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Abstract
Process-based forest models are important tools for predicting forest growth and their vulnerability to factors such as climate 
change or responses to management. One of the most widely used stand-level process-based models is the 3-PG model (Physi-
ological Processes Predicting Growth), which is used for applications including estimating wood production, carbon budgets, 
water balance and susceptibility to climate change. Few 3-PG parameter sets are available for central European species and 
even fewer are appropriate for mixed-species forests. Here we estimated 3-PG parameters for twelve major central European 
tree species using 1418 long-term permanent forest monitoring plots from managed forests, 297 from un-managed forest 
reserves and 784 Swiss National Forest Inventory plots. A literature review of tree physiological characteristics, as well as 
regression analyses and Bayesian inference, were used to calculate the 3-PG parameters.
The Swiss-wide calibration, based on monospecific plots, showed a robust performance in predicting forest stocks such as 
stem, foliage and root biomass. The plots used to inform the Bayesian calibration resulted in posterior ranges of the calibrated 
parameters that were, on average, 69% of the prior range. The bias of stem, foliage and root biomass predictions was generally 
less than 20%, and less than 10% for several species. The parameter sets also provided reliable predictions of biomass and 
mean tree sizes in mixed-species forests. Given that the information sources used to develop the parameters included a wide 
range of climatic, edaphic and management conditions and long time spans (from 1930 to present), these species parameters 
for 3-PG are likely to be appropriate for most central European forests and conditions.

Keywords  Forest simulator · Data assimilation · Bayesian calibration · Forest inventory · Mixed-species forests · Permanent 
growth experiments

Introduction

Foresters, policy makers and scientists often use models to 
estimate forest biomass or wood production, carbon budg-
ets, and the impacts of climate change, management, or 

different species mixtures on growth. Many models have 
been developed that vary greatly in spatial and temporal 
resolutions, model complexity and the degree to which they 
rely on statistical relationships between variables versus the 
physiological processes of the system (Battaglia and Sands 
1998; Fontes et al. 2010; Korzukhin et al. 1996; Pretzsch 
et al. 2015). Statistical models, or statistical model compo-
nents, use equations and parameters derived from data sets 
representative of the conditions of interest (Korzukhin et al. 
1996; Pretzsch et al. 2015; Vanclay and Skovsgaard 1997). 
However, such data sets are often not available for the range 
of conditions of interest to the model users, for example in 
areas where a species has not previously been present, or 
when new silvicultural treatments are of interest, or as new 
climatic conditions arise. In contrast, process-based mod-
els, or models with some process-based components, have 
been developed to overcome this limitation by simulating the 
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physiological processes that influence growth and how these 
processes are influenced by the environment.

Parameters used for process-based models are often 
derived from measurements of physiological processes, such 
as light absorption, transpiration, carbon partitioning and 
nutrient cycling (Minunno et al. 2019; Pretzsch et al. 2015). 
Intensive physiological measurements of many processes are 
often used to calibrate process-based models (e.g. Battaglia 
et al. 2004; Duursma and Medlyn 2012; Gonzalez-Benecke 
et al. 2016; Pietsch et al. 2005; Wei et al. 2014). However, 
measurements required to directly calculate all parameters 
are not often available. Therefore, many studies use trial and 
error to calibrate process-based models such that intensive 
physiological measurements and growth and yield data are 
used to calculate most parameters, while remaining param-
eters are tuned to maximize correlations between predictions 
and observations (e.g. Sands and Landsberg 2002). In other 
studies, the parameters are calculated using statistical fits 
of the given parameter as a function of stand characteristics 
that were calculated by the model (e.g. Gonzalez-Benecke 
et al. 2016).

A potential difficulty faced when measuring physiologi-
cal processes is that measurements are not often possible 
for all species provenances within the region/s where the 
process-based models are to be applied and may therefore 
inadequately represent the physiology, morphology or phe-
nology of the given species. Even when accurately meas-
ured parameter values are obtained, given that models are 
simplifications of reality, their parameters can play slightly 
different roles than their parameter name implies (van Oijen 
2017). Therefore, the value of a parameter that produces the 
most realistic model behaviour may differ from the measured 
value (van Oijen 2017). To address this uncertainty, process-
based model predictions can be improved when observations 
of outputs are used to constrain parameter values during 
model calibration (Hartig et al. 2012; Thomas et al. 2017; 
van Oijen 2017; van Oijen et al. 2005). While this means 
that the outputs will depend on the observed data in a similar 
way to statistical models (Minunno et al. 2019), it increases 
the reliability of the predictions for the region where the 
observed data were obtained. Several studies used inverse 
model-data assimilation methods such as Bayesian cali-
bration to examine the uncertainty of parameters or model 
structures and to provide statistical distributions of param-
eter values (Fer et al. 2018; Gertner et al. 1999; Hartig et al. 
2012; Minunno et al. 2019; Thomas et al. 2017; van Oijen 
2017; van Oijen et al. 2013).

