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Abstract
The precise point positioning real-time kinematic (PPP-RTK) is a high-precision global navigation satellite system (GNSS) 
positioning technique that combines the advantages of wide-area coverage in precise point positioning (PPP) and of rapid 
convergence in real-time kinematic (RTK). However, the PPP-RTK convergence is still limited by the precision of slant 
ionospheric delays and tropospheric zenith wet delay (ZWD), which affects the PPP-RTK network parameters estimation 
and user positioning performance. The present study aims to construct a PPP-RTK model augmented with a priori ZWD 
values derived from the global forecast system (GFS) product (a global numerical weather prediction (NWP) model) to 
improve the PPP-RTK performance. This study gives a priori ZWD values and conversion based on the GFS products, and 
the full-rank GFS-augmented undifferenced and uncombined (UDUC) PPP-RTK network model is derived. To verify the 
performance of GFS-augmented UDUC PPP-RTK, a comprehensive evaluation using 10-day GNSS observation data from 
three different GNSS station networks in the United States (US), Australia, and Europe is conducted. The results show that 
with the GFS ZWD a priori information, PPP-RTK performance significantly improves at the initial filtering stage, but this 
advantage gradually decays over time. Based on 10-day positioning results for all user stations, the GFS ZWD-augmented 
PPP-RTK approach reduces the average convergence time by 46% from 10.0 to 5.4 min, the three-dimensional root-mean-
square (3D-RMS) error by 5.7% from 3.5 to 3.3 cm, and the time to first fix (TTFF) value by 35.8% from 6.7 to 4.3 min, all 
when compared to the traditional PPP-RTK without GFS ZWD constraints.
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Introduction

As an important error in radio-based geodetic surveying 
techniques, the tropospheric delay significantly impacts 
GNSS signals and can reach 2–3 m in the zenith direction 
(Yu et al. 2018). The influence of the tropospheric delay 
on GNSS signals severely limits the performance of GNSS 
positioning (Wilgan et al. 2017). Therefore, modeling trop-
ospheric delay has always been an important topic in the 
field of GNSS and a vexing issue in high-accuracy GNSS 
technologies.

PPP-RTK, as a high-precision GNSS positioning 
method, has been widely studied and applied in the GNSS 
field (Teunissen and Khodabandeh 2015). In PPP-RTK, 
GNSS reference station network generates real-time cor-
rection information, which are broadcast to the user sta-
tions in a state-space representation (Zhang et al. 2019). 
This information allows user stations to achieve centim-
eter-level positioning in real-time (Zhang et al. 2022). 
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During the PPP-RTK solution process, the tropospheric 
delay is usually divided into two parts: tropospheric zenith 
hydrostatic delay (ZHD) and ZWD (Hou and Zhang 2023). 
The ZHD accounts for about 90% of the tropospheric 
zenith total delay and can be accurately calculated using 
mature tropospheric models (Leandro et al. 2008). In con-
trast, the ZWD is caused by complex and various factors, 
and it is difficult to model. PPP-RTK technology involves 
both the user model that requires positioning and the net-
work model that provides for the positioning products. 
These two models normally use different approaches to 
solve the ZWD. For the user model, it can rely on the 
tropospheric ZWD correction information provided by 
the reference station network to construct an interpola-
tion model (Hou and Zhang 2023), fitting model (Cui et al. 
2022), or grid model (Yin et al. 2022) to obtain the ZWD 
at user location. Then, the user employs this information 
to correct or constrain the ZWD parameter in the PPP-
RTK user model. For the PPP-RTK network model, it is 
generally challenging to mitigate the impact of ZWD by 
differencing or using the spatial correlation of atmospheric 
conditions when the interstation distance exceeds 20 km 
(Deng et al. 2014; Gurturk and Soycan 2021). Therefore, it 
is necessary to carefully consider the method of processing 
tropospheric wet delay in the PPP-RTK network model.

In the processing of tropospheric wet delay in GNSS 
algorithms, it is common to estimate the ZWD parameter 
by combining it with the tropospheric mapping function, 
which is derived from tropospheric models and is dependent 
on the elevation angle of the satellite (Böhm et al. 2015). 
However, this method increases the number of unknown 
parameters and reduces the model strength. Some stud-
ies have attempted to utilize external devices to correct or 
constrain the tropospheric wet delay (Wang and Liu 2019). 
For instance, Wang and Liu (2019) enhanced PPP accuracy 
by using water vapor radiometers (WVR), achieving a 3% 
vertical accuracy improvement for static PPP and 10% for 
dynamic PPP, as well as a 30–50% reduction in convergence 
time of the positioning errors. Nonetheless, the high cost 
of WVR hinders its wide application in the GNSS commu-
nity. Recently, the significant improvements in the accuracy 
and spatial resolution of NWP models have made it possi-
ble to model the troposphere more precisely, providing new 
solutions for processing tropospheric wet delay in GNSS 
(Powers et al. 2017; Wilgan et al. 2017). Lu et al. (2017) 
used ZWD values from the GFS, a global NWP model pro-
vided by the National Centers for Environmental Prediction 
(NCEP), which reduced the convergence time of PPP by 
60% and improved the positioning accuracy by 40%. These 
studies demonstrate the effectiveness of NWP products 
and their contribution to improving the GNSS positioning 
performance.

