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Abstract
Objective The reproducibility of Neurite orientation dispersion and density imaging (NODDI) metrics from time-saving 
multiband (MB) EPI compared with singleband (SB) has not been considered. This study aims to evaluate the reproducibility 
of NODDI parameters from SB and MB acquisitions, determine the agreement between acquisitions and estimate the sample 
sizes required to detect between-group change.
Methods Brain diffusion MRI data were acquired using SB and MB (acceleration factors 2 (MB2) and 3 (MB3)) on 8 
healthy subjects on 2 separate visits. NODDI maps of isotropic volume fraction (FISO), neurite density (NDI) and orien-
tation dispersion index (ODI) were estimated. Region-of-interest analysis was performed; variability across subjects and 
visits was measured using coefficients of variation (CoV). Intraclass correlation coefficient and Bland–Altman analysis were 
performed to assess reproducibility and detect any systematic bias between SB, MB2 and MB3. Power calculations were 
used to determine sample sizes required to detect group differences.
Results Both NDI and ODI were reproducible between visits; however, FISO was variable. All parameters were not repro-
ducible across methods; a systematic bias was observed with the derived values decreasing as the MB factor increases. The 
number of subjects needed to detect a between-group change is not significantly different between methods; however, ODI 
needs considerably higher sample sizes than NDI.
Conclusions Both SB and MB yield highly reproducible NDI and ODI measures, but direct comparison of these parameters 
between methods is complicated by systematic differences that exist between the two approaches.
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Introduction

Diffusion MRI (dMRI) is an established non-invasive 
MRI technique that is instrumental in characterising tis-
sue microstructure by probing the diffusion properties of 
water molecules within the tissue over distances of a length 
scale comparable to that of cellular structures [1]. Several 

advanced diffusion models have been developed over the 
years to generate indices that quantify specific tissue proper-
ties relating to the geometry and organisation of neurites [2]. 
In contrast to the standard diffusion tensor imaging (DTI, 
[3]), these complex models require larger datasets acquired 
at multiple b values and higher angular resolution, often 
resulting in prohibitively long acquisition times for clini-
cal applications. Among these models, neurite orientation 
dispersion and density imaging (NODDI) [4] has become 
very popular amongst multicompartment dMRI models, as 
it was designed to characterise axons and dendrites, within 
clinically feasible acquisition times. NODDI combines a 
hierarchical three-compartment model with a high angular 
resolution diffusion-weighted imaging (HARDI) protocol 
to differentiate the MRI signal from tissue and free water 
(isotropic compartment) within a voxel and intraneurite and 
extraneurite space within the tissue compartment.
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NODDI estimates a number of quantitative parameters 
that characterise tissue microstructure voxelwise across 
the image. Orientation dispersion index (ODI) describes 
the organisation and orientation of neurites (axons and 
dendrites), neurite density index (NDI) is derived from the 
intraneurite volume fraction within the tissue compartment 
of a voxel and the volume fraction that undergoes isotropic 
diffusion (FISO) which is generally assumed to represent 
the CSF compartment within a voxel. NODDI also estimates 
fibre orientation vectors. NODDI’s ability to decouple NDI 
and ODI helped shed more light on the source of diffusion 
anisotropy, previously quantified in conventional DTI using 
the fractional anisotropy index (FA) [5]. This is particularly 
useful in the regions of crossing fibres which are often prob-
lematic for DTI [6]. However, the NODDI model has also 
attracted some criticism regarding the use of some assump-
tions that, if violated, can result in a bias in its parameters 
[7, 8]. These include the assumption of a common T2 for 
all compartments [9] and a common default value for the 
intrinsic diffusivity that is reasonable for white matter tis-
sue but sub-optimal in gray matter [10, 11]. Although the 
model has some limitations, it is important to acknowledge 
its advantages in terms of feasibility, and the recent analysis 
shows agreement between NODDI metrics and histologi-
cally equivalent metrics [12]. NODDI has found a number 
of applications in neuroimaging from studying multiple 
sclerosis [12, 13], Alzheimer’s disease [14] and healthy 
neurodevelopment [15], to characterising myelination [16, 
17], inflammation [18] and first-episode psychosis [19]. As 
NODDI usage increases, efforts have been made to establish 
the reliability and reproducibility of its indices. It has been 
demonstrated that NODDI is sensitive to field strength [20] 
and acquisition parameters such as the maximum b value and 
the number of diffusion-encoding directions [21], although 
the impact varies depending on the anatomical region of 
interest.