The forests of central Europe, such as in Switzerland, 
cover many environmental conditions and species compo-
sitions. Therefore, the objective of this study was to use 
Bayesian calibration to obtain parameters for the 3-PG 
model (Physiological Processes Predicting Growth; For-
rester and Tang 2016; Landsberg and Waring 1997) for 

twelve central European tree species. To accomplish this, a 
literature review of potential parameter values was combined 
with analyses of data from 2499 forest inventory plots in 
Switzerland. Data from monospecific plots were used for 
the Bayesian calibration and validation to obtain the 3-PG 
parameters, while an additional validation was done using 
13 mixed-species plots.

Methods

The 3‑PG model

3-PG is a stand-level model with a monthly time step. It was 
initially developed for evergreen, even-aged monospecific 
forests (Landsberg and Waring 1997) and was recently fur-
ther developed for deciduous, uneven-aged and mixed-spe-
cies forests (Forrester and Tang 2016), i.e. as a cohort-based 
model. 3-PG consists of five sub-models: light, biomass 
production, water balance, allocation and mortality. The 
light sub-model calculates light absorption using species-
specific light extinction coefficients, leaf area indices and, in 
the case of multi-species or multi-cohort stands, the vertical 
positioning of each cohort based on species-specific mean 
height and crown length (Forrester et al. 2014). The biomass 
production sub-model calculates gross primary productivity 
based on a species-specific canopy quantum efficiency (αC) 
that is reduced by limitations caused by temperature, frost, 
vapour pressure deficit, soil moisture, soil nutrient status, 
atmospheric CO2 and stand age (Almeida et al. 2009; Lands-
berg and Waring 1997; Sands and Landsberg 2002). Net 
primary productivity is calculated as a constant fraction of 
gross primary productivity (Waring et al. 1998). In the water 
balance sub-model, transpiration and soil evaporation are 
calculated using the Penman–Monteith equation (Monteith 
1965; Penman 1948). These are added to canopy intercep-
tion to predict evapotranspiration. Soil water is calculated as 
the difference between evapotranspiration and rainfall, while 
draining off any water in excess of the maximum soil water 
holding capacity (Sands and Landsberg 2002). The biomass 
allocation sub-model distributes net primary productivity 
to roots, stems and foliage depending on soil nutrient sta-
tus, vapour pressure deficit, soil moisture and tree size. The 
mortality sub-model calculates density-dependent mortality 
based on the −3/2 self-thinning law by Yoda et al. (1963) 
and density-independent mortality, e.g. caused by pests, 
diseases or drought (Gonzalez-Benecke et al. 2014; Sands 
2004). The simulated biomass is converted into output vari-
ables such as mean tree diameter, height, basal area, wood 
volume and size distributions using allometric relationships. 
All sub-models have been validated by comparing predicted 
outputs from the given sub-model with measurements of 
the same process, such as transpiration, light absorption, 
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carbon partitioning and mortality (Gupta and Sharma 2019; 
Landsberg and Sands 2011). This piece-wise approach to 
validation reduces the likelihood of developing compensat-
ing errors among sub-models (Korzukhin et al. 1996; Sands 
2004) that can be hidden by only validating a specific selec-
tion of the outputs, such as growth, stand density and mor-
tality. 3-PG was run using the r3PG package (Trotsiuk et al. 
2020) in R (R Core Team 2019). A description of all 3-PG 
parameters is provided in Table S1. When running r3PG, 
we used settings = list(light_model = 2, transp_model = 2, 
phys_model = 2, height_model = 2, correct_bias = 1, calcu-
late_d13c = 0). Therefore, the parameter sets developed from 
this study are most appropriate for these settings.

Forest inventory data

We used data from three permanent plot networks: long-term 
forest monitoring plots from managed forests and experi-
ments from the Swiss Experimental Forest Management 
(EFM) network (Forrester et al. 2019), un-managed plots 
from the Swiss Forest Reserve Network (FRN) (Hobi et al. 

2020) and the Swiss National Forest Inventory (NFI) (Fis-
cher and Traub 2019; WSL 2020) (Fig. 1).

The EFM and FRN have been monitored following 
almost identical methodologies. They consist of long-
term permanent plots, with the oldest plots monitored 
since 1888 and 1955, respectively. The EFM is used to 
examine silvicultural treatments across a range of species, 
climate and edaphic conditions. In contrast, the FRN acts 
as a reference for un-managed conditions. The average 
measurement intervals for the EFM data are 6.3 years 
(minimum of 1 and maximum of 29) and for the FRN 
plots are 12 years (minimum of 1 and maximum of 27). 
These intervals depend on the growth rates, stand age and 
research objectives. All individual trees with a diameter 
at a height of 1.3 m (d) ≥ 4 cm, for FRN plots, or ≥ 8 cm 
for EFM plots, are measured. For each tree, the d, status, 
and species are recorded. Tree height, crown diameter 
and crown length are measured for a subset of trees. For 
the EFM plots, age is calculated based on the planting 
or regeneration date, and measurements are taken at the 
same time as thinning to ensure an accurate recording of 
trees that are thinned and trees that die. Age is usually not 
available for the FRN plots, so we only used FRN data for 

