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Abstract Hierarchical models include random effects or

latent state variables. This class of models includes state–

space models for population dynamics, which incorporate

process and sampling variation, and models with random

individual or year effects in capture–mark–recapture

models, for example. This paper reviews methods for

frequentist analysis of hierarchical models and gives an

example of a non-Gaussian, potentially nonlinear analysis

of Lapwing data using the Monte Carlo kernel likelihood

(MCKL) method for maximum-likelihood estimation and

bridge sampling for calculation of likelihood values given

estimated parameters. The Lapwing example uses the

state–space model as part of an integrated population

model, which combines survey data with ring-recovery

demographic data. The methods reviewed include filtering

methods, such as the Kalman filter and sequential Monte

Carlo (or particle filtering) methods, Monte Carlo expec-

tation maximization, data cloning, and MCKL. The latter

methods estimate the maximum-likelihood parameters but

omit a normalizing constant from the likelihood that is

needed for model comparisons, such as the Akaike infor-

mation criterion and likelihood ratio tests. The methods

reviewed for normalizing constant calculation include

filtering, importance sampling, likelihood ratios from

importance sampling, and bridge sampling. For the Lap-

wing example, a novel combination of MCKL parameter

estimation, bridge sampling likelihood calculation, and

profile likelihood confidence intervals for an integrated

population model is presented to illustrate the feasibility of

these methods. A complementary view of Bayesian and

frequentist analysis is taken.
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Introduction

Many types of ecological data can be statistically modeled

by recognizing multiple sources of variation in the pro-

cesses that led to the data, including both ecological and

data-sampling variation (Clark 2007; Royle and Dorazio

2008; Cressie et al. 2009; King et al. 2009). For example, a

state–space model for a time-series of abundance data

includes unknown true abundances, stochastic relationships

between true abundances at one time and the next, and

stochastic relationships between true abundances and the

data (Schnute 1994; de Valpine and Hastings 2002).

Another example is random effects models for capture–

mark–recapture (CMR), ring-recovery, or related data, in

which year effects, between-individual variation, or other

sources of variation may be modeled as following some

distribution (Burnham and White 2002; Cam et al. 2002;

Link et al. 2002; Royle and Link 2002; Barry et al. 2003;

Gimenez and Choquet 2010).

What these models have in common is that they include

statistical relationships between data and unknown quan-

tities, such as true abundances in a state–space model or

random effects values in a CMR model, that in turn have

statistical relationships to model parameters. Indeed, a
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CMR model can be framed as a state–space model

(Gimenez et al. 2007). Although these quantities are

unknown, their role in the model is to structure the manner

in which data values are non-independent, just like block

effects in a randomized complete block analysis of vari-

ance (ANOVA) design. In theory, a more realistic model

structure will lead to better estimation and inference. Other

modeling categories or synonyms that have this general

feature include generalized linear mixed models, latent

variable models, hidden state or hidden population models,

and more. A useful umbrella term for all of these cases,

which emphasizes their commonality, is hierarchical

models (Royle and Dorazio 2008; Cressie et al. 2009).

It should be noted that in the Lapwing example used

below, the abundance data are really an abundance index,

so ‘‘true abundance’’ really means ‘‘true abundance index’’.

The use of an abundance index raises all of the potential

issues of how to relate raw survey data, estimated abun-

dance indices, and actual population sizes (Buckland et al.

2001; Williams et al. 2002), but these issues are not

addressed in this article.

The goal of this paper is to review, illustrate, and discuss

methods for frequentist analysis of hierarchical models of

population dynamics and demographic studies. Of partic-

ular interest are so-called integrated population models,

which combine a model for a time-series of abundance

data, such as a state–space model, with models for indi-

vidual demographic information, such as a model for ring-

recovery data (Besbeas et al. 2002). In bird population

studies, frequentist analysis of integrated population mod-

els has been limited to linear, Gaussian approximations

using the Kalman filter (Besbeas et al. 2002; Gauthier et al.

2007; Tavecchia et al. 2009), while Bayesian analysis has

allowed nonlinear relationships and/or non-Gaussian vari-

ation (Brooks et al. 2004; Schaub et al. 2007; King et al.

2008b). Methods for frequentist analysis allowing nonlin-

ear and/or non-Gaussian state–space models have been

developed in other areas of statistics and ecology, but they

have not been used in integrated population models. The

Lapwing example below provides the first use of such

methods for an integrated population model.

Estimating parameter values and their uncertainty from

hierarchical models is fundamentally difficult because the

fit provided by any candidate parameters is not a simple

calculation (Robert and Casella 1999; Durbin and Koop-

man 2001). For example, the likelihood of a state–space

model for some candidate parameters involves a sum (or

integral) over all of the possible true population trajectories

that might have produced the data. Here, current approa-

ches to this problem are reviewed with an attempt to

highlight their pros and cons in order to stimulate their

application to ecological problems. While the emphasis is

on state–space models and integrated population models,

the methods discussed here can be useful for other hier-

archical models.

Many of the methods for maximum-likelihood estima-

tion of hierarchical models do not calculate the full like-

lihood (de Valpine 2004). Instead, they omit a constant

factor known as a normalizing constant. Since it is a con-

stant, it does not affect maximization of the likelihood, but

it is needed for values such as the Akaike information

criterion (AIC) or likelihood ratios (Harvey 1991; Durbin

and Koopman 2001; de Valpine 2008; Ponciano et al.

2009). Therefore, methods for calculating normalizing

constants need to be part of the toolkit for frequentist

analysis of hierarchical models, and they are also reviewed

here. Mathematically, this problem is similar to the prob-

lem of calculating Bayes factors or marginal likelihoods in

Bayesian analysis, which involve the normalizing constants

that are omitted in Markov chain Monte Carlo (MCMC)

posterior samplers (Han and Carlin 2001).

To illustrate frequentist analysis of a non-Gaussian

state–space model, I use the well-studied British Lapwing

data, on which both Kalman filter and Bayesian methods

have been demonstrated (Besbeas et al. 2002; Brooks et al.

2004). I present maximum-likelihood estimates and profile

likelihood confidence intervals for a model of Brooks et al.

(2004), using Monte Carlo kernel likelihood (MCKL) (de

Valpine 2004) for estimation and bridge sampling (Mira

and Nicholls 2004; de Valpine 2008) for calculating like-

lihood values for the estimated parameters, all iterated

many times to obtain profile likelihood confidence inter-

vals. This combination of methods was first used for an

insect host–parasitoid analysis by Karban and de Valpine

(2010). The main point of the example is to illustrate the

feasibility of these methods rather than to reconsider bio-

logical conclusions of these well-studied data.

The following section introduces state–space models,

integrated population models, and the Lapwing example.

‘‘Bayesian and frequentist estimation’’ explains the chal-

lenges of each estimation approach for these models. ‘‘Why

a frequentist analysis?’’ discusses why frequentist results

may be useful even in this age of great advances in Bayesian

methods due to MCMC. ‘‘Methods for maximum-likelihood

estimation’’ reviews major methods, including those for

calculation of likelihood values given estimated parameters.

‘‘Lapwing results’’, demonstrates MCKL and bridge sam-

pling, and the ‘‘Discussion’’ summarizes the status of com-

putational methods for frequentist state–space modeling.