The previous studies showed that NWP has success-
fully been employed in the GNSS PPP technology. PPP-
RTK, another advanced GNSS positioning technique, is 
also confronted by the challenge of processing tropospheric 
wet delay with high precision. However, the research on 
integrating NWP ZWD information with GNSS technol-
ogy is not extensive (Theodoro et al. 2022), and no studies 
have reported the performance of NWP ZWD-augmented 
PPP-RTK.

In this contribution, we aim to develop a UDUC PPP-
RTK model augmented with GFS ZWD and comprehen-
sively evaluate the performance improvement of the PPP-
RTK model using GFS products (Lu et al. 2017). In this 
paper, we first introduce the method of obtaining water vapor 
data in GFS products and the method of converting water 
vapor data and GNSS reference station ZWD parameters. 
Then, we add the ZWD pseudo-observation information 
obtained from GFS to constrain the estimated ZWD param-
eters in the PPP-RTK network model. Finally, we eliminate 
all types of rank deficiency in the observation equations by 
S-basis theory to obtain the full-rank GFS ZWD-augmented 
PPP-RTK network model. To validate the performance of 
the GFS ZWD-augmented PPP-RTK in different regions of 
the world, three GNSS networks from the National Geo-
detic Survey (NGS) of the US, Geoscience Australia (GA), 
and European Reference Permanent GNSS Network (EPN), 
respectively, are selected to conduct kinematic PPP-RTK 
solutions. Ten days (day of year (DOY) 60–69 in 2022) of 
GNSS observation data are analyzed. By comparing the 
results of traditional PPP-RTK without GFS ZWD aug-
mentation, we validate the performance improvement of the 
PPP-RTK model in terms of positioning error convergence 
time, positioning accuracy, and ambiguity resolution.

Method

A priori ZWD acquisition from GFS product

GFS provides various global atmospheric prediction prod-
ucts and distributes them on the geographic grid with a 
resolution of 0.25° × 0.25° (Han and Pan 2011). The tem-
poral resolution of GFS products provided by the NCEP is 
3 h. In this study, precipitable water vapor (PWV), surface 
geopotential height, and surface temperature datasets are 
extracted from GFS products for a priori ZWD acquisition 
of GNSS stations. To obtain PWV data for each GNSS sta-
tion, we first determine the GFS geographical grid in which 
the GNSS station is located and select PWV and surface 
geopotential height datasets at the four grid references of the 
geographical grid. Then, the Kouba model (Kouba 2008) is 
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used to convert the PWV data at the four grid references to 
the PWV value at the GNSS station:

where h0 and hs denote geopotential height values of surface 
and GNSS station, respectively; PWVh0

 is PWV value at 
the surface geopotential height provided by GFS product; 
and PWVhs

 is PWV value at the height of GNSS station. At 
the four grid references, their PWV values at surface geo-
potential heights are converted to the height same as that of 
the GNSS station using the Kouba model. Thus, the PWV 
datasets at the four grid references are on the same plane as 
the GNSS station. Then, the a priori ZWD at these refer-
ences can be derived from PWV using the conversion factor 
Π (Bevis et al. 1994):

where ZWD (PWV)xi,yj denotes the ZWD (PWV) value at the 
plane coordinates 

(
xi, yj

)
 . Conversion factor Π can be calcu-

lated using the following:

where � is the density of liquid water; Rv is the gas constant 
of water vapor; k′

2
 and k3 are physical constants given in 

Bevis et al. (1994); and Tm is the weighted mean tempera-
ture of atmosphere calculated from the Bevis model (Bevis 
model: Tm ≈ 0.72Tp + 70.2 , Tp is the temperature at the solu-
tion position). We can use the surface temperature datasets 
at the geographic grid references provided by GFS to cal-
culate the conversion factor at geographic grid references. 
Then, the a priori ZWD values at the four grid references are 
obtained. Finally, the bilinear interpolation method can be 
used to obtain the a priori GFS ZWD value at the position 
of the GNSS station (Accadia et al. 2003):

where ZWDs denotes the ZWD value at the GNSS station; 
x1,2 and y1,2 are plane coordinates of the four grid references; 
and xs and ys are plane coordinates of GNSS station.

GNSS observation equations

The linearized equations for GNSS code and phase observa-
bles are given below:

(1)PWVhs
= PWVh0

⋅ exp

(
h0 − hs

2000

)

(2)ZWDxi,yi
= PWVxi,yi

∕Π

(3)Π =
106

�Rv

(
k3

Tm
+ k�

2

)

(4)

⎧⎪⎨⎪⎩

ZWDs ≈
y2−ys

y2−y1
ZWDxs,y1

+
ys−y1

y2−y1
ZWDxs,y2

ZWDxs,y1
≈

x2−xs

x2−x1
ZWDx1,y1

+
xs−x1

x2−x1
ZWDx2,y1

ZWDxs,y2
≈

x2−xs

x2−x1
ZWDx1,y2

+
xs−x1

x2−x1
ZWDx2,y2

where r , s , and j denote GNSS receiver, satellite, and fre-
quency indices, respectively; E[⋅] denotes the expectation 
operator; and ps

r,j
(�s

r,j
) is the observed-minus-computed code 

(phase) observation, measured by receiver r from satellite s 
on frequency j . The estimated parameters and their coeffi-
cients include: Δxr denotes the receiver position increment, 
and the receiver-to-satellite unit direction vector gs

r
 is its 

coefficient; �r is the tropospheric ZWD for receiver r ; map-
ping function ms

r
 is its coefficient; dtr is the receiver clock 

error; dts is the satellite clock error; dr,j(�r,j) is the receiver 
code (phase) bias; and ds

j
(�s

j
) is the satellite code (phase) 

bias. ls
r
 is the ionospheric delay, and scalar �j = f 2

1
∕f 2

j
 is its 

coefficient ( fj being the frequency); and zs
r,j

 is the ambiguity 
with the wavelength �j as its coefficient. Only dual-frequency 
data are used in this paper, thus j = 1, 2.

