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Abstract

Process-based forest models are important tools for predicting forest growth and their vulnerability to factors such as climate
change or responses to management. One of the most widely used stand-level process-based models is the 3-PG model (Physi-
ological Processes Predicting Growth), which is used for applications including estimating wood production, carbon budgets,
water balance and susceptibility to climate change. Few 3-PG parameter sets are available for central European species and
even fewer are appropriate for mixed-species forests. Here we estimated 3-PG parameters for twelve major central European
tree species using 1418 long-term permanent forest monitoring plots from managed forests, 297 from un-managed forest
reserves and 784 Swiss National Forest Inventory plots. A literature review of tree physiological characteristics, as well as
regression analyses and Bayesian inference, were used to calculate the 3-PG parameters.

The Swiss-wide calibration, based on monospecific plots, showed a robust performance in predicting forest stocks such as
stem, foliage and root biomass. The plots used to inform the Bayesian calibration resulted in posterior ranges of the calibrated
parameters that were, on average, 69% of the prior range. The bias of stem, foliage and root biomass predictions was generally
less than 20%, and less than 10% for several species. The parameter sets also provided reliable predictions of biomass and
mean tree sizes in mixed-species forests. Given that the information sources used to develop the parameters included a wide
range of climatic, edaphic and management conditions and long time spans (from 1930 to present), these species parameters
for 3-PG are likely to be appropriate for most central European forests and conditions.

Keywords Forest simulator - Data assimilation - Bayesian calibration - Forest inventory - Mixed-species forests - Permanent
growth experiments

Introduction

Foresters, policy makers and scientists often use models to
estimate forest biomass or wood production, carbon budg-
ets, and the impacts of climate change, management, or
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different species mixtures on growth. Many models have
been developed that vary greatly in spatial and temporal
resolutions, model complexity and the degree to which they
rely on statistical relationships between variables versus the
physiological processes of the system (Battaglia and Sands
1998; Fontes et al. 2010; Korzukhin et al. 1996; Pretzsch
et al. 2015). Statistical models, or statistical model compo-
nents, use equations and parameters derived from data sets
representative of the conditions of interest (Korzukhin et al.
1996; Pretzsch et al. 2015; Vanclay and Skovsgaard 1997).
However, such data sets are often not available for the range
of conditions of interest to the model users, for example in
areas where a species has not previously been present, or
when new silvicultural treatments are of interest, or as new
climatic conditions arise. In contrast, process-based mod-
els, or models with some process-based components, have
been developed to overcome this limitation by simulating the
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physiological processes that influence growth and how these
processes are influenced by the environment.

Parameters used for process-based models are often
derived from measurements of physiological processes, such
as light absorption, transpiration, carbon partitioning and
nutrient cycling (Minunno et al. 2019; Pretzsch et al. 2015).
Intensive physiological measurements of many processes are
often used to calibrate process-based models (e.g. Battaglia
et al. 2004; Duursma and Medlyn 2012; Gonzalez-Benecke
et al. 2016; Pietsch et al. 2005; Wei et al. 2014). However,
measurements required to directly calculate all parameters
are not often available. Therefore, many studies use trial and
error to calibrate process-based models such that intensive
physiological measurements and growth and yield data are
used to calculate most parameters, while remaining param-
eters are tuned to maximize correlations between predictions
and observations (e.g. Sands and Landsberg 2002). In other
studies, the parameters are calculated using statistical fits
of the given parameter as a function of stand characteristics
that were calculated by the model (e.g. Gonzalez-Benecke
et al. 2016).

A potential difficulty faced when measuring physiologi-
cal processes is that measurements are not often possible
for all species provenances within the region/s where the
process-based models are to be applied and may therefore
inadequately represent the physiology, morphology or phe-
nology of the given species. Even when accurately meas-
ured parameter values are obtained, given that models are
simplifications of reality, their parameters can play slightly
different roles than their parameter name implies (van Oijen
2017). Therefore, the value of a parameter that produces the
most realistic model behaviour may differ from the measured
value (van Oijen 2017). To address this uncertainty, process-
based model predictions can be improved when observations
of outputs are used to constrain parameter values during
model calibration (Hartig et al. 2012; Thomas et al. 2017;
van Oijen 2017; van Oijen et al. 2005). While this means
that the outputs will depend on the observed data in a similar
way to statistical models (Minunno et al. 2019), it increases
the reliability of the predictions for the region where the
observed data were obtained. Several studies used inverse
model-data assimilation methods such as Bayesian cali-
bration to examine the uncertainty of parameters or model
structures and to provide statistical distributions of param-
eter values (Fer et al. 2018; Gertner et al. 1999; Hartig et al.
2012; Minunno et al. 2019; Thomas et al. 2017; van Oijen
2017; van Oijen et al. 2013).

The forests of central Europe, such as in Switzerland,
cover many environmental conditions and species compo-
sitions. Therefore, the objective of this study was to use
Bayesian calibration to obtain parameters for the 3-PG
model (Physiological Processes Predicting Growth; For-
rester and Tang 2016; Landsberg and Waring 1997) for
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twelve central European tree species. To accomplish this, a
literature review of potential parameter values was combined
with analyses of data from 2499 forest inventory plots in
Switzerland. Data from monospecific plots were used for
the Bayesian calibration and validation to obtain the 3-PG
parameters, while an additional validation was done using
13 mixed-species plots.