State–space models and integrated population models

A state–space model is a combination of two models, one

for the population dynamics and one for the data sampling

(or ‘‘observation’’ or ‘‘measurement’’). State–space models
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for population dynamics date back to a now-obscure book

chapter by Brillinger et al. (1980) that was ahead of its

time. Much development has since taken place in fisheries

ecology (reviewed in de Valpine 2002), and the framework

has been proposed as a general one in a wildlife ecology

context (Borchers et al. 2002; Buckland et al. 2004).

Introductions and reviews have been written by de Valpine

and Hastings (2002), Calder et al. (2003), Clark and

Bjornstad (2004), Thomas et al. (2005), and Newman et al.

(2009), among others.

To keep the ideas specific, the British Lapwing model

will be used. The data consist of annual abundance indices

calculated from British Trust for Ornithology survey data

from 1965 to 1998 and ring recovery data from individuals

marked as chicks from 1963 to 1997. One must assume that

the sampling process and other aspects of the relationship

between population size and abundance index obtained this

way do not themselves have unknown systematic trends.

Covariates include year and number of days in each year

below freezing. See Catchpole et al. (1999), Besbeas et al.

(2002), and Brooks et al. (2004), from which the data were

taken, for details.

The Lapwing data are modeled with two stage classes,

1-year-old, N1, and adults, Na. Here, N1 and Na are used as

the abundance index values, and explicit modeling of the

survey sampling process and the relationship between

abundance indices and population size is not considered.

The true (unknown) abundance index at time t is defined as

vector XðtÞ ¼ ðN1ðtÞ;NaðtÞÞ. This is called the ‘‘state’’

variable at time t. Next, the data at time t are defined as a

survey-based estimate of Na(t), labeled as y(t). The two

parts of the state–space model correspond to two aspects of

how any two pairs of abundances, X(t) and X(t ? 1),

respectively, should be related. First, the N1(t ? 1) and

Na(t ? 1) should not be too far off from what would be

predicted based on N1(t) and Na(t), i.e., by the population

dynamics. Second, Na(t) and Na(t ? 1) should not be too

far off from y(t) and y(t ? 1), respectively, according to the

data sampling distribution.

To write models for the population dynamics and data

sampling, it is helpful to think of each relationship in terms

of the average, or expected value, and the distribution

around that average. The expected value of the population

state given its previous state is:

E½N1ðt þ 1ÞjN1ðtÞ;NaðtÞ� ¼ qðtÞ/1ðtÞNaðtÞ ð1Þ
E½Naðt þ 1ÞjN1ðtÞ;NaðtÞ� ¼ /aðtÞðN1ðtÞ þ NaðtÞÞ ð2Þ

Equation (1) says recruits, N1(t ? 1), are the product of

adults, Na(t), fecundity, q(t), and first-year survival, /1(t).

Equation (2) says adults are the product of adult survival,

/a(t), and the sum of surviving first-years, N1(t), and pre-

vious adults, Na(t).

Variation in the relationship between X(t) and X(t ? 1)

is represented by allowing X(t) to follow a distribution

around its expected value. Brooks et al. (2004) consider

two options. First, following Besbeas et al. (2002), they use

additive normal (Gaussian) noise:

N1ðt þ 1ÞjXðtÞ�NðE½N1ðt þ 1ÞjN1ðtÞ;NaðtÞ�; r2
1ðtÞÞ; ð3Þ

Naðt þ 1ÞjXðtÞ�NðE½Naðt þ 1ÞjN1ðtÞ;NaðtÞ�; r2
aðtÞÞ: ð4Þ

These equations say that N1(t ? 1) and Na(t ? 1) are

normally distributed around their expected values with

variances r1
2(t) and ra

2(t), respectively. In some situations

one chooses to estimate the variances, although Knape

(2008) and de Valpine and Hilborn (2005) have illustrated

how imprecise such estimates can be, and Dennis et al.

(2010) have shown the potential benefits of replicated

sampling. Instead, Besbeas et al. (2002) and Brooks et al.

(2004) assumed the variances to match those that would

arise from demographic stochasticity. For births, they

assume stochasticity is a Poisson process, so r2
1ðtÞ ¼

q1ðtÞ/1ðtÞN1ðtÞ because the variance is equal to the mean

for a Poisson distribution. For adult survival, they assume

death is a binomial process, so r2
aðtÞ ¼ /aðtÞð1� /aðtÞÞ

ðN1ðtÞ þ NaðtÞÞ, the variance for a binomial distribution.

Aspects of these assumptions will be discussed more

below.

Even for this simple model, which might appear linear

and Gaussian (normal) at first glance, simple consider-

ations render it nonlinear and/or non-Gaussian. First, even

as specified, it will lead to non-Gaussian distributions of

population states. The importance of Gaussian distributions

is that they can be handled analytically—as part of the

Kalman filter summarized below—while non-Gaussian

distributions require more heavily computational methods.

To see how non-Gaussian distributions arise from this

model, notice that even if the distribution of unknown

states at one time is Gaussian, the future distribution will

be non-Gaussian because the variance depends on the true

state. Therefore, to approximate the distribution as

Gaussian one must use a fixed state value to calculate the

variances (Besbeas et al. 2002). Second, in many settings it

is realistic to add environmental stochasticity as well as the

demographic stochasticity represented by Poisson births

and binomial survival. Environmental stochasticity is

usually modeled by multiplying by a log-normal random

variable, i.e., adding a normal random variable on a log

scale. However, if a sum such as in Eq. 2 is involved, then

one faces the difficulty that a sum of log-normally dis-

tributed variables is not itself log-normally distributed, and

indeed it is not analytically tractable.

The second option of Brooks et al. (2004) is to model

the variation in N1(t ? 1) and Na(t ? 1) explicitly by

Poisson and binomial distributions. With the approaches
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here, this could also be done, but it is not included in the

example.

One can generalize from the Lapwing example to the

general concept of stochastic state dynamics. This is

represented by

Xðt þ 1Þ ¼ FðXðtÞ; mðtÞÞ: ð5Þ

In this equation, m(t) is any environmental or demographic

stochasticity, and F is a general function relating popula-

tion state at one time and stochasticity to population state at

the next time. In other words, the frameworks considered

here are very flexible due to the computational methods

used, similar to the flexibility for Bayesian models afforded

by MCMC.

The observation or sampling model, which relates the

data, y(t), to the states, X(t), via some sampling distribu-

tion, can now be considered. For the Lapwing model,

E½yðtÞ� ¼ NaðtÞ; ð6Þ

yðtÞ�NðE½yðtÞ�; r2
yÞ: ð7Þ

This says that the expected data value is the true index of

adult abundance, and the distribution of data values is

normal with standard deviation ry. Again, the procedures

reviewed here could accommodate many reasonable sam-

pling distributions.

Further details on the Lapwing model

The previous part of this section used the Lapwing model

for a general introduction to state–space models. I now

summarize further details of the model that will be needed

to use it for an example later on.

Adult and 1-year-old survival follow separate logistic

models as a function of annual number of days below

freezing, freeze(t), for year t:

log
/1ðtÞ

1� /1ðtÞ

� �
¼ a1 þ b1 freezeðtÞ; ð8Þ

log
/aðtÞ

1� /aðtÞ

� �
¼ aa þ ba freezeðtÞ: ð9Þ

Reproductive rate allows a trend with time on a log scale:

logðqðtÞÞ ¼ aq þ bqt: ð10Þ

Probability of recovery of a dead, ringed bird in year t is

k(t), which can take a trend with time on a logistic scale:

log
kðtÞ

1� kðtÞ

� �
¼ ak þ bkt ð11Þ

Probabilities of the recovery data are calculated from

multinomial distributions for the number of birds that are

ringed in a given year and recovered in each subsequent

year. These are standard calculations and are given

explicitly in Brooks et al. (2004). It should be noted that

these add substantial calculations to the MCMC sampling

for this model, and Besbeas et al. (2003) have pointed out

that a Gaussian approximation of the ring-recovery likeli-

hood would be a quite accurate proxy for the full calcu-

lations. On a separate issue, the index values yt are the

result of estimation from a complex spatial sampling pro-

tocol, and Besbeas and Freeman (2006) show how the full

data and model for that protocol could be combined with a

population model.