B. pendula (192/13/0/0) A. pseudoplatanus (299/6/0/0) P. cembra (23/4/0/2) F. excelsior (333/5/0/0)

A. alba (449/23/19/3) P. menziesii (76/17/17/0) Q. petraea (67/12/12/0) Q. robur (191/13/13/0)

P. abies (978/89/507/8) F. sylvatica (753/33/101/6) L. decidua (305/60/62/2) P. sylvestris (455/38/39/3)

Regression analyses Bayesian calibration Validation (monocultures) Validation (mixtures)

Fig. 1   Location of the monitoring plots used for the estimation of 
allometric or size-distribution parameters (e.g. based on regression 
analyses), as well as the Bayesian calibration and validation. Numbers 
in parentheses indicate the number of plots used for each category in 

the legend. Note that some EFM and FRN plots with different man-
agement strategies or site/topographic characteristics are located at 
the same location and are therefore overlapping on the maps
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purposes where age information was not required. In this 
study, the time span between the first and the last measure-
ment (time series length) for a given plot of the EFM and 
FRN ranged between 2 and 121 years (mean 26 years). For 
the Bayesian calibration, we only used data collected after 
the 1930s because the climatic data (required by 3-PG) 
were less reliable prior to 1930. All plots and data were 
used for parameter estimation using regression analyses.

The NFI plots are distributed on a regular grid of 1.4 km 
including about 6,500 permanent monitoring plots that 
have been measured at approximately 10-year intervals 
since 1983. They are circular nested plots where every 
tree with a d ≥ 12 cm is recorded within an inner 200-m2 
circle (horizontal radius = 7.98 m), and every tree with a 
d ≥ 36 cm is recorded within a 500-m2 circle (horizontal 
radius = 12.62 m). For every individual tree, the d, crown 
length, status and species are recorded. Tree height and 
diameter at a height of 7 m are measured for a subset of 
trees. Age is estimated using a regression model that was 
fit to the data obtained either from counting tree rings or 
from counting layers of branch whorls (for conifers) directly 
on the plot (Fischer and Traub 2019). The trees lost due to 
thinning or mortality are derived from inventory data. In 
this study, the time span between the first and the last meas-
urements (time series length) for a given NFI plot ranged 
between 5 and 34 years (mean 21 years).

The EFM/FRN complements the NFI network in terms of 
their variability and accuracy. That is, parameter uncertainty, 
and hence output uncertainty, can be reduced by increasing 
the variety of data used for calibration, increasing the accu-
racy of the measurements and increasing the lengths of the 
time series (van Oijen et al. 2005). The NFI plots increase 
the range of climatic and edaphic conditions because they 
have been distributed on a regular grid through Swiss for-
ests and therefore increase the range of conditions already 
accounted for by the EFM/FRN plots. Thomas et al. (2017) 
found that calibrations using environmental gradients can 
constrain parameters associated with water and nutrient sen-
sitivity to a similar degree as nutrient, drought and irrigation 
experiments. The EFM/FRN plots increase the data accu-
racy compared with the NFI plots, which have less accurate 
information about tree status (e.g. whether a tree died or was 
thinned) and tree age. Minunno et al. (2019) showed that 
more accurate calibration can be obtained with more accu-
rate inventory data, such as long-term experimental plots 
(e.g. EFM and FRN) rather than plots with less accurate 
information about variables such as ages and tree status. 
The EFM plots also increase the lengths of the time series. 
For example, although our data set did not include any CO2 
fertilization experiments, which are useful for calibrating 
the 3-PG CO2 parameters (Thomas et al. 2017), the EFM 
data (pre-1950s to 2019) cover periods with atmospheric 
CO2 < 320 ppm to > 400 ppm. A summary of stand and site 

characteristics for all plot networks combined is shown in 
Table 1.

Climate and soil data

Climate data were obtained by interpolation (100 m spatial 
resolution) using the DAYMET method (Thornton et al. 
1997) by the Landscape Dynamics group (WSL, Switzer-
land) using data from MeteoSwiss stations (Swiss Federal 
Office of Meteorology and Climatology). Site-specific plant 
available soil water was retrieved from the European soil 
database derived data (Panagos et al. 2012). No site-specific 
information about soil fertility was available to estimate the 
3-PG input variable that defines soil fertility (FR). Previous 
studies have used site indices, climate data and available soil 
water to calculate soil fertility (e.g. Forrester et al. 2017a). 
That is, by assuming the site index is mainly a function of 
soil fertility, available soil water and climate, then if only 
soil fertility is unknown, it can be calculated from the other 
variables. However, calculations of site index (based on age 
and height) were not considered reliable enough to use for 
this study because many plots lacked accurate age data, and 
therefore, we followed a simpler approach from several pre-
vious studies using 3-PG (Coops and Waring 2011; Mathys 
et al. 2014) where the FR for all sites and species was set 
to 0.5 for the Bayesian calibration and validation based on 
monospecific plots.