NODDI data can be acquired in clinically feasible times 
using the conventional echo planar imaging (EPI) approach 
that involves exciting a single slice at a time (singleband 
SB). However, with the introduction of the multiband (MB) 
or simultaneous multislice EPI [22, 23], the acquisition time 
for NODDI can be reduced further. In the MB technique, 
acquisition is accelerated by simultaneously exciting multi-
ple slices using a single radio-frequency (RF) pulse, with-
out significantly compromising the spatial resolution or the 
signal-to-noise ratio (SNR). By increasing the number of 
simultaneously excited slices, known as the MB factor, it 
is possible to reduce the repetition time (TR) and hence the 
total acquisition time. However, a known issue with multi-
band is the non-uniform noise caused by the geometrical 
arrangement of the receiver coils (the g factor) and this 
causes SNR to be different across different brain regions 
[24]. Although MB was introduced to increase temporal 

resolution for functional MRI [25], diffusion MRI can also 
benefit by significantly reducing the scan time. MB has 
already been incorporated in standard dMRI protocols such 
as the Human Connectome Project’s diffusion MRI scan-
ning protocol, which uses MB with acceleration factor 3. 
It is known that MB comes at a price of reduced SNR and 
increased T1-weighting and with the increased usage of MB 
in combination with NODDI it is important to study the 
effects of MB sequences on diffusion data and derived dif-
fusion metrics. Duan et al. [26] investigated the reliability 
of MB-derived DTI measures and showed moderate to good 
repeatability, which varied between ROIs depending on their 
size and location; but this was a test–retest study and did 
not compare the results with SB-derived measures. Another 
work by Mitsuda et al. [27] examined the effects of MB-EPI 
sequence (MB factors of 2,3 and 4) on DTI measures from 
data acquired using 1.5 T scanner and 12 channel head coil 
compared with SB-EPI data. This study showed significant 
differences in FA and ADC between SB data and MB data 
with higher acceleration factors of 3 and 4. Bernstein et al. 
[28] conducted a bootstrap analysis to compare diffusion 
metrics derived from SB with those derived from MB (fac-
tor 3) both at similar and reduced TR in order to study the 
effects of MB reconstruction and TR shortening separately. 
The study revealed a bias in the MB-derived maps and dem-
onstrated an increase in uncertainty for each parameter when 
the TR is short. Olson et al. [29] examined the effects of 
slice crosstalk on diffusion parameters in simultaneous mul-
tislice imaging. They found that interslice leakage between 
simultaneously excited slices had an effect on the reproduc-
ibility of diffusion metrics from higher level dMRI models 
more than DTI metrics.

These findings, combined with the observation that MB 
potentially introduces artefact, [30] and a signal-to-noise 
penalty, suggest that maps derived from NODDI might also 
be affected.

In this paper, we investigate the reproducibility of the 
NODDI indices and explore the intersession and intersubject 
variations in healthy volunteers, determine the agreement 
between MB and SB acquisition methods and to establish 
any systematic differences between MB and SB derived 
parameters. Finally, we perform power calculations in order 
to estimate the sample sizes required to detect a between-
group change for both acquisition methods.

Materials and methods

Subjects and scan sessions

Eight healthy participants were recruited in this study: 7 
male, median age 34 (range 22–40) years. Each participant 
was scanned on two separate visits, arranged between 2 and 
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7 days apart. We limited the gap between visits to a mini-
mum of 2 days and maximum of 7 days; this is short enough 
to ensure that there is no physiological change in the partici-
pants for DWI, but long enough to take into account the dif-
ferent state of the scanner that is a potential source of vari-
ability. Each visit included NODDI acquisition with MB2 
(Multiband with acceleration factor 2), MB3 (Multiband 
with acceleration factor 3) and conventional single band 
(SB). This study falls within the ethical approval granted as 
part of a larger methodological development study approved 
by the Brighton and Sussex Medical School Ethics Com-
mittee; all participants provided written informed consent.

The images were acquired using a Siemens 3 T Prisma 
scanner (Siemens, Erlangen, Germany) with a maximum 
gradient strength of 80 mT/m and a 32-channel head coil. 
The same pulse sequence developed by the University of 
Minnesota Center for Magnetic Resonance Research was 
used to acquire single band (SB) and MB data (sequence 
version R016a). Diffusion-weighted data were acquired with 
single-shot, twice-refocused pulsed gradient spin-echo echo 
EPI using acquisition parameters that are typically used in 
NODDI studies. Sequence parameters were: TR = 7210, 
4100 and 2800 ms for SB, MB2 and MB3 acquisitions, 
respectively; echo time (TE) = 82.80 ms; field of view = 
240 × 240 (mm2); matrix size = 96 × 96; number of slices 
= 60; slice thickness = 2.5 mm; total acquisition time = 13, 
9 and 7 min for SB, MB2 and MB3 data, respectively. Two b 
value shells were acquired with b = 800 and 2600 s/mm2, 
with 30 and 60 non-colinear diffusion-weighted directions, 
respectively. Eight volumes with no diffusion weighting (i.e. 
b=0) were acquired (b0 images). Further b0 images were 
acquired in the opposite phase encoding direction in order 
to estimate and correct for susceptibility induced distortions 
[31]. Images were acquired using generalised auto-calibrat-
ing partially parallel acquisition (GRAPPA, reduction fac-
tor=2), which not only reduces scan time, but also improves 
image quality by reducing EPI signal distortions.