Bayesian and frequentist estimation

The two fundamental philosophies to statistical learning

from data are Bayesian and frequentist. Bayesian analysis

views parameters themselves as following probability dis-

tributions, where ‘‘probability’’ means ‘‘degree-of-belief’’

(O’Hagan 1994). Frequentist analysis views ‘‘probability’’

as the frequency of a random event among many possible

realizations of the random process, and it does not view

parameters as having occurred with some probability. In

frequentist analysis, parameters are often estimated by

maximum likelihood, and their uncertainty is typically

characterized by confidence intervals, estimated, for

example, by likelihood profiles, Wald approximations, or

bootstrapping (Davison and Hinkley 1997; Severini 2001).

Frequentist methods are sometimes called ‘‘classical’’ (e.g.,

Gelman et al. 2004). In this section I introduce the likeli-

hood integral for state–space models and the reasons that

Bayesian analysis has been so practical for these models.

The likelihood function says how well any candidate

parameters fit the data, and it underlies both frequentist

and Bayesian analysis. It is defined as the probability

(or probability density) that the model, as a function of the

parameters, would have generated the data. For discrete

data values, one may talk of the ‘‘probability’’ of the data,

while for continuous data values, one should say ‘‘proba-

bility density’’ of the data. In what follows I use simply

‘‘probability’’ for either.

There are two equivalent ways the likelihood is written

in mathematical notation. Once the data are collected, we

evaluate the likelihood for different parameters given fixed

data, so the function is written as L(parameters | data); this

is the notation typical of describing maximum-likelihood

methods. However, since the likelihood is calculated as

the probability of the data given the parameters, it is also

written as P(data | parameters); this is the notation typi-

cally used in the numerator of Bayes’ law for Bayesian

analysis. These equivalent notations are two sides of the

same coin.

What does the probability of the data mean for a state–

space model that is defined using population states that we
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do not know exactly? First, it will be convenient to write

the vector of all observations from time 1 to the final time,

T, as Y1:T ¼ ðY1; . . .; YTÞ. Correspondingly, the vector of all

state values is X1:T ¼ ðX1; . . .;XTÞ. In the Lapwing model,

each Xt is itself a vector containing N1(t) and Na(t). The

state–space model likelihood can now be written:

LðhjY1:TÞ ¼
Z

PðY1:T jX1:T ; hÞPðX1:T jhÞdX1:T : ð12Þ

The integral in this equation is a summation over all pop-

ulation trajectories, X1:T, of the probability of the trajectory

and the probability of the data given the trajectory.

According to the rules of probability, this gives the marginal

(i.e., total) probability of the data, which is the standard

definition of the likelihood. Maximum-likelihood estima-

tion requires finding the parameters, ĥ, that maximize

(Eq. 12). The usual asymptotic properties of maximum-

likelihood estimates, such as consistency and asymptotic

normality, have been extended to state–space likelihoods

(Jensen and Petersen 1999; Fuh 2006).

Note that I use ‘‘given’’ notation, ‘‘|’’, even if what

follows is not a random variable. For example, in P(X1:T |

h) in (Eq. 12), h is a frequentist parameter. This allows the

same notation for comparable Bayesian and frequentist

equations.

Before getting into the methods for maximum-likeli-

hood estimation, it may be helpful to examine why

Bayesian computational methods are so practical for

state–space models. In a Bayesian analysis, one treats h as

also following the rules of probability. One must choose a

prior distribution, PðhÞ, that represents any initial igno-

rance or knowledge about h. Then the posterior is given

by:

PðhjY1:TÞ ¼
PðhÞLðhjY1:TÞ

PðY1:TÞ
: ð13Þ

This is Bayes’ theorem.

Modern Bayesian analysis proceeds generally as fol-

lows. The denominator (which is just a number, since the

data are given) is very hard to calculate because it requires

integration over all possible parameter values, h. The

important point for any inference is the relative support for

different parameters, and the relative support can be

characterized by the numerator. One often sees this

reflected in the expression:

PðhjY1:TÞ / PðhÞLðhjY1:TÞ: ð14Þ

In this equation, � means proportional to, and allows us to

drop the normalizing constant 1/P(Y1:T).

This is still impractical to calculate because of the

likelihood. However, if we write the likelihood integral

explicitly and also express the left-hand-side as an integral,

we have

Z
Pðh;X1:T jY1:TÞdX1:T /Z
PðhÞPðY1:T jX1:T ; hÞPðX1:T jhÞdX1:T :

ð15Þ

The left-hand side can be written this way because we can

always view the posterior in h as the sum over X1:T of the

posterior in both h and X1:T. For example, if one wants to

know the frequency of students who score 90% on an

exam, and one has a table of frequencies of exam scores

(‘‘h’’) along with other variables (‘‘X1:T’’, e.g., hours of

lecture attended, performance in other classes), one can

sum the frequencies of all combinations of categories over

the other variables to obtain just the exam score frequen-

cies. On the right-hand side, the P(h) can be brought inside

the integral because it does not involve the summation

variables, X1:T.

Equation (15) is useful because if we have a sample

from Pðh;X1:T jY1:TÞ, then the h dimensions of the sample

are from PðhjY1:TÞ. Visually, a sample can be viewed as a

table with one row for each entry and one column for each

dimension of h or X1:T. A sample from Pðh;X1:T jY1:TÞ can

be generated by a MCMC algorithm because, using Bayes’

theorem, the integrands of Eq. (15) are proportional:

Pðh;X1:T jY1:TÞ / PðhÞPðY1:T jX1:T ; hÞPðX1:T jhÞ: ð16Þ

An MCMC algorithm is an omnibus approach to simulating

a sample in situations like this, where the target distribution

can only be calculated up to an unknown constant, i.e., can

only be calculated as a ratio for any two values of ðh;X1:TÞ.
Already initiated readers might find my order of

explanation peculiar, and uninitiated readers might benefit

from knowing why. A typical Bayesian introduction would

be to view both h and X1:T as random variables, write

Bayes’ theorem directly as Eq. (16), and be done. I want to

emphasize that the Bayesian Monte Carlo approach auto-

matically integrates over X1:T, so that the posterior for h is

based on the likelihood (Eq. 12). This is important because

the likelihood provides the connection to frequentist max-

imum-likelihood methods. In theory, as the amount of data

increases, frequentist and Bayesian methods will give

similar answers because the likelihood will overwhelm the

prior.

The handy computational methods for Bayesian analy-

sis, particularly MCMC, have contributed to the vast

expansion of its use. Arguments may be made on philo-

sophical grounds, but a great many scientists motivated to

use hierarchical models have adopted the Bayesian

approach largely because it is practical (de Valpine 2009).

Some explanations of hierarchical modeling go so far as to

present it as specifically Bayesian, but that not the case.

