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Introduction

Environmental concerns and depletion of fossil fuels have 
raised interest in producing biofuels and bio-based chemi-
cals with an environmental footprint that is lower than 
current production from fossil fuels [29, 48, 65]. Until 
the early 2000s, metabolic engineering was applied pri-
marily to improve titer and productivity of industrial fer-
mentation processes [45]. To date, integration of synthetic 
biology and systems biology into the field of metabolic 
engineering have resulted in remarkable advancement of 
the field [16, 20]. With these advanced technologies it has 
become possible to produce by engineered cell factories 
more diverse compounds, which can be used as pharma-
ceuticals, chemical building blocks, and fuels [47]. In 
addition, we have acquired better understanding of com-
plex cellular networks from the massive biological data 
sets provided by systems biology approaches and these 
findings have brought new tools and techniques that can 
be used to engineer cell factories.

Alkanes and alkenes are a very important class of hydro-
carbons, used as liquid transportation fuels and as plastics. 
However, to obtain alkanes and alkenes with the right prop-
erties, cracking of crude oils are necessary. The complexity 
of this process can cause technical difficulties in obtaining 
specific molecules as well as it can increase processing 
costs [33]. Many organisms synthesize alkanes and alkenes 
naturally for protection against environmental threats [27, 
30, 54], but the production level and structures of the com-
pounds are not ideal for direct utilization as drop-in fuels. 
Several pathways and enzymes involved in alkane and alk-
ene biosynthesis from natural producers have been discov-
ered (Fig. 1) and introduction of the biosynthetic pathways 
into heterologous microbial hosts has allowed for produc-
tion of various structures of alkanes and alkenes (Table 1). 
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Many efforts have been made to produce alkanes and alk-
enes in engineered microbial strains, and recent advance-
ments shows promise for possible future industrial pro-
duction [47]. However, the titer, rate, and yield (TRY) of 
alkanes and alkenes production by heterologous hosts is still 
too low to meet industrial requirements and there are still 
several challenges that need to be overcome before these 
molecules can be produced by microbial fermentation. 

Here, we review the literature on alkane/alkene biosyn-
thesis, and the associated fatty acid biosynthesis pathway 
and further discuss how the TRY challenge can be over-
come to obtain efficient cell factories.

Pathways and enzymes of alkane/alkene 
biosynthesis

Decarbonylation of fatty aldehydes

Most pathways leading to alkanes/alkenes are via fatty 
aldehydes [36]. Aldehyde decarbonylases (ADs) have 

been discovered from various organisms including plants, 
insects, and cyanobacteria [6, 49] and they can convert 
fatty aldehydes to alkanes/alkenes with co-current produc-
tion of carbon dioxide (CO2), carbon monoxide (CO), or 
formate depending on the organisms [42]. Some plants 
synthesize very-long-chain (VLC) alkanes to prevent water 
evaporation and protect themselves from environmental 
stresses [7]. The Arabidopsis thaliana aldehyde decarbony-
lase CER1 has been used to demonstrate alkane production 
in heterologous microbial systems [6, 15]. Insect cuticular 
layer is a mixture of alkanes/alkenes, and it acts as a bar-
rier against environmental attacks as well as communica-
tion pheromones. Insect CYP4G1 is a P450 enzyme and 
co-expression of Drosophila CYP4G1 with cytochrome 
P450 reductase (CPR) enabled production of C23, C25 and 
C27 alkanes in S. cerevisiae [49]. Biosynthesis of alkanes 
has been identified in many cyanobacterial strains [54], 
but the reasons for alkane biosynthesis in cyanobacteria 
are unclear. ADs in cyanobacteria were initially reported 
to produce alkanes/alkenes and CO [54], but the actual co-
product were later identified as formate by isotope tracer 

Fig. 1   Alkane/alkene biosynthetic pathways and enzymes, which 
were utilized in previous reports. a Conversion of fatty aldehydes to 
alkanes/alkenes by AD enzymes, CER (plant), CYP4G (insects), and 
ADO (cyanobacteria), b terminal alkene production by decarboxyla-

tion enzymes, OleT, UndA, and UndB, c internal alkene biosynthesis 
by head-to-head hydrocarbon biosynthetic enzyme, OleABCD, d alk-
ene production by PKS pathway enzymes, Ols and SgcE-SgcE10
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experiments. The cyanobacteria AD was therefore renamed 
as aldehyde deformylating oxygenase (ADO) [38].