Plot selection

Subsets of EFM, FRN and NFI data were used for five main 
calculation steps: (1) 1418 EFM and 297 FRN plots were 
used for regression-based estimation of many allometric 
parameters, size-distribution parameters and parameters 
describing the fraction of mean single-tree foliage, stem or 
root biomass lost per dead tree (mF, mS, mR), (2) Bayesian 
calibration based on a subset of 161 EFM and 152 NFI mon-
ospecific plots, (3) validation based on a different subset of 
138 EFM and 632 NFI monospecific plots that were not used 
for calibration, (4) Bayesian calibration after combining all 
plots used for steps 2 and 3 (i.e. to obtain a final parameter 
set) and (5) validation based on 13 mixed-species EFM plots 
and the parameter sets develop in step 4. These data sets 
focused on twelve major European species shown in Table 1.

Step 1—estimation of parameters based 
on regression analyses

For the first step, parameters associated with tree allometry 
and size distributions were calculated using regression anal-
yses based on 1418 EFM and 297 FRN plots (Fig. 1). The 
allometric parameters of 3-PG are used to calculate mean 
tree height, crown diameter, crown length and volume from 
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variables such as mean d, age, stand density and relative 
height. The selection criteria for these plots were that all 
variables required by the allometric equations were avail-
able (e.g. d, height, crown length, crown diameter, age, basal 
area). Since age was usually not available for FRN plots, 
these could only be used for regressions without age. An 
additional criterion for plots used to obtain parameters used 
to describe diameter distributions and stem mass distribu-
tions was that the given species was even-aged and hence 
had unimodal-shaped distributions. That is, the stand can 
be uneven-aged without a unimodal-shaped size distribu-
tion (e.g. where one species is older than another), but the 
trees from a given species must appear to be about the same 
age based on plot records and visual inspection of size 
distributions.

The height and live-crown length equations were fit as 
nonlinear equations using the nls function in R 3.5.1 (R 
Core Team 2019). The volume, crown diameter and Weibull 
parameter functions were fit as hierarchical mixed-effect 
models using the lme function of the nlme R package (Pin-
heiro et al. 2018). Initially all fixed effect variables were 
included before all non-significant (P > 0.05) variables were 
removed in order of decreasing P-value. Residual and nor-
mal quantile plots were assessed to ensure that residuals 
were centred at zero and approximately normally distributed. 
Plot was included as a random effect. For the mixed-effect 
models, a “pseudo” R2 and conditional “pseudo” R2 (R2c) 
were calculated using the function r.squaredGLMM in the 
R package MuMIn (Bartoń 2016).

We used an alternative height and live-crown length equa-
tion to the earlier equation described in Forrester and Tang 
(2016). This alternative equation was a Michajlow (or Schu-
macher) function (Michajlow 1952) (Eq. 1):

where y is height or live-crown length in metres, C is the 
competition variable of 3-PG indicating stand density, and a, 
nB and nC are fitted parameters used for 3-PG.

3-PG calculates d and stem mass distributions as Weibull 
distributions using shape, scale and location variables. Each 
of these variables is calculated as a function of mean tree 
or stand characteristics, and the parameters of these func-
tions are 3-PG parameters. These can be calculated using 
data from monocultures or mixtures, but in mixed-species 
plots, the number of trees in each size class is divided by 
the species proportion (in terms of basal area) before fit-
ting the equations (Tables S6–S11). The fractions of mean 
single-tree foliage, stem or root biomass lost per dead tree 
(mF, mS, mR) (Table S1) were calculated from the slope of 
the relationship between the proportion of stand foliage, 
stem or root biomass of dead trees and the proportion of 
the number of trees lost due to mortality (Landsberg et al. 

(1)y = 1.3 + a × e−nB∕d + nC × C × d

2005). Detailed descriptions of parameter estimation (based 
on regressions) or calculations using literature sources are 
provided in Forrester (2020).

Step 2—Bayesian calibration

Bayesian inference was used to derive parameter estimates 
and uncertainties for 18 parameters (Table 2). These 18 
parameters were selected because they could not be calcu-
lated directly from our data, such as those in step 1, and sen-
sitivity analyses have shown that 3-PG is sensitive to these 
parameters (Almeida et al. 2004; Esprey et al. 2004; For-
rester and Tang 2016; Law et al. 2000; Mathys et al. 2014; 
Meyer et al. 2017; Navarro-Cerrillo et al. 2016; Pérez-Cru-
zado et al. 2011; Potithep and Yasuoka 2011; Xenakis et al. 
2008). This step was based on 161 EFM and 152 NFI plots. 
The selection criteria were: (1) that the plots were monospe-
cific and even-aged, (2) with at least two consecutive meas-
urements, (3) no ingrowth, such that any pairs of consecutive 
measurements with ingrowth were excluded, (4) no obvious 
measurement errors, and (5) stand age was known. No FRN 
plots were used for calibration or validation because they 
are generally mixed-species and uneven-aged plots without 
age information. Monocultures were defined as plots where 
more than 80% of the basal area was composed of the object 
species. If the object species occupied > 80% but < 100% of 
plot basal area, its biomass stocks were adjusted by divid-
ing by its proportional contribution of basal area to the plot. 
Mixed-species plots could not be used for Bayesian calibra-
tion because each species within a mixture would need to 
be calibrated simultaneously. Therefore, since most species 
occurred in different types of mixtures, most species would 
have needed to be calibrated simultaneously, which was 
beyond the scope of this study. An additional criterion for 
the NFI plots were that there was no thinning because thin-
ning, as opposed to mortality, is difficult to measure accu-
rately in the NFI plots. Thinned plots were not excluded 
from the EFM network.