Methods
The 3-PG model

3-PG is a stand-level model with a monthly time step. It was
initially developed for evergreen, even-aged monospecific
forests (Landsberg and Waring 1997) and was recently fur-
ther developed for deciduous, uneven-aged and mixed-spe-
cies forests (Forrester and Tang 2016), i.e. as a cohort-based
model. 3-PG consists of five sub-models: light, biomass
production, water balance, allocation and mortality. The
light sub-model calculates light absorption using species-
specific light extinction coefficients, leaf area indices and, in
the case of multi-species or multi-cohort stands, the vertical
positioning of each cohort based on species-specific mean
height and crown length (Forrester et al. 2014). The biomass
production sub-model calculates gross primary productivity
based on a species-specific canopy quantum efficiency (a,)
that is reduced by limitations caused by temperature, frost,
vapour pressure deficit, soil moisture, soil nutrient status,
atmospheric CO, and stand age (Almeida et al. 2009; Lands-
berg and Waring 1997; Sands and Landsberg 2002). Net
primary productivity is calculated as a constant fraction of
gross primary productivity (Waring et al. 1998). In the water
balance sub-model, transpiration and soil evaporation are
calculated using the Penman—Monteith equation (Monteith
1965; Penman 1948). These are added to canopy intercep-
tion to predict evapotranspiration. Soil water is calculated as
the difference between evapotranspiration and rainfall, while
draining off any water in excess of the maximum soil water
holding capacity (Sands and Landsberg 2002). The biomass
allocation sub-model distributes net primary productivity
to roots, stems and foliage depending on soil nutrient sta-
tus, vapour pressure deficit, soil moisture and tree size. The
mortality sub-model calculates density-dependent mortality
based on the —3/2 self-thinning law by Yoda et al. (1963)
and density-independent mortality, e.g. caused by pests,
diseases or drought (Gonzalez-Benecke et al. 2014; Sands
2004). The simulated biomass is converted into output vari-
ables such as mean tree diameter, height, basal area, wood
volume and size distributions using allometric relationships.
All sub-models have been validated by comparing predicted
outputs from the given sub-model with measurements of
the same process, such as transpiration, light absorption,
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carbon partitioning and mortality (Gupta and Sharma 2019;
Landsberg and Sands 2011). This piece-wise approach to
validation reduces the likelihood of developing compensat-
ing errors among sub-models (Korzukhin et al. 1996; Sands
2004) that can be hidden by only validating a specific selec-
tion of the outputs, such as growth, stand density and mor-
tality. 3-PG was run using the r3PG package (Trotsiuk et al.
2020) in R (R Core Team 2019). A description of all 3-PG
parameters is provided in Table S1. When running r3PG,
we used settings = list(light_model =2, transp_model =2,
phys_model =2, height_model=2, correct_bias=1, calcu-
late_d13c=0). Therefore, the parameter sets developed from
this study are most appropriate for these settings.

Forest inventory data

We used data from three permanent plot networks: long-term
forest monitoring plots from managed forests and experi-
ments from the Swiss Experimental Forest Management
(EFM) network (Forrester et al. 2019), un-managed plots
from the Swiss Forest Reserve Network (FRN) (Hobi et al.

P. abies (978/89/507/8)

F. sylvatica (753/33/101/6)

2020) and the Swiss National Forest Inventory (NFI) (Fis-
cher and Traub 2019; WSL 2020) (Fig. 1).

The EFM and FRN have been monitored following
almost identical methodologies. They consist of long-
term permanent plots, with the oldest plots monitored
since 1888 and 1955, respectively. The EFM is used to
examine silvicultural treatments across a range of species,
climate and edaphic conditions. In contrast, the FRN acts
as a reference for un-managed conditions. The average
measurement intervals for the EFM data are 6.3 years
(minimum of 1 and maximum of 29) and for the FRN
plots are 12 years (minimum of 1 and maximum of 27).
These intervals depend on the growth rates, stand age and
research objectives. All individual trees with a diameter
at a height of 1.3 m (d) >4 cm, for FRN plots, or>8 cm
for EFM plots, are measured. For each tree, the d, status,
and species are recorded. Tree height, crown diameter
and crown length are measured for a subset of trees. For
the EFM plots, age is calculated based on the planting
or regeneration date, and measurements are taken at the
same time as thinning to ensure an accurate recording of
trees that are thinned and trees that die. Age is usually not
available for the FRN plots, so we only used FRN data for
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Fig.1 Location of the monitoring plots used for the estimation of
allometric or size-distribution parameters (e.g. based on regression
analyses), as well as the Bayesian calibration and validation. Numbers
in parentheses indicate the number of plots used for each category in

the legend. Note that some EFM and FRN plots with different man-
agement strategies or site/topographic characteristics are located at
the same location and are therefore overlapping on the maps
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purposes where age information was not required. In this
study, the time span between the first and the last measure-
ment (time series length) for a given plot of the EFM and
FRN ranged between 2 and 121 years (mean 26 years). For
the Bayesian calibration, we only used data collected after
the 1930s because the climatic data (required by 3-PG)
were less reliable prior to 1930. All plots and data were
used for parameter estimation using regression analyses.

The NFI plots are distributed on a regular grid of 1.4 km
including about 6,500 permanent monitoring plots that
have been measured at approximately 10-year intervals
since 1983. They are circular nested plots where every
tree with a d> 12 c¢m is recorded within an inner 200-m?
circle (horizontal radius=7.98 m), and every tree with a
d>36 cm is recorded within a 500-m? circle (horizontal
radius =12.62 m). For every individual tree, the d, crown
length, status and species are recorded. Tree height and
diameter at a height of 7 m are measured for a subset of
trees. Age is estimated using a regression model that was
fit to the data obtained either from counting tree rings or
from counting layers of branch whorls (for conifers) directly
on the plot (Fischer and Traub 2019). The trees lost due to
thinning or mortality are derived from inventory data. In
this study, the time span between the first and the last meas-
urements (time series length) for a given NFI plot ranged
between 5 and 34 years (mean 21 years).