There are two routes available for production of alkanes/
alkenes via ADs, and these are from either fatty acyl-
CoAs or from free fatty acids by the action of fatty acyl-
acyl carrier protein (ACP) reductase (AAR) or fatty acid 
reductase (FAR), respectively (Fig. 1). Arabidopsis CER1 
was revealed as an alkane biosynthetic enzyme through 
mutant and overexpression experiments in plants. However, 
alkanes were not detected when CER1 was solely expressed 
in yeast. Only through co-expression of Arabidopsis 
CER1–CER3 the production of VLC alkanes, chain-lengths 
C27–C31, was confirmed in yeast. In addition, alkane titer 
was increased and mainly resulted in production of nona-
cosane (C29) by 86 μg/mg of DW with co-expression of 
CYTB5s or/and LACS1, which acts as electron transfer 
components and long-chain acyl-CoA synthetase, respec-
tively [6]. Even though CER1 produced VLC alkanes in 
yeast and plants, the enzyme was shown to enable produc-
tion of C8–C14 alkanes in an E. coli strain that was engi-
neered to produce short-chain fatty acids. The strain, that 
also encompassed several other engineering strategies, 
could produce short-chain alkanes up to 580.8 mg/L, and 
it was created by: (a) blocking the β-oxidation pathway by 
deleting the fadE gene which encodes acyl-CoA dehydro-
genase, (b) increasing formation of short-chain FFAs by 
introducing modified thioesterase (TE), TesA with a L109P 

mutation and deleting the fadR gene, which is a transcrip-
tional regulator, (c) expression of the fadD gene which 
encodes for fatty acyl-CoA synthetase for efficient conver-
sion of FFAs to fatty acyl-CoAs, (d) expression of AAR 
from Clostridium acetobutylicum and CER1 from A. thali-
ana to produce short-chain alkanes from fatty acyl CoAs 
[15]. In an earlier study, cyanobacteria AAR activity was 
tested with two substrates, acyl-ACP and acyl-CoA in the 
presence of NADPH [54]. Both substrates were converted 
to fatty aldehydes by AAR, but acyl-ACP was the preferred 
substrate [54]. This enzyme has been frequently used for 
reconstruction of alkane/alkene biosynthetic pathways, and 
the expression of cyanobacteria AAR and ADO together in 
engineered strains results in production of predominantly 
C15 and C17 alkanes [8, 18, 54, 57, 63, 66]. However, the 
alkane titer in S. cerevisiae has not been reached the level 
of other hosts having co-expression of AAR-ADO. This 
was recently shown to be partly due to the presence of alde-
hyde dehydrogenase activity in yeast. Deletion of HFD1, 
encoding hexadecenal dehydrogenase (HFD), resulted in 
an increase in the alkane titer of S. cerevisiae by 22 μg/g 
of DW [8]. In addition, elimination of competing pathways 
(Δpox1 and Δadh5), increase of aldehyde supply (expres-
sion of carboxylic acid reductase (CAR) from Mycobac-
terium marinum), and enhancement of ADO expression 
(ADOs from Synechoccocus elongatus and Nostoc punc-
tiforme) achieved an even highest alkane titer (0.82 mg/L) 

Table 1   Examples of alkane/alkene production by metabolically engineered microorganisms

Enzyme Strain Products Titer References

AAR-AD E. coli Alkanes (C15, C17) 7.7 mg/L [18]

E. coli Alkanes (C15, C17), Alkene (C17) 255.6 mg/L [57]

E. coli Alkanes (C15, C17) 300 mg/L [54]

E. coli Alkanes (C9, C12, C13, C14), Alkene (C13) 580.8 mg/L [15]

S. cerevisiae Alkanes (C13, C15, C17) 22 μg/g of DW [8]

S. cerevisiae Alkanes (C27–C31) 86 μg/g of DW [6]

S. cerevisiae Alkanes (C13, C15, C17), Alkenes (C15, C17) 0.82 mg/L [66]

Synechocystis sp. PCC6803 Alkanes (C15, C17), Alkene (C17) 26 mg/L [63]

FAR-AD E. coli Alkanes (C13, iso-C13, C15, iso-C15, C16, C17),  
Alkenes (C13, C15, C16, C17)

5 mg/L [28]

CAR-AD E. coli Alkanes (C11, C13), Alkenes (C15, C17) 2 mg/L [2]