Even when a Bayesian analysis is chosen for philosophical

reasons, there can be valuable reasons to complement it
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with frequentist results. The stance taken here, then, is one

of ‘‘expanding the toolkit’’ rather than arguing that one tool

should always be used.

Why frequentist analysis?

For this paper, since Bayesian methods have been more

practical for state–space models, it is useful to consider

why frequentist methods may nevertheless be useful. Efron

(2005) predicted that ‘‘statistics is in for a burst of new

theory and methodology, and that this burst will feature a

combination of Bayesian and frequentist reasoning.’’ It

should be noted that ‘‘empirical Bayes’’ methods are

frequentist in their treatment of parameters, so the maxi-

mum-likelihood methods summarized here can just as well

be viewed as empirical Bayes methods. Here are several

reasons one might consider a frequentist analysis either on

its own or as a complement to Bayesian analysis.

1. Model selection: AIC and related methods [e.g., AICc

(AIC corrected for small sample size)] are popular

frequentist approaches to model selection. Improve-

ments for AIC for state–space models have been

suggested by Cavanaugh and Shumway (1997) and

Bengtsson and Cavanaugh (2006).

2. Hypothesis testing: For example, in the Lapwing

model, one may want to ask if the effects of year or

days below freezing on demographic or reporting rates

are statistically significant. Many of the arguments

against hypothesis testing have included—in addition

to its actual limitations—overuse, trivial use, misin-

terpretation, or overzealousness, but it is nevertheless

fundamentally valuable (Mayo and Spanos 2006).

3. Profile likelihoods: Profile likelihoods are a way to

look at parameter uncertainty using only the objective

information, i.e., the likelihood. They are superior to

simpler methods, such as Wald intervals (although

these also may be useful), because they do not assume

a perfect Gaussian shape of the likelihood (Severini

2001).

4. No need to specify a Bayesian prior: In many

situations, even where Bayesian methods have been

accepted and a practical knowledge of the behavior of

priors has been accumulated, the priors are at best a

scientific nuisance. Much has been written elsewhere

about this, and here it is worth noting only that

uninformative priors depend on how the model is

parameterized (with the exception of Jeffreys priors),

and this is arbitrary, so that there is no universal

solution for choosing uninformative priors. Frequentist

analysis allows the benefits of the hierarchical model

structure without these difficulties.

5. As a basis for bootstrapping, cross-validation, or

randomization tests: These methods require model

estimation for many simulated, resampled, or partial

data sets. For example, cross-validation provides a

direct estimate of the prediction error distribution of a

modeling procedure by fitting the model with different

combinations of one or more data values omitted, which

can provide a direct basis for model selection and for

prediction with uncertainty (Cheng and Tong 1992;

Ellner and Fieberg 2003). Karban and de Valpine (2010)

used a randomization test for a nonlinear state–space

model. Efron (1996, 2005) has highlighted the connec-

tion between empirical Bayes and bootstrapping.

Methods for maximum-likelihood estimation

Methods for finding the maximum-likelihood estimates, ĥ,

for hierarchical models have received substantial attention

in the general statistics literature as well as in some eco-

logical papers (McCulloch 1997; de Valpine 2004; New-

man et al. 2009). Since a goal of this review is to encourage

the exploration and adaptation of these approaches for

ecological models, I will summarize a fair variety of

methods. However, since all of these methods can be found

in more technical detail elsewhere, I will try to explain only

the key concepts and procedures for each method. Before

explaining the methods, two aspects of state–space models

need further elaboration: filtering and MCMC sampling.

Filtering: sequential factorization of the likelihood

Filtering methods use a factorization of the likelihood into

sequential calculations for which analytical or numerical

methods can be applied. The sequential factorization is:

PðY1:T jhÞ ¼ PðY1jhÞPðY2jY1; hÞPðY3jY1:2; hÞ
� � � � � PðYT jP1:T�1; hÞ: ð17Þ

This factorization states that the probability of the entire

data sequence is the probability of the first observation

multiplied by the probability of the second given the first

multiplied by the probability of the third given the first and

second, and so on up to the probability of the final obser-

vation given the previous T - 1 observations.

The practical value of this factorization is that it leads to

ways to calculate the likelihood recursively. Each factor

can itself be viewed as an integral:

PðYtjY1:t�1; hÞ ¼
Z

PðYtjXt; hÞPðXtjY1:t�1; hÞdXt: ð18Þ

This equation states that the probability of the tth observa-

tion given the previous t - 1 observations is the sum—over
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all possible values of the tth true state—of the probability of

that state given the previous t - 1 observations multiplied

by the probability of the tth observation given that state.

The steps of filtering methods are as follows. In these

steps, phrases such as ‘‘calculate the distribution’’ should

be taken conceptually; often the distributions are not

mathematically simple, and in specific methods the calcu-

lations are performed with simulated samples or other

approximations.

1. Start with an assumed distribution for the true state of

the system at the first time. This can be done in several

ways (Besbeas et al. 2009), but the results are often not

too sensitive to the details.

2. Define the first time as the ‘‘current time,’’ or ‘‘t’’.

3. Calculate the probability of the observation at the

current time using the distribution of the state at the

current time. This is PðYtjY1:t�1Þ (one number), or just

P(Y1) for the first time.

4. If the current time is the last time, stop.

5. Update the distribution of the state to reflect the

information from the observation at the current time.

In mathematical terms, obtain the conditional distri-

bution of the state given the observation: PðXtjY1:tÞ.
6. Use the process model (with stochasticity) to calculate

the distribution of the state at the next time from the

updated distribution at the current time: PðXtþ1jY1:tÞ.
7. Increment the ‘‘current time,’’ (t) so that the distribu-

tion of the state calculated in the previous step is now

the state at the ‘‘current time.’’ Mathematically, re-

label PðXtþ1jY1:tÞ as PðXtjY1:t�1Þ for use in step 3 as

the ‘‘distribution of the state at the current time’’

(given all previous data).

8. Go to step 3.

The total likelihood is the product of all of the data

probabilities from each iteration of step (3).

The term ‘‘filtering’’ may be opaque. In early applica-

tions of state–space models, the model parameters were

known, and the goal was to estimate the state of the system

by balancing new observations with predictions from pre-

vious observations in light of both process noise and

observation error, i.e., to update PðXtjY1:tÞ to PðXtþ1jY1:tþ1Þ.
In a sense, this represents ‘‘filtering’’ the noises to obtain

optimal knowledge about the states and their uncertainty.

MCMC sampling for state–space models

MCMC algorithms are a general approach to generating

a sample from a conditional distribution when we can

only calculate the full joint distribution. For example, in

the Bayesian case, a sample from PðX1:T ; hjY1:TÞ can

be generated using the ability to calculate PðY1:T jX1:T ; hÞ
PðX1:T jhÞPðhÞ.

In the context of state–space models, there are two ways

that MCMC algorithms are used. First, some maximum-

likelihood algorithms, such as Monte Carlo expectation

maximization, need an MCMC sampler of the states given

fixed parameters and data, PðX1:T jY1:T ; hÞ. This type of

algorithm uses an MCMC sample based on one value of h
to find a better value of h, then runs the MCMC again with

that h and iterates these steps until h converges to the

maximum-likelihood estimate (which can be difficult to

ascertain). Although this approach uses an MCMC sampler

repeatedly, it can usually be a very efficient sampler

because parameters are fixed.