The EFM/FRN complements the NFI network in terms of
their variability and accuracy. That is, parameter uncertainty,
and hence output uncertainty, can be reduced by increasing
the variety of data used for calibration, increasing the accu-
racy of the measurements and increasing the lengths of the
time series (van Oijen et al. 2005). The NFI plots increase
the range of climatic and edaphic conditions because they
have been distributed on a regular grid through Swiss for-
ests and therefore increase the range of conditions already
accounted for by the EFM/FRN plots. Thomas et al. (2017)
found that calibrations using environmental gradients can
constrain parameters associated with water and nutrient sen-
sitivity to a similar degree as nutrient, drought and irrigation
experiments. The EFM/FRN plots increase the data accu-
racy compared with the NFI plots, which have less accurate
information about tree status (e.g. whether a tree died or was
thinned) and tree age. Minunno et al. (2019) showed that
more accurate calibration can be obtained with more accu-
rate inventory data, such as long-term experimental plots
(e.g. EFM and FRN) rather than plots with less accurate
information about variables such as ages and tree status.
The EFM plots also increase the lengths of the time series.
For example, although our data set did not include any CO,
fertilization experiments, which are useful for calibrating
the 3-PG CO, parameters (Thomas et al. 2017), the EFM
data (pre-1950s to 2019) cover periods with atmospheric
CO, <320 ppm to >400 ppm. A summary of stand and site
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characteristics for all plot networks combined is shown in
Table 1.

Climate and soil data

Climate data were obtained by interpolation (100 m spatial
resolution) using the DAYMET method (Thornton et al.
1997) by the Landscape Dynamics group (WSL, Switzer-
land) using data from MeteoSwiss stations (Swiss Federal
Office of Meteorology and Climatology). Site-specific plant
available soil water was retrieved from the European soil
database derived data (Panagos et al. 2012). No site-specific
information about soil fertility was available to estimate the
3-PG input variable that defines soil fertility (FR). Previous
studies have used site indices, climate data and available soil
water to calculate soil fertility (e.g. Forrester et al. 2017a).
That is, by assuming the site index is mainly a function of
soil fertility, available soil water and climate, then if only
soil fertility is unknown, it can be calculated from the other
variables. However, calculations of site index (based on age
and height) were not considered reliable enough to use for
this study because many plots lacked accurate age data, and
therefore, we followed a simpler approach from several pre-
vious studies using 3-PG (Coops and Waring 2011; Mathys
et al. 2014) where the FR for all sites and species was set
to 0.5 for the Bayesian calibration and validation based on
monospecific plots.

Plot selection

Subsets of EFM, FRN and NFI data were used for five main
calculation steps: (1) 1418 EFM and 297 FRN plots were
used for regression-based estimation of many allometric
parameters, size-distribution parameters and parameters
describing the fraction of mean single-tree foliage, stem or
root biomass lost per dead tree (my mg, my), (2) Bayesian
calibration based on a subset of 161 EFM and 152 NFI mon-
ospecific plots, (3) validation based on a different subset of
138 EFM and 632 NFI monospecific plots that were not used
for calibration, (4) Bayesian calibration after combining all
plots used for steps 2 and 3 (i.e. to obtain a final parameter
set) and (5) validation based on 13 mixed-species EFM plots
and the parameter sets develop in step 4. These data sets
focused on twelve major European species shown in Table 1.

Step 1—estimation of parameters based
on regression analyses

For the first step, parameters associated with tree allometry
and size distributions were calculated using regression anal-
yses based on 1418 EFM and 297 FRN plots (Fig. 1). The
allometric parameters of 3-PG are used to calculate mean
tree height, crown diameter, crown length and volume from
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variables such as mean d, age, stand density and relative
height. The selection criteria for these plots were that all
variables required by the allometric equations were avail-
able (e.g. d, height, crown length, crown diameter, age, basal
area). Since age was usually not available for FRN plots,
these could only be used for regressions without age. An
additional criterion for plots used to obtain parameters used
to describe diameter distributions and stem mass distribu-
tions was that the given species was even-aged and hence
had unimodal-shaped distributions. That is, the stand can
be uneven-aged without a unimodal-shaped size distribu-
tion (e.g. where one species is older than another), but the
trees from a given species must appear to be about the same
age based on plot records and visual inspection of size
distributions.

The height and live-crown length equations were fit as
nonlinear equations using the nls function in R 3.5.1 (R
Core Team 2019). The volume, crown diameter and Weibull
parameter functions were fit as hierarchical mixed-effect
models using the /me function of the nlme R package (Pin-
heiro et al. 2018). Initially all fixed effect variables were
included before all non-significant (P> 0.05) variables were
removed in order of decreasing P-value. Residual and nor-
mal quantile plots were assessed to ensure that residuals
were centred at zero and approximately normally distributed.
Plot was included as a random effect. For the mixed-effect
models, a “pseudo” R? and conditional “pseudo” R? (R%c)
were calculated using the function 7.squaredGLMM in the
R package MuMIn (Barton 2016).

We used an alternative height and live-crown length equa-
tion to the earlier equation described in Forrester and Tang
(2016). This alternative equation was a Michajlow (or Schu-
macher) function (Michajlow 1952) (Eq. 1):

y=13+axe™/ 4 n.xCxd 1)

where y is height or live-crown length in metres, C is the
competition variable of 3-PG indicating stand density, and a,
ng and n are fitted parameters used for 3-PG.

3-PG calculates d and stem mass distributions as Weibull
distributions using shape, scale and location variables. Each
of these variables is calculated as a function of mean tree
or stand characteristics, and the parameters of these func-
tions are 3-PG parameters. These can be calculated using
data from monocultures or mixtures, but in mixed-species
plots, the number of trees in each size class is divided by
the species proportion (in terms of basal area) before fit-
ting the equations (Tables S6-S11). The fractions of mean
single-tree foliage, stem or root biomass lost per dead tree
(mp mg, my) (Table S1) were calculated from the slope of
the relationship between the proportion of stand foliage,
stem or root biomass of dead trees and the proportion of
the number of trees lost due to mortality (Landsberg et al.
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2005). Detailed descriptions of parameter estimation (based
on regressions) or calculations using literature sources are
provided in Forrester (2020).