This Bayesian inference approach requires a prior range 
between which the parameter for the given species can occur. 
We assumed uniform (i.e. non-informative) prior distribu-
tions for each of the 18 model parameters. If many published 
values were available for a given parameter and species, the 
prior range was set as the minimum and maximum values 
(Table S12) plus or minus 15% (Table 2). For the less com-
monly measured parameters and species, we set the prior 
ranges to the mean value found in the literature for that spe-
cies (Table S12) or other species considered similar in terms 
of the given parameter, plus or minus 20% (Table 2).

The first calibrations indicated that the prior ranges of 
the self-thinning parameters (wSx1000 and thinPower in 
Tables 2 and S1) were too narrow, despite many published 
studies informing the prior ranges. In contrast, the upper 
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limit of the prior ranges for the Tmin parameter was too high 
for P. abies, P. cembra and P. menziesii and was reduced to 
2.5, as informed by the literature (Table S12). Note that the 
Tmin parameter of 3-PG represents a mean monthly minimum 
temperature (i.e. monthly-Tmin) where the species can no 
longer grow. However, this value will probably be lower than 
the actual daily Tmin (daily-Tmin) that determines whether 
growth is possible for the given species, because even when 
the monthly-Tmin is lower than the daily-Tmin, there are likely 
to be several days during that month where the minimum 
temperature is higher than the daily-Tmin, and hence, some 
growth will still occur for that month. The reduction of Tmin 
to 2.5 was required because Tmin is multiplied by the can-
opy quantum efficiency parameter, αCx, to calculate gross 
primary production. The overestimation of Tmin restricted 
growth to warmer months, and the resulting reduction in 
annual growth was compensated for by an overestimation 
of αCx.

The likelihood function was constructed to be robust 
against outliers by modelling the residual error as a Stu-
dent’s t distribution with sampled degrees of freedom (see 
Code S1; Lange et al. 1989), following Augustynczik et al. 
(2017). For each calibration, we parametrized the degrees 
of freedom of the output variable using the constant of the 
probability of having outliers in the dataset and estimated 
the parameter using a uniform prior distribution from 0 to 
1. The variance of each observation was estimated using the 
uniform prior distribution specific for each variable: stem 
biomass (0–50), foliage biomass (0–5) and root biomass 
(0–15). The joint posterior distribution for the model param-
eters was estimated using a Differential Evolution Markov 
Chain Monte-Carlo algorithm (DEzs MCMC, ter Braak and 
Vrugt 2008) implemented in the BayesianTools R package 
(Hartig et al. 2019). For each species, three independent 
DEzs MCMC runs were made, each with three internal 
chains. Convergence was tested by visual inspection of the 
trace plots and using the Gelman–Rubin diagnostic (Gel-
man and Rubin 1992). Convergence was accepted when 
the multivariate potential scale reduction factor was ≤ 1.1. 
Three independent DEzs MCMC chains with 2 × 106 itera-
tions were required to achieve convergence. All analyses and 
calculations were performed in the R language for statistical 
computing (R Core Team 2019).

For calibration, we used three variables that describe 
stand stocks: stem biomass (SB), foliage biomass (FB) and 
root biomass (RB). Stem, root and foliage biomass were cal-
culated for each measured tree using equations developed for 
European forests (Forrester et al. 2017b) and summed up to 
the stand level in Mg dry matter ha−1. The fractions of mean 
single-tree foliage, stem or root biomass lost per thinned tree 
(F, S, R) were calculated for each plot and growth period 
as the ratio of the proportion of stand foliage, stem or root 
biomass of thinned trees and the proportion of the number 

of trees lost due to thinning. The first observations on each 
monitoring plot were used to initialize the 3-PG model runs 
(see below), while the subsequent observations were used to 
calculate likelihood for DEzs MCMC runs (Tables 3 and 4).

Step 3—3‑PG model evaluation and validation 
for monocultures

The validation of monospecific plots was based on the 
same criteria as the plots used for Bayesian calibration and 
included 138 EFM and 632 NFI plots that had not been used 
for the calibration. For species where the total number of 
plots was above 30, we randomly split the full set of moni-
toring data into two equally sized groups, resulting in a cali-
bration and a validation set. For the two Quercus species, 
we used 70% of the total number of plots for calibration and 
30% for validation. For the rest of the species, we used all 
available monitoring plots for calibration.