DOX-AD S. cerevisiae Alkanes (C14, C16) 73. 5 μg/L [24]

OleT E. coli Alkenes (C11, C13, C15, C15:2, C17:2) 97.6 mg/L [41]

S. cerevisiae Alkenes (C11–C19) 3.7 mg/L [10]

UndA E. coli Alkenes (C9–C13) 6 mg/L [53]

UndB E. coli Alkenes (C5–C17) 55 mg/L [52]

OleABCD E. coli Alkenes (27:3, 27:2, 29:2, 29:3) 40 μg/L [5]

Ols Synechoccus sp. PCC7002 Alkenes (C19, C19:2) 4.2 mg/L/OD730 [43]

S. globisporus Alkene (15:7) 129.3 mg/L [14]

E. coli Alkene (C15) 140 mg/L [40]
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with an engineered S. cerevisiae [65], but it is still not com-
parable with the titers that can be obtained using E. coli 
(300 mg/L) [54].

Because fatty acids are abundant molecules in cells, they 
have been considered as desirable substrates for synthesis 
of alkanes/alkenes. Expression of the FAR complex from 
Photorhabdus luminescens [28], CAR from Mycobacte-
rium marinum [2], and fatty acid α-dioxygenase (DOX) 
from Oryza sativa [24] enabled production of alkanes/
alkenes when expressed together with AD. The FAR com-
plex is encoded by reductase (luxC), synthetase (luxE), 
and transferase (luxD) gene operon, and it converts vari-
ous chain-lengths of fatty acids into fatty aldehydes and 
expressed together with ADO from N. punctiforme it 
resulted in a more diverse range of alkane/alkene chain-
lengths at a titer of 5 mg/L with E. coli compared with the 
use of the AAR-ADO pathway from N. punctiforme [28]. 
In addition, expression of FatB1, which is a C14 fatty acyl-
ACP specific TE from Cinnamomum camphora, increased 
the C14 fatty acid and C13 alkane production in E. coli as 
well. The CAR enzyme has a broad substrate range (C4–
C18), and addition of ATP and NADPH converts fatty acids 
to their corresponding fatty aldehydes, and co-expression 
of CAR and AD from Prochlorococcus marinus produce 
2  mg/L of C11–C17 alkanes/alkenes in E. coli [2]. O. 
sativa DOX has the advantage as a fatty acid converting 
enzyme that it is using dioxygen as a co-factor, while AAR 
and CAR enzymes require NADPH and its substrate range 
is wider (C12–C18) than that of the cyanobacterial AAR 
(C16–C18).

Decarboxylation of fatty acids

Terminal alkenes, often referred to as olefins, are impor-
tant compounds in the chemical industry as they are used 
for the production of detergents, lubricants, and polyeth-
ylene. Three different types of enzymes, OleTJE, UndA, 
and UndB are involved in direct enzymatic conversion of 
fatty acids to terminal alkenes, and heterologous expres-
sion of these enzymes enabled production of terminal alk-
enes in engineered microbial strains [51–53]. OleTJE is a 
cytochrome P450 enzyme belonging to the CYP152 family, 
and it was discovered from Jeotglicoccus sp. ATCC 8456. 
The CYP152 family OleTJE, forms alkenes by decarboxyla-
tion process rather than decarbonylation performed by the 
CYP4G family enzymes from insects. The CYP152 fam-
ily members were reported to use only H2O2 as sole elec-
tron and oxygen donor, but recently H2O2-independent 
alkene biosynthesis was achieved using other biocatalytic 
co-factor systems: RhFRed, Fdr/Fdx, and CamAB [22, 41]. 
Recently the aldehyde decarboxylases, UndA and UndB, 
from Pseudomonas species were discovered, and both 
enzymes, when expressed in E. coli, resulted in production 

of terminal alkenes [52, 53]. UndA was found to be a non-
heme iron oxidase, and the enzyme converted lauric acid 
(LA) to 1-undecene in the presence of Fe2+. In addition, 
it has a narrow substrate range, only medium-chain fatty 
acids (C10–C14) can be converted to ‘C-1’ corresponding 
terminal alkenes [53]. UndB was originally categorized as 
a fatty acid desaturase based on sequence homology, but 
found also to be an aldehyde decarboxylase. Compared 
with UndA, UndB shows a broad substrate range from C6 
to C16, but it prefers C10–C14 fatty acids like UndA. The 
UndB homologue Pmen_4370 presented the highest con-
version rate of undecanoic acid (C11) with E. coli strains 
co-expressing E. coli TE, UcFatB2 [52], but OleT provided 
the highest total titer of alkanes/alkenes in engineered 
E. coli strains (OleT: 97.6  mg/L, UndA: 6  mg/L UndB: 
55 mg/L) [41, 52, 53].