Step 2—Bayesian calibration

Bayesian inference was used to derive parameter estimates
and uncertainties for 18 parameters (Table 2). These 18
parameters were selected because they could not be calcu-
lated directly from our data, such as those in step 1, and sen-
sitivity analyses have shown that 3-PG is sensitive to these
parameters (Almeida et al. 2004; Esprey et al. 2004; For-
rester and Tang 2016; Law et al. 2000; Mathys et al. 2014;
Meyer et al. 2017; Navarro-Cerrillo et al. 2016; Pérez-Cru-
zado et al. 2011; Potithep and Yasuoka 2011; Xenakis et al.
2008). This step was based on 161 EFM and 152 NFI plots.
The selection criteria were: (1) that the plots were monospe-
cific and even-aged, (2) with at least two consecutive meas-
urements, (3) no ingrowth, such that any pairs of consecutive
measurements with ingrowth were excluded, (4) no obvious
measurement errors, and (5) stand age was known. No FRN
plots were used for calibration or validation because they
are generally mixed-species and uneven-aged plots without
age information. Monocultures were defined as plots where
more than 80% of the basal area was composed of the object
species. If the object species occupied > 80% but < 100% of
plot basal area, its biomass stocks were adjusted by divid-
ing by its proportional contribution of basal area to the plot.
Mixed-species plots could not be used for Bayesian calibra-
tion because each species within a mixture would need to
be calibrated simultaneously. Therefore, since most species
occurred in different types of mixtures, most species would
have needed to be calibrated simultaneously, which was
beyond the scope of this study. An additional criterion for
the NFI plots were that there was no thinning because thin-
ning, as opposed to mortality, is difficult to measure accu-
rately in the NFI plots. Thinned plots were not excluded
from the EFM network.

This Bayesian inference approach requires a prior range
between which the parameter for the given species can occur.
We assumed uniform (i.e. non-informative) prior distribu-
tions for each of the 18 model parameters. If many published
values were available for a given parameter and species, the
prior range was set as the minimum and maximum values
(Table S12) plus or minus 15% (Table 2). For the less com-
monly measured parameters and species, we set the prior
ranges to the mean value found in the literature for that spe-
cies (Table S12) or other species considered similar in terms
of the given parameter, plus or minus 20% (Table 2).

The first calibrations indicated that the prior ranges of
the self-thinning parameters (wSx/000 and thinPower in
Tables 2 and S1) were too narrow, despite many published
studies informing the prior ranges. In contrast, the upper
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limit of the prior ranges for the T,,;, parameter was too high
for P. abies, P. cembra and P. menziesii and was reduced to
2.5, as informed by the literature (Table S12). Note that the
T,,:, parameter of 3-PG represents a mean monthly minimum
temperature (i.e. monthly-7,,;,) where the species can no
longer grow. However, this value will probably be lower than
the actual daily 7, (daily-7,,,) that determines whether
growth is possible for the given species, because even when
the monthly-7,;, is lower than the daily-T,,,,, there are likely
to be several days during that month where the minimum
temperature is higher than the daily-7,,;,, and hence, some
growth will still occur for that month. The reduction of 7,
to 2.5 was required because T,,;, is multiplied by the can-
opy quantum efficiency parameter, a,, to calculate gross
primary production. The overestimation of 7,,, restricted
growth to warmer months, and the resulting reduction in
annual growth was compensated for by an overestimation
of ag,.

The likelihood function was constructed to be robust
against outliers by modelling the residual error as a Stu-
dent’s t distribution with sampled degrees of freedom (see
Code S1; Lange et al. 1989), following Augustynczik et al.
(2017). For each calibration, we parametrized the degrees
of freedom of the output variable using the constant of the
probability of having outliers in the dataset and estimated
the parameter using a uniform prior distribution from 0 to
1. The variance of each observation was estimated using the
uniform prior distribution specific for each variable: stem
biomass (0-50), foliage biomass (0-5) and root biomass
(0—15). The joint posterior distribution for the model param-
eters was estimated using a Differential Evolution Markov
Chain Monte-Carlo algorithm (DEzs MCMC, ter Braak and
Vrugt 2008) implemented in the BayesianTools R package
(Hartig et al. 2019). For each species, three independent
DEzs MCMC runs were made, each with three internal
chains. Convergence was tested by visual inspection of the
trace plots and using the Gelman—Rubin diagnostic (Gel-
man and Rubin 1992). Convergence was accepted when
the multivariate potential scale reduction factor was<1.1.
Three independent DEzs MCMC chains with 2 x 10° itera-
tions were required to achieve convergence. All analyses and
calculations were performed in the R language for statistical
computing (R Core Team 2019).

For calibration, we used three variables that describe
stand stocks: stem biomass (SB), foliage biomass (FB) and
root biomass (RB). Stem, root and foliage biomass were cal-
culated for each measured tree using equations developed for
European forests (Forrester et al. 2017b) and summed up to
the stand level in Mg dry matter ha!. The fractions of mean
single-tree foliage, stem or root biomass lost per thinned tree
(F, S, R) were calculated for each plot and growth period
as the ratio of the proportion of stand foliage, stem or root
biomass of thinned trees and the proportion of the number

@ Springer

of trees lost due to thinning. The first observations on each
monitoring plot were used to initialize the 3-PG model runs
(see below), while the subsequent observations were used to
calculate likelihood for DEzs MCMC runs (Tables 3 and 4).