Other maximum-likelihood algorithms, such as data

cloning and MCKL, need a full Bayesian sampler from

states and parameters given data, PðX1:T ; hjY1:TÞ. MCMC

samplers for parameters and states are typically much less

efficient than those for states only. For these algorithms,

the Bayesian view of parameters required to include them

in posterior sampling can be viewed as a mathematical

trick rather than a philosophical shift in the definition of

probability.

Methods based on filtering

Kalman Filter and approximations

The Kalman filter calculates (Eq. 17) when all relationships

in the models are linear and both process noise and

observation error are Gaussian (Harvey 1991). With these

assumptions, each step in a filtering algorithm involves

only (possibly multivariate) normal distributions. Normal-

ity of every distribution is maintained because multiplying

or adding a constant, or adding another normal variable,

results in another normal distribution. For example, if

PðXtjY1:tÞ is normal and Xt?1 is a linear function of Xt plus

Gaussian noise, then PðXtþ1jY1:tÞ is also normal. When the

model is mildly nonlinear, one can use approximations

based on Taylor series expansions to approximate the

filtering calculations using means and variances as if the

model was linear. This is known as the extended Kalman

filter (Harvey 1991).

The Kalman filter has a long history of application to

population models. Much of the development of its appli-

cation was inspired by fisheries time-series (Mendelssohn

1988; Sullivan 1992; Schnute 1994), as is also true for later

state–space modeling developments. More recently, it has

been used for models of community dynamics (Ives et al.

2003). To a substantial extent, state–space modeling efforts

have moved on to numerical methods for nonlinear and/or

non-Gaussian models, with a large emphasis on Bayesian

applications, but the basic or extended Kalman filter is still

used when it is viewed as a reasonable approximation (e.g.,

Ennola et al. 1998; Dennis et al. 2006; Woody et al. 2007).
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Of particular interest here, Besbeas et al. (2002) showed

how combining an approximately linear, Gaussian state–

space model with demographic data in an integrated pop-

ulation model can improve results from both.

The great advantage of the Kalman filter is that it is fast

and easy to calculate. This means that one does not need to

spend significant amounts of time trying more difficult

methods that may not yield much more biological insight.

Additionally, it means that resampling methods, such as

bootstrapping, could be readily applied. For example, one

could estimate confidence intervals of estimated parame-

ters using a moving block (nonparametric) bootstrap or a

parametric (simulated from the model) bootstrap (Efron

and Tibshirani 1993), which might somewhat address

concerns if the model is obviously approximate. Another

reasonable view is that population dynamics data are typ-

ically so noisy, and our explanations of them so full of

uncertainty, that it may be difficult to justify a more

complicated model. The disadvantages of the Kalman filter

are that in many settings the required assumptions are

unrealistic, and the consequent impact on estimation and

inference can be unclear. Even though other methods can

be harder to implement, they may be justified by the goal of

learning as much as one possibly can from hard-won

ecological data.

Grid-based methods (quadrature)

Grid-based methods work by splitting the range of possible

state values into many small cells and tracking the proba-

bilities that the state falls in any cell. For example, the

distribution PðXtjY1:tÞ can be represented as a set of small

cells for the possible Xt values and a vector of corre-

sponding values of PðXtjY1:tÞ for the center of each cell. In

essence, the piecewise-linear plot of the vector of PðXtjY1:tÞ
values versus the cell centers is an approximation of the

full distribution PðXtjY1:tÞ. One can use this approximation

to calculate the vector that represents PðXtþ1jY1:tÞ. Simi-

larly, one can sum over the vector that represents

PðXtþ1jY1:tÞ to find the value of PðYtþ1jY1:tÞ, and so on.

This method was developed by Kitagawa (1987) and used

by de Valpine and Hastings (2002) for population models.

Quadrature is the label for numerical integration methods

that sum the area under the curve of some continuous

function by splitting the range of the x-axis into many small

cells and summing the area under the resulting rectangles

or trapezoids. This is essentially what is being done to

calculate PðYtþ1jY1:tÞ.
The advantages of this method are that it can be com-

putationally efficient for models with low-dimensional Xt

and it does not require Monte Carlo methods. The primary

disadvantage is that it is difficult to extend to many

dimensions of state or observation variables, such as in an

age- or stage-structured model or a multi-species model.

This difficulty arises from the curse of dimensionality. If

the grid has 1,000 cells in each dimension, that will be 106

cells in two dimensions, 109 in three, and so on, so that

storing and summing values on the grid is impractical.

Although this disadvantage has limited its adoption for

general use, it is nevertheless useful to keep grid-based

integration in mind as a potential tool for some dimensions

of some problems that can be combined with other tools.

Sequential Monte Carlo methods (particle filtering)

Sequential Monte Carlo methods, also known as ‘‘particle

filter’’ methods, represent the distributions of the filtering

steps using simulated samples. For example, the distribu-

tion PðXtjY1:tÞ can be represented by a large sample of Xt

values drawn from this distribution, but the samples must

be updated sequentially following the steps of filtering. If

we have a valid sample from PðXtjY1:tÞ, then a sample from

PðXtþ1jY1:tÞ can be generated by simulating one value of

Xt?1 from each value in the sample of Xt. The probability

of the data at t ? 1 given previous values, i.e. PðYtþ1jY1:tÞ,
is simply the average over the Xt?1 values of the proba-

bility of Yt?1 given Xt?1.

Updating the points based on the information in Yt?1,

i.e., filtering step (5), is conceptually simple but leads to the

major hitch in this method. The conceptually simple part is

to weight each sample point of Xt?1 proportionally to

PðYtþ1jXtþ1Þ. If one then resamples proportionally to those

weights, the result represents a sample from PðXtþ1jY1:tþ1Þ.
Points that are closer to Yt?1 will be weighted higher and

resampled more often, and vice-versa for points far from

Yt?1. The problem is that after many time steps the quality

of the approximation can degenerate. For example, if Yt?1

is an unlikely observation, perhaps only a few Xt?1 points

will be weighted very heavily and represent most of the

resampled points. One run of a particle filter approximates

one likelihood calculation, so many runs must be used in an

optimization search for maximum-likelihood parameters.

Particle filters date back to Gordon et al. (1993),

although early related concepts go back further (Cappé

et al. 2007). In ecology, particle filters have been tried by

Trenkel et al. (2000), de Valpine (2004), Fujiwara et al.

(2005, for an individual growth model), Dowd (2006), and

Newman et al. (2009). Thorough treatments can be found

in Doucet et al. (2001), Liu (2001), and Cappé et al (2007).

Several methods have been proposed to improve the

accuracy of particle filters for each likelihood calculation.

One is to improve the projection of state values by dis-

proportionately sampling Xt values that lead to Xt?1 values

that are close to Yt?1, while tracking weights appropriately

(Pitt and Shephard 1999). This can be done by simulating

each Xt value ahead once, weighting them by how close
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they come to Yt?1, and then sampling the Xt according to

those weights to project ahead again. Other ways to ‘‘look

ahead’’ can also be used. This is called auxiliary particle

filtering. It allows multiple values of Xt?1 to come from the

same Xt values that are likely to predict Yt?1. The Xt?1

values are still resampled proportionally to PðYtþ1jXtþ1Þ.
Another way to improve particle filtering is to use

MCMC steps to replenish the particles. Gilks and Ber-

zuini (2001) proposed that MCMC can be used to mix

each set of previous trajectories, X1:t-1, with simulated

current states, Xt. In other words, once a sample for X1:t-1

is obtained, each trajectory in it is kept together as a unit

for mixing with the next state. A third way to improve

particle filtering is to use kernel density smoothing of the

state density at each step (Trenkel et al. 2000; Hürzeler

and Künsch 2001; Thomas et al. 2005). A new set of

particles can be simulated from the smoothed density.