The skill of the 3-PG model to generate model predic-
tions was assessed using posterior predictive distributions 
obtained by running the model with 1,000 random samples 
from the parameters’ posterior distribution. The model per-
formance was evaluated using the percentage bias (pBias; 
Eq. 2), root mean squared error (RMSE; Eq. 3) and normal-
ized root mean square error (NRMSE; Eq. 4). The statistics 
were calculated at the plot level and then averaged for each 
of the 1,000 parameter samples. The validation only used 
the most recent set of observations at each plot to maximize 
the time between initialization and validation, which ranged 
from 4 to 87 years.

The pBias, RMSE and NRMSE were calculated as

where Oi are the observed values, Pi are the predicted values 
from 3-PG, 

∼

O and 
∼

P are the means and Omax and Omin are the 
maximum and minimum of the observed values.

Step 4—3‑PG model calibration using all plots

The parameter estimates obtained in Step 2 were based on 
only about half of the plots, with the other half used for 
validation (Step 3). Therefore, a final set of parameters were 

(2)pBias = 100

∼

P −
∼

O
∼

O

(3)RMSE =

�

∑n

i=1
(Pi − Oi)

2

n

(4)NRMSE =
RMSE

Omax − Omin
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obtained by repeating Step 2 but after combining the calibra-
tion plots and validation plots.

Step 5—3‑PG model evaluation and validation 
for mixtures

To test that the parameter sets also provided reliable predic-
tions for mixed-species forests, 13 mixed-species plots were 
simulated by inputting information from the first inventory. 
The selection criteria for these plots were the same as the 
calibration plots, except that they needed to be mixed. Since 
site-specific soil fertility data were not available, the FR was 
adjusted to a value that gave satisfactory model performance. 
The parameters used were obtained in Step 4 and were based 
on all calibration and validation plots. pBias and RMSE 
were calculated for each species within the 13 mixed-species 
plots. Only the most recent set of observations for each plot 
were used to maximize the time between initialization and 
validation, which ranged from 16 to 47 years. The model 
performance was calculated using the pBias (Eq. 2) and the 
relationships between predictions and observations.

Results

Estimation of parameters based on regression 
analyses

By using the EFM and FRN data sets, large sample sizes 
were available for most regressions, and these samples gen-
erally included broad ranges in tree sizes and stand, or site 
conditions (Tables 1 and S2-S11). The statistical information 
for each regression is provided in Tables S2 to S11.

The mean tree height and live-crown length were often 
influenced by stand density, as well as d (Tables S2 and S3). 
Individual tree crown diameter was often influenced by stand 
density and relative height, in addition to d (Table S5). Mean 
tree volume was a function of d and height for all species 
(Table S4).

The scale, shape and location parameters that describe d 
and stem mass distributions varied between species in terms 
of which variables were significant (d, relative height, age 
and stand density). For several species with lower samples 
sizes (A. pseudoplatanus, B. pendula, F. excelsior), none of 
the explanatory variables were significant for at least one of 
the scale, shape and location parameters, and in those cases, 
the mean scale, shape or location parameter for the given 
species was used (Tables S6-S11).

Bayesian calibration

By using the Bayesian calibration, we were able to reduce the 
parametric uncertainty of 3-PG. The width of the posterior *N
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parameter distributions based only on the calibration plots 
(Step 2), measured by the 95% quantile range (see Table 5), 
was on average only 69% of the width of the prior ranges 
(which are shown in Tables 2 and 5). This was reduced to 
63% when considering the posterior parameter distribu-
tions based on the calibration and validation plots (Step 4) 
(Table 5). This reduction in the uncertainty of the param-
eters was greater for more common species (e.g. 20% for P. 
abies) than for rarer species in the data set (e.g. 81–82% for 
F. excelsior and P. cembra) (Table 5). The largest reduction 
in uncertainty for all species was for parameters associated 
with biomass partitioning (pFS20), root or foliage litterfall 
(gammaF1, gammaR) and light-use efficiency (alphaCx), 
while the lowest reduction in uncertainty was for parameters 
defining the responses to vapour pressure deficit, tempera-
ture or CO2 (CoeffCond, Tmax, fCg700) and the canopy 
interception of precipitation (MaxIntcptn).

3‑PG model evaluation and validation 
for monocultures

3-PG reliably predicted the biomass stocks of the mono-
specific plots used for validation. The pBias was generally 
less than 20%, for stems, foliage and roots, and for several 
species it was less than 10% (L. decidua, P. menziesii and 
Q. robur) (Fig. 2). In comparison, the pBias for the cali-
bration plots was generally < 10%, except for species with 
sample sizes that were too low to do a validation (B. pen-
dula, A. pseudoplatanus, F. excelsior, P. cembra) (Fig. 2). As 
expected, the RMSE was highest for stem mass because this 
stock is typically much greater than root or foliage biomass. 
After accounting for differences in the size of stem stocks 
compared with root and foliage stocks, the NRMSE indi-
cated that the foliage mass predictions had the highest errors.