Head‑to‑head hydrocarbon biosynthesis

Nearly half a century ago, two research groups observed 
long-chain alkene biosynthesis in Sarcina lutea, but they 
could not elucidate the biochemical and genetic data in 
detail [3, 4, 61]. In a recent study of long-chain alkene 
biosynthesis by Micrococcus luteus resulted in identifica-
tion of the three genes (Mlut_13230–13250) encoding Ole-
ABCD involved in alkane biosynthesis. Mlut_13230 has a 
conserved active site residue which is found in fatty acid 
biosynthesis enzymes, and its function as a OleA homo-
logue was revealed by its ability to convert acyl-CoA to 
unsaturated monoketones in  vitro [5]. Mlut_13240 and 
13250 have sequence similarities with oleD and fusion of 
oleB and oleC from oleABCD in Stenotrophomonas malt-
ophilia and heterologous expression of oleABCD from M. 
lutea resulted in production of 40 μg/L of long-chain alk-
enes in E. coli. In Shewanella oneidensis Strain MR-1, one 
of the long-chain alkenes, 3,6,9,12,15,19,22,25,28-hentri-
acontanonaene was synthesized, and the compound is inter-
estingly identified from many bacteria which were isolated 
from cold environments. The deletion of the oleABCD 
homologue in the MR-1 strain resulted loss of alkane pro-
duction supporting that the enzyme complex is involved in 
alkane biosynthesis [60].

OleABCD enzymes were specified based on extensive 
sequence homology analysis as a combination of a super-
family of enzymes consisting of thiolase (OleA), α/β-
hydrolase (OleB), AMP-dependent ligase/synthase (OleC), 
and short-chain dehydrogenase/reductase (OleD) [59]. The 
proposed pathway of OleABCD is initiated by OleA, which 
involves a non-decarboxylative Claisen condensation to 
generate a β-keto acid and then OleD produces β-hydroxy 
acid by NADPH-dependent reduction [26, 59]. After the 
process, OleC converts the β-hydroxy acid to an alkene 
by consuming ATP [25]. Even though the role of OleB is 
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unclear so far, a fusion of oleB and oleC in some organ-
isms, propose a linkage to the activity of OleC or it is pre-
sumed to perform scaffolding or regulatory function in the 
Ole complex [62].

Polyketide synthase (PKS) pathway

Polyketide and fatty acid biosynthetic pathways have very 
similar mechanisms, and both pathways are considered as 
promising for biofuel production. Generally, PKSs consist 
of 3-β-keto-acyl synthases (KS), acyl-transferases (AT), 
and acyl carrier proteins (ACP), β-keto reductases (KR), 
dehydratases (DH), enoyl reductases (ER), and finally a 
TE. The acyl substrates initiate the processes and malonyl-
CoA extends the chain-length through elongation mod-
ule, KS, AT, and ATP. After elongation the β-keto group 
is reduced to a β-hydroxyl group by KR, DH, and ER and 
then the TE domain catalyze decarboxylation and dehy-
dration to release the alkene product. The Synechococcus 
sp. PCC 7002 synthesize C19 alkenes (1,14-nonadecadi-
ene and 1-nonadecene) with terminal double bond, and to 
identify the involved enzyme, the sequence of Curacin A 
PKS was used to look for homologous potentially involved 
in alkane biosynthesis. CurM is the last module of Cura-
cin A PKS from marine cyanobacteria Lyngbya majus-
cule, which forms the terminal double bond. Based on the 
sequence alignment result, one enzyme with 45  % amino 
acid homology to CurM was identified and it was named 
olefin synthase (Ols). In addition, Ols has several con-
served domains of PKSs, loading domain (LD), ACP1, KS, 
AT, KR, ACP2, sulfotransferase (ST), and TE. To verify 
the involvement of Ols in long-chain alkene biosynthesis, 
an ols deletion mutant strain and an ols gene overexpres-
sion strain were constructed, and it was found that Ols 
deletion abolished alkene biosynthesis and strong expres-
sion of Ols increased alkene production by 4.2 mg/L/OD730 
[43]. In another study, co-expression of enediyne PKS, 
SgcE and TE, SgcE10 from Streptomyces resulted in pro-
duction of enediyne antibiotic C-1027 (37.5  mg/L) and 
1,3,5,7,9,11,13-pentadecaheptaene (PDH, 129.3  mg/L) in 
engineered Streptomyces globisporus [14]. In addition, a 
SgcE-SgcE10 construct was introduced into E. coli, and it 
resulted in production of PDH. Through a chemical hydro-
genation process, the cell culture extract product, PDH 
could be converted to pentadecane at a titer of 140  mg/L 
[40].