Step 3—3-PG model evaluation and validation
for monocultures

The validation of monospecific plots was based on the
same criteria as the plots used for Bayesian calibration and
included 138 EFM and 632 NFI plots that had not been used
for the calibration. For species where the total number of
plots was above 30, we randomly split the full set of moni-
toring data into two equally sized groups, resulting in a cali-
bration and a validation set. For the two Quercus species,
we used 70% of the total number of plots for calibration and
30% for validation. For the rest of the species, we used all
available monitoring plots for calibration.

The skill of the 3-PG model to generate model predic-
tions was assessed using posterior predictive distributions
obtained by running the model with 1,000 random samples
from the parameters’ posterior distribution. The model per-
formance was evaluated using the percentage bias (pBias;
Eq. 2), root mean squared error (RMSE; Eq. 3) and normal-
ized root mean square error (NRMSE; Eq. 4). The statistics
were calculated at the plot level and then averaged for each
of the 1,000 parameter samples. The validation only used
the most recent set of observations at each plot to maximize
the time between initialization and validation, which ranged
from 4 to 87 years.

The pBias, RMSE and NRMSE were calculated as

P-0

pBias = 100——— )
0]
" (P,—0,)?
RMSE = M 3)
n
RMSE

where O; are the observed values, P; are the predicted values
from 3-PG, O and P are the means and O, and O,,;, are the
maximum and minimum of the observed values.

Step 4—3-PG model calibration using all plots

The parameter estimates obtained in Step 2 were based on
only about half of the plots, with the other half used for
validation (Step 3). Therefore, a final set of parameters were
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Table 3 (continued)

&

Quercus
robur

Quercus
petraea

Pseu-
dotsuga
mengziesii

Pinus
cembra sylvestris

Pinus

Larix decidua Picea abies

Fraxinus
excelsior

Fagus syl-
vatica

Betula pen-
dula

Acer pseudo-

platanus

Abies alba

Parameter

Springer

0.4211 0.5884 0.6107 0.4861 0.3093 0.4133 0.3890 0.4505 0.6009 0.6037 0.6064

0.5257

(0.4291—
0.6483)

0.1715

(04426~
0.6476)
0.1721

(0.4536-
0.6481)
0.3491

(0.3048-
0.6393)
0.3684

(0.3032—
0.6305)
0.3342

(0.3038—
0.6363)
0.2295

(0.3004—
0.3482)
0.1735

(0.3082-
0.6390)
0.2615

(0.4611-

(0.3671-
0.6475)
0.1784

(0.3045—
0.6319)
0.2336

(0.3201-
0.6426)

MaxIntcptn  0.3385

0.6482)
0.2484

(0.1400—
0.2058)
0.0410

(0.1376-
0.2014)
0.0408

(0.2734—
0.3972)
0.0631

(0.2831—
0.3988)
0.0258

(0.2776-
0.3969)
0.0285

(0.2206—
0.2648)
0.0401

(0.1416—
0.2083)
0.0610

0.2197- 0.2117-

(0.1429—
0.2105)

0.0298

(0.1847-
0.2697)
0.0400

(0.2904—
0.3966)
0.0283

0.3108)
0.0265

0.3179)
0.0436

alphaCx

(0.0319-
0.0522)

(0.0311-
0.0193

(0.0522—
0.0696)
0.0232

(0.0250—
0.0293)
0.0176

(0.0251-

(0.0342—
0.0481)
0.0247

(0.0498—
0.0694)
0.0142

(0.0251-

(0.0360—
0.0526)
0.0177

(0.0253—
0.0376)
0.0210

(0.0286—
0.0607)
0.0220

(0.0251—

0.0528)
0.0253

0.0443)
0.0206

0.0317)
0.0235

0.0381)
0.0144

MaxCond

0.0161—
0.0238)

0.0171- (0.0138— 0.0102—=  (0.0245-  (0.0104—  (0.0144—  (0.0198— (0.0194—
0.0259) 0.0184)
0.0860 0.0462

(0.0163—
0.0238)

0.0522

(0.0174-

(0.0102—

0.0280)
0.0477

0.0266)

0.0514

0.0343)
0.0800

0.0238)
0.0836

0.0328)
0.0573

0.0200)
0.0569

0.0239)
0.0456

0.0282)

CoeffCond 0.0908

0.0814

(0.0379—
0.0558)

(0.0392—
0.0578)

(0.0424—
0.0622)

(0.0769-  (0.0284—  (0.0626—
0.0991) 0.0907)

0.0986)

(0.0372- (0.0426— (0.0438- (0.0438- (0.0756—
0.0627) 0.0624) 0.0635) 0.0987)

0.0546)

(0.0773—

0.0997)

*Not applicable for deciduous species

obtained by repeating Step 2 but after combining the calibra-
tion plots and validation plots.

Step 5—3-PG model evaluation and validation
for mixtures

To test that the parameter sets also provided reliable predic-
tions for mixed-species forests, 13 mixed-species plots were
simulated by inputting information from the first inventory.
The selection criteria for these plots were the same as the
calibration plots, except that they needed to be mixed. Since
site-specific soil fertility data were not available, the FR was
adjusted to a value that gave satisfactory model performance.
The parameters used were obtained in Step 4 and were based
on all calibration and validation plots. pBias and RMSE
were calculated for each species within the 13 mixed-species
plots. Only the most recent set of observations for each plot
were used to maximize the time between initialization and
validation, which ranged from 16 to 47 years. The model
performance was calculated using the pBias (Eq. 2) and the
relationships between predictions and observations.

Results

Estimation of parameters based on regression
analyses

By using the EFM and FRN data sets, large sample sizes
were available for most regressions, and these samples gen-
erally included broad ranges in tree sizes and stand, or site
conditions (Tables 1 and S2-S11). The statistical information
for each regression is provided in Tables S2 to S11.

