii.ii and D.iii–see section “Case classification”); cases 
with Oo molecular detection and presence of fungal hyphae 
and arthroconidia were classified as “Ophidiomycosis and 
Oo shedder” (as in B.iv–see section “Case classification”).

The classification criteria used in this review are sum-
marized in Table 1.

For ranking purposes, in circumstances in which there 
was not clear evidence of arthroconidia, the following 
assumptions were used in the following cases:

1. If it was stated in the paper that histopathology was posi-
tive, we assumed that fungal hyphae were found, but not 
arthroconidia;

2. If histopathology was positive for fungal hyphae, but it 
was not specified in the article whether arthroconidia 
were found, we assumed that arthroconidia were not 
found;

3. If a histopathological image from a specific individual 
positive for molecular diagnostics included arthroco-
nidia, we classified this specimen as “Ophidiomycosis 
and Oo shedder.”

Furthermore, for ranking purposes, if there was not an 
explicit link between molecular positivity and clinical signs 
or histopathologic features, we classified the specimen at a 
lower rank (i.e., “Oo present”).

In Appendix 1, we gave each species the highest classi-
fication rank reached in at least one specimen. The ranking 
followed this increasing order: (i) “Oo present”; (ii) “appar-
ent ophidiomycosis”; (iii) “Ophidiomycosis”; (iv) “Ophidi-
omycosis and Oo shedder.” Note that each category com-
prises the parameters present at the lower level/s, except for 
the gross signs (see Table 1).

Table 1  Classification criteria 
used in the analysis of the 
species showed in Appendix 1

N No, Y Yes, NA Not assessed

Gross signs Molecular 
detection

Hyphae  
(histology)

Arthroconidia 
(histology)

Oo present N Y N N
Apparent ophidiomycosis Y Y N N
Ophidiomycosis Y or NA Y Y N
Ophidiomycosis & Oo shedder Y or NA Y Y Y
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In order to provide an overview of the confirmed pres-
ence of the fungus around the world, a map was created 
to highlight the disease in free ranging and captive snakes 
(Fig. 5). The map was generated through the QGIS software, 
version 3.12.3-București by using it as a cartographic base 
for the USA (https:// www. weath er. gov/ gis/ USSta tes) and 
the globe (www. thema ticma pping. org). The map was then 
further edited using Adobe Photoshop CS6.

Results

From the papers included in this review, we extracted the 
information to fill Appendix 1, which shows all the snake 
species with at least one specimen from which Oo was 
detected. All the states (and the single federated states for 
the USA) in which a positive specimen was found are also 
indicated for each snake species. We considered only the 
cases in which the presence of Oo was confirmed follow-
ing molecular investigations, according to our classification 
criteria explained in “Materials and methods” section and 
summarized in Table 1, to be positive. Similarly, we consid-
ered cultures to be positive if confirmed by molecular assays 
(e.g., sequencing).

Oo has been detected in 62 snake species, including 24 
Colubridae species, 14 Natricidae species, 6 Dipsadidae 
species, 7 Viperidae species, 3 Pythonidae species, 4 Boi-
dae species, 2 Elapidae species, 1 Acrochordidae species, 

and 1 Homalopsidae species. Among these taxa, 20 have 
been categorized as “Ophidiomycosis and Oo shedder” 
(32.3%), 11 as “Ophidiomycosis” (17.7%), 16 as “Apparent 
ophidiomycosis” (25.8%), and 15 as “Oo present” (24.2%). 
Note that three taxa undefined at a specific level are pre-
sent in Appendix 1 (Acrochordus sp., Panterophis sp., and 
Thamnophis sp.): Panterophis sp. and Thamnophis sp. are 
not considered in the count because they could be referred 
to as one of the species already considered, while Acro-
chordus sp. is included because it is certainly a univocal 
taxon.

The fungus has been reported in 11 states (considering 
the USA as a whole, where, however, the phenomenon has 
been registered in as many as 28 federated states) and in four 
of them the mycosis concerns, to date, only snakes held in 
captivity (Fig. 5).

For each of the 62 snake taxa involved, the categorization 
in the IUCN Red List of Threatened Species and the related 
population trends were also reported: 53 species (85.5%) are 
listed as LC (least concern); 3 species (4.8%) are listed as 
VU (vulnerable); 1 species (1.6%) is listed as EN (endan-
gered); 4 species (6.5%) are listed as NE (not evaluated); and 
1 taxon (Acrochordus sp., 1.6%) cannot be evaluated because 
only its generic rank is explicit. Regarding the population 
trend, in the 53 species listed as LC, the trend is stable for 
39, decreasing for 8, and unknown for 6; in the 3 species 
listed as VU, the trend is decreasing for 2 and unknown for 
one; for the only endangered species, the trend is decreasing.

Fig. 5  World map showing the states with Oo presence (updated until June 2021). Yellow areas represent countries where the fungus has been 
detected in free ranging snakes; red dots represent countries where the fungus has been detected in captive snakes
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Discussion and future perspectives

According to our knowledge, the presence of Oo at a global 
scale has not been systematically assessed in recent times 
(see Lorch et al. 2016a). Furthermore, it is important to 
shed light on the worldwide distribution of the emergent 
infectious disease caused by Oo. Therefore, the primary pur-
pose of our work was to investigate in which locations this 
keratinophilic fungus was detected, and, at the same time, 
to categorize the snake species affected by this infection.