Increasing TRY

Since the first report of alkane production in E. coli [54], 
there have been increased interests for engineering micro-
organisms to develop efficient cell factories that can be 

used for for alkane/alkene production in industry. Despite 
extensive knowledge on the metabolism of E. coli and S. 
cerevisiae, the two preferred cell factory platforms, the pro-
ductivity of alkanes/alkenes by these organisms is much 
below what is required for industrial production. Costs of 
goods sold (COGS), around $0.6 per liter is considered to 
be the economically profitable value of microbial biofuel 
production. However, it is challenging to produce hydro-
carbons at this value. For example, to produce pentadecane 
(C15) in S. cerevisiae, there is a requirement for NADPH 
and ATP that will reduce the yield on glucose. However, 
using detailed metabolic modeling the theoretical yield 
for production of different hydrocarbons in yeast, includ-
ing alkanes/alkenes, and from this analysis it was found 
that even though the molar yield is lower than for ethanol 
the energy yield is only 5–10  % lower [9]. Furthermore, 
from a techno-economic analysis it was found that alkanes/
alkenes, if 90 % of the maximum theoretical yield can be 
obtained, can be produced cost efficiently compared with 
ethanol [9]. A major factor for this is that costs of separa-
tion of hydrocarbons is likely to be lower than the relatively 
expensive distillation used for ethanol production.

However, it is clear that to meet the industrial feasibility, 
the microorganisms needs to be optimized in terms of TRY, 
and in the following we review the status on engineering 
cell factories for improving the TRY of alkanes/alkenes.

Improving enzyme activities

Many enzymes have been discovered and applied to recon-
struct the alkane/alkene biosynthesis in microorganisms, but 
they are commonly not very efficient and it is, therefore, dif-
ficult to reach high productivities. Since the last enzymatic 
steps such as decarboxylation and decarbonylation there is 
a loss of carbon in this step, and this impacts the product 
yield. This carbon loss is particular costly for production 
of short-chain alkanes/alkenes, whereas for longer chain 
alkanes/alkenes it is acceptable [9]. A major problem for 
increasing rate is, however, the low enzyme activity which 
will require high-level expression of the enzyme, something 
that may cause a significant protein burden for the cell. For 
instance, cyanobacteria ADO is a very slow enzyme and it 
cannot convert aldehydes efficiently to alkanes/alkenes, 
which generally results in accumulation of fatty alcohols 
as by-products [2, 8]. Fatty alcohols can be formed from 
fatty aldehydes by the action of unspecific alcohol dehy-
drogenases, of which there are many in both E. coli and S. 
cerevisiae. Therefore, researchers are trying to find better 
enzyme candidates from various resources by applying data 
derived from bioinformatics studies and sequence alignment 
analysis. In a previous study of OleT, several homologous 
genes of oleTJE presented different productivity and distri-
bution of chain-lengths, and a codon-optimized version of 
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the best enzyme enabled increased production of alkenes 
[10]. Structure-based engineering of enzymes can also 
change the active site and hereby improve the enzyme activ-
ity. A modified ADO from Procholorococcus marinus with 
point mutation A134F had an altered substrate specificity 
with enhanced activity towards short-chain aldehydes and 
could hereby improve about twofold total titer of propane 
(0.46 mg/L) in E. coli [32].