Both of these methods can go a long way to replenishing

particles, but they are not a panacea in cases where pre-

dicted densities are very far from observations. Conse-

quently, they will have difficulty providing accurate

likelihoods for bad models.

A serious difficulty with particle filtering is that its

likelihood approximations have a stochastic ingredient that

changes for every run of the filter, making it hard to find

maximum-likelihood parameters (see Fig. 4 of de Valpine

2004). When used in an optimization search, large

improvements toward the maximum likelihood can be

made easily because they will not be obscured by the

randomness in the approximation. However, finer scale

convergence to the maximum likelihood will be obscured

because finding the precise peak of a stochastic mountain is

not easy.

Several methods have been proposed to overcome this

difficulty so that particle filtering can be used for maxi-

mum-likelihood estimation. Johansen et al. (2008) use a

particle filter for its ability to sample from PðX1:T jY1:TÞ and

subsequently use those samples in a data cloning algorithm

(see below). Ionides et al. (2006) developed a scheme for

iterating particle filters with parameters allowed to vary

through time, at first greatly and then progressively less

until convergence is forced.

Importance sampling

In importance sampling, first a sample is drawn from a

known distribution that approximates PðX1:T jY1:T ; hÞ, then

a weighted average of probabilities gives the likelihood.

The difficulty with this method is that a general approach to

finding approximating distributions may not be easy to

establish. A distribution that is too small (has tails that are

too light) will give a calculation that may not even be valid,

while a distribution that is too big (has tails that are too

heavy) may be inefficient, i.e., has high simulation variance

(Robert and Casella 1999).

Examples of importance sampling for Bayesian infer-

ence in ecology include McAllister et al. (1994) and

Givens and Raftery (1996). To a large extent Bayesian

methods have moved on to MCMC. For state–space max-

imum likelihood, Durbin and Koopman (1997) showed

efficient importance sampling in the limited case of non-

Gaussian observations with linear dynamics. Advances in

importance sampling techniques could make it more

appealing for more complex models (Neddermeyer 2009).

Methods based on MCMC sampling of states only

Monte Carlo expectation maximization

The expectation maximization or EM algorithm is one of

the all-time most important algorithms for finding maxi-

mum-likelihood estimates. It is designed for models with

‘‘missing data’’, such as unobserved states. However, for

the standard EM algorithm to work, one must be able to

work with the various distributions analytically. The Monte

Carlo version of the EM algorithm (MCEM; Chan and

Ledolter 1995) can be used even without analytical trac-

tability. The algorithm works as follows:

1. Start with some parameters h.

2. Use an MCMC to sample from PðX1:T jY1:T ; hÞ.
3. Find a new value of h that maximizes the average of

logðPðY1:T jX1:T ; hÞPðX1:T jhÞÞ, averaged over the sam-

ple of X1:T values from the previous step.

4. Repeat steps 2 and 3 until converged.

MCEM is appealing in its simplicity and relatively ease

of implementation. However, it too has some serious

drawbacks. One is that EM algorithms, stochastic or not,

are known to suffer from slow convergence in some cases.

A greater difficulty is that for each updated value of h, a

new sample of X1:T is generated, so that the convergence

involves a stochastic surface, similarly to maximization of

particle filter likelihoods. Various improvements to both

problems are given by Levine and Casella (2001), Caffo

et al. (2005), and Jank (2006).

Methods based on Bayesian MCMC sampling

of states and parameters

While the methods for maximum-likelihood estimation

have been progressing steadily, they have been slowed by

the challenges mentioned above. Meanwhile, the facility of

MCMC has allowed Bayesian analysis of state–space

models to flourish more fully (e.g., Carlin et al. 1992; Rivot

et al. 2004; Rotella et al. 2009). Two relatively recent

methods take advantage of Bayesian MCMC sampling to
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estimate maximum-likelihood parameters. A potential

advantage of these methods over the previous ones is that

they can straightforwardly be made as accurate as desired

by increasing computational effort. The same is in principle

true for the above methods, but in practice runs into the

maximum-likelihood convergence problems mentioned (as

opposed to MCMC mixing issues, which need to be con-

sidered for all of these methods).

Data cloning

If one pretends to have multiple copies of the same data, it is

clear that the maximum-likelihood estimate would be the

same as for the single copy of the data but that the parameter

uncertainty would be spuriously reduced. The spurious

reduction in parameter uncertainty would be reflected by a

more peaked likelihood surface. In a Bayesian analysis, the

more peaked likelihood would create a more peaked pos-

terior. For very many copies of the same data, the posterior

will be very sharply peaked at the maximum-likelihood

parameters. Several authors have independently hit upon

this or very similar ideas as a tool for finding maximum-

likelihood parameters (Doucet and Tadic 2003; Jacquier

et al. 2007; Lele et al. 2007). Lele et al. (2007) dubbed it

‘‘data cloning’’ and showed how Fisher information can

easily be obtained from the results. The implementation of

data cloning requires a separate set of latent population

states, X1:T, for each of many copies of the data. MCMC

sampling is then done for the model parameters and for

every set of X1:T values. This is conceptually straightforward

and can be directly implemented in MCMC software, such

as WinBUGS, but determining how many clones (copies of

the data) are needed currently requires trial and error, and

computation time increases with every copy. Ponciano et al.

(2009) demonstrated an application of this approach.

Monte Carlo kernel likelihood

Another way to take advantage of Bayesian MCMC sam-

pling is to estimate the likelihood from the posterior den-

sity sample. To do this, the effect of the prior must be

undone, which can be accomplished by a weighted kernel

density estimator. Define K(h - h(i)) to be a kernel func-

tion such as a multivariate Gaussian density with zero

mean and covariance Rh, also called the ‘‘bandwidth’’.

Here, h is any value of parameters, and h(i) is a value from a

posterior sample. Then, the likelihood can be approximated

up to an unknown normalizing constant by:

LðhÞ / 1

m

Xm

i¼1

Kðh� hðiÞÞ
PðhðiÞÞ

ð19Þ

where P(h(i)) is the prior for h(i) and m is the size of the

posterior sample. This is a straightforward idea but had not

been developed for the state–space model maximum-like-

lihood estimation until de Valpine (2004).

The main difficulty with this method is that kernel

density estimation is a questionable enterprise in more

than a few dimensions, i.e., for more than a few param-

eters. To allow a narrow bandwidth, i.e. Rh with small

variances, one needs very many samples. Conventional

wisdom from the problem of estimating full density sur-

faces is that the curse of dimensionality makes multi-

variate estimation impractical beyond three to five

dimensions (Scott 1992). However, several points make

the outlook more optimistic for estimating the mode

location, i.e., the maximum-likelihood parameters. First,

this is the region of most accurate estimation. Second, the

asymptotics of mode estimation are different from those

of full surface estimation (Romano 1988). Third, very

large sample sizes are indeed practical because they are

simulated by MCMC. And fourth, de Valpine (2004)

presented two methods for improving accuracy and

showed by simulation that good results can be obtained in

up to 20 dimensions.

In practice, there are two sources of error in the mode

estimation: bias due to smoothing and random error due to

Monte Carlo estimation. Since the likelihood surface will

often be approximately Gaussian, which is symmetric, bias

due to smoothing can be small even for large bandwidth.