Throughout the world, Oo-positive cases (with or with-
out the onset of ophidiomycosis) have been recorded in  
only 11 states (Fig. 5, Appendix 1) in four continents 
(America, Asia, Europe, and Oceania). Information is 
completely lacking for Africa and South America and the 
data related to Central America, Asia, Europe, and Oce-
ania are limited. Therefore, further investigations will be 
essential to understand where Oo is a matter of concern. 
From our review, Oo has been detected in 62 species of 
ophidians all over the world, a high number that should 
raise awareness among scientists in this field. The host 
spectrum and diversity of affected snake species seems 
to be increasing, consistent with the hypothesis of spatial 
ubiquity of Oo (Burbrink et al. 2017). This may also be 
due to the increasing number of Ophidiomycosis surveil-
lance projects, at least in the Nearctic ecozone, during the 
years after the threat emergence (Davy et al. 2021).

Classification of the cases has the primary aim of help-
ing to summarize diagnostic results and standardize differ-
ent diagnostic pictures in order to make them comparable. 
Nonetheless, beyond harmonization, the significance of 
each category in terms of epidemiology and disease ecology 
might be overlooked. Hereinafter we discuss the relevance 
of the diagnostic criteria used for each snake species in this 
review. Note that each category comprises the parameters of 
the lower levels, except for gross signs (see Table 1):

 i. “Oo present” is the category in which fungal DNA is 
detected, indicating the presence of the fungus. How-
ever, Oo elements or fungal DNA might be a con-
sequence of environmental contamination. Further-
more, the presence of Oo in an individual with intact 
tegument could imply good host resistance, hence, an 
ability to block pathogen entry or to restrict pathogen 
replication. However, it cannot be excluded that such 
individuals are more prone to visceral Oo infections 
without showing external signs when chronically 
exposed to the pathogen found on the skin surface. In 
the same way, it cannot be excluded that the presence 
of the fungus is related to pre-clinical infection, colo-
nization, or residual fungus subsequent to the healing 
process.

 ii. “Apparent ophidiomycosis” is the category comprising 
the presence of the fungus and a potential causality 
relationship with gross, usually cutaneous, lesion/s 
consistent with Oo mycosis.

 iii. “Ophidiomycosis” is the category in which the fun-
gal DNA has been detected along with hyphae con-
sistent with Oo seen on histology. It is unknown if a  
certain species or individual can be infected, permit-
ting Ophidiomyces to form branching hyphae and/or 
fungaemia/dissemination, without the formation of the  
infective propagule (i.e., arthroconidium). In this case, 
the infected snake would act as a “dead end host” that 
does not allow the fungus to be spread in the environ-
ment and thus transmitted to other animals. Addition-
ally, non-cutaneous forms of ophidiomycosis, such 
as the visceral/pulmonary form that does not display 
skin lesions, and consequently infective propagules on 
the air-skin interface (e.g., Steeil et al. 2018a), might 
not allow the detection of arthroconidia even after 
tegument biopsy, misleading the diagnosis if classi-
fied according to Baker et al. (2019). Moreover, in 
“Oo positive” histological sections, while hyphae are 
always reported and arthroconidia presence is com-
mon, arthroconidial tufts only occur sometimes at the 
surface of the lesion (Paré and Sigler 2016). There-
fore, the arthroconidia are not always present (e.g., 
Sigler et al. 2013) and their aggregates (arthroconidial 
tufts) considered “practically pathognomonic” (Paré 
and Sigler 2016) are less frequent than the isolated 
spores.

 iv. “Ophidiomycosis and Oo shedder”: the species and 
the individuals in this category are able to shed Oo 
into the environment, confirmed by the histological 
detection of the propagule. They should, therefore, be 
able to transmit the infection and infect other animals. 
However, it is still unknown what role they have in 
epidemic outbreaks, and if, having a high infectivity 
and resistance at the same time (implicating a greater 
risk of transmission), they should perhaps be catego-
rized as “spreaders” or “super spreaders”.

The present classification of cases in which Oo has been at 
least detected aims to provide a standardization tool for future 
studies and to aid conclusive diagnosis in cases of potential 
ophidiomycosis. However, it has the following limitations:

• The genus Paranannizziopsis includes four species, all 
former members of the CANV complex and closely 
related to Oo, that are able to infect aquatic snakes from  
the species Erpeton tentaculatum and Acrochordus 
sp. (Paré and Sigler 2016). In particular, P. crustacea 
produce hyphae and arthroconidia that overlap with 
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features of Oo (Sigler et al. 2013). Therefore, mixed 
infections could mislead the diagnosis if, for example, 
results are obtained with Oo-specific PCR primers and 
histochemistry.

• Identification of fungal elements in tissues may be chal-
lenging during visceral or deep dermal infections or in 
cases with significant tissue necrosis.

The ideal tool to confirm the identity of Oo in the tissues 
is in situ DNA hybridization, a method not yet available for 
Oo (Paré and Sigler 2016).