GFS‑augmented UDUC PPP‑RTK network model

In order to facilitate parameter combination, the receiver and 
satellite code biases are transformed into the following form 
(Teunissen and Khodabandeh 2015):

where dr,IF and ds
IF

 denote ionosphere-free (IF) combination 
code biases for receiver and satellite, respectively; dr,GF and 
ds
GF

 are geometry-free (GF) combination code biases for 
receiver and satellite, respectively.

In undifferenced and uncombined PPP-RTK network pro-
cessing, the ionosphere-weighted method has been proven 
useful for enhancing network product performance, which 
can improve user positioning, positioning convergence time, 
and ambiguity fixing (Odolinski et al. 2015). So, we add a 
constraint for single-difference ionosphere parameter using 
the ionospheric pseudo-observation E

[
ls
1r

]
= ls

r
− ls

1
 . Index 

1 denotes the datum receiver or satellite, and any station or 
satellite can be selected as the datum to achieve reparam-
eterization. In addition, the a priori ZWD datasets provided 
by GFS product can be used to constrain the ZWD parameter 
to be estimated in the GNSS observation equations to further 
enhance the model strength. This can be achieved by adding 
tropospheric pseudo-observations E

[
�r
]
= �r . Furthermore, 

the parameter of receiver position increment is not shown in 
the network model because we assume that the positions of 
all network reference stations are known. Then, we can get:

(5)

E
[
ps
r,j

]
= gs

r
Δxr + ms

r
�r + dtr − dts + �jl

s
r
+ dr,j − ds

j

E
[
�s
r,j

]
= gs

r
Δxr + ms

r
�r + dtr − dts − �jl

s
r
+ �r,j − �s

j
+ �jz

s
r,j

(6)
dr,j = dr,IF + �jdr,GF

ds
j
= ds

IF
+ �jd

s
GF
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where E
[
ls
1r

]
= 0 , and the constraint strength is controlled 

by a stochastic model which is dependent on the separation 
of reference stations. E[�r] = ZWDr , and the constraint is 
dependent on the accuracy of the GFS ZWD product. GFS 
3-h ZWD forecast products are used in this study. The accu-
racy of the product relies on factors such as atmospheric 
humidity and weather conditions (Lasota et al. 2020). The 
standard deviation of GFS ZWD short-range forecast prod-
uct is approximately 2 cm (Lu et al. 2017).

The observation equations in (7) are rank deficient. The 
rank deficiencies can be eliminated by identifying the null 
space of the design matrix and choosing a minimum set of 
constraints (S-basis) (Teunissen 1985). It is worth noting 
that this model uses broadcast ephemeris and that satel-
lite clock errors are estimated by the network model. All 
parameters estimated by the network are self-consistent. In 
a regional reference station network, due to the introduction 
of estimable satellite clock error in the network model, a 
rank deficiency almost exists between the columns of �r and 
dts (Kleijer 2004). This is because in a regional reference 
station network, the mapping functions of the reference sta-
tions are nearly the same ( ms

1
≈ ms

2
≈ ... ≈ ms

n
 , n denotes the 

number of the reference stations in the regional network), 
and it will cause the troposphere �r and satellite clock dts to 
be highly correlated. The tropospheric ZWD of the pivot 
receiver �1 can be used as a datum to eliminate this nearly 
rank deficiency. Thus, the ZWD parameter we estimate is in 
single-differenced form. The estimable full-rank model can 
be derived after identifying and solving all the rank deficien-
cies (Gao et al. 2023). Finally, the full-rank GFS-augmented 
UDUC PPP-RTK network model based on a dual-frequency 
dataset is given below:

(7)

E
[
ps
r,j

]
= ms

r
�r + dtr − dts + �jl

s
r
+ dr,IF + �jdr,GF − ds

IF
− �jd

s
GF

E
[
�s
r,j

]
= ms

r
�r + dtr − dts − �jl

s
r
+ �r,j − �s

j
+ �jz

s
r,j

E
[
ls
1r

]
= ls

r
− ls

1

E
[
�r
]
= �r

where E
[
�1r

]
= ZWDr,r≠1 − ZWD1 is provided by the GFS 

product. It is used to constrain the single-difference ZWD 
parameter to in the GFS ZWD-augmented PPP-RTK. The 
estimable unknowns in (8) are denoted with a ‘tilde.’ It is 
worth noting that the GF receiver code biases (RCB) d̃r,GF 
are estimable, due to the introduction of ionospheric pseudo-
observations. It also ensures that all estimable ionospheric 
delay parameters absorb the same RCB from the datum ref-
erence station, which the user’s RCB estimates will eventu-
ally absorb. All the estimable unknown parameters and their 
estimable forms are shown in Table 1. Note that the UNB3m 
tropospheric model is used to calculate the mapping function 
of tropospheric ZWD and to correct the hydrostatic com-
ponent of the tropospheric error (Leandro et al. 2008). In 
both the network and user models, the mapping function is 
used to construct the design matrix, while the hydrostatic 
component of the tropospheric error is directly corrected in 
the observed-minus-computed observation.

