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Abstract Conventional Kalman filter (KF) relies heavily

on a priori knowledge of the potentially unstable process

and measurement noise statistics. Insufficiently known a

priori filter statistics will reduce the precision of the esti-

mated states or introduce biases to the estimates. We pro-

pose an adaptive KF based on the autoregressive (AR)

predictive model for vehicle navigation. First, the AR

model is incorporated into the KF for state estimation. The

closed-form solution of the AR model coefficients is

obtained by solving a convex quadratic programming

problem, which is according to the criterion of minimizing

the mean-square error, and subject to the polynomial

constraint of vehicle motion. Then, an innovation-based

adaptive approach is improved based on the KF with the

AR predictive model. In the proposed adaptive algorithm,

the process noise covariance is computed using the real-

time information of the innovation sequence. Simulation

results demonstrate that the KF with the AR model has a

higher estimated precision than the KF with the traditional

discrete-time differential model under the condition of the

same parameter setting. Field tests show that the posi-

tioning accuracy of the proposed adaptive algorithm is

superior to the conventional adaptive KF.

Keywords Global positioning system (GPS) � Navigation �
Adaptive Kalman filter � Autoregressive (AR) model �
Quadratic programming

Introduction

The integration of a global positioning system (GPS) with

the inertial navigation system (INS) has been extensively

applied to kinematic applications in the past few decades.

The estimation environment in the case of GPS/INS kine-

matic applications is often subject to change. Hence the

adaptive Kalman filter (KF) technique, instead of the fixed

KF, has been widely employed in the GPS/INS integrated

navigation system (Yang and Xu 2003; Yang and Gao

2006; Lin 2015). The conventional adaptive KF can fulfill

the accuracy requirements in many kinematic applications.

There are, however, always some applications where the

accuracy requirements cannot be fulfilled, such as the

precise engineering and cadastral fields (Mohamed and

Schwarz 1999; Leick et al. 2015; Yang et al. 2001).

Therefore, it is necessary to develop an adaptive filtering

algorithm which has a better overall performance.

The performance of KF depends on the dynamic model

that reveals the behavior of the state variables and the

stochastic models that describe the noise properties (Bar-

Shalom et al. 2001; Niehen 2004). For these two aspects,

there are also two approaches to the adaptive Kalman fil-

tering problem, which are the multiple-model-based adap-

tive estimation (MMAE) (Hide et al. 2004; Li and Jilkov

2005; Lan et al. 2011; Jin et al. 2015) and innovation-based

adaptive estimation (IAE) (Mehra 1972; Mohamed and

Schwarz 1999; Wang et al. 2000), respectively. The former

utilizes a bank of Kalman filters running in parallel under

different dynamic models and statistical information, and

combines the estimates of all the models with different non-

zero model probability. In the latter case, the adaptation is

done directly by the statistical information, i.e., the mea-

surement noise and/or the process noise covariancematrixes,

based on the changes in the innovation sequence.
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In the MMAE and IAE approaches, the discrete-time

differential models, e.g., the constant velocity (CV) model

and constant-acceleration (CA) model, are generally

employed to describe the behavior of the state variables

(Bar-Shalom et al. 2001; Li and Jilkov 2003). However, the

state variables in these models, i.e., position, velocity, and

attitude, are correlated in practice. It is difficult to exactly

describe the statistical relationship of these states, and thus

insufficiently known a priori statistics will lead to an

inadequate estimation of the observable components

through the coupling effect in the filter (Mohamed and

Schwarz 1999). Another disadvantage of the KF based on

the discrete-time differential model is its high dependence

on a priori knowledge of the potentially unstable process

and measurement noise statistics. Conceptually, an accu-

rate a priori knowledge of the process and measurement

information depends on factors such as the process

dynamics and the type of application, which are generally

difficult to obtain. Insufficiently known a priori filter

statistics will reduce the precision of the estimated filter

states or introduce biases to the estimates, and even lead to

practical divergence of the filter (Ding et al. 2007). The

research on the adaptive KF mostly focuses on computing

the process or measurement noise covariance (Mohamed

and Schwarz 1999; Ding et al. 2007; Niehen 2004; Yang

and Gao 2006), while there are seldom reports on the

adaptive dynamic model at the present time. An effective

model will certainly facilitate the extraction of the useful

information about the vehicle states from the observations

to a great extent.

Aiming at the issues mentioned above, an adaptive KF

based on the autoregressive (AR) predictive model is pro-

posed. The major contributions of this research are as fol-

lows: (1) The ARmodel is incorporated into the KF for state

estimation. The closed-form solution of the AR model

coefficients can be derived from a convex quadratic pro-

gramming. The degrees of freedom of the ARmodel can not

only satisfy the polynomial constraint of the state variable,

but also reduce the noise by the criterion of minimizing the

mean-square error (MMSE). (2) Based on the KF with the

AR predictive model (KF-AR), an innovation-based adap-

tive approach is improved. In the proposed adaptive algo-

rithm, the process noise covariance is computed using the

information of innovation sequence. The adaptive KF-AR

can utilize the real-time information adequately.