Enzyme activities can also be optimized by changing the 
environmental condition. This was demonstrated by analy-
sis of engineered E. coli strain carrying ADs from Arabi-
dopsis and cyanobacteria. These enzymes have different 
optimal temperatures and CER1 expression was found to be 
strongest at 30°C and could at this temperature result in an 
alkane/alkene titer of 580.8 mg/L [15], whereas cyanobac-
terial ADO expression lead to the highest titer (26  mg/L) 
and cell mass (OD600 =  19.0) when the temperature was 
adjusted to 24°C compared with three other temperatures 
evaluated (18°C, 5.3 mg/L, OD600 = 8.5; 24°C, 5.0 mg/L, 
OD600 = 9.3; and 37°C, 4.2 mg/L, OD600 = 7.3) [57]. In 
the case of OleT co-expressed with CamAB and formate 
dehydrogenase (FDH), the optimal temperature for enzyme 
activity was different depending on the FA chain-length 
(highest activity at 4°C for C4–C9 and C18, and room tem-
perature for C10–C16) [22]. As titer is an accumulated met-
ric it is closely correlated with cell growth and the alkane/
alkene titer was therefore found to increase with the use of 
rich media for engineered strains of E. coli expressing Ado 
and S. cerevisiae expressing oleT [10, 57].

Improving precursor and co‑factor supply

To increase the TRY of alkanes/alkenes, engineering of 
the fatty acid biosynthetic pathway is desirable as well as 
proper supply of acetyl-CoA, malonyl-CoA, and fatty acyl-
CoA is important. Acetyl-CoA is a crucial molecule in 
microbial metabolism and it serves as one of the key pre-
cursors for fatty acid biosynthesis [35]. Because eukaryotic 
and prokaryotic cells have different acetyl-CoA metabo-
lism, the strategies for precursor supply level increase 
depends on the cell factory platform used. In S. cerevisiae 
the acetyl-CoA metabolism is present in four different 
compartments (nucleus, mitochondria, cytosol and peroxi-
somes) and this makes it difficult to engineer acetyl-CoA 
metabolism in this cell factory. One strategy to enhance 
acetyl-CoA supply in the cytosol of S. cerevisiae was engi-
neering of the pyruvate dehydrogenase (PDH) bypass in 
yeast, and this was achieved by expression of PDH from 
Enterococcus faecalis [34]. PDH is a very large multi-
functional enzyme and it requires activation by lipoyla-
tion and as lipoic acid is synthesized in the mitochondria 
it was necessary to add lipoic acid to the medium [34, 46]. 
E. faecalis PDH has no mitochondrial targeting sequences 

unlike all eukaryotic PDHs, and it is relatively insensitive 
to high NADH but inhibited by high NADH/NAD+ ratios. 
Therefore, this PDH complex encoded by pdhA, pdhB, 
aceF, and lpd was able to function in the cytosol of S. cer-
evisiae and co-expression of E. faecalis lipolyation genes 
(lplA and lplA2) with the E. faecalis PDH enabled replace-
ment of the native cytosol acetyl-CoA supply by ATP-inde-
pendent mechanism [34]. In another strategy the ethanol 
degradation pathway was employed by overexpression of 
endogenous alcohol dehydrogenase (ADH2), acetaldehyde 
dehydrogenase (ALD6), and a mutant acetyl-CoA synthase 
(ACS with L641P) from Salmonella enterica [21]. Expres-
sion of these enzymes together with a wax ester synthase 
increased fatty acid ethyl ester (FAEE) production in S. 
cerevisiae [21]. Furthermore, this strategy also improved 
production of the plant sesquiterpen α-santalene in S. cer-
evisiae [13]. Compared to yeast, acetyl-CoA supply was 
designed differently in E. coli and cyanobacteria. In E. coli 
deletion of glucose fermentation pathway genes (ΔadhE, 
ΔackA-pta, ΔldhA, and ΔfrdC) redirected more carbon 
flux through acetaldehyde biosynthesis and overexpression 
of S. enterica EutE, a putative ALD/acetyl-CoA reductase, 
resulted in improvement of acetaldehyde production [68]. 
Improvement of alkane/alkene production was found in a 
Synechocystis mutant strain, which carried a deletion of the 
lactate biosynthesis gene, 2-hydroxyacid dehydrogenase 
(DDH), by overexpressing the AAR-ADO construct in the 
DDH site [63].