For clarity, the aforementioned full-rank function model 
(8) is presented in a single-epoch form. In this study, the 
Kalman filter is employed. In the parameter process noise 
settings in the Kalman filter of the PPP-RTK network model, 
we estimate satellite/receiver clock and ionospheric delays 
as white noise, satellite/receiver bias as time-constant, tropo-
spheric wet delays as random-walk noise, and ambiguities 
as float constants for each arc.

The stochastic model of the GFS ZWD-augmented PPP-
RTK network model is given as follows:

(8)

E
[
ps
r,j

]
= ms

r
𝜏r + dt̃r − dt̃s + 𝜇jl̃

s
r
+ 𝜇jd̃r,GF

E
[
𝜙s
r,j

]
= ms

r
𝜏r + dt̃r − dt̃s − 𝜇j l̃

s
r
+ 𝛿r,j − 𝛿s

j
+ 𝜆jz̃

s
r,j

E
[
ls
1r

]
= l̃s

r
− l̃s

1

E
[
𝜏1r

]
= 𝜏r

(9)Q = blkdiag
(
Qyy,QI ,Q�

)

Table 1  Estimable parameters 
of the GFS-augmented UDUC 
PPP-RTK network model

Parameter Formulation Description

�̃r �r − �1 Single-differenced (SD) ZWD
dt̃r

(
dtr + dr,IF

)
−
(
dt1 + d1,IF

)
Estimable receiver clock error

dt̃s
(
dts + ds

IF

)
−
(
dt1 + d1,IF

)
− ms

1
�1 Estimable satellite clock error

l̃s
r

ls
r
−
(
ds
GF

− d1,GF
)

Estimable slant ionospheric delay

d̃r,GF dr,GF − d1,GF SD GF receiver code biases

𝛿r,j
(
�r,j − dr,IF

)
−
(
�1,j − d1,IF

)
+ �j

(
z1
r,j
− z1

1,j

)
Estimable receiver phase biases

𝛿s
j

(
�s
j
− ds

IF

)
−
(
�1,j − d1,IF

)
+ �j

(
ds
GF

− d1,GF
)
− �jz

s
1,j

Estimable satellite phase biases

z̃s
r,j (zs

r,j
− zs

1,j
) − (z1

r,j
− z1

1,j
) Double-differenced ambiguity
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where Qyy , QI , and Q� are variance–covariance of GNSS 
observations, ionospheric, and tropospheric pseudo-obser-
vations, respectively; and ‘blkdiag’ denotes a block diago-
nal matrix. The stochastic model for the GNSS code/phase 
observations Qyy is based on an elevation-dependent weight-
ing scheme. The variance–covariance matrix for the UDUC 
code/phase observations is given as follows:

where Cp = diag
(
�2
p,j=1

, �2
p,j=2

)
 and C� = diag

(
�2
�,j=1

, �2
�,j=2

)
 

are the variance–covariance matrices for the a priori GNSS 
code and phase observations in the zenith direction, respec-
tively, and ‘diag’ denotes a diagonal matrix. The a priori 
standard deviation (STD) in the zenith direction for the 
GNSS code and phase observations is set as 0.3 m and 0.003 
m, respectively. Qm = diag

((
sin2 e1

)−1
,⋯ ,

(
sin2 es

)−1) is 
the elevation-dependent weighting function with the satellite 
elevation e (Eueler and Goad 1991); and ⊗ is the Kronecker 
product (Teunissen et al. 2014). En is an identity matrix with 
a size same as the number of reference stations n.

The stochastic model for the ionospheric pseudo-obser-
vations is QI = diag

(
𝜎2
2,I
, ..., 𝜎2

n,I

)
⊗ Qm which depends on 

the ionosphere delay uncertainty and the distance between 
the reference station and the datum reference station Lr≠1 
(Li et al. 2022). In this study, for these regional PPP-RTK 
networks, the slant ionospheric delay STD is modeled as 
an empirical function �r≠1,I = 1.4 × 0.001 ⋅ Lr≠1 , which is 
1.4 mm/km (Odolinski and Teunissen 2017; Schaffrin and 
Bock 1988).

The stochastic model of the tropospheric pseudo-obser-
vations depends on the accuracy of GFS PWV product, 
which is an empirical value. The variance–covariance 
matrix of the tropospheric pseudo-observations is given 
as follows:

where SD is the single-difference operator, �ZWD is the a 
priori standard deviation of ZWD, and it is set to 2 cm in this 
study based on the accuracy of GFS ZWD product (Lasota 
et al. 2020).