3‑PG model evaluation and validation for mixtures

The parameters resulted in accurate predictions for mixed-
species plots in terms of stem, foliage (not shown) and root 
biomass, as well as other outputs derived from them such 
as d, height and basal area (Fig. 3). The slopes of the rela-
tionships between the predicted and observed values were 
usually close to 1 and not significantly different to 1. The 
exceptions included A. alba, which often also had a high 
pBias, and P. abies in terms of stem and root mass (Fig. 3; 
Table 6).

Discussion

For all twelve European tree species, the Bayesian calibra-
tion provided parameter sets with prediction bias < 20% and 
in several cases < 10%. Given the wide range of site, climate 

and stand structural conditions covered by the plots of many 
of these species, the parameters are expected to be gener-
ally applicable for central European forests. Similarly, 3-PG 
parameters for species in North America, South America 
and Thailand, developed from a sample of plots within a 
population, have been successfully applied across wide 
ranges of site conditions and management (Almeida et al. 
2010; Gonzalez-Benecke et al. 2014, 2016; Hung et al. 2016; 
Thomas et al. 2017). Consistent with this study, Bayesian 
calibrations using outputs including basal area, volume, 
biomass stocks, mean tree diameter or height, tree and soil 
nutrition, leaf area index and net primary productivity have 
produced accurate predictions for other process-based forest 
models (Minunno et al. 2019; van Oijen et al. 2013, 2005).

The reduction in parametric uncertainty was often larger 
for the parameters to which output variables of 3-PG have 
been found to be highly sensitive (e.g. alphaCx, pFS20, 
gammaF1), and minimal to parameters to which 3-PG out-
puts are relatively insensitive (e.g. Tmax, CoeffCond, Max-
Intcptn) (for 3-PG sensitivity analyses, see Almeida et al. 
2004; Esprey et al. 2004; Forrester and Tang 2016; Law 
et al. 2000; Mathys et al. 2014; Meyer et al. 2017; Navarro-
Cerrillo et al. 2016; Pérez-Cruzado et al. 2011; Potithep and 
Yasuoka 2011; Xenakis et al. 2008). The largest reduction 
in uncertainty for all species was for parameters associated 
with biomass partitioning (pFS20), root or foliage litterfall 
(gammaF1, gammaR) and light-use efficiency (alphaCx). 
The gammaR is only used to calculate the loss of root mass 
and has no influence on other variables, which explains why 
it was so easily constrained by the output variable root mass. 
The pFS20 (and pFS2) controls the partitioning of above-
ground biomass growth between stems and foliage, and the 
gammaF1 controls the foliage litterfall rate. These are there-
fore important determinants of two output variables that we 
used to constrain 3-PG (stem mass and foliage mass). They 
are also important determinants of stand structure (e.g. leaf 
area index, mean tree size) and hence processes including 
light absorption and mortality. Similarly, for several spe-
cies there was a high reduction in uncertainty in the light 
extinction parameter (k) and the potential light-use effi-
ciency parameter (alphaCx), which are also very influen-
tial parameters in terms of biomass production. Parametric 
uncertainty was improved very little for Tmax, CoeffCond 
and MaxIntcptn. The former two parameters were also not 
improved in another study using inverse modelling with 
3-PG, despite including Eddy covariance evapotranspiration 
data to constrain the model (Thomas et al. 2017). Therefore, 
reductions in parametric uncertainty appear to be higher for 
parameters to which the model is most sensitive as well as 
parameters that influence the output variables used for the 
inverse modelling.

Inter-specific differences in parameters often con-
firmed expected inter-specific differences in physiology. 
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For example, the potential light-use efficiency parameter 
(alphaCx) was highest for species known to have potentially 
high growth rates (e.g. P. menziesii, L. decidua) and inter-
mediate for species such as F. sylvatica and Q. robur/Q. 
petraea. Nevertheless, it is important to note that the inverse 
modelling approach only provides an indirect indication of 
the parameters in terms of their physiological and ecologi-
cal meanings.

In general, species for which the parametric uncertainty 
was reduced the most were those with the highest sample 
sizes. However, the prediction bias did not always decline 
with increasing numbers of plots, such that some of the most 
abundant species in the data set (e.g. F. sylvatica, P. abies 
and P. sylvestris) had prediction errors of > 10%, at least for 
some variables. Given that the accuracy of 3-PG predictions 
can be improved by developing different parameter sets for 
different provenances or even for different clones (Almeida 
et al. 2004), the larger prediction errors may have resulted 
from a greater intra-specific genetic diversity within the 
populations of these species. For example, P. sylvestris has 
a large physiological and morphological plasticity (Rehfeldt 
et al. 2002), and our data set included several provenance 
trials, although none were abundant enough to develop prov-
enance-specific parameter sets.

A parameterization of the BGC forest model for P. abies 
indicated that different parameter sets were required for 
populations at low and high elevations (means of 607 m vs. 
1385 m) (Pietsch et al. 2005). We did not observe any ele-
vation-related effect on the bias of P. abies predictions and 
used a single parameter set for all elevations (282–2065 m). 
A single parameter set was also found to be appropriate in 
Finnish P. abies parameterizations of the PREBAS model 
(Minunno et al. 2019). This may indicate that 3-PG and 
PREBAS account for a cause of the elevation differences 
that was not accounted for by the BGC model.