Image analysis

All diffusion-weighted images were first corrected for move-
ment and eddy current distortions using FMRIB software 
library (FSL, version 5.0.7, Oxford, UK). FSL’s topup tool 
was used to correct for susceptibility and FSL’s Eddy com-
mand was used to correct for eddy current distortions [32]. 
The corrected data were then fitted to the NODDI model 
using the toolbox (http://mig.cs.ucl.ac.uk/mig/mig/index 
.php/?n=Tutor ial.NODDI matla b/) run in Matlab 2012b (The 
MathWorks, Inc., Natick, MA) using a high performance 
computing cluster of 128 cores to generate voxelwise whole 
brain maps of FISO, NDI and ODI. The resulting NODDI 
parameter maps were normalised to the Montreal Neuro-
logical Institute (MNI) space using the Advanced Normali-
sation Tools (ANTs, version 2.1.0; http://stnav a.githu b.io/
ANTs) in order to perform region-of-interest (ROI) analy-
sis. This involved calculating the diffeomorphic transfor-
mation required to warp the mean b0 image to the MNI152 
T2-weighted image template, (with spatial resolution of 
2x2x2 mm3). A selection of ROIs was chosen for analysis 
for which the mean and standard deviation was calculated 
for each NODDI parameter; the ROIs were obtained from 
the ICBM-DTI-81 white-matter labels atlas [33] for white 
matter regions and the non-linear MNI-ICBM152 atlas [34] 
for the gray matter regions. A selection of brain regions was 
chosen to reflect areas of different microstructural proper-
ties (e.g. fibre density) and challenges (e.g. partial volume 
effect). The ROIs selected for this study included body of 
corpus callosum (BCC), genu of corpus callosum (GCC), 
corticospinal tracts (CST), external capsules (EC) and optic 
radiation (OR) from the white matter. Although the frontal 
lobe (FL) and the occipital lobe (OL) were chosen to repre-
sent the cortical gray matter; and the caudate, putamen and 
thalamus were selected from the deep gray matter regions. 
The cerebellum was also included in this study. Figure 1 
illustrates the size and location of these ROIs on the brain.

Fig. 1  The regions selected for 
region of interest analysis for 
this study: BCC body of corpus 
callosum, GCC  genu of corpus 
callosum, CST corticospinal 
tracts, EC external capsules, 
OR optic radiation, FL frontal 
lobe, OL occipital lobe, caudate, 
putamen thalamus and cerebel-
lum

http://mig.cs.ucl.ac.uk/mig/mig/index.php/?n=Tutorial.NODDImatlab/
http://mig.cs.ucl.ac.uk/mig/mig/index.php/?n=Tutorial.NODDImatlab/
http://stnava.github.io/ANTs
http://stnava.github.io/ANTs
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In order to perform the ROI-based statistical analyses, the 
mean values for the NODDI parameters NDI, FISO and ODI 
were extracted for each ROI.

Comparing raw diffusion signal between SB and MB 
acquisition methods

In this section, we evaluate the impact of MB sequences 
on the raw diffusion signal (in the non-diffusion weighted 
and diffusion weighted images) prior to NODDI fitting and 
explore if any differences can be observed between MB-
acquired and SB-acquired images. Before any quantitative 
comparison, a visual inspection was performed on the b0 
images after movement and eddy distortion corrections and 
co-registration to identify the presence of image artefacts 
from either GRAPPA or MB acceleration techniques.

SNR

Before performing any ROI-based image analysis on the 
NODDI metrics, a voxel-wise SNR calculation was per-
formed for each NODDI dataset, using the MRtrix3 software 
[35]. This involves calculating the ratio of the mean signal 
and the standard deviation (SD) of the eight b=0 volumes. 
The resulting SNR map was used to calculate the mean SNR 
within each ROI. We tested for the statistical significance 
of the differences between mean SNR for SB, MB2 and 
MB3 using paired t test. The SNR maps were also visually 
inspected to identify any differences between SB, MB2 and 
MB3 approaches.

Signal variability across diffusion weighting 
directions

Higher diffusion weighting is more sensitive to complex 
microstructure architecture resulting in greater signal varia-
tion. To account for that, NODDI requires the higher b value 
shell to be sampled at twice the angular resolution of the 
lower b value shell [4]. We investigated whether increasing 
the MB factor affects the variability between diffusion signal 
measured over different directions. To do this, we calculated 
the standard deviation for the signal at b=2600 across data 
acquired in all 60 directions and compared the results of SB 
with MB2 and MB3. In order to account for the intrinsic 
differences in signal intensity between SB, MB2 and MB3, 
the diffusion weighted images for each dataset were first nor-
malised by dividing them by the dataset’s mean b0 image.

Variability between subjects and between visits

To characterise the variability of the NODDI parameters, we 
used the coefficients of variation as a measure of variability 

between visits and subjects using the equation CoV (%) 
=100% × SD/mean.

Between-subjects variability: for each acquisition method 
(SB, MB2 and MB3), CoV between subjects within the data 
from the first visit was calculated.

Between-visits variability: for each acquisition method 
(SB, MB2 and MB3), we calculated the CoV between data 
from the first visit and the second visit. For this measure, SD 
is  calculated between two measurements  as: 
SD =

�

∑

(X1−X2)2

2×N
 with: N being the number of the subjects 

and X1 and X2 being the two measurements (obtained from 
each ROI from visits 1 and 2, respectively) for each 
subject.