From a clinical-pathological point of view, another limi-
tation to this classification tool is a lack of comprehensive 
information about the immune response elicited by Oo infec-
tion, which can only be assessable via a complete anatomo/
histopathological examination and selected ancillary tests. 
This approach might help to distinguish between saprophyt-
ism, colonization, infection, and disease. It is still unknown 
how the ability to restrict Oo replication, i.e., resistance 
(Romani 2011), and the ability to limit the detrimental 
impact of Oo infection without affecting pathogen burden 
per se, i.e., protective tolerance (Romani 2011), is balanced 
by the immune system of different snake hosts in different 
conditions. The resulting (dys)equilibrium between pro-
inflammatory and anti-inflammatory responses influences 
the ability of an individual to spread and transmit the infec-
tion (infectivity). Moreover, the balance of host responses 
can determine transition from saprophytism to infection, 
especially in mycosis (Romani and Puccetti 2006; Romani 
2011).

We still do not know the mechanism by which Oo causes 
mortality in wild snakes, although it is very likely that devel-
opment of infection is multifactorial (McKenzie et al. 2020a, 
b). Further studies are needed to understand whether Oo is a 
primary pathogen or if it has a secondary role and whether 
it is an opportunistic fungus causing pathology by evading 
or subverting host inflammation. Unfortunately, there are 
practical issues when studying antifungal mediators, such 
as leukocytes and cytokines (Romani and Puccetti 2006), 
in ectothermic vertebrates, including reptiles (Zimmerman 
et al. 2010). An example is the poor cross-reactivity between 
antibodies against cytokines of mammalian and of ectother-
mic origins (Scapigliati et al. 2006).

From the papers analyzed for this review, it would have 
been useful to have laboratory data and information on clini-
cal signs (see Baker et al. 2019) for each snake observed. 
The lack of, or discrepancies in, these data did not allow 
us to perform a meta-analysis in this direction. Therefore, 
the authors suggest that future reports or studies on ophidi-
omycosis should use, when possible, a more standardized 
and detailed method of recording laboratory and clinical 
information at the level of each individual snake.

Hence, we propose a list of information that should be 
recorded and published for each Oo-positive snake:

– individual ID code;
– species;
– date and time of discovery;
– wild or captive condition;
– location coordinates;
– approximate age class;
– snout-vent length;
– specimen status (live, dead, moulted skin);
– clinical signs (Y/N and specify);
– gross lesions (Y/N and specify);
– skin swab/sample PCR outcome (Y/N/not performed);
– culture outcome (Y/N/not performed);
– culture molecular confirmation (Y/N/not performed);
– histology (Y/N/not performed);
– histology outcome (e.g., presence of intralesional hyaline 

fungal hyphae and arthroconidia).

Scoring systems should be used in the future to harmo-
nize results, not only within a single study but also between 
different studies. An obvious obstacle to this objective is the 
multi-host nature and the broad range of Oo; for this reason, 
data harmonization should always take into account the dif-
ferent ophidian species and should be designed and driven 
on a species-by-species basis (Baker et al. 2019).

Furthermore, for populations of a given species in which 
it is also possible to collect a substantial number of indi-
viduals in good health for comparison, it is important to 
calculate the BCI. This allows researchers to extrapolate 
information on energy reserves and adipose tissue, which 
is useful to correlate the amount of adipose reserve with 
the severity of the infection (see McCoy et al. 2017; Lind 
et al. 2018b). Low levels of fat reserves, due to lower acqui-
sition or higher consumption of resources, may establish 
the vicious cycle potentially triggered by this disease (Lind 
et al. 2018c).

To better understand the dynamics and the extent of 
spread of Oo around the world, more field surveys are  
recommended, especially in those states where the pres-
ence of the fungus has not yet been sufficiently investi-
gated. Zoologists and naturalists involved in environmental  
and faunal monitoring should be trained to recognize and 
eventually sample a suspected case of Oo infection. Well-
planned quantitative and field-based approaches specific 
for species and location (e.g., McKenzie et al. 2021) are 
encouraged.

To date, a close relationship between the occurrence of 
ophidiomycosis and decrease in certain snake populations 
has not yet been demonstrated. Nevertheless, different spe-
cies of snakes have an ecology that does not make their 
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detectability easy. These species are difficult to study and 
evaluate at a population level, particularly in the short term 
(Turner 1978; Ward et al. 2017). Therefore, the effects of 
ophidiomycosis on population trends may not always be easy 
to assess.

Given the ecology and the potential elusivity of the 
pathogen itself, Oo should be considered potentially dan-
gerous for most of the populations in which it is present. Its 
occurrence within populations already in decline or with 
a reduced range should be even more alarming. In these 
situations, the individuals are few and they may already 
be exposed to other stressors, such as genetic isolation, 
inbreeding, and exposure to xenobiotics and stochastic 
events (De Castro and Bolker 2005; Clark et al. 2011; EFSA 
2018), that may increase their susceptibility to ophidi-
omycosis (e.g., through an inability to mount an adequate 
immune response). Moreover, in a small population with a 
restricted distribution, disease may induce extinction since 
recovery via recruitment, recolonization, and immigration 
is less likely (De Castro and Bolker 2005; Bielby et al. 
2008). Therefore, particular attention should be paid to taxa 
with an extremely reduced and disjointed area (e.g., Vipera 
ursinii) or endangered island endemisms (e.g., Macrovipera 
schweizeri).