Since all models are simplifications of reality, they inevi-
tably do not include all the processes that influence their 
outputs. Consequently, some of the parameters within the 
model may compensate for missing information, and as a 
result, they will not represent exactly what is implied by 
their parameter name (van Oijen 2017). Preliminary cali-
brations showed that the self-thinning parameter (wSx1000) 
required different values than indicated by the means of 
many published values, and the prior ranges therefore 
needed to be widened. Self-thinning parameters were also 
required to vary between experiments for Bayesian calibra-
tions of 3-PG for Pinus taeda (Thomas et al. 2017). This 
may indicate that improvements can be made to 3-PG 
in relation to quantifying the carrying capacity of a site, 
although the effects of site and climate on self-thinning rates 
do not appear large enough in Swiss forests to account for 
this (Forrester et al. 2021). This also indicates the value of 
validating each sub-model by comparing predicted outputs Ta
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from the given sub-model with measurements of the same 
process, rather than indirect approaches that, for example, 
validate a light or water balance sub-model using growth and 
yield data (Korzukhin et al. 1996; Sands 2004). This pro-
vides confidence that the sub-models perform as their names 
imply and therefore that deviations in parameter estimates 
based on Bayesian calibrations, compared with field meas-
urements of the parameters, are likely to indicate a missing 
process within the model, rather than significant problems 
with existing model components.

Another source of error is the calculation of biomass. 
The “observed” biomass was predicted using allometric 
equations developed from an independent European-wide 
data set (Forrester et al. 2017b). However, even though these 
equations accounted for variables such as tree diameter and 
stand density, they are unlikely to be as accurate as site-
specific destructively sampled biomass measurements, and 
they will not reflect the short-term (monthly or annual) vari-
ability in biomass allocation that is predicted by 3-PG. In 
this study, we did not account for the errors associated with 
the allometric biomass equations or the allometric equations 
used to obtain 3-PG parameters for height, crown length 
and crown diameter. Therefore, the ranges of the parameter 
posterior distributions may have been underestimated, and 
when estimates of errors are required when forecasting, the 
variance related to the allometric equations would need to 
be considered in the outputs.

By setting the soil fertility for all plots to 0.5, some of 
the other parameters would have been forced to account for 
variability in biomass that was actually due to soil fertility. 
The resulting influence of this approach on the parameter 
estimates is assumed to be relatively low because of the large 
number of plots used and because many of the plots are 

Fig. 2   Statistics for predictive error (percent bias, normalized root 
mean squared error and root mean squared error). The posterior 
predictive uncertainty was calculated by drawing 1,000 parameter 
combinations from the posteriori distribution and calculating model 
predictions for the calibration (green dots), validation (orange dots) 
and calibration + validation (black dots) monitoring data subsets. The 
dots represent the median value of the posterior predictive distribu-
tion, while the horizontal lines represent the 95% confidence interval. 
Species are ordered by number of available monitoring plots for cali-
bration and validation. Numbers under the species name indicate the 
number of monitoring plots used for calibration  and  validation. For 
B. pendula, A. pseudoplatanus, F. excelsior, P. cembra, the samples 
sizes were too small to do a validation

◂

Fig. 3   Comparison of observed 
and predicted stem biomass (a), 
root biomass (b), arithmetic 
mean diameter (c) and mean 
height (d) for a selection of 6 
species in 13 mixed-species 
plots. Note that the “observed” 
biomass was calculated using 
allometric biomass equations. 
Only data from the end of the 
simulations are shown; for a 
given species, only one point is 
shown for each plot where that 
species occurred at the end of 
the simulations. The solid lines 
are 1:1 lines, and the dashed 
lines are fitted to the data to 
pass through the origin. Sample 
size N = 24
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likely to have FR close to 0.5 assuming a roughly normal 
distribution of FR. However, the parameters could still be 
improved when reliable soil fertility information becomes 
available.

Lastly, the parameter sets generally provided accurate 
predictions for mixed-species forests. The validation for 
mixtures was based on small sample sizes (13 mixed-species 
plots) due to the difficulty in finding even-aged mixtures 
that only contained the species that had been parameter-
ized. Nevertheless, these results confirm that 3-PG can be 
calibrated using monocultures and applied to mixtures, as 
previously found in Europe (Bouwman et al. 2021; Forrester 
et al. 2017a) and China (Forrester and Tang 2016).

In conclusion, the combination of a literature review, 
direct estimation of many allometric parameters, several 
inventory plot networks and Bayesian calibration resulted 
in reliable 3-PG parameters for twelve major European spe-
cies. These parameters are also applicable for mixed-spe-
cies forests. The information sources used to develop the 
parameters included a wide range of climatic, edaphic and 
management conditions and long time spans (from 1930 to 

present). Given this and the process-based structure of the 
3-PG model, these parameters are likely to be applicable for 
most central European forests and conditions.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10342-​021-​01370-3.
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