Reproducibility between visits

The reproducibility of each NODDI measure obtained by 
each acquisition method between visits was quantified by 
means of the intraclass correlation coefficient (ICC) with the 
95% confidence interval (CI). ICC estimates were calculated 
separately for SB, MB2, MB3, using NODDI parameters 
from visit 1 and visit 2. ICC considers both the within-
subject variance due to measurement error and the variance 
because of biological differences between subjects. Ideally, 
the contribution from measurement error would be much 
smaller than from the subjects and in this case, ICC tends 
to 1. ICC estimates were calculated using SPSS statistical 
package version 25 (SPSS Inc, Chicago, IL), based on the 
single measures, absolute agreement, two-way mixed effects 
model. An ICC<0.50 was considered as poor reproducibil-
ity, 0.50–0.75 moderate, 0.75–0.9 good and >0.9 as excel-
lent reproducibility, following the stratification introduced 
by Koo and Li [36].

Agreement between acquisition methods

To determine the agreement between SB and MB acqui-
sition methods, NODDI parameters resulting from these 
acquisitions are compared against each other using ICC 
as an index to reflect both correlation and agreement. ICC 
estimates were calculated across measurements within the 
same scanning visit (SB-versus-MB2, SB-versus-MB3 and 
MB2-versus-MB3); this was done using the NODDI meas-
ures from visit 1. Further to using ICC, Bland–Altman plots 
were also generated to compare SB with MB2, MB2 with 
MB3 and SB with MB3 using data from visit 1; a similar 
Bland–Altman analysis was also performed separately for 
data acquired in visit 2. The Bland–Altman plots show the 
difference between measurements against the mean of the 
measurements, the bias and the 95% limits of agreement 
(LoA). LoA for each NODDI parameter were defined as the 
mean of paired differences ± 1.95 × its standard deviation 
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(SD). Bland–Altman plots make it possible to visualise the 
agreement between the acquisition methods, detect system-
atic bias and identify any relationship between the absolute 
differences and the mean value for each parameter [37]. 
Finally, in order to visualise and locate the origin of any 
possible bias in each metric, mean images across subjects 
for each NODDI metric from visit 1 were calculated for SB, 
MB2 and MB3 data and difference images were generated 
between SB- and MB-derived NODDI maps.

Power and sample size calculations

Detecting physiological differences between groups (e.g. 
patients and controls) is a common aim for research studies 
that employ NODDI. Although the expected group differ-
ences can be estimated from previous (analogous) studies, 
it is not possible to determine the necessary group sizes 
to reliably detect these differences unless the reproduc-
ibility of the measurement technique is known. Here we 
use our quantification of reproducibility to determine the 
sample size required for detecting a reduction of 5% and 
10% in NDI, ODI and FISO for each ROI using the mean 

and standard deviation (across subjects) of each NODDI 
measure from visit 1. The calculation was performed using 
Gpower [38], based on a t test involving the difference in 
the means between two independent groups with a two-
tailed significance level of 0.05, power of 0.9 and equal 
sample sizes. Finally, we compared the estimated sample 
sizes for all parameters between methods (SB, MB2 and 
MB3) using a paired t test to determine whether there are 
any significant differences between methods in the number 
of subjects needed to detect a between-group change.

Results

Visual comparison

Prior to performing NODDI fitting, a visual inspection has 
been carried out on all the pre-processed diffusion data. 
Figure 2 shows co-registered slices from SB, MB2 and 
MB3 images taken from a representative subject during 
visit 1; the figure illustrates there are no appreciable dif-
ferences in artefacts or image quality.

Fig. 2  Representative co-
registered slices from b = 0 
images from SB singleband, 
MB2 multiband factor 2 and 
MB3 multiband factor 3 data 
taken from subject one during 
visit one
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SNR

Figure 3 shows the average SNR for each ROI for all the 
tested acquisitions (averaged across subjects, SD across sub-
jects is shown as error bars). As expected, the multiband 
factor has the overall effect of reducing SNR, particularly 
when increasing the acceleration factor from 2 to 3, but not 
significantly.

Inspecting the voxel-wise SNR (see the supplementary 
material), we have observed that the SNR was more uni-
form across the brain in SB; whereas in MB SNR had 
a greater dependence on tissue-type and location with 
lowest values recorded in the deeper areas of the brain. 

Furthermore, comparing mean SNR for SB, MB2 and 
MB3, has revealed a significant decrease in SNR, particu-
larly in white matter ROIs and deep gray matter ROIs as 
the MB factor increases (p<0.05).

Signal variability across diffusion weighting 
directions

Figure 4 shows the variability between diffusion signal 
between b = 2600 data points measured over 60 different 
directions, from a representative subject in visit 1. The 
results show that the variability was increased in GM and 
slightly decreased in WM, as the MB factor increased.