The mean tree height and live-crown length were often
influenced by stand density, as well as d (Tables S2 and S3).
Individual tree crown diameter was often influenced by stand
density and relative height, in addition to d (Table S5). Mean
tree volume was a function of d and height for all species
(Table S4).

The scale, shape and location parameters that describe d
and stem mass distributions varied between species in terms
of which variables were significant (d, relative height, age
and stand density). For several species with lower samples
sizes (A. pseudoplatanus, B. pendula, F. excelsior), none of
the explanatory variables were significant for at least one of
the scale, shape and location parameters, and in those cases,
the mean scale, shape or location parameter for the given
species was used (Tables S6-S11).

Bayesian calibration

By using the Bayesian calibration, we were able to reduce the
parametric uncertainty of 3-PG. The width of the posterior
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parameter distributions based only on the calibration plots
(Step 2), measured by the 95% quantile range (see Table 5),
was on average only 69% of the width of the prior ranges
(which are shown in Tables 2 and 5). This was reduced to
63% when considering the posterior parameter distribu-
tions based on the calibration and validation plots (Step 4)
(Table 5). This reduction in the uncertainty of the param-
eters was greater for more common species (e.g. 20% for P.
abies) than for rarer species in the data set (e.g. 81-82% for
F. excelsior and P. cembra) (Table 5). The largest reduction
in uncertainty for all species was for parameters associated
with biomass partitioning (pFS20), root or foliage litterfall
(gammaF1, gammaR) and light-use efficiency (alphaCx),
while the lowest reduction in uncertainty was for parameters
defining the responses to vapour pressure deficit, tempera-
ture or CO, (CoeffCond, Tmax, fCg700) and the canopy
interception of precipitation (MaxIntcptn).

3-PG model evaluation and validation
for monocultures

3-PG reliably predicted the biomass stocks of the mono-
specific plots used for validation. The pBias was generally
less than 20%, for stems, foliage and roots, and for several
species it was less than 10% (L. decidua, P. menziesii and
Q. robur) (Fig. 2). In comparison, the pBias for the cali-
bration plots was generally < 10%, except for species with
sample sizes that were too low to do a validation (B. pen-
dula, A. pseudoplatanus, F. excelsior, P. cembra) (Fig. 2). As
expected, the RMSE was highest for stem mass because this
stock is typically much greater than root or foliage biomass.
After accounting for differences in the size of stem stocks
compared with root and foliage stocks, the NRMSE indi-
cated that the foliage mass predictions had the highest errors.

3-PG model evaluation and validation for mixtures

The parameters resulted in accurate predictions for mixed-
species plots in terms of stem, foliage (not shown) and root
biomass, as well as other outputs derived from them such
as d, height and basal area (Fig. 3). The slopes of the rela-
tionships between the predicted and observed values were
usually close to 1 and not significantly different to 1. The
exceptions included A. alba, which often also had a high
pBias, and P. abies in terms of stem and root mass (Fig. 3;
Table 6).

Discussion
For all twelve European tree species, the Bayesian calibra-

tion provided parameter sets with prediction bias < 20% and
in several cases < 10%. Given the wide range of site, climate

and stand structural conditions covered by the plots of many
of these species, the parameters are expected to be gener-
ally applicable for central European forests. Similarly, 3-PG
parameters for species in North America, South America
and Thailand, developed from a sample of plots within a
population, have been successfully applied across wide
ranges of site conditions and management (Almeida et al.
2010; Gonzalez-Benecke et al. 2014, 2016; Hung et al. 2016;
Thomas et al. 2017). Consistent with this study, Bayesian
calibrations using outputs including basal area, volume,
biomass stocks, mean tree diameter or height, tree and soil
nutrition, leaf area index and net primary productivity have
produced accurate predictions for other process-based forest
models (Minunno et al. 2019; van Oijen et al. 2013, 2005).

The reduction in parametric uncertainty was often larger
for the parameters to which output variables of 3-PG have
been found to be highly sensitive (e.g. alphaCx, pFS20,
gammaF1), and minimal to parameters to which 3-PG out-
puts are relatively insensitive (e.g. Tmax, CoeffCond, Max-
Intcptn) (for 3-PG sensitivity analyses, see Almeida et al.
2004; Esprey et al. 2004; Forrester and Tang 2016; Law
et al. 2000; Mathys et al. 2014; Meyer et al. 2017; Navarro-
Cerrillo et al. 2016; Pérez-Cruzado et al. 2011; Potithep and
Yasuoka 2011; Xenakis et al. 2008). The largest reduction
in uncertainty for all species was for parameters associated
with biomass partitioning (pFS20), root or foliage litterfall
(gammaF1, gammaR) and light-use efficiency (alphaCx).
The gammaR is only used to calculate the loss of root mass
and has no influence on other variables, which explains why
it was so easily constrained by the output variable root mass.
The pFS20 (and pFS2) controls the partitioning of above-
ground biomass growth between stems and foliage, and the
gammaF]1 controls the foliage litterfall rate. These are there-
fore important determinants of two output variables that we
used to constrain 3-PG (stem mass and foliage mass). They
are also important determinants of stand structure (e.g. leaf
area index, mean tree size) and hence processes including
light absorption and mortality. Similarly, for several spe-
cies there was a high reduction in uncertainty in the light
extinction parameter (k) and the potential light-use effi-
ciency parameter (alphaCx), which are also very influen-
tial parameters in terms of biomass production. Parametric
uncertainty was improved very little for Tmax, CoeffCond
and MaxIntcptn. The former two parameters were also not
improved in another study using inverse modelling with
3-PG, despite including Eddy covariance evapotranspiration
data to constrain the model (Thomas et al. 2017). Therefore,
reductions in parametric uncertainty appear to be higher for
parameters to which the model is most sensitive as well as
parameters that influence the output variables used for the
inverse modelling.