UDUC PPP‑RTK user model

In the UDUC PPP-RTK user model, the rank deficiency 
problem is similar to that of the network model. The net-
work model transmits estimated parameters, including 
satellite clock error dt̃s , satellite phase biases 𝛿s

j
 , and 

atmospheric products to users as state-space representation 
(SSR) using broadcast communication links. Satellite 

(10)Qyy = blkdiag
(
Cp,C𝜙

)
⊗ Qm ⊗ En

(11)Q� = SD ⋅

(
�2
ZWD

⋅ En

)
⋅ SDT

clock error dt̃s and satellite phase biases 𝛿s
j
 are used to 

directly correct the satellite clock error and satellite phase 
biases, respectively, in the user model. Ionospheric delay 
E
[
ls
u

]
 and ZWD E

[
�u
]
 products are interpolation results 

from the network stations, and they constrain the user 
model with a priori information. Considering that the user 
model estimates the difference ZWD between the datum 
reference station and the user station, and that users usu-
ally cannot obtain information of the datum reference sta-
tion in practical applications, GFS ZWD constraints are 
not used in the user model. Finally, the full-rank UDUC 
PPP-RTK user model is given as follows:

In the user model, the estimable unknown parameters 
are the same as those in the network model as shown 
in Table 1, except the user positioning parameters Δxu . 
The parameter process noise settings and stochastic 
model scheme are consistent with the network model. 
The LAMBDA (Least-squares AMBiguity Decorrelation 
Adjustment) method has been used for integer ambiguity 
resolution (Teunissen 1998).

Results and analysis

Experimental setup

Three GNSS networks from the US, Australia, and Europe 
regions are selected, as shown in Fig. 1a. The three GNSS 
networks are from different organizations: the National Geo-
detic Survey (NGS) of the US, Geoscience Australia (GA), 
and the European Reference Permanent GNSS Network 
(EPN). For all three networks, GPS dual-frequency code 
and carrier phase datasets collected over a 10-day period 
from March 1, 2022 (DOY: 60) to March 10, 2022 (DOY: 
69) are selected with a data interval of 30 s. As shown in 
Fig. 1b–d, some GNSS stations are used as network stations 
to provide satellite clock error, satellite phase biases, and 
atmospheric products for the user stations, and the other 
GNSS stations, called user stations, are used for precise 
positioning test. The network provides these products to the 
users at each epoch with a 30-s interval, matching the user’s 
GNSS sampling rate. This study does not consider the time 
delay introduced to users by network product broadcasting. 
For the three networks from NGS, GA, and EPN, the average 

(12)

E
[
ps
u,j
+ dt̃s

]
= gs

u
Δxu + ms

u
𝜏u + dt̃u + 𝜇j l̃

s
u
+ 𝜇jd̃u,GF

E
[
𝜙s
u,j
+ dt̃s + 𝛿s

j

]
= gs

u
Δxu + ms

u
𝜏u + dt̃u − 𝜇j l̃

s
u
+ 𝛿u,j + 𝜆jz̃

s
u,j

E
[
ls
u

]
= l̃s

u

E
[
𝜏u
]
= 𝜏u
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interstation distance is 115.2 km, 85.3 km, and 194.7 km, 
respectively. GFS global atmospheric prediction products 
for the 10-day period (DOY: 60–69) are downloaded from 
the NCEP, US, with grib2 form, from which a priori ZWD is 
generated for the GFS ZWD-augmented PPP-RTK (network) 
model (NCEP 2015). It is unnecessary to consider the time 
delay of GFS products, as they are forecast products that can 
be preloaded. A priori GFS ZWD values with 30-s intervals 
are obtained through linear time interpolation to match the 
sampling rate of GNSS observations in the network model, 
ensuring that constraints are applied to each epoch of the 
network model.

GFS products analysis

In the UDUC PPP-RTK network model, the estimated ZWD 
parameter is in single-difference form. The difference ZWD 
(dZWD) result is the difference between ZWD value at the 
reference stations and that of the datum reference station. 
Therefore, the GFS a priori ZWD values should also be for-
mulated in the single-difference form between the reference 
station and the datum reference station to ensure consist-
ency. In this study, MICC, GSBN, and M0SE serve as the 

datum reference stations of the NGS, GA, and EPN net-
works, respectively. With that, 10-day GFS a priori dZWD 
values for all reference stations are generated for the three 
networks. At the same time, we estimate 10-day continuous 
dZWD value for all reference stations using the traditional 
UDUC PPP-RTK network model. In the traditional model, 
the functional model of Eq. (8) is employed but without 
the GFS ZWD constraint. Subsequently, a comparison is 
made between the estimated dZWD and the original GFS 
a priori dZWD to evaluate the reliability of the GFS prod-
ucts. Figure 2 compares the 10-day estimated dZWD by 
PPP-RTK (blue line) and GFS a priori dZWD (red line) for 
all reference stations in the three networks. Figure 2 shows 
that the dZWD estimated from PPP-RTK and the GFS a 
priori dZWD have a good consistency in all three networks. 
Pearson correlation coefficient, a statistic that quantifies the 
linear relationship and correlation between two variables 
(Akoglu 2018), is employed to measure the strength of the 
linear association between the two types of dZWD. The two 
kinds of dZWD values have high correlation coefficients 
(CC), as shown in Fig. 2. In general, a correlation value 
greater than 0.6 is regarded as a strong positive correlation 
(Akoglu 2018). The t-test (significant level P < 0.05) has 

Fig. 1  a The global distribution 
of NGS, GA, and EPN networks 
located in the US, Australia, 
and Europe, respectively. b–d 
Distribution of the reference 
stations and user stations of 
NGS, GA, and EPN networks, 
respectively. Blue triangles for 
non-datum network stations, 
blue circle for datum stations, 
and red triangles for user sta-
tions
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been conducted to compare the means of two groups and 
ascertain whether the observed differences between them 
are more likely to occur due to random chance (Kim 2015). 
Therefore, their positive correlation property indicates that 
GFS a priori dZWD can provide effective constraint infor-
mation for the network dZWD estimate.