Methodology

The dynamic model is a discrete-time motion model of the

form

xkþ1 ¼ Fkþ1jkxk þ wk ð1Þ

where xk denotes an M 9 1 state vector at epoch tk. Fkþ1jk
is the M 9 M state transition matrix, and the process noise

wk is a zero-mean Gaussian random process with the

covariance matrix Qk, i.e., wk �N 0;Qkð Þ.
With position-only measurements, the measurement

vector of vehicle state at epoch tk is given by

zk ¼ Hxk þ vk ð2Þ

where the measurement matrix H ¼ 1 0 � � � 0½ �1�M .

The measurement noise vk is a zero-mean Gaussian random

process, independent of wk, with the covariance matrix Rk,

i.e., vk * N(0, Rk).

AR predictive model

The traditional discrete-time differential model can defi-

nitely depict the vehicle kinematic motion. However, it is

fixed and cannot adjust adaptively to the process and

measurement noise intensities, resulting in a performance

reduction to some extent. For this problem, the AR model

is incorporated into the KF to estimate the vehicle’s state.

From polynomial model to AR model

According to the Weierstrass approximation theorem

(Pérez and Quintana 2008), any continuous motion tra-

jectory can be approximated by a polynomial of a certain

degree to an arbitrary accuracy. As such, it is possible to

model the vehicle motion by an Nth-degree polynomial in

the Cartesian coordinates. The CV and CA models are

special cases (for N = 1, 2, respectively) of this general

Nth-degree model (Bar-Shalom et al. 2001). For example,

in CV model the state vector is xCVk ¼ rk _rk½ �T, where rk
is the position, and _rk is the velocity. The state transition

matrix in CV model is (Challa et al. 2011)

FCV
kþ1jk ¼

1 T

0 1

� �
ð3Þ

where T is the sampling interval. The covariance matrix of

the process noise wCV
k is

QCV
k ¼ qv

T3
�
3 T2

�
2

T2
�
2 T

� �
ð4Þ

where qv is the process noise intensity and controls the size

of the deviations of the velocity.

Without loss of generality, after sampling uniformly, the

position at epoch tk can be depicted as:

rk ¼
XN
n¼0

an tkð Þn ð5Þ

with a certain choice of the coefficients an (n = 0, 1, …,

N), where tk = kT. Assume that the position rk?1 can be
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predicted by the AR model through the M latest samples rk,

rk-1, …, rk?1-M (Väliviita et al. 1999):

rkþ1 ¼
XM
m¼1

hmrkþ1�m ð6Þ

where hm (m = 1, 2 ,…, M) are the AR model coefficients.

According to (5), rk?1 and rk?1-m can be written as

follows:

rkþ1 ¼
XN
n¼0

an k þ 1ð ÞnTn;

rkþ1�m ¼
XN
n¼0

an k þ 1� mð ÞnTn

ð7Þ

Substituting (7) into (6) and simplifying the formula, we

can obtain

k þ 1ð Þn¼
XM
m¼1

hm k þ 1� mð Þn; n ¼ 0; 1; . . .;N ð8Þ

When n = 0, Eq. (8) is

XM
m¼1

hm ¼ 1 ð9Þ

When n = 1, using (9) in (8) we can obtain

XM
m¼1

hmm ¼ 0 ð10Þ

When n = 2, using (9) and (10) in (8), we obtain

XM
m¼1

hmm
2 ¼ 0 ð11Þ

In similarity, according to (10) and (11) we can infer

that:

XM
m¼1

hmm
n ¼ 0; n ¼ 1; 2; . . .;N ð12Þ

The detailed proof of (12) is given in ‘‘Appendix 1’’.

Equations (9) and (12) can be rewritten in the form of

matrix as follows:

Auk ¼ b ð13Þ

where the AR model coefficients are denoted by

uk ¼ h1 h2 � � � hM½ �T, b ¼ ½ 1 0 � � � 0 �T, and A is

a Vandermonde matrix

A ¼

1 1 � � � 1

1 2 � � � M

1 22 � � � M2

..

. ..
. . .

. ..
.

1 2N � � � MN

2
66664

3
77775

Nþ1ð Þ�M

ð14Þ

whereM is the number of ARmodel coefficients, andN is the

highest degree of polynomial used to approximate the

position.

When M = N ? 1, the Vandermonde matrix A is non-

singular and (13) has the unique solution (Meyer 2000). So

the vehicle motion can be depicted by (13) like the tradi-

tional discrete-time differential model, and the AR model

coefficient vector is

uk ¼ A�1b ð15Þ

For example, the AR model (N = 1, M = 2) is equiva-

lent to the CV model, and it also can describe the constant

velocity motion exactly (as shows in the simulation results).

When M[N?1, the Vandermonde matrix A has a full

row rank and (13) is a non-consistent equation (Meyer

2000). Here, the AR model has a degree of redundancy,

i.e., the AR model can not only satisfy the polynomial

constraint of vehicle motion, but also reduce the noise with

the extra degree of freedom. In the following, the optimal

AR model is derived in the framework of KF by the cri-

terion of MMSE.