Fig. 3  Signal to noise ratio (SNR) for data acquired using, SB single-
band, MB2 multiband factor 2 and MB3 multiband factor 3. SNR is 
reported for the following regions of interest: BCC body of corpus 

callosum, GCC  genu of corpus callosum, CST corticospinal tracts, 
EC external capsules, OR optic radiation, FL frontal lobe, OL occipi-
tal lobe, caudate, putamen thalamus and cerebellum

Fig. 4  a Variability between diffusion signal between b = 2600 data 
points measured over 60 different directions from SB, MB2 and 
MB3. And (b) difference in signal variability between each pair of 

acquisitions SB, MB2 and MB3. SB singleband, MB2 multiband fac-
tor 2 and MB3 multiband factor 3 (data taken from subject one during 
visit one)



505Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:499–511 

1 3

Variability between subjects and between visits

CoVs for NDI, FISO and ODI are shown in Fig. 5 (see 
Table  1S in the supplementary material for a tabular 
breakdown of these CoV measures). The results show 
that between subjects CoV measurements (Fig. 5a–c) are 
approximately 2 times higher than between visits CoV meas-
urements (Fig. 5d–f). NDI exhibited the lowest variation 
of all NODDI parameters between visits and subjects with 
CoV<2% and <4.5%, respectively. The highest CoVs for 
NDI were: between visits 1.64% (SB), 1.67% (MB2) and 
1.97% (MB3); and between subjects 4.36% (SB), 4.17% 
(MB2) and 4.40% (MB3). Similarly, ODI showed a low vari-
ability between scan visits for all ROIs and regardless of the 
acceleration factor with the following highest CoVs: 2.50% 
(SB), 1.88% (MB2) and 1.63% (MB3). On the other hand, 
ODI showed relatively larger between-subjects variability 
(CoV between 6.5% and 10%) in the white matter regions 
with prevalence of tightly packed parallel fibres (e.g. GCC, 
BCC and CST) than the gray matter regions. FISO shows the 
largest variation with the following highest CoVs: between 
visits 16.69% (SB), 15.09% (MB2) and 10.58% (MB3); and 
between subjects 24.15% (SB), 25.17% (MB2) and 28.06% 
(MB3).

There is greater variation between subjects than between 
visits for all NODDI parameters. This is expected because a 
normal physiological variation within the brain microstruc-
ture is known to give rise to variability in quantitative MR 
measurements in general, even in homogenous groups like 
those studied here [39].

Reproducibility between visits

Figure 6a–c shows the ICC estimates between visit 1 and 
visit 2 for NDI, FISO and ODI calculated separately for 
SB, MB2 and MB3 acquisition methods (see Table 2S in 
the supplementary material for a tabular breakdown of 
these ICC measures). The results demonstrate that the ICC 
of NODDI metrics collected with SB acquisition consist-
ently showed good to excellent reproducibility between 
visits for NDI for all ROIs with ICC ranging between 0.72 
and 0.95. Whereas MB2 and MB3 exhibited moderate to 
excellent reproducibility for all ROIs with recorded ICCs 
between 0.53 and 0.97 for MB2, and between 0.55 and 
0.94 for MB3. ODI, on the other hand, produced good to 
excellent reproducibility which appears to be independ-
ent of the MB acceleration factor, for most regions (ICC 
between 0.75 and 0.99) except the caudate, cerebellum 
and frontal lobe. These three regions produced moderate 
ICCs for ODI of 0.56 (SB in the caudate), 0.71 (SB in the 
cerebellum) and 0.68 (MB3 in the frontal lobe). Finally, 
when examining FISO’s reproducibility between the visits, 
we observed smaller ICC (≤ 0.58) for half of the ROIs par-
ticularly in SB data. Unlike SB and MB3 data, MB2 pro-
duced moderate to excellent ICC values in FISO, except 
in the optic radiation. This variability in the performance 
of FISO renders it the least reliable of the NODDI meas-
ures with inconsistent or poor reproducibility for several 
regions.

Fig. 5  Inter-subject and between-visits variability analysis of NODDI 
parameters estimated from diffusion data acquired. Variability meas-
ure is calculated using Coefficients of Variation (CoV) on: BCC body 
of corpus callosum, GCC  genu of corpus callosum, CST corticospinal 
tracts, EC external capsules, OR optic radiation, FL frontal lobe, OL 

occipital lobe, caudate, putamen thalamus and cerebellum. SB single-
band, MB2 multiband factor 2 and MB3 multiband factor 3; NDI neu-
rite density index, ODI orientation dispersion index and FISO = CSF 
volume fraction
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Agreement between acquisition methods

We compared the data acquired between each two methods 
of different MB acceleration factors from visit 1 by means 
of ICC as well as Bland–Altman analysis. The results from 
the ICC analysis are reported in Fig. 6d–f. The ICC meas-
urements showed poor agreement between SB and MB2 and 
between SB and MB3 for all parameters with ICC < 0.5 for 
most regions. Comparing MB2 with MB3 showed relatively 
better agreement, than comparisons with SB, particularly in 
ODI which produced ICC > 0.7 for several regions.

In order to examine the extent of agreement between 
methods, Bland–Altman plots for data acquired in visit 1 
were produced as shown in Fig. 7. Comparing SB with MB2 
revealed a systematic bias with parameters estimated from 
SB data being consistently higher as compared to those from 
MB2 data (Fig. 7a–c), with a bias of 0.048 in NDI, 0.024 in 
ODI and 0.022 in FISO. A similar trend was observed when 
comparing SB with MB3 (Fig. 7g–i), with a reported bias 
of 0.064 in NDI, 0.031 in ODI and 0.028 in FISO. On closer 
inspection, the systematic bias can be seen to be correlated 
with the MB factor, with both ODI and NDI decreasing as 
the MB factor increases from 1 to 3 (SB, > MB2, > MB3). 
Comparing MB2 with MB3 showed a much smaller bias, 
(0.015 in NDI, 0.007 in ODI and 0.006 in FISO), with MB2 
exhibiting higher values (Fig. 7d–f).