Inter-specific differences in parameters often con-
firmed expected inter-specific differences in physiology.
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For example, the potential light-use efficiency parameter
(alphaCx) was highest for species known to have potentially
high growth rates (e.g. P. menziesii, L. decidua) and inter-
mediate for species such as F. sylvatica and Q. robur/Q.
petraea. Nevertheless, it is important to note that the inverse
modelling approach only provides an indirect indication of
the parameters in terms of their physiological and ecologi-
cal meanings.

In general, species for which the parametric uncertainty
was reduced the most were those with the highest sample
sizes. However, the prediction bias did not always decline
with increasing numbers of plots, such that some of the most
abundant species in the data set (e.g. F. sylvatica, P. abies
and P. sylvestris) had prediction errors of > 10%, at least for
some variables. Given that the accuracy of 3-PG predictions
can be improved by developing different parameter sets for
different provenances or even for different clones (Almeida
et al. 2004), the larger prediction errors may have resulted
from a greater intra-specific genetic diversity within the
populations of these species. For example, P. sylvestris has
a large physiological and morphological plasticity (Rehfeldt
et al. 2002), and our data set included several provenance
trials, although none were abundant enough to develop prov-
enance-specific parameter sets.

A parameterization of the BGC forest model for P. abies
indicated that different parameter sets were required for
populations at low and high elevations (means of 607 m vs.
1385 m) (Pietsch et al. 2005). We did not observe any ele-
vation-related effect on the bias of P. abies predictions and
used a single parameter set for all elevations (282-2065 m).
A single parameter set was also found to be appropriate in
Finnish P. abies parameterizations of the PREBAS model
(Minunno et al. 2019). This may indicate that 3-PG and
PREBAS account for a cause of the elevation differences
that was not accounted for by the BGC model.

Since all models are simplifications of reality, they inevi-
tably do not include all the processes that influence their
outputs. Consequently, some of the parameters within the
model may compensate for missing information, and as a
result, they will not represent exactly what is implied by
their parameter name (van Oijen 2017). Preliminary cali-
brations showed that the self-thinning parameter (Wg,;900)
required different values than indicated by the means of
many published values, and the prior ranges therefore
needed to be widened. Self-thinning parameters were also
required to vary between experiments for Bayesian calibra-
tions of 3-PG for Pinus taeda (Thomas et al. 2017). This
may indicate that improvements can be made to 3-PG
in relation to quantifying the carrying capacity of a site,
although the effects of site and climate on self-thinning rates
do not appear large enough in Swiss forests to account for
this (Forrester et al. 2021). This also indicates the value of
validating each sub-model by comparing predicted outputs

Mean for
all spe-
cies

59

90

35

70

61
61
98
63

robur
18

50
100
49

79
100
59

Quercus Quercus

petraea
80

64

100
100

71

45
51
97

Pseu-
dotsuga
menziesii
14

40

42

95

29

71

98

47

Pinus sylves-

tris
19
47
46
92
8
60
95
54
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72
63
98
100
45
101
93
81
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34
17
16
12
20

100
62
40
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53
76
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66

excelsior

101
100
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15
80
97
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Fagus syl-
vatica

64

50

37

82

28
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99

42
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99
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100
80
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nus

100

100

98's

86

100

85
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99
75

55
100
31
57
100
70

54

parameters

Table 5 (continued)

Parameter
wSx1000
thinPower
MaxIntcptn
alphaCx
MaxCond
CoeffCond
Mean for all
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«Fig. 2 Statistics for predictive error (percent bias, normalized root
mean squared error and root mean squared error). The posterior
predictive uncertainty was calculated by drawing 1,000 parameter
combinations from the posteriori distribution and calculating model
predictions for the calibration (green dots), validation (orange dots)
and calibration + validation (black dots) monitoring data subsets. The
dots represent the median value of the posterior predictive distribu-
tion, while the horizontal lines represent the 95% confidence interval.
Species are ordered by number of available monitoring plots for cali-
bration and validation. Numbers under the species name indicate the
number of monitoring plots used for calibration and validation. For
B. pendula, A. pseudoplatanus, F. excelsior, P. cembra, the samples
sizes were too small to do a validation

from the given sub-model with measurements of the same
process, rather than indirect approaches that, for example,
validate a light or water balance sub-model using growth and
yield data (Korzukhin et al. 1996; Sands 2004). This pro-
vides confidence that the sub-models perform as their names
imply and therefore that deviations in parameter estimates
based on Bayesian calibrations, compared with field meas-
urements of the parameters, are likely to indicate a missing
process within the model, rather than significant problems
with existing model components.

Another source of error is the calculation of biomass.
The “observed” biomass was predicted using allometric
equations developed from an independent European-wide
data set (Forrester et al. 2017b). However, even though these
equations accounted for variables such as tree diameter and
stand density, they are unlikely to be as accurate as site-
specific destructively sampled biomass measurements, and
they will not reflect the short-term (monthly or annual) vari-
ability in biomass allocation that is predicted by 3-PG. In
this study, we did not account for the errors associated with
the allometric biomass equations or the allometric equations
used to obtain 3-PG parameters for height, crown length
and crown diameter. Therefore, the ranges of the parameter
posterior distributions may have been underestimated, and
when estimates of errors are required when forecasting, the
variance related to the allometric equations would need to
be considered in the outputs.