Network ZWD product generation

For a more effective comparison, the traditional PPP-RTK 
network model, which utilizes Eq. (8) but excludes the GFS 
ZWD constraint, also generates ZWD products using the 
estimated ZWD parameters. These ZWD products generated 
by the traditional PPP-RTK network model are then pro-
vided to user stations using the same interpolation method 
as the GFS ZWD-augmented PPP-RTK model. To be spe-
cific, in both traditional (without constraint) and GFS ZWD-
augmented (with a priori GFS ZWD constraint) PPP-RTK 

network models, dZWD parameters of all non-datum refer-
ence stations are estimated. After obtaining the dZWDs of 
all the non-datum reference stations, the inverse distance 
weight interpolation method is used in both traditional and 
GFS ZWD-augmented PPP-RTK to calculate the dZWD 
at user stations based on the precise position of reference 
stations and approximate position of user stations (Lu and 
Wong 2008). Besides the a priori GFS ZWD constraint 
integrated into the GFS-augmented PPP-RTK network 
model, both the traditional PPP-RTK model and the GFS-
augmented PPP-RTK model employ identical parameter 
processing and filtering strategy. Figure 3 shows the com-
parison of ZWD products generated from the traditional and 
the GFS ZWD-augmented PPP-RTK network model and the 
time series of the difference values between these two kinds 
of dZWD. Both methods restart the Kalman filter of the 
network model at 0:00 every day, and the black dashed line 
indicates the restart time. As shown in Fig. 3, in the initial 

Fig. 2  Comparison between 
estimated dZWD by UDUC 
PPP-RTK (blue) and GFS 
a priori dZWD (red) for all 
non-datum reference stations in 
NGS (a), GA (b), and EPN (c) 
networks. Correlation coef-
ficients (CC) between the two 
time series are shown for each 
reference station. Convergence 
process of UDUC PPP-RTK 
dZWD is not shown in the time 
series
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stage of Kalman filtering, the traditional PPP-RTK network 
model fails to provide precise ZWD products, and it needs 
time to converge. The GFS ZWD-augmented PPP-RTK net-
work model (blue line) produces more accurate dZWD result 
in the initial filtering stage and barely needs a convergence 
time. The difference results (green line) can clearly show 
this. It is noticed that after Kalman filter convergence, the 
dZWD estimation tends to converge for both methods and 
their difference approaches to zero. This implies that the 
GFS a priori ZWD product is very effective in the initial 
stage of the Kalman filter, but its contribution will decrease 
with time when the filter has enough GNSS observations to 
estimate the accurate ZWD parameter (filter convergence). 
Therefore, when the network filter needs to be restarted for 
reasons such as offline datum reference stations, the GFS a 
priori ZWD data can help user stations obtain a converged 
PPP-RTK solution more quickly than traditional one.

User station convergence time and positioning 
performance

To evaluate the positioning performance of the GFS ZWD-
augmented PPP-RTK network model, we analyzed the 
10-day positioning results of 16 user stations from the three 
networks and compared them with the positioning results 
based on traditional PPP-RTK network products. For a fair 
comparison, the user positioning strategy used in traditional 
PPP-RTK is identical to that of GFS ZWD-augmented PPP-
RTK. In the user model of traditional PPP-RTK, the STD 
of ZWD pseudo-observation generated from the network 
model is also set as 2 cm, the same as the user model of the 
GFS-augmented PPP-RTK.

In this test, the network model Kalman filter restarts at 
00:00 every day to evaluate the contribution of GFS a priori 
ZWD data on convergence. For user stations, convergence 
time is an important index of positioning performance. In 
this study, convergence time is defined as the minimum 
observation time span required to achieve positioning errors 

Fig. 3  Comparison of dZWD estimated at three user stations using 
traditional PPP-RTK network model (red) and GFS ZWD-augmented 
PPP-RTK network model (blue). Their difference is shown in the sub-
plot below (green). The three user stations BAYR, CBG2, and ASIR 
are from the NGS, GA, and EPN networks, respectively. It should be 
noted that the offset values of 2 cm and − 2 cm have been added to the 
dZWD solution of the traditional PPP-RTK network model (red) and 
GFS-augmented PPP-RTK (blue), respectively, for better visualiza-
tion purpose