The studies in which Oo has been evaluated as not 
impacting the survival of the species are few (i.e., Dillon 
2020; Mckenzie et al. 2021) and concern only a few taxa. 
Therefore, further investigation is needed to assess the 
impact of this fungus on snake fitness, especially consider-
ing that it could vary between different taxa and environ-
mental contexts, and that the development of Oo infection 
is likely multifactorial in wild snakes (Lorch et al. 2016a; 
Lind et al. 2018c; McKenzie et al. 2020a).

The best period for field surveys will depend on the ecol-
ogy of the investigated species. For snakes living in temper-
ate belts, which are characterized by marked seasonality and 
where ophidians overwinter, the field work should be mostly 
realized during the peri-brumation period after emergence 
and before returning to overwintering. During this period, 
infected ophidians are still basking while uninfected snakes 
have retreated in brumation refugia (Tetzlaff et al. 2017; 
Dillon 2020). If screening is conducted during unfavorable 
time periods, when ophidians show low Oo prevalence and/
or can clear the cutaneous form of Ophidiomycosis and/or 
the fungus is absent or not detectable from skin swabs, the 
site might be incorrectly declared as “ophidiomycosis-free” 
(Dillon 2020).

Furthermore, to improve knowledge of the spread of 
the fungus, it is also important to carry out retrospective 
surveys on snakes kept in museum collections (Allender 
et al. 2016; Lorch et al. 2021), both through preliminary 

macroscopic observation of clinical signs and by labora-
tory analysis.

Within the Oo species, two out of three identified clades 
have been found in at least two different world macro areas 
(Franklinos et al. 2017; Sun et al. 2021), but it is not yet clear 
why snakes from different locations were affected by fungal 
strains of the same clade. This might be explained by the 
translocation of an affected ophidian or the pathogen itself 
via vectors or fomites. Therefore, to better understand the 
distribution, evolution, and origins of Oo, it is advisable to 
continue with the molecular phylogenetic analysis of new iso-
lates, especially from those areas where data are still lacking. 
This may be carried out following phylogenetics methods 
such as those performed by Franklinos et al. (2017) and Sun 
et al. (2021), and the methods used by Ladner et al. (2022).

To date, it is not clear whether climate change has exacer-
bated the manifestation of reptile diseases caused by Oo or 
other closely related Onygenaceae and Nannizziopsiaceae, 
or whether the increased prevalence is due to underdiagnosis 
or misdiagnosis in the past (Stchigel et al. 2013). Therefore, 
future studies are needed to assess on the disease ecology 
of these fungi.

Although wild snakes are generally protected by laws that 
prohibit their manipulation and capture in the absence of  
specific authorizations (Geniez 2018; Di Nicola et al. 2021), 
they are frequently the object of attention by enthusiasts who  
do “herping” activities for unauthorized recreational pur-
poses (e.g., wildlife photography following manipulation to 
pose the subjects and collection for terrarium purposes, as 
demonstrated by the contents published daily on forums and 
sector groups in social networks). Considering that Oo might  
be spread by animate and inanimate vectors, it is recom-
mended that the authorities monitor compliance in terms 
of unauthorized manipulation or collection of wild snakes, 
as well as the release of captive snakes in the wild. This is 
needed to limit transmission of the pathogen in new habitats 
and snake populations (see Ladner et al. 2022), especially 
those small in size and/or occurring in a restricted area. At 
the same time, captive snake holders and recovery centers 
should always consider disease risk prevention and assess-
ment and should perform a quarantine of at least 90 days and 
a microbiological screening for Oo when a new individual 
enters the collection (Rivera 2019; Rossi 2019). Further-
more, the use of effective disinfectants against Oo to mini-
mize cross-contamination, as indicated by Rzadkowska and  
colleagues (2016), is highly recommended.

Histopathological diagnosis of Ophidiomycosis may be 
challenging. The HE stain routinely used in histopathol-
ogy might highlight fungal hyphae and arthroconidia, espe-
cially, and sometimes only (Dolinski et al. 2014; Haynes 
et al. 2021), at the air-tissue interface of cutaneous or 
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internal organs. Histochemical stains, such as silver stains 
(e.g., Gomori’s or Grocott’s methenamine silver) or peri-
odic acid–Schiff are used to better characterize the mor-
phology of fungal elements (Fig. 2–Baker et al. 2019). 
The latter histochemical stains appear to be more sensitive 
and suitable in detecting Ophidiomyces (e.g., in necrotic 
cores of fungal granulomas) (Dolinski et al. 2014; Last 
et al. 2016; Ohkura et al. 2016; Steeil et al. 2018a). These 
stains should be always used in suspected cases of fungal 
infection when routine staining does not show fungal ele-
ments (especially arthroconidia), particularly in granulo-
mas. Moreover, a silver staining counterstained with HE 
should be able to leverage the qualities of both dyes (see 
Vissiennon et al. 1999).

Complete physical examination of snakes by a field vet-
erinarian, with the intent to raise suspicion, particularly of 
non-cutaneous or subclinical forms of infections (e.g., Steeil 
et al. 2018a), should be an essential part of the screening. 
Studies targeting the systemic dissemination of the fungus 
are needed to evaluate associations between cutaneous and 
visceral infection. Similarly, hematogenous fungal spread 
could be confirmed with ad hoc investigations using blood 
culture (Pohly 2020), a method already used for other pur-
poses in serpentes (Waugh et al. 2017). Furthermore, com-
plete necropsy and histopathology of all organs should be 
performed to detect Oo in the tissues.