Interestingly, the difference in NDI measures between 
SB and MB2 appeared to be dependent on the NDI 

value itself, Fig.  7a, (correlation coefficient=0.71, 
p value<0.001, slope=0.20) and it is not clear what 
is driving this dependency. A similar relationship is 
detected between SB and MB3, Fig.  7g (correlation 
coefficient=0.63, p value<0.001, slope=0.22). It should 
be noted that repeating the Bland–Altman analysis on 
data collected in visit 2 confirms the observations made 
using the first visit’s data (see Fig. 2S in Supplementary 
Material).

The mean parameter maps across subjects for each 
NODDI metric for SB, MB2 and MB3 help to visualise 
any systematic bias reported in Bland–Altman analysis 
(Fig. 8a). A strong similarity is seen for all three methods 
and all NODDI parameter maps have maintained similar 
contrast between tissues, with no obvious differences in 
artefact. Subtle underlying differences between the meth-
ods are shown in the difference maps (Fig. 8b), where the 
difference in NDI is dependent on the mean, as expected 
from the Bland–Altman analysis, and appear to be concen-
trated in the centre of the FOV, which can be attributed to 
effects of MB reconstruction or to the shorter TR in MB. 
In fact, the pattern follows the same pattern of the reduced 
SNR in those areas (see Supplementary Fig. 1S). On the 
other hand, differences in ODI and FISO look less depend-
ent on the location within the brain and MB factor, with a 
relatively more uniform distribution of positive and nega-
tive differences between MB2 and MB3, which is expected 
given these two techniques show the closest agreement.

Fig. 6  Visualisation of between-visits reproducibility for SB, MB2 
and MB3; and between-methods agreement within the first visit to 
estimate NODDI parameters. This is measured using intra-class cor-
relation analysis for the following regions of interest: BCC body of 
corpus callosum, GCC  genu of corpus callosum, CST corticospinal 

tracts, EC external capsules, OR optic radiation, FL frontal lobe, OL 
occipital lobe, caudate, putamen thalamus and cerebellum. SB single-
band, MB2 multiband factor 2 and MB3 multiband factor 3; NDI neu-
rite density index, ODI orientation dispersion index and FISO = CSF 
volume fraction
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Fig. 7  Bland–Altman plot of SB vs MB2 (a, b, c),MB2 vs MB3 
(d, e, f) and SB vs MB3 (g, h, i) to estimate ODI, FISO and NDI 
measures (from visit 1) in all subjects for the following ROIs: BCC 
body of corpus callosum, GCC  genu of corpus callosum, CST corti-
cospinal tracts, EC external capsules, OR optic radiation, FL frontal 

lobe, OL occipital lobe, caudate, putamen thalamus and cerebellum. 
SB singleband, MB2 multiband factor 2 and MB3 multiband factor 3. 
(Datapoints’ colour represents different tissues: black for white mat-
ter (WM), blue for cortical gray matter (corGM), green for deep gray 
matter (dGM) and red for the cerebellum)

Fig. 8  a Average images for ODI, FISO and NDI maps (from visit 
1 across subjects) for SB, MB2 and MB3 data. And (b) difference 
images for ODI, FISO and NDI maps between SB vs MB2, MB2 vs 

MB3 and SB vs MB3. SB singleband, MB2 multiband factor 2 and 
MB3 multiband factor 3
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Power and sample size calculations

Since between visits variability is lower than the inter-
subject variability, within-subject changes can be detected 
with group sizes typical of small-to-moderate research 
studies. We quantified the sample sizes required for detect-
ing reductions of 5% and 10% in all three NODDI met-
rics (Tables 1, 2, 3. Our results have shown that for NDI, 
the required sample size for detecting a between-group 
change is comparable for all methods independent of the 
MB acceleration factor (N ≤ 18 for group differences of 
5%, Table 1). In order to detect a similar group differ-
ences in ODI, particularly in tightly packed white matter 

regions, greater sample sizes are required (between 37 and 
78, Table 2); this is due to the larger variability between 
subjects in these areas as reported earlier in Fig. 5. The 
sample sizes required to detect group differences in FISO 
are considerably larger (Table 3); this is due to the larger 
variability between subjects for this parameter, particularly 
with MB. It is worth noting that the choice of NODDI 
measure to be studied and the ROI will depend on the type 
and site of pathology.  