Fig. 4  Comparison of 10-day average convergence time between tra-
ditional (orange) and GFS ZWD-augmented PPP-RTK (green) prod-
ucts at all the user stations in the NGS, GA, and EPN networks. The 
average convergence time is calculated by averaging the convergence 
time values from every Kalman filter initialization for each user sta-
tion
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below 10 cm for at least 60 min. At every user station, the 
convergence time is calculated each day, and average con-
vergence time over the 10-day period is obtained. Figure 4 
shows the comparison of convergence time of employing 
GFS-augmented and traditional PPP-RTK products. As 
shown in Fig. 4, GFS-augmented network data can signifi-
cantly shorten user station positioning convergence time for 
all the user stations in the three networks. This is due to the 
rapid convergence of tropospheric parameter estimated by 
the network model after the introduction of GFS a priori 
information. For all the 16 user stations, the average con-
vergence time is reduced by 46% from 10.0 to 5.4 min. To 
show the advantage of GFS-augmented clearly, the position-
ing time series at DOY 60 of BAYR station based on GFS-
augmented and traditional network data are compared and 
shown in Fig. 5. We are shown from Fig. 5 that the contribu-
tion of GFS a priori ZWD is mostly effective in the up direc-
tion. This can be explained as GFS a priori ZWD mostly 
improves the accuracy of ZWD products in the PPP-RTK 
network model, and the positioning performance in the up 
direction is the most sensitive to the ZWD accuracy. We can 
also note that as the filtering progresses, the positioning per-
formance of GFS-augmented PPP-RTK gradually becomes 
similar to that of traditional PPP-RTK. This is because after 
a certain period of time, enough GNSS observations have 
been collected, and the traditional PPP-RTK network model 
can also provide accurate ZWD data for the user stations.

Short-term precision is defined as the positioning pre-
cision of short-term time intervals in the initial stage of 
Kalman filtering (Lu et al. 2017). As the convergence time 
is reduced after applying the GFS ZWD data, the short-term 
precision is also expected to be improved. In this study, 
we calculate the short-term RMS errors in a 20-min time 

interval for the first 100 min of the whole Kalman filter 
process at every user station. It is noticed that the Kalman 
filter in the network model restarts on a daily basis, and 
the final result for short-term RMS is calculated by averag-
ing the 10-day results. We randomly select three user sta-
tions (BAYR, CBG2, and ASIR) from the three different 
regional networks and compare their short-term precision 
using GFS-augmented and traditional PPP-RTK network 
ZWD data. These results are shown in Fig. 6. At the three 
user stations, the accuracy improvement resulting from the 
GFS a priori ZWD information is obvious in the initial stage 
of the Kalman filter. However, when time progresses, the 
accuracy advantage of GFS-augmented method gradually 
decays, especially in horizontal components, which is con-
sistent with the findings in the single-station positioning 
results shown in Fig. 5.

We also calculated the 10-day positioning 3D-RMS errors 
of the user stations. These values are calculated using the 
positioning results obtained from the entire filter processing. 
The PPP-RTK network Kalman filter is restarted at 00:00 
on a daily basis. To calculate the positioning RMS errors, 
the long-term static PPP positioning results provided by the 
NGS, GA, and EPN are used as the reference coordinates 
of the stations. Figure 7 shows the positioning 3D-RMS 
errors of all user stations in this research. At the same time, 
Table 2 shows the 3D-RMS errors of both traditional and 
GFS ZWD-augmented PPP-RTK network products and the 
percentage of the improvement of GFS-augmented products. 
As shown in Fig. 7 and Table 2, for all the user stations, the 
positioning accuracy of GFS-augmented method is better 
than that of the traditional method. Taking the station MIDS 
in the NGS network as an example, the GFS-augmented 
method reduces its 3D-RMS positioning error by 9.56%, 

Fig. 5  User positioning time 
series of traditional (left) and 
GFS-augmented (right) PPP-
RTK models for the dataset 
collected at BAYR from the 
NGS network on DOY 60. Both 
ambiguity float solution (red) 
and ambiguity-fixed solution 
(blue) are shown. The time 
scale in the first 2 h is intention-
ally enlarged to illustrate the 
convergence time
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from 2.93 to 2.65 cm. For all the 16 user stations, the aver-
age 3D-RMS error is reduced by 5.7% from 3.5 to 3.3 cm.

The contribution of GFS ZWD‑augmented PPP‑RTK 
to ambiguity resolution

This section uses a partial ambiguity-fixed technique based 
on the LAMBDA method to obtain the ambiguity-fixed solu-
tions (Parkins 2011). The successful fixing of integer ambi-
guities is based on the two criteria: (1) Ambiguity resolution 
passes the ratio test, with a ratio threshold of two, and (2) 
the final successfully fixed ambiguities must account for over 
60% of the total ambiguities in the original ambiguity list for 
the current epoch (Zhang et al. 2022). The ambiguity fixing 
rate is the percentage of epochs with successful ambigu-
ity fixing over the total epochs of all days, and the epochs 
within the convergence period have been included too. The 
ambiguity fixing rates of both the traditional and GFS ZWD-
augmented PPP-RTK methods are calculated for all the user 
stations. Table 3 shows the ambiguity fixing rate and the 
improvements of GFS-augmented method. Results show that 
the GFS a priori ZWD information used in the PPP-RTK 
network model only slightly improves the ambiguity fixing 
rate at most user stations. This is because the advantages 
of GFS-augmented PPP-RTK are mostly evident during 
the short-term convergence process after filter starts. When 
considering the entire solution process, the improvements 
appear not so significant. In addition, the LAMBDA algo-
rithm is robust and resistant to biases in ambiguities (Li et al. 
2014). This implies that even if there is a bias in the ZWD 
information used by the user stations, the ambiguities can 

Fig. 6  Comparison of average RMS values of short-term user posi-
tioning between traditional (orange) and GFS ZWD-augmented 
(green) PPP-RTK. Three user stations BAYR, CBG2, and ASIR from 
NGS, GA, and EPN networks, respectively, are selected. Twenty-min 

time interval is used. The average short-term RMS is calculated by 
averaging the short-term RMS errors from every Kalman filter initial-
ization for BAYR, CBG2, and ASIR

Fig. 7  Comparison of 10-day positioning 3D-RMS errors between 
traditional (orange) and GFS ZWD-augmented PPP-RTK (green) for 
all the user stations from the three networks
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still be successfully fixed, thereby minimizing the impact 
of GFS ZWD information. We can also notice from Table 3 
that for a small number of user stations, GFS ZWD even has 
a negative impact on the ambiguity fixing rate. This might 
be because the GFS ZWD is less accurate than the estimated 
ZWD, leading to a decrease in ambiguity fixing rate.