The elusivity of the disease in newborns, which show 
subtle or absent clinical signs (Britton et al. 2019), should 
raise concern because it can bring “silent deaths.” Investiga-
tion on this fundamental age class should be done, shedding 
light on the transmission route and on the impact on species’ 
fitness and demography (Britton et al. 2019; Stengle et al. 
2019; McKenzie et al. 2020b).

Based on the potential role of hibernacula to act as patho-
gen reservoirs (Campbell et al. 2021), an experimental study 
with uninfected snakes exposed to different types of substrates 
with the absence/presence of infected individuals should be 
performed to elucidate the mode of transmission of Oo within 
a common hibernaculum. Moreover, studies should assess 

whether the capability of hibernacula to preserve Oo prop-
agules (conidia) is caused by soil properties and/or by fungal 
shedding from brumating snakes (Campbell et al. 2021).

Beyond various suggestions that the reader can find 
within the text above, we would like to propose a concise 
structure for Oo diagnostics with the aim of assisting pre-
liminary surveys, particularly in countries with a lack of data 
on the fungus, and harmonizing future wildlife research on 
Oo. This is also summarized in Table 2.

The record of clinical signs in the field, as well as gather-
ing of observations from other sources (e.g., local citizens, 
social media, and public databases), is a prerequisite to focus 
the effort in a circumscribed area. Likewise, the organiza-
tion of materials and coordination of an interdisciplinary 
team (Allain and Duffus 2019) is important before starting 
a study. International cooperation can be very fruitful.

Molecular detection of Oo has priority in surveillance. 
Dry swabs are advised for molecular screening of the fun-
gus. The operator should use moderate pressure to pass the 
cotton tip of a sterile wooden applicator longitudinally over 
the head region, dorsal scales, and ventral scales, 10 times, 
trying to cover the entire skin surface. In case of lesions 
consistent with Oo mycosis, each lesion should be swabbed 
10 times, covering the entire affected area. The use of a 
single swab is strongly discouraged; in most cases, triplicate 
swabbing is time feasible and has the best cost–benefit ratio 
in term of outcomes. This approach will result in fewer false 
negatives and improved reproducibility because, after DNA 
extraction, a PCR run in duplicate or triplicate will yield 
six to nine results, respectively, per individual. Tissues and 
exuviae can be used for molecular detection, as well as scale 
clips (McKenzie et al. 2019). We suggest the use of specific 
Oo primers targeting the internal transcribed spacer region 
(Bohuski et al. 2015; Allender et al. 2015b), that, so far, 
seem the most sensitive and employed in qPCR.

The second diagnostic priority is histopathology. While 
a complete necropsy is ideal to apply the standardized scor-
ing systems, it is not always possible. In our experience, 
scale clipping as a method of tissue sampling and subsequent 

Table 2  Brief outline of the standardized protocol for Oo preliminary screening

Field sampling Photograph the snake (with close-up on any lesions) and measure important biometrical data.
Swab 10 times with dry cotton tip applicators, covering all the skin surface.
Triplicate the swabbing for each snake, using 3 different sterile applicators.
In case of gross signs, swab with the same applicator used for the whole body 10 times each lesion and sample 

tissue (scale clipping) near the affected area; store the tissues both in ≥ 90° ethanol for molecular purpose 
and in 10% neutral buffered formalin for histopathology.

Molecular detection Use specific Oo primers targeting the internal transcribed spacer region.
Run the PCR in duplicate or triplicate, yielding 6 to 9 results.

Histopathology Perform a complete anatomopathological systematic examination when possible (e.g. dead specimens).
Run PAS or silver stain to highlight fungal morphology in tissue section.

Culture Store the remaining tissue at ~ − 20 °C for prospective analysis (e.g., fungal culture).
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processing for histology is feasible to assess the presence 
and the morphology of fungal hyphae and arthrospores 
(unpubl. data–see Fig. 2). It is minimally invasive and can 
also be used for molecular purposes. Nevertheless, scale 
clipping compromises the integrity of the skin and may 
facilitate the invasion of Oo into deeper tissues (Lorch et al. 
2015; McKenzie et al. 2019). For this reason, this kind of tis-
sue sampling as well as punch biopsies is not recommended 
in free-ranging ophidians that are released prior to an immi-
nent hibernation. PAS or silver staining should be used to 
highlight fungi in tissue sections.

While culture is almost indispensable to molecularly char-
acterize the fungus, it is not a principal goal for a preliminary 
screening. However, storage of tissues or moults at − 20 °C is 
advisable for prospective analysis. The use of swabs should 
be avoided for fungal culture (Davy et al. 2021).

For further clarifications see the “Standardized approaches” 
section and referenced literature therein.

In conclusion, this review summarizes reported Oo-
positive cases and current distribution data. We also pro-
vide guidelines on a how to standardize methods for future 
studies on the prevalence, distribution, and pathogenesis 
of ophidiomycosis in ophidiofauna. Standardized methods 
should become a cornerstone for diagnosis and should be 

prospectively pursued in a global context. Further stud-
ies on the origin and epidemiology/disease ecology of Oo 
through the different taxa and biogeographic realms are 
needed in order to safeguard wild snakes from this silent, 
emerging, and still incompletely characterized, infectious 
disease.