By setting the soil fertility for all plots to 0.5, some of
the other parameters would have been forced to account for
variability in biomass that was actually due to soil fertility.
The resulting influence of this approach on the parameter
estimates is assumed to be relatively low because of the large
number of plots used and because many of the plots are

imincionons . 7@ semnessugra 0Z) (o) esmass ana’) 0
root biomass (b), arithmetic . 7 !
mean diameter (¢) and mean 300 L / 68 1 o ,’
height (d) for a selection of 6 Y, ,
species in 13 mixed-species - / | ,%O
« ” 3 225 51 ,
plots. Note that the “observed > OCQ o
biomass was calculated using 9 -2 % ,
allometric biomass equations. S 150- O 2 34 - O ¢ /
Only data from the end of the yas Abies alba O ’ Abies alba
simulations are shown; for a @Q o Fagus syl_vatica P / o Fagus syl'vatica
given species, only one point is 751 / z é?g; Cftfigsua 17 ), g I,;‘:’Cr Z(adaebci’ed:a
shov&./n for each plot where that o Pinus cembra : o Pinus cembra
species occurred at the end of | Pinus sylvestris Pinus sylvestris
the simulations. The solid lines 0 : : ‘ : ‘ 0 : : : :
are 1:1 lines, and the dashed 0 75 150 225 300 375 0 17 34 51 68
lines are fitted to the data to
pass through the origin. Sample 7
size N=24 (c) Diameter (cm) / 401 (d) Height (m) O
9/ 0 /
487 e 32 c O )
/ ©)
O
§ 36 24 o / o
9
S 24 Abies alba 161 Abies alba
O Fagus sylvatica O Fagus sylvatica
O Larix decidua O Larix decidua
127 O Picea abies 81 O Picea abies
O Pinus cembra O Pinus cembra
o Pinus sylvestris 0 Pinus sylvestris
0 12 24 36 48 0 8 16 24 32 40
Predicted Predicted

@ Springer



866

European Journal of Forest Research (2021) 140:847-868

Table 6 Statistical information that describes the relationships
between the predicted and observed variables for mixtures as shown
in Fig. 3. The statistical information includes the percentage bias
(pBias%), the relative mean absolute error (MAE%), the slope of

the relationship forced through the origin, the P-value for the test of
whether the slope of the relationship is significantly different from
1, and the R? values. The mean species proportion is in terms of the
contribution made to total stand basal area

Output variable Species pBias Slope P-value R? Mean species ~ Time-series length (years; Number
proportion and minimum/maximum) of plots
Stem mass Picea abies 4.6 0.95 0.003  0.999 0.44 27 (16/42) 8
Stem mass Pinus cembra -14.1 1.16 0.131  0.999 0.3 42 (42/42) 2
Stem mass Pinus sylvestris 4.8 0.98 0.755  0.994 0.38 32 (17/47) 3
Stem mass Abies alba 53.5 0.6 0.012  0.989 0.15 26 (22/35) 3
Stem mass Fagus sylvatica -19 1.01 0.668  0.997 0.62 27 (16/47) 6
Stem mass Larix decidua 2.7 0.97 0.178 1 0.63 20 (19/21) 2
Root mass Picea abies -94 1.13 0.004  0.995 0.44 27 (16/42) 8
Root mass Pinus cembra -0.1 1 0.994  0.998 0.3 42 (42/42) 2
Root mass Pinus sylvestris 144 0.9 0.199  0.993 0.38 32 (17/47) 3
Root mass Abies alba 40.5 0.66 0.024  0.987 0.15 26 (22/35) 3
Root mass Fagus sylvatica -41.1 1.68 <0.001  0.992 0.62 27 (16/47) 6
Root mass Larix decidua =55 1.06 0.103 1 0.63 20 (19/21) 2
Mean diameter Picea abies -6.1 1.06 0.093  0.993 0.44 27 (16/42) 8
Mean diameter Pinus cembra 7.4 0.93 0.107 1 0.3 42 (42/42) 2
Mean diameter Pinus sylvestris 8.5 0.93 0.118  0.998 0.38 32 (17/47) 3
Mean diameter Abies alba 4 0.96 0217  0.999 0.15 26 (22/35) 3
Mean diameter Fagus sylvatica —-4.4 1.04 0.188  0.996 0.62 27 (16/47) 6
Mean diameter Larix decidua 8.7 0.92 0.103 1 0.63 20 (19/21) 2
Mean height Picea abies 1 0.98 0.73 0.981 0.44 27 (16/42) 8
Mean height Pinus cembra -3.8 1.04 0542  0.998 0.3 42 (42/42) 2
Mean height Pinus sylvestris -11.2 1.13 0.085  0.997 0.38 32 (17/47) 3
Mean height Abies alba 154 0.87 0.002 1 0.15 26 (22/35) 3
Mean height Fagus sylvatica 22 0.98 0.665  0.985 0.62 27 (16/47) 6
Mean height Larix decidua -4.6 1.06 0.585  0.995 0.63 20 (19/21) 2

likely to have FR close to 0.5 assuming a roughly normal
distribution of FR. However, the parameters could still be
improved when reliable soil fertility information becomes
available.

Lastly, the parameter sets generally provided accurate
predictions for mixed-species forests. The validation for
mixtures was based on small sample sizes (13 mixed-species
plots) due to the difficulty in finding even-aged mixtures
that only contained the species that had been parameter-
ized. Nevertheless, these results confirm that 3-PG can be
calibrated using monocultures and applied to mixtures, as
previously found in Europe (Bouwman et al. 2021; Forrester
et al. 2017a) and China (Forrester and Tang 2016).

In conclusion, the combination of a literature review,
direct estimation of many allometric parameters, several
inventory plot networks and Bayesian calibration resulted
in reliable 3-PG parameters for twelve major European spe-
cies. These parameters are also applicable for mixed-spe-
cies forests. The information sources used to develop the
parameters included a wide range of climatic, edaphic and
management conditions and long time spans (from 1930 to

@ Springer

present). Given this and the process-based structure of the
3-PG model, these parameters are likely to be applicable for
most central European forests and conditions.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10342-021-01370-3.
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