Finally, there was no significant differences (p>0.05) 
in  the group sizes required to detect between-group 
changes for the three acquisition methods

Table 1  Required sample size 
(per group) for between subject 
comparisons of mean NDI for 
following ROIs

BCC body of corpus callosum, GCC  genu of corpus callosum, CST corticospinal tracts, EC external cap-
sules, OR optic radiation, FL frontal lobe, OL occipital lobe, caudate, putamen, thalamus and cerebellum

SB (NDI) MB2 (NDI) MB3 (NDI) SB 
required N 
for effect 
size of

MB2 
required N 
for effect 
size of

MB3 
required N 
for effect 
size of

MEAN SD MEAN SD MEAN SD 5% 10% 5% 10% 5% 10%

BCC 0.643 0.028 0.572 0.021 0.549 0.022 17 6 13 5 15 5
GCC 0.635 0.020 0.569 0.020 0.552 0.023 10 4 12 4 16 5
CST 0.768 0.024 0.678 0.019 0.659 0.021 10 4 8 4 10 4
EC 0.516 0.011 0.478 0.011 0.465 0.012 6 3 6 3 7 3
OR 0.574 0.020 0.531 0.021 0.519 0.023 11 4 14 5 18 6
FL 0.450 0.017 0.423 0.018 0.408 0.017 13 5 16 5 16 5
OL 0.464 0.020 0.441 0.018 0.435 0.017 17 6 16 5 15 5
Caudate 0.532 0.013 0.488 0.013 0.467 0.015 7 3 8 3 11 4
Putamen 0.520 0.013 0.479 0.011 0.463 0.012 7 3 6 3 7 3
Thalamus 0.575 0.015 0.512 0.010 0.491 0.010 8 3 5 3 6 3
Cerebellum 0.615 0.022 0.591 0.011 0.583 0.011 12 4 5 3 5 3

Table 2  Required sample size 
(per group) for between subject 
comparisons of mean ODI for 
following ROIs

BCC body of corpus callosum, GCC  genu of corpus callosum, CST corticospinal tracts, EC external cap-
sules, OR optic radiation, FL frontal lobe, OL occipital lobe, caudate, putamen, thalamus and cerebellum

SB (ODI) MB2 (ODI) MB3 (ODI) SB 
required N 
for effect 
size of

MB2 
required N 
for effect 
size of

MB3 
required N 
for effect 
size of

MEAN SD MEAN SD MEAN SD 5% 10% 5% 10% 5% 10%

BCC 0.216 0.018 0.196 0.016 0.194 0.014 57 15 55 15 44 12
GCC 0.198 0.019 0.173 0.016 0.168 0.013 78 21 70 19 54 15
CST 0.217 0.014 0.198 0.013 0.194 0.013 37 10 38 11 41 11
EC 0.341 0.011 0.323 0.011 0.318 0.009 10 4 12 4 9 4
OR 0.276 0.010 0.260 0.007 0.255 0.007 13 5 8 3 7 3
FL 0.502 0.013 0.471 0.009 0.455 0.008 8 3 5 3 5 3
OL 0.501 0.012 0.480 0.010 0.472 0.009 6 3 5 3 5 3
Caudate 0.463 0.013 0.437 0.013 0.427 0.018 8 4 9 4 16 5
Putamen 0.476 0.014 0.446 0.015 0.436 0.012 9 4 11 4 8 3
Thalamus 0.368 0.015 0.330 0.014 0.318 0.013 15 5 17 6 15 5
Cerebellum 0.447 0.009 0.430 0.008 0.427 0.009 5 3 5 3 6 3
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Discussion

We have studied the reproducibility of NODDI parameters 
from datasets acquired using both conventional SB and the 
faster MB EPI acquisition on a 3 T MRI scanner. When com-
paring the data acquired with the same multiband factor, we 
found that NODDI parameters, particularly NDI and ODI, 
are highly reproducible between subjects and visits, while 
the parameter that showed the worst reproducibility is FISO.

Both NDI and ODI exhibited moderate to high within-
subject reproducibility across the sessions for both SB and 
MB data, with CoV falling within an acceptable range for 
all regions (CoV < 2.5%), comparable to those obtained in 
similar studies for DTI parameters [40, 41]. This suggests 
their potential to be used for exploring individual differences 
and potentially for clinical applications. FISO, however, 
was highly varied, particularly across these healthy sub-
jects where CoV values were typically between 5.31% and 
28.06% for all ROIs, which raises questions over its reliabil-
ity and relevance as a useful biomarker. Indeed, the accuracy 
of FISO has been questioned before, with reports showing 
that NODDI tends to overestimate FISO because a single T2 
is assumed for all voxel compartments [9] and also due to the 
contribution of perfusion to the overall signal [42], rendering 
it the least reliable parameter. Yet these observations alone 
do not account for the poor reproducibility observed here. 
A possible explanation is that the hierarchical nature of the 
NODDI model increases the likelihood of any deviation of 
the signal being disproportionally attributed to the estima-
tion of FISO, rather than NDI or ODI.

Although ODI showed a low variability between visits for 
all ROIs regardless of the MB acceleration factor, it showed 
a relatively large between-subjects variability in tightly 

packed white matter tracts (e.g. BCC, GCC and CST). This 
could be explained by the fact that ODI is close to zero in 
tightly packed white matter regions and thus small varia-
tions (including those introduced by noise) result in high 
percentage change.