Appendix 1

Table showing all the ophidian species in which the pres-
ence of the fungus has been detected. For each species, the 
following data are listed: the case classification based on 
the present review (see “Materials and methods” section for 
further information), the geographical locations, the bib-
liographic references, and the threat level/population trend 
according to the IUCN red list. For each species, the “Clas-
sification” column lists the highest classification rank that at 
least one specimen has reached. The ranking followed this 
increasing order: (i) “Oo present”; (ii) “apparent ophidiomy-
cosis”; (iii) “Ophidiomycosis”; (iv) “Ophidiomycosis and 
Oo shedder.” Only the specimens (and related references) 
suitable to be ranked in one of these case classifications have 
been included in Appendix 1.

Family Species States Classification References IUCN Trend

Acrochordidae Acrochordus sp. Australiaa Apparent 
ophidiomycosis

Sigler et al. (2013) / /

Boidae Chilabothrus inornatus Puerto Rico Oo present Allender et al. (2020) LC Unknown
Corallus hortulana WAa Oo present Steeil et al. (2018b) LC Stable
Eunectes murinus CAa,  WAa Ophidiomycosis 

and Oo 
Shedder

Bicknese (2009); (Sigler 
et al. 2013); Steeil 
et al. (2018b)

NE /

Eunectes notaeus WAa Oo present Steeil et al. (2018b) NE /
Colubridae Boiga irregularis MDa Ophidiomycosis 

and Oo 
Shedder

Nichols et al. (1999); 
(Sigler et al. 2013)

LC Stable

Cemophora coccinea FL, GA Ophidiomycosis 
and Oo 
Shedder

Lorch et al. (2021); 
Haynes et al. (2020)

LC Stable

Coluber constrictor CT, FL, GA, IL, 
KY, LA, MD, 
MS, NY, OH, 
 PAa, TN, VA, 
n.d

Ophidiomycosis 
and Oo 
Shedder

Allender et al. (2020); 
Fuchs et al. (2020); 
Grisnik et al. (2018); 
Guthrie et al. (2016); 
Haynes et al. (2020); 
Hill et al. (2018); 
Licitra et al. (2019); 
Long et al. (2019); 
Lorch et al. (2016b); 
McKenzie et al. 
(2019); Ohkura et al. 
(2016); Patterson et al. 
(2021); Smaga et al. 
(2021); Terrell et al. 
(2020); TWRA (2017)

LC Stable
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Drymarchon couperi GA, n.d Apparent 
ophidiomycosis

Allender et al. (2020); 
Chandler et al. (2019)

LC Decreasing

Lampropeltis 
californiae

CA,  GAa Ophidiomycosis 
and Oo 
Shedder

Haynes et al. (2021); 
Patterson et al. (2021)

LC Stable

Lampropeltis 
elapsoides

FL Ophidiomycosis Guzman-Vargas et al. 
(2020)

LC Stable

Lampropeltis getula FL,  GAb, KY, 
MD, NC, TN, 
VA

Apparent 
ophidiomycosis

Fuchs et al. (2020); 
Glorioso et al. (2020); 
Grisnik et al. (2018); 
Haynes et al. (2020); 
McKenzie et al. 
(2019); Patterson et al. 
(2021); Stengle et al. 
(2019); TWRA (2017)

LC Stable

Lampropeltis nigra AL, IL, KY, TN, 
n.d

Apparent 
ophidiomycosis

Grisnik et al. (2018); 
Lorch et al. (2016b); 
Paré and Conley 
(2020); Smaga et al. 
(2021); Snyder et al. 
(2020); TWRA (2017)

LC Stable

Lampropeltis 
triangulum

Francea, KY, MA, 
MI, NH, NY, 
TN,  WAa, WI, 
n.d

Ophidiomycosis Allender et al. (2020); 
Grisnik et al. (2018); 
Lorch et al. (2016b); 
McKenzie et al. 
(2019); Paré and 
Conley (2020); 
Picquet et al. (2018); 
Ravesi et al. (2016); 
Steeil et al. (2018b); 
Stengle et al. (2019); 
TWRA (2017)

LC Stable

Dinodon rufozonatum Taiwan Ophidiomycosis 
and Oo 
Shedder

Sun et al. (2021) LC Stable

Masticophis flagellum TX Oo present Lizarraga (2020) LC Stable
Opheodrys aestivus GA, n.d Apparent 

ophidiomycosis
Allender et al. (2020); 

Haynes et al. (2020)
LC Stable

Pantherophis 
alleghaniensis

CT, GA, MD, NJ, 
NC, PA, VT, 
VA, n.d

Ophidiomycosis 
and Oo 
Shedder

Allender et al. (2020); 
Fuchs et al. (2020); 
Haynes et al. (2020); 
Licitra et al. (2019); 
Lorch et al. (2016b); 
Paré and Conley 
(2020); Rajeev et al. 
(2009); Regester et al. 
(2017); Veilleux et al. 
(2020)

LC Unknown

Pantherophis emoryi n.d Oo present Allender et al. (2020) LC Stable
Pantherophis guttatus GAb, NY, TN, n.d Ophidiomycosis 

and Oo 
Shedder

Grisnik et al. (2018); 
Haynes et al. (2020); 
Patterson et al. (2021); 
Paré and Conley 
(2020); Sigler et al. 
(2013); TWRA (2017)