Malonyl-CoA is a key substrate for fatty acid biosyn-
thesis and to malony-CoA production in is often increased 
by overexpression of acetyl-CoA carboxylase (ACC). It 
was reported that overexpression of endogenous ACC1 
alone increased the production of 3-hydroxypropionic acid, 
which is derived from malonyl-CoA, by 65  % in S. cer-
evisiae [12]. Wax ester production were also increased by 
30 % when ACC1 was overexpressed together with a wax 
ester synthase [55]. However, overexpression of ACC1 does 
not always increase formation of products derived from the 
fatty acid biosynthetic pathways [10, 17]. To increase the 
fatty acyl-CoA pool, disruption of the β-oxidation path-
way has been implemented in S. cerevisiae and through 
the deletion of ∆faa1 and ∆faa4, the alkene titer was 
sevenfold increased [10]. In addition, deletion of addi-
tional genes involved in β-oxidation, ∆faa2, ∆pxa1, and 
∆pox1 or ∆faa1, ∆faa2, ∆faa4, ∆fat1, ∆pxa1, and Δpox1 
resulted in significant improvement of fatty acid production 
[37]. These strategies could reduce or completely eliminate 
competing pathways and hereby ensure more efficient pro-
duction of fatty acids, and in particular ensure that there is 
no wasteful consumption of NADH and ATP, resulting in 
improved yield.

Together with precursor supply, proper co-factor supply 
can increase the productivity of alkanes/alkenes. Co-factor 
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engineering has been used to ensure efficient OleT activ-
ity. OleT catalyze the decarboxylation of fatty acids to pro-
duce alkenes utilizing H2O2 as the sole electron and oxy-
gen donor, and recently alternative systems was applied 
to replace the use of H2O2 [10, 22, 41]. In the presence of 
NADPH and oxygen, OleT used as redox partner the P450 
reductase domain RhFRED from Rhodococcus sp. or the 
separate flavodoxin/flavodoxin reductase from E coli to 
produce alkenes [41]. Hem3, which is involved in heme 
biosynthesis was able to replace the use of H2O2 in alk-
ene biosynthesis in S. cerevisiae, and it resulted in 8.7-fold 
increase of alkene titer by 427.7 μg/L [10]. Moreover, The 
CamAB components (CamA: NADH-putidaredoxin reduc-
tase and CamB: putidaredoxin) were able to convert fatty 
acids to alkenes when combined with a NAD(P)H regen-
eration system such as glucose dehydrogenase, phodphite 
dehydrogenase or FDH [22]. The ADs are required to uti-
lize reducing components to increase alkane production 
and in yeast, VLC alkanes were improved when the CER1/
CER3 were co-expressed with Cytochrome b5 (Cytb5) [6]. 
Similarly, co-expression of the insect CYP4G1 together 
with Drosophila CPR increased the production of alkanes 
in S. cerevisiae [49]. The important role of an efficient 
reducing system has been further supported by findings 
that expression of cyanobacteria ADO without a reducing 
system resulted in no alkane production and overexpression 
of reducing components from E. coli produced 2.7 μg/g of 
DW heptadecane in S. cerevisiae [8].

Toxicity

Toxicity is a crucial issue to be considered when high pro-
ductivity of chemical production is required in microorgan-
isms. Alkanes/alkenes are toxic molecules in microorgan-
isms, and change cell membrane integrity and function 
which cause inhibition of growth or even cell death [56]. 
To overcome chemical toxicity in microbial hosts, various 
strategies have been implemented. For example, overex-
pression of heat shock proteins or small regulatory RNAs, 
two-phase culture system, engineering of regulatory gene 
or enzyme, and these strategies all enhanced the solvent 
tolerance [31]. However, each strategy only partly solves 
the problem, and more basic research on the toxicity of 
alkanes is required. One approach is to combine toxicol-
ogy and genomics, by some referred to as toxicogenomics, 
to map cellular responses to toxicants [1]. Recently, based 
on mechanistic understanding of cellular functions, trans-
porters have emerged as targets for engineering in order to 
alleviate chemical toxicity [23, 44]. To investigate alkane/
alkene related transporters in S. cerevisiae, the cells were 
exposed to C9–C12 alkanes, and several induced plasma 
membrane efflux pumps were identified from transcrip-
tome data [39]. Some of the efflux pump candidates were 

verified, and overexpression of Snq2p and Pdr5p improved 
alkane tolerance by reducing intracellular decane and unde-
cane concentrations [39]. In another study, ABC transport-
ers in Yarrowia lipolytica were studied to identify efficient 
efflux pumps. Different chain-lengths (C8–C12) alkanes 
were supplied for susceptibility assay, and expression of 
ABC2 and ABC3 transporters increased the tolerance 
towards C10 and C11 alkanes [11]. In particular, ABC2 was 
revealed as the best efflux pump among four ABC trans-
porters evaluated, and the reason for improved alkane toler-
ance was explained by a decrease in the intracellular alkane 
level. However, the efflux pumps did not improve C8 and 
C9 alkane tolerance and in S. cerevisiae overexpression of 
the Snq2p and Pdr5p efflux pumps only increased tolerance 
towards C10 and C11 alkanes but not towards C9 alkane 
[39]. This shows that efflux pumps are quite specific and it 
is, therefore, suggested to broaden the tolerance ranges by 
performing several strategies such as directed evolution and 
enzyme engineering by structure-based study [11, 39].