Comparing NODDI metrics acquired with different 
multiband factor (SB, MB2, MB3) revealed a systematic 
bias across all NODDI metrics. This was highlighted by the 
Bland–Altman analysis that also demonstrated that the mag-
nitude of the bias increases for all parameters (with respect 
to SB) as the MB factor increases. A number of factors may 
be responsible for this effect. The reduction in TR achieved 
with increasing MB factor will result in a reduction in SNR 
due to increased T1 weighting. This is more evident in 
regions with long T1, such as the gray matter. Although, we 
observe a non-negligible variation in SNR with anatomical 
location, leading to some regions having slightly higher SNR 
in MB data. This is unexpected and unlikely to be due to 
reduced subject movements during shorter acquisition times. 
Furthermore, it is known that the SNR in MB images is not 
solely impacted by lower TR, but also the MB and GRAPPA 
reconstruction. Indeed, SNR is dependent on the geometric 
arrangement of the parallel imaging receiver coils; the g 
factor [24]. As a result, non-uniform SNR is observed with 
some ROIs exhibiting worse SNR than others [26, 28]. In 
addition, using GRAPPA will compound this effect resulting 
in the reduction in SNR across most ROIs studied here. Our 
work reveals that NDI exhibits the largest bias with respect 
to SB as MB factor is increased. A likely driver for this 
reduction in NDI is the reduced SNR; previous studies have 
identified that NDI is particularly sensitive to noise and is 
known to decrease as SNR drops a reported by Hutchinson 
et al. [43]. Furthermore, the greatest negative bias in NDI 

Table 3  Required sample size 
(per group) for between subject 
comparisons of mean FISO for 
following ROIs

BCC body of corpus callosum, GCC  genu of corpus callosum, CST corticospinal tracts, EC external cap-
sules, OR optic radiation, FL frontal lobe, OL occipital lobe, caudate, putamen, thalamus and cerebellum

SB (FISO) MB2 (FISO) MB3 (FISO) SB 
required N 
for effect 
size of

MB2 
required N 
for effect 
size of

MB3 
required N 
for effect 
size of

MEAN SD MEAN SD MEAN SD 5% 10% 5% 10% 5% 10%

BCC 0.221 0.025 0.196 0.020 0.173 0.021 109 28 92 24 122 32
GCC 0.234 0.021 0.215 0.023 0.210 0.022 70 19 98 26 90 24
CST 0.159 0.015 0.126 0.012 0.137 0.016 75 20 76 20 117 30
EC 0.044 0.009 0.026 0.005 0.028 0.005 385 98 315 79 220 56
OR 0.102 0.005 0.074 0.004 0.076 0.008 25 8 25 8 85 22
FL 0.204 0.049 0.188 0.047 0.160 0.045 492 124 532 135 665 167
OL 0.137 0.018 0.115 0.023 0.104 0.020 149 39 354 89 315 79
Caudate 0.228 0.019 0.219 0.018 0.210 0.016 63 17 59 16 52 14
Putamen 0.032 0.006 0.018 0.004 0.021 0.006 315 80 522 132 622 157
Thalamus 0.180 0.016 0.152 0.020 0.157 0.018 66 18 140 36 107 28
Cerebellum 0.193 0.024 0.160 0.022 0.146 0.027 135 35 166 43 279 71
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are observed in WM and deep GM regions which were pre-
viously shown to exhibit the strongest decreases in SNR.

The systematic differences in ODI were slightly positively 
correlated with the ODI value itself and the estimated ODI 
decreased with the increase of MB factor. It is not clear what 
is driving this bias and no obvious correlation was observed 
between the spatial distribution of the differences in the 
standard deviation of the raw signal between SB and MB 
and the difference in ODI value.

Finally, the power calculation suggested that the num-
ber of participants required to detect an effect depends on 
the specific parameter of interest (NDI, ODI and FISO) and 
on the anatomical area under study. In addition, the num-
ber of subjects needed to detect a between-group change is 
not significantly different between methods. As previously 
mentioned, FISO has the worst reproducibility and this is 
reflected in the higher sample size requirements. FISO is 
also particularly sensitive to the ROI (location and size); 
this could be due to partial volume effects with CSF adding 
to the variability in this metric.

This work has identified some important considerations 
for incorporating MB into NODDI studies. We have also 
suggested a number of factors that are potential drivers of 
the systematic bias introduced by changing the multiband 
factor and it is clear that further work is required to inves-
tigate the effects fully. However, this lies beyond the scope 
of this study.

Conclusions

We can conclude that reliable and reproducible NDI and 
ODI measures are provided by all acquisition methods stud-
ied here (SB, MB2 or MB3). However, we also observed that 
the acquisition method introduces a significant bias to these 
parameters such that a direct comparison between NODDI 
indices acquired with SB, MB2 and MB3 is not trivial. This 
is an extremely important consideration for studies that seek 
to compare NODDI data acquired using a different MB fac-
tor (e.g. in multicentre studies or when comparing with the 
previous studies in the literature). The parameter that showed 
the worst reproducibility is FISO. This work also shows that 
the attractive time-saving benefits of MB acquisition does 
not come with the penalty of requiring larger sample sizes 
when making group comparisons. Indeed, the greater time-
efficiency of MB acquisition, could be exploited to collect a 
richer diffusion-weighted data set (additional diffusion direc-
tions or diffusion weightings) to improve the reliability of 
the NODDI parameters further. These findings must be taken 
into consideration when planning future studies.
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