One accuracy improvement is to zoom in on the maximum-

likelihood estimate by using a preliminary estimate as a

prior distribution for a second (or more) MCMC sample.

The other is to apply an approximation from distribution

theory to reduce the smoothing bias. The test problem used

by de Valpine (2004) to assess accuracy was chosen to

have a highly asymmetric likelihood surface in all

dimensions. Areas for further development include auto-

mated bandwidth selection and better corrections to

smoothing bias. In summary, this approach appears to be

promising and flexible but is not fully automated and will

have limits in the number of parameters that can be

handled.

Methods for calculating likelihoods

Likelihoods are an example of a ‘‘normalizing constant’’ in

Bayes’ theorem for conditional distributions. To see this,

write the conditional distribution for states given data, with

parameters h fixed:

PðX1:T jY1:T ; hÞ ¼
PðY1:T jX1:T ; hÞPðX1:T jhÞ

PðY1:T jhÞ
ð20Þ

The denominator is the likelihood. It is a normalizing con-

stant for PðY1:T jX1:T ; hÞPðX1:T jhÞ because PðX1:T jY1:T ; hÞ
must integrate to 1. There are several major approaches
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to calculate normalizing constants numerically (Han and

Carlin 2001). It is worth noting that in Bayesian analysis,

marginal likelihoods are normalizing constants, but the

ratios of marginal likelihoods (Bayes factors) can also be

accessed by including the model set in MCMC sampling via

reversible jump methods (King et al. 2008a, 2009).

Filtering methods

All of the filtering methods described above can be used to

calculate the likelihood even if the maximum-likelihood

parameters are found by some other method. This repre-

sents a utility of filtering methods that does not involve

optimization difficulties. However, it is still relevant that

particle filtering can suffer from inefficiency due to particle

degeneracy.

Importance sampling

Importance sampling also may be difficult to use for esti-

mation, but it can be more feasible for calculating likeli-

hoods of estimated parameters. In determining an

approximating distribution, one can use an MCMC sample

from PðX1:T jY1:T ; hÞ itself. However, general distributional

forms for multivariate samples are technically challenging

(Neddermeyer 2009).

Monte Carlo likelihood ratio approximation

Statisticians have recognized that a conditional sample of

latent states (given the data) for one set of parameters

or one model can be treated as an importance sampling

distribution for another set of parameters or another model.

The result is an approximation of a likelihood ratio

between two models (Thompson and Guo 1991). Ponciano

et al. (2009) used this approach to obtain likelihood pro-

files and make AIC comparisons among models. This is

useful and easy to implement when it works well, but it

will not work well if the models have substantially dif-

ferent conditional state distributions (see, for example,

Robert and Casella (1999) on importance sampling). [Ge-

yer and Thompson (1992) and Geyer (1996) proposed

using this method iteratively to obtain maximum-likeli-

hood estimates, but McCulloch (1997) and de Valpine

(2004) did not find this to work efficiently for their

examples.]

Bridge sampling

The bridge sampling approach to normalizing constant

calculation approaches the problem very differently. One

chooses some particular value of X1:T, call it X�1:T ,

calculates

PðX�1:T jY1:T ; hÞ, and then obtains

PðY1:T jhÞ ¼ PðY1:T jX�1:T ; hÞPðX�1:T jhÞ=PðX�1:T jY1:T ; hÞ.

In other words, one only needs the normalized condi-

tional density at one point to know the normalizing con-

stant. The procedure involves the following steps:

1. Choose some states X*
1:T. A sensible choice is the

average from an MCMC sample from PðX1:T jY1:T ; hÞ.
2. For each t from 1 to T:

(a) Define f1ðXt:TÞ ¼ PðXt:T jX�1:t�1; Y1:T ; hÞ. The first

t - 1 states are fixed.

(b) Define

f2ðXt:TÞ ¼ PðXtþ1:T jX�1:t; Y1:T ; hÞ
� qðXtjX�1:t;Xtþ1:T ; Y1:T ; hÞ;

where qð�Þ is a density you choose. It plays a role

like a MCMC proposal density.

(c) Run one MCMC sampler with X1:t-1 fixed at

X�1:t�1 and another with X1:t fixed at X�1:t. (In

practice, the first sample can be re-used from the

second sample of the (t - 1)st iteration of step

2). The first sample is proportional to f1ð�Þ.
(d) Simulate from qð�Þ to supplement the second

MCMC sample with an Xt dimension. Together

these are proportional to f2ð�Þ. In practice qð�Þ can

be chosen adaptively once the MCMC samples

are in hand.

(e) Use the bridge sampling identity (not given) to

calculate approximately the ratio of the normal-

izing constants of f1ð�Þ and f2ð�Þ, which is:

rt ¼
PðX�1:tjY1:T ; hÞ

PðX�1:t�1jY1:T ; hÞ
ð21Þ

3. The product of the rt values is PðX�1:T jY1:T ; hÞ.

Bridge sampling methods are promising in terms of

accuracy and general applicability (Han and Carlin 2001).

A major advantage is that they do not require the model to

be good. The basic idea for calculating ratios of normal-

izing constants is from Meng and Wong (1996). The idea

for calculating the conditional probability at a point is from

Chib (1995) for Gibbs samplers and Chib and Jeliazkov

(2001) for the Metropolis–Hastings algorithm, but these

authors did not relate the approach to bridge sampling.

Mira and Nicholls (2004) made this connection and found

immediate efficiency gains using the results of Meng and

Wong (1996). De Valpine (2008) showed additional effi-

ciency gains, mostly by adaptive estimation of qð�Þ [step

2(d) above].
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Lapwing example

Next I use the MCKL and bridge sampling methods to find

maximum-likelihood estimates and profile likelihood con-

fidence intervals of the Lapwing model. The goal is to see

the frequentist methods used in a somewhat intensive

way—since repeated maximization and normalizing con-

stant calculation must be done to obtain likelihood pro-

files—to illustrate their feasibility. A customized MCMC

sampler was developed to allow complete control over

sampling dimensions and proposal steps, rather than rely-

ing on the choices of WinBUGS, for example. Some salient

details are as follows:

– All priors were flat.

– The prior on sy ¼ 1=r2
y was flat on a log scale.

Boundaries for sy such that 1� ry� 105 were used with

no impact whatsoever on the results. Using a flat prior

on a log scale was observed to lead to a more normal

posterior (compared to a flat prior for sy itself), which

reduces smoothing bias in the kernel density estimate

of the mode.

– All proposals were normally distributed and centered

on the current values. Standard deviations of proposal

distributions were heuristically tuned by trial and error

to achieve good mixing.

– Covariates were centered at zero. For example, the

mean annual number of days below freezing was

subtracted from each year’s value. This allows better

mixing of the slope and intercept parameters.

A sample of 300,000 parameter values, taken by

recording every 30th sample from 9,000,000, was obtained

for MCKL estimation of the maximum-likelihood param-

eters. For kernel density estimation, the posterior sample

was transformed to principal components for all dimen-

sions except for log(s). Since the principal components will

be approximately independent, this choice allows a diag-

onal covariance ‘‘bandwidth’’ matrix for the kernel

smoother to be reasonable. Omitting log(s) from dimen-

sions transformed to principal components was done

because it has minimum and maximum values. The kernel

estimate must be re-normalized based on the area of the

kernel that extends outside allowed sample values [a detail

omitted from (Eq. 19)], which is simplest if a dimension

with boundaries is not included in the principal compo-

nents. In this case, the sample did not come close to the

boundaries, and so this issue is moot. The bandwidth used

in each dimension was 0.5 of the standard deviation of the

marginal posterior.