Derivation of AR model in the framework of KF

According to (6), the state vector in the AR model includes

the positions from time k to time k - M ? 1, and it can be

written as:

xARk ¼ rk rk�1 . . . rk�Mþ1½ �T ð16Þ

It is different from that in the traditional differential

model. The state transition matrix in the AR model, FAR
kþ1jk,

is defined by

FAR
kþ1jk ¼

h1 h2 . . . hM�1 hM
1 0 . . . 0 0

0 1 . . . 0 0

0 0 . .
.

0 0

0 0 0 1 0

2
66664

3
77775
M�M

ð17Þ

where the AR model coefficients hm (m = 1, 2, …, M) to

be optimized should satisfy the polynomial constraint of

vehicle motion in (13). Accordingly, in the AR model the

process noise is wAR
k ¼ wk wk�1 . . . wk�Mþ1½ �T: It is

an independent identically distributed zero-mean white

Gaussian sequence with the covariance matrix QAR
k .

Assume that the stochastic changes of the positions at the

different epochs are mutually independent, the process

noise covariance is

QAR
k ¼ E wAR

k wAR
k

� �Th i
¼ qrT � I ð18Þ

where qr is the process noise intensity in terms of position,

and I is an M-dimensional identity matrix.
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Due to the dependence of the AR model on the coeffi-

cient vector uk, the Kalman recursive equations are also

explicitly dependent on uk. Specifically,

xkjk�1 ukð Þ ¼ Fkjk�1 ukð Þ � xk�1jk�1 ð19aÞ

Pkjk�1 ukð Þ ¼ Fkjk�1 ukð Þ � Pk�1jk�1 � FT
kjk�1 ukð Þ þ Qk�1

ð19bÞ

Sk ukð Þ ¼ HPkjk�1 ukð ÞHT þ Rk ð19cÞ

Kk ukð Þ ¼ Pkjk�1 ukð Þ �HT � S�1
k ukð Þ ð19dÞ

xkjk ukð Þ ¼ xkjk�1 ukð Þ þ Kk ukð Þ � zk �Hxkjk�1 ukð Þ
� �

ð19eÞ
Pkjk ukð Þ ¼ I � Kk ukð Þ �H½ � � Pkjk�1 ukð Þ ð19fÞ

where xk|k-1 and Pk|k-1 are the a priori estimate and

covariance matrix of the state vector, and xk|k and Pk|k are

the respective a posterior estimate and covariance matrix.

Sk is the innovation covariance, and Kk is the filter gain

matrix.

The estimate error variance of rk is the element at the

first row and first column of the covariance matrix Pk|k, so

the objective function in the sense of MMSE can be

expressed as (Jin et al. 2014):

minimize
uk

Pkjk
� �

1;1ð Þ ð20Þ

and subject to Auk ¼ b, where (�)(i,j) represents the (i, j)-

entry of the matrix in the bracket. Pkjk
� �

ð1;1Þ can be

obtained from (19c), (19d) and (19f) as follows:

Pkjk
� �

ð1;1Þ ¼ Pkjk�1

� �
ð1;1Þ�

Pkjk�1

� �
ð1;1Þ

	 
2

Pkjk�1

� �
ð1;1Þþ Rkð Þð1;1Þ

¼
Rkð Þð1;1Þ� Pkjk�1

� �
ð1;1Þ

Pkjk�1

� �
ð1;1Þþ Rkð Þð1;1Þ

¼
Rkð Þð1;1Þ

1þ Rkð Þð1;1Þ
.

Pkjk�1

� �
ð1;1Þ

ð21Þ

Since uk is independent of Rk and Qk, the cost function

(20) is equivalent to

minimize
uk

uTkPk�1jk�1uk

subject to Auk ¼ b
ð22Þ

The optimization problem (22) is a convex quadratic

programming problem (Boyd and Vandenberghe 2004). It

can be solved by Lagrange multiplier technique (Singiresu

2009). The closed-form solution of (22), i.e., the optimal

AR model coefficients can be represented as:

u�k ¼ P�1
k�1jk�1A

T AP�1
k�1jk�1A

T
	 
�1

b ð23Þ

The derivation of (23) is given in ‘‘Appendix 2’’.

According to (23), the optimal AR model coefficients uti-

lize not only the information of the polynomial motion, but

also the information of the variance/covariance of estima-

tion error. Hence, the optimal AR model has another

function for reducing the noise, while the traditional dis-

crete-time differential model does not.

Development of adaptive Kalman filter based

on optimal AR predictive model

Above, an optimal AR model is derived in the framework

of KF by the criterion of MMSE. When the polynomial

degree of the dynamic model and the noise statistic prop-

erty are a priori known, the KF-AR can work well (as the

simulation shows). However, the vehicle motion is possibly

time varying in the actual situation, and the noise statistic

property is unstable. It requires the adaptive estimation

techniques to deal with the problem, such as the MMAE

and IAE. The MMAE has its application in the design of

controller for the flexible vehicle tracking problems (Li and

Jilkov 2005; Lan et al. 2011; Jin et al. 2015). The IAE is

more applicable to INS/GPS systems used in the geomatics

field (Mohamed and Schwarz 1999; Wang