Skip to main content
Log in

Green synthesis of nanoparticles by milling residues of water treatment

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Producing clean water from wastewater is a major issue due to environmental pollution. There is in particular a need for cheap sorbents to filter water. Here we developed a method to produce sorbing nanoparticles from water treatment residues using high-energy ball milling. Results show that 75 min of milling of residues yields particles sized lower than 100 nm, according to scanning and transmission electron microscopy. The sorption capacity of nanoparticles, of 50.0 mg Pg−1, is 30 times higher than the sorption maxima of unmilled residues, of 1.7 mg Pg−1. Our method is therefore simple, efficient, and cheap, and enhances highly the adsorption capacity of treatment residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Babatunde AO, Zhao YQ, Burke AM, Morris MA, Hanrahan JP (2009) Characterization of aluminium-based water treatment residual for potential phosphorus removal in engineered wetlands. Environ Pollut 157:2830–2836

    Article  CAS  Google Scholar 

  • Binns C (2010) Introduction to nanoscience and nanotechnology. Wiley & Sons, New York

    Book  Google Scholar 

  • Dayton EA, Basta NT (2005) Use of drinking water treatment residuals as a potential best management practice to reduce phosphorus risk index scores. Environ Qual 34:2112–2117

    Article  CAS  Google Scholar 

  • Dayton EA, Basta NT, Jakober CA, Hattey JA (2003) Using treatment residuals to reduce phosphorus in agricultural runoff. J Am Water Works Assoc 95:151–158

    CAS  Google Scholar 

  • Elkhatib EA, Bennett OL, Wright RJ (1984) Arsenite sorption and desorption in soils. Soil Sci Soc Am J 48:1025–1030

    Article  CAS  Google Scholar 

  • Elkhatib EA, Mahdy AM, ElManeah MM (2013) Effects of drinking water treatment residuals on nickel retention in soils: a macroscopic and thermodynamic study. J Soils Sediments 13:94–105

    Article  CAS  Google Scholar 

  • Elliott D, Zhang W (2001) Field assessment of nanoparticles for groundwater treatment. Environ Sci Technol 35:4922–4926

    Article  CAS  Google Scholar 

  • Glazier R, Venkatakrishnan R, Gheorghiu F, WalataL Nash R, Zhang W (2003) Nanotechnology takes root. Civ Eng 73:64–69

    Google Scholar 

  • Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis, 3rd edn. Plenum Press, New York p690

    Book  Google Scholar 

  • Hochella MF Jr, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631–1635

    Article  CAS  Google Scholar 

  • Ippolito JA, Barbarick KA, Elliott H (2011) Drinking water treatment residuals: a review of recent uses. J Environ Qual 40:1–12

    Article  CAS  Google Scholar 

  • Mahdy AM, Elkhatib EA, Fathi NO, Lin ZQ (2009) Effects of co-application of biosolids and water treatment residuals on corn growth and bioavailable phosphorus and aluminum in alkaline soils in Egypt. J Environ Qual 38:1501–1510

    Article  CAS  Google Scholar 

  • Makris KC, Sarkar D, Datta R (2006) Aluminum-based drinking water treatment residuals: a novel sorbent for perchlorate removal. Environ Pollut 140:9–12

    Article  CAS  Google Scholar 

  • Masciangioli T, Zhang W (2003) Environmental nanotechnology: potential and pitfalls. Environ Sci Technol 137:102A–108A

    Article  Google Scholar 

  • Nouri A, Hodgson PD, Wen CE (2011) Effect of ball-milling time on the structural characteristics of biomedical porous Ti–Sn–Nb alloy. Mater Sci Eng C 31:921–928

    Article  CAS  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL et al (eds) Chemical and microbiological properties, 2nd edn. ASA, Madison, pp 403–427

    Google Scholar 

  • Punamiya P, Rakshit S, Sarkar D, Datta R (2013) Effectiveness of aluminum-based drinking water treatment residuals as a novel sorbent to remove tetracyclines from aqueous medium. J Environ Qual 42:1449–1459

    Article  CAS  Google Scholar 

  • Ramsden J (2011) Nanotechnology: an introduction. Elsevier, The Netherlands

    Book  Google Scholar 

  • Rose-Pehrsson S, Pehrsson P (2005) Nanotechnology and the environment. American Chemical Society, Washington

    Google Scholar 

  • Violante A, Pigna M (2002) Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci Soc Am J 66:1788–1796

    Article  CAS  Google Scholar 

  • Wang X, Liu F, Tan W, Li W, Feng X, Sparks DL (2013) Characteristics of phosphate adsorption-desorption onto ferrihydrite: comparison with well-crystalline Fe (hydr)oxides. Soil Sci 178:1–11

    Article  CAS  Google Scholar 

  • Yang Y, Tomlinson D, Kennedy S, Zhao YQ (2006) Dewatered alum sludge: a potential adsorbent for phosphorus removal. Water Sci Technol 54:207–213

    Article  CAS  Google Scholar 

  • Yin H, Yun Y, Zhang Y, Fan C (2011) Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite. J Hazard Mater 198:362–369

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Egyptian Science and Technology Development Fund (STDF 4977-2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsayed A. Elkhatib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkhatib, E.A., Mahdy, A.M. & Salama, K.A. Green synthesis of nanoparticles by milling residues of water treatment. Environ Chem Lett 13, 333–339 (2015). https://doi.org/10.1007/s10311-015-0506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0506-6

Keywords

Navigation