Likelihoods given fixed parameters were calculated

using bridge sampling. The improvements of de Valpine

(2008) were not implemented for this problem, and instead

the method of Mira and Nicholls (2004) was used. Each

iteration requires a sample of some states with parameters

and other states held fixed. These sample sizes were

50,000, recorded as every eighth sample from 400,000.

A likelihood profile for each parameter was obtained

using a grid of nine values as follows. For each of the nine

values of the parameter, MCKL was used to find the

maximum-likelihood estimates for the rest of the parame-

ters. Sample sizes for this step were 200,000, thinned as

every 30th value and with bandwidths chosen as above.

Bridge sampling estimates of the likelihoods were then

calculated at all nine sets of parameters. A spline was fit

through the log likelihood as a function of the parameter

being profiled, and the location of the 95% upper and lower

boundaries was determined from the spline fit based on

standard chi-squared quantiles. Each grid included the

maximum-likelihood estimate as the central (5th) value.

The extent of the grids was chosen by eye from the

Bayesian marginal posterior, which was adequate as long

as it was wide enough to include both upper and lower 95%

boundaries.

Results are given in Table 1, and example profiles are

shown in Figs. 1, 2, and 3. The main point to be taken from

the figures is that the profile log-likelihoods appear to be

very nearly negative quadratic, which is the expected pat-

tern of a well-behaved likelihood surface informed by a

healthy amount of data. If the methods displayed unac-

ceptable error due to the simulation aspect of the algo-

rithms or other problems, these would typically be revealed

by poorly behaved likelihood profiles.

The estimates and confidence intervals obtained here are

similar to results from Brooks et al. (2004, Table 1) and

Besbeas et al. (2002, Table 1). Some apparently discrepant

numbers can be explained by different scalings and cen-

terings of the time (year) and frost data as covariates.

I treated time as the integers 1–35 centered around their

Table 1 Maximum-likelihood estimates and 95% profile confidence

intervals for Lapwing model

Parameter Maximum-likelihood

estimate

95% Confidence

interval

a1 0.54 (0.41, 0.67)

b1 -0.19 (-0.31, -0.078)

aa 1.54 (1.41, 1.68)

ba -0.24 (-0.32, -0.17)

ak -4.57 (-4.63, -4.49)

bk -0.034 (-0.042, -0.027)

aq -1.13 (-1.31, -0.97)

bq -0.027 (-0.036, -0.018)

ry 159 (122, 211)
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mean of 18, resulting in the integers from -17 to 17.

Brooks et al. (2004, Annex with code) treated time as

integers from 1 to 35 for the q regression and from 2 to 36

for the k regression. Besbeas et al. (2002 and personal

communication) scaled time as evenly spaced numbers

from -1 to 1. Brooks et al. (2004) used frost data

approximately centered around 0 and scaled to have stan-

dard deviation 1. I used the data directly from their paper,

while Besbeas et al. (2002) used approximately centered

but not rescaled frost data.

Of the eight slope and intercept parameters, the only two

that appear substantially different from Brooks et al.

(2004) are aq and ak, the intercepts for the two regressions

against time. If âq ¼ �0:668 of Brooks et al. (2004) is

shifted by b̂q � 18 ¼ �0:027� 18, the result is -1.15,

close to -1.13 estimated here. Similar adjustment of âk

gives -4.56, close to -4.57 estimated here.

Turning to comparison with Besbeas et al. (2002), all

four slope parameters appear to be different. It makes sense

that aq and ak are very similar, since both these authors and

I centered time around 0. To compare the slopes of the time

regressions, namely, bq and bk, one can divide the slopes of

Besbeas et al. (2002) by the interval representing one year

on their time scaling, i.e. 2/(number of years - 1), which

yields values quite close to those estimated here. The ratios

of slope estimates between my results and theirs for both

first-year and juvenile survival are similar to the standard

deviation of their frost data, again reconciling the results as

different parameterizations of biologically similar models

(P.T. Besbeas, personal communication). The confidence

interval or region widths also appear to be generally similar

among all three papers. Finally, the estimate of 159 for ry

is identical to that of Besbeas et al. (2002) and slightly

smaller than the 169 of Brooks et al. (2004).

I conclude that all three methods yield similar biological

conclusions in this case. It is natural then to ask when one

approach or another will be superior, but that is beyond the

territory of this paper. The overarching point here is that

computational maximum-likelihood methods make it pos-

sible to pursue such comparisons at all by allowing

frequentist analysis of nonlinear, non-Gaussian state–space

models.

Discussion

Availability of computational methods for Bayesian anal-

ysis of hierarchical models has rendered the Bayesian

choice one of great pragmatism. Researchers often face a
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Fig. 1 Likelihood profile for a1. This is the intercept of the logistic

relationship between 1-year-old survival and number of frost days in a

year (Eq. 8). Middle circle Maximum-likelihood estimate. Other

circles values of a1 that were held fixed while other parameters were

maximized to obtain the profile likelihood surface, which is shown as

a spline curve (solid). Dashed line Log likelihood threshold for a 95%

confidence interval. Values of a1 with log likelihoods above the

dashed line are within the confidence interval
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Fig. 2 Likelihood profile for b1. This is the slope of the logistic

relationship between 1-year-old survival and number of frost days in a

year (Eq. 8). Circles, solid curve, and dashed line are as in Fig. 1
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dichotomy between frequentist analysis using a simple

model for their data or Bayesian analysis using a hierar-

chical model that more realistically represents the multiple

sources of variation and relationships in their data. A

principal aim of this review has been to touch upon many

areas of active statistical research to make frequentist

analysis of realistic hierarchical models feasible. Some of

these methods have been explored for ecological problems,

and there is great potential for more.

To a reader new to these topics, the review of methods

with pros and cons of each may appear to convey the

message that all of them are problematic to one degree or

another. This is indeed the case for these as well as

Bayesian computational methods, on which there is a large

body of literature of attempts to improve many recognized

difficulties. However, even at their current stage of devel-

opment, the methods reviewed here are practical for many

ecological problems. Several of the methods leverage

MCMC algorithms, which are now widely available, and

all continue to see improvements developed.

What methods can be most recommended? As Newman

et al. (2009) discuss, there can be tradeoffs between ease of

implementation, computational efficiency, and accuracy of

results. The Kalman filter is the easiest to implement but

most limited in the models it can handle. For Monte Carlo

methods, automated software for the algorithm steps other

than MCMC is currently a limitation, but in time this may

be resolved. The three methods for maximum-likelihood

estimation that stand out as easiest to implement are

MCEM, data cloning, and MCKL. MCEM requires itera-

tion of MCMC and optimization. Data cloning requires

almost no additional steps beyond MCMC, and so may be

currently easiest to use when feasible. MCKL requires only

kernel density estimation and optimization, which are both

readily available in mathematical software packages (and

straightforward to program). The programming required

for these methods is at a level that is sometimes a barrier

for applied ecologists but very feasible for many statisti-

cians. For normalizing constant estimation, particle filter-

ing and importance sampling are relatively straightforward

to implement, while bridge sampling has the potential for

greater efficiency but requires substantially more imple-

mentation effort. In summary, while these methods are not

currently automatic to use, they can be made practical for

many problems.
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