LC Stable

Pantherophis 
obsoletus*

Japana,  GAb, TN, 
TX, n.d

Ophidiomycosis 
and Oo 
Shedder

Allender et al. (2020); 
Lizarraga (2020); 
Patterson et al. (2021); 
Rajeev et al. (2009)c; 
Takami et al. (2021); 
TWRA (2017)

LC Unknown
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Pantherophis ramspotti n.d Oo present Allender et al. (2020) LC Stable
Pantherophis sp. WI Oo present Lorch et al. (2016b) / /
Pantherophis spiloides Ontario (Canada), 

GA, IL, KY, OH, 
TN, n.d

Ophidiomycosis 
and Oo 
Shedder

Allender et al. (2020); 
Davy et al. (2021); 
Grisnik et al. (2018); 
Long et al. (2019); 
Lorch et al. (2021); 
McKenzie et al. 
(2019); Patterson et al. 
(2021); Smaga et al. 
(2021)

LC Unknown

Pantherophis 
vulpinus**

Ontario (Canada), 
WI

Apparent 
ophidiomycosis

CWHC (2017); Davy 
et al. (2021); Dillon 
(2020); Lorch et al. 
(2016b); TWRA 
(2017)

LC Stable

Pituophis catenifer MN, n.d Oo present Allender et al. (2020); 
Lorch et al. (2016b)

LC Stable

Pituophis melanoleucus FL, GA, n.d Ophidiomycosis Guzman-Vargas et al. 
(2020); Haynes et al. 
(2020); Paré and 
Conley (2020)

LC Decreasing

Pituophis ruthveni LA Oo present Lorch et al. (2016b); 
Sperry et al. (2021)

EN Decreasing

Storeria dekayi Ontario (Canada), 
CT, MD, TN, 
VA

Apparent 
ophidiomycosis

Davy et al. (2021); 
Dillon (2020); Fuchs 
et al. (2020); Grisnik 
et al. (2018); Licitra 
et al. (2019); TWRA 
(2017)

LC Stable

Storeria 
occipitomaculata

KY Apparent 
ophidiomycosis

McKenzie et al. (2019) LC Stable

Dipsadidae Carphophis amoenus GA, MD, KY, VA, 
n.d

Apparent 
ophidiomycosis

Allender et al. (2020); 
Fuchs et al. (2020); 
McKenzie et al. 
(2019); Patterson et al. 
(2021)

LC Stable

Diadophis punctatus GA, KY, MD, TN, 
VA, n.d

Apparent 
ophidiomycosis

Allender et al. (2020); 
Fuchs et al. (2020); 
Grisnik et al. (2018); 
Haynes et al. (2020); 
McKenzie et al. 
(2019)

LC Stable

Farancia abacura FL, GA Ophidiomycosis 
and Oo 
Shedder

Guzman-Vargas et al. 
(2020); Haynes et al. 
(2020); Last et al. 
(2016); Lorch et al. 
(2016b)

LC Stable

Farancia erytrogramma GA, VA Ophidiomycosis 
and Oo 
Shedder

Guthrie (2016); Guthrie 
et al. (2016); Haynes 
et al. (2020)

LC Stable

Heterodon platirhinos GA, OH, TN Apparent 
ophidiomycosis

Grisnik et al. (2018); 
Haynes et al. (2020); 
Smeenk et al. (2016); 
TWRA (2017)

LC Stable

Hydrodynastes gigas WAa Oo present Steeil et al. (2018b) NE /
Elapidae Hoplocephalus 

bungaroides
Australiaa Ophidiomycosis 

and Oo 
Shedder

McLelland et al. (2010); 
(Sigler et al. 2013); 
McLelland pers. 
comm.c

VU Unknown
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Naja atra Taiwan Ophidiomycosis 
and Oo 
Shedder

Sun et al. (2021) VU Decreasing

Homalopsidae Subsessor bocourti Francea Ophidiomycosis Picquet et al. (2018) LC Unknown
Natricidae Natrix helvetica*** UK, Switzerland Ophidiomycosis 

and Oo 
Shedder

Franklinos et al. (2017); 
Meier et al. (2018)

LC Decreasing

Natrix tessellata Czech Republic Apparent 
ophidiomycosis

Franklinos et al. (2017) LC Decreasing

Nerodia clarkii FLb Ophidiomycosis Guzman-Vargas et al. 
(2020); Sigler et al. 
(2013)c

LC Decreasing

Nerodia erythrogaster GA, IL, KY, TN, 
n.d

Apparent 
ophidiomycosis

Allender et al. (2020); 
Grisnik et al. (2018); 
Haynes et al. (2020); 
McKenzie et al. 
(2019); Smaga et al. 
(2021); TWRA (2017)

LC Stable

Nerodia fasciata FL, GA, LA, n.d Ophidiomycosis 
and Oo 
Shedder

Allender et al. (2020); 
Glorioso et al. (2016); 
Haynes et al. (2020); 
Walden et al. (2020)

LC Stable

Nerodia rhombifer n.d Oo present Allender et al. 2020 LC Stable
Nerodia sipedon Ontario (Canada), 