Future outlook and conclusion

Alkanes/alkenes are industrially relevant chemicals, which 
can be used as starting materials in the chemical indus-
try and as a liquid transportation fuel. Even though many 
organisms synthesize alkanes/alkenes naturally, industrial 
demands of these chemicals are currently only supplied by 
fossil fuels. Applications of the alkane/alkene biosynthe-
sis in microorganisms can enable a future sustainable and 
green production of these important chemicals. Fatty acid 
biosynthesis provides several paths to re-construct alkane/
alkene biosynthesis in heterologous microbial hosts. Efforts 
in microbial engineering for alkane/alkene production has 
shown that it is possible to engineer microorganisms for 
production of a diverse range of alkanes/alkenes. However, 
the TRY level of the compounds is far from the industrial 
requirements and further development is needed to obtain 
efficient cell factories.

For this intracellular biosensors may be valuable as they 
may allow for high-throughput screening and strain selec-
tion. Some of bacteria degrade alkanes/alkenes, and this has 
been exploited to create alkane biosensors. Alkane biosen-
sors consist of three parts: alkane responsive transcriptional 
regulator, a promoter that is activated by regulator, and a 
reporter protein (e.g. GFP). Previous biosensors had prob-
lems for use in heterologous hosts because of limited detec-
tion range or proper function in a heterologous host [58, 67]. 
A new biosensor constructed as a chimera alkane response 
element (cARE), however, shows great promise [64, 65]. 
This was re-assembled using earlier biosensors, and enabled 
in situ detection of both mid- and long-chain alkanes by the 
fluorescence activated cell sorting (FACS) technology in E. 
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coli [49, 65]. The use of a biosensor like this will enable 
faster screening of improved strains.

Even though it may be possible to produce alkanes/
alkenes from sugar in a process similar to first generation 
ethanol production, our techno-economic analysis showed 
that using biomass as feedstock would be allow for further 
reduction of the production costs [9], and more importantly 
it will significantly reduce greenhouse gas emission, and 
even more than what is obtained with secondary bioethanol 
production. Therefore, it should be considered to reduce 
pre-treatment cost for lignocellulosic biomass and also 
engineer microorganisms for utilization of various carbon 
sources.

In conclusion, various natural alkane/alkene pathways 
have provided new enzymes that can be used for recon-
structing alkane/alkene biosynthetic pathways in heter-
ologous microbial hosts. Different combinations of these 
enzymes has allowed for increased production as well as 
enabled diversity of compound structures. Table 1 summa-
rizes the titer of alkanes/alkenes in engineered strains, and 
it is observed that the AAR-AD pathway showed the highest 
titer among the reported biosynthetic pathways up to date. 
The enzymes showed different substrate specificities and 
activities. For example, UndB has broader substrate range 
than UndA [52], and also CAR from P. marinus synthe-
sized several aldehydes while cyanobacteria AAR provide 
only two products [2, 54]. Besides, UndB displayed better 
conversion rate of fatty acids for alkene production com-
pared with OleT and UndA [52]. It is, therefore, expected 
that discovery of new enzymes for alkane biosynthesis 
may allow for further improvement of alkane/alkene pro-
duction. Furthermore, biosensors will probably promote 
the speed of enzyme screening and selection process, and 
biosensors will also enable faster evaluation of different 
strategies to improve the TRY of cell factories producing 
alkanes/alkenes and hereby reduce strain development time. 
In previous studies, engineered biosensors further enabled 
to control gene expression avoiding toxic intermediates 
accumulation in the cell [19], or it was possible to optimize 
individual reaction in biosynthetic pathways through real-
time observation [50]. Together with such strategies, alkane/
alkene biosensors will be possible breakthroughs to find the 
bottleneck steps faster, and also establish efficient cell fac-
tories by resolving current challenges in strain engineering.
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