We also calculate the TTFF for all the user stations by 
averaging their TTFF values from every Kalman filter ini-
tialization. There are ten initializations in total for each user 
station. The TTFF is defined as the minimum observation 

time required to achieve ambiguity-fixed success. Figure 8 
shows the TTFF comparison results from both traditional 
PPP-RTK and the GFS ZWD-augmented PPP-RTK mod-
els. The results indicate that GFS-augmented information 
can greatly reduce the TTFF for most stations. The average 
TTFF value is reduced by 35.8% for all the user stations 
from 6.7 min to 4.3 min. It further verifies the effectiveness 
of using GFS a priori ZWD products in the initial stage of 
the Kalman filter.

Table 2  Comparison of 
positioning accuracy between 
the traditional and the GFS 
ZWD-augmented PPP-RTK 
models and the percentage of 
improvement of the GFS ZWD-
augmented PPP-RTK model 
over the traditional one

GNSS network Station Traditional model 
3D-RMS (cm)

GFS-augmented model 
3D-RMS (cm)

RMS reduction of 
the GFS model (%)

NGS BAYR 2.40 2.23 7.08
GRAR 2.64 2.62 0.76
LANS 3.68 3.52 4.35
MIDS 2.93 2.65 9.56
MILI 2.08 2.06 0.96
MITS 2.53 2.53 0.00
UNIV 3.35 3.29 1.79

GA BMSH 4.28 4.08 4.67
CBG2 4.61 4.21 8.68
MENT 6.03 5.83 3.32
PKVL 4.32 4.09 5.32
WSEA 4.82 4.55 5.60

EPN AQUI 2.81 2.69 4.27
ASIR 3.88 3.62 6.70
ISRN 2.60 2.43 6.54
UBEN 2.88 2.69 6.60

Table 3  Comparison of the 
ambiguity fixing rates of 
traditional PPP-RTK and the 
GFS ZWD-augmented PPP-
RTK models at each user station 
of the three networks

Organization Station Traditional model ambi-
guity fixing rate (%)

GFS-augmented model 
ambiguity fixing rate (%)

Improvements (%)

NGS BAYR 96.98 96.86 − 0.12
GRAR 81.30 81.50 0.25
LANS 57.63 57.84 0.36
MIDS 92.99 93.10 0.12
MILI 96.46 96.13 − 0.34
MITS 77.50 77.72 0.28
UNIV 86.39 88.53 2.42

GA BMSH 93.68 94.11 0.45
CBG2 96.19 96.60 0.42
MENT 81.12 81.86 0.90
PKVL 88.20 87.98 − 0.25
WSEA 91.39 91.36 − 0.03

EPN AQUI 77.71 77.67 − 0.05
ASIR 78.72 79.14 0.53
ISRN 96.78 96.83 0.05
UBEN 94.18 94.26 0.08
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Conclusion

In this work, the GFS-augmented UDUC PPP-RTK model 
has been developed. The GFS product is employed to gener-
ate a priori ZWD values, which are then used to constrain 
the ZWD parameter in the PPP-RTK network model to pro-
vide ZWD data for the PPP-RTK user stations. To test the 
performance of GFS product and its compatibility with the 
PPP-RTK technique, 10-day GNSS data from three GNSS 
networks in the US, Australia, and Europe are analyzed.

The consistency between the GFS ZWD product and 
ZWD data estimated by UDUC PPP-RTK network is sys-
tematically analyzed. The results show that the correlation 
coefficient between the ZWD generated from the GFS prod-
ucts and the ZWD estimated from PPP-RTK network model 
can achieve a value between 0.64 and 0.80. This verifies the 
compatibility and effectiveness of the GFS ZWD product for 
the UDUC PPP-RTK model.

The GFS ZWD-augmented PPP-RTK model is used to 
conduct positioning test for 16 user stations from the three 

networks. The results show that with the GFS ZWD a priori 
information in the network model, the positioning perfor-
mance of the user stations improves significantly in terms of 
convergence time, positioning accuracy, and the TTFF val-
ues. The GFS ZWD-augmented PPP-RTK can also slightly 
improve the ambiguity fixing rate. Analyzing all the 16 user 
stations over a 10-day period, GFS ZWD-augmented PPP-
RTK reduces the average convergence time by 46% from 
10.0 to 5.4 min, 3D-RMS error by 5.7% from 3.5 to 3.3 cm, 
and the time to first fix value by 35.8% from 6.7 to 4.3 min. 
This clearly shows the advantage of GFS-augmented PPP-
RTK for user positioning, especially in the initial stage of 
the Kalman filter. As the filtering progresses, the advantage 
of a priori GFS ZWD information gradually decays, and 
GFS-augmented PPP-RTK shows a positioning performance 
similar to traditional PPP-RTK.
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