CT, KY, MD, 
ME, MA, MO, 
OH, TN, VA, n.d

Ophidiomycosis 
and Oo 
Shedder

Allender et al. (2020); 
Baker et al. (2019); 
CWHC (2017); Davy 
et al. (2021); Dibadj 
et al. (2021); Dillon 
(2020); Fredrickson 
(2019); Fuchs et al. 
(2020); Grisnik et al. 
(2018); Guthrie et al. 
(2016); Licitra et al. 
(2019); Lorch et al. 
(2016b); McKenzie 
et al. (2019); 
McKenzie et al. 
(2020a, b); Persons 
et al. (2017); Pohly 
(2020); Snyder et al. 
(2020); Vivirito et al. 
(2021); TWRA (2017)

LC Stable

Nerodia taxispilota FL, GA, VA Ophidiomycosis Guthrie (2016); Guthrie 
et al. (2016); Guzman-
Vargas et al. (2020); 
Haynes et al. (2020)

LC Stable

Regina septemvittata Ontario (Canada), 
KY, TN

Ophidiomycosis CWHC (2017); Davy 
et al. (2021); Grisnik 
et al. (2018); Lorch 
et al. (2016b); 
McKenzie et al. 
(2019); McKenzie 
et al. (2020a, b); Price 
et al. (2015); Stengle 
et al. (2019); TWRA 
(2017)

LC Stable

Thamnophis proximus LA, TX Oo present Lizarraga (2020); Lorch 
et al. (2016b)

LC Stable
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Thamnophis radix IL Ophidiomycosis 
and Oo 
Shedder

Dolinski et al. (2014) LC Stable

Thamnophis saurita Ontario (Canada), 
GA, MD, TN, 
VA, n.d

Apparent 
ophidiomycosis

Allender et al. (2020); 
Davy et al. (2021); 
Fuchs et al. (2020); 
Grisnik et al. (2018); 
Haynes et al. (2020); 
TWRA (2017)

LC Stable

Thamnophis sirtalis Ontario (Canada), 
CT, GA, IL, KY, 
NY, OH,  PAa, 
TN, n.d

Ophidiomycosis CWHC (2017); Davy 
et al. (2021); Grisnik 
et al. (2018); Haynes 
et al. (2020); Lorch 
et al. (2016b); 
McKenzie et al. 
(2019); McKenzie 
et al. (2020a, b); Price 
et al. (2015); Smaga 
et al. (2021); Stengle 
et al. (2019); TWRA 
(2017)

LC Stable

Thamnophis sp. Germaniaa Ophidiomycosis 
and Oo 
Shedder

Vissiennon et al. (1999); 
(Sigler et al. 2013)

/ /

Virginia valeriae KY, TN Oo present Lorch et al. (2016b); 
McKenzie et al. 
(2019); Snyder et al. 
(2020)

LC Stable

Pythonidae Python bivittatus FL Oo present Glorioso et al. (2020) VU Decreasing
Python regius UKa Ophidiomycosis Sigler et al. (2013) LC Unknown
Python sebae FLa Oo present Parè et al. (2003); 

(Sigler et al. 2013)
NE /

Viperidae Agkistrodon contortrix GA, KY, SC, TN, 
TX, n.d

Apparent 
ophidiomycosis

Allender et al. (2020); 
Haynes et al. (2020); 
Lizarraga (2020); 
Lorch et al. (2016b); 
McKenzie et al. 
(2019); Paré and 
Conley (2020); Snyder 
et al. (2020); TWRA 
(2017)

LC Stable

Agkistrodon piscivorus FL, GA, LA, MS, 
TN, n.d

Apparent 
ophidiomycosis

Allender et al. (2020); 
Grisnik et al. (2018); 
Haynes et al. (2020); 
Lorch et al. (2016b); 
Terrell et al. (2020)

LC Stable

Crotalus adamanteus FL, GA,  WAa, n.d Ophidiomycosis Allender et al. (2020); 
Glorioso et al. (2020); 
Haynes et al. (2020); 
Steeil et al. (2018a, b)

LC Decreasing

Crotalus horridus CT, GA, IL, KY, 
MA, MN, NH, 
NY, PA, TN, 
VT, WI, n.d

Ophidiomycosis 
and Oo 
Shedder

Britton et al. (2019); 
Dibadj et al. (2021); 
Grisnik et al. (2018); 
Haynes et al. (2020); 
Hill et al. (2018); 
Januszkiewicz et al. 
(2020); Lorch et al. 
(2016b), (2021); 
McKenzie et al. 
(2019); Smith et al. 
(2013); TWRA (2017)

LC Decreasing
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Sistrurus catenatus Ontario (Canada), 
 ILb, MA, MI, n.d

Ophidiomycosis 
and Oo 
Shedder

Allender et al. (2011, 
2015a, 2016, 2018, 
2020); Baker et al. 
(2019); Britton et al. 
(2019); CWHC 
(2017); Davy et al. 
(2021); Hileman 
et al. (2018); Lorch 
et al. (2016b); 
McBride et al. (2015); 
Robertson et al. 
(2016); Tetzlaff et al. 
(2015, 2017)

LC Stable

Sistrurus miliarius FL; GA Ophidiomycosis Agugliaro et al. (2020); 
Guzman-Vargas et al. 
(2020); Haynes et al. 
(2020); Lind et al. 
(2018a, 2019); Lorch 
et al. (2016b); Stengle 
et al. (2019)

LC Stable

Vipera berus UK Oo present Franklinos et al. (2017) LC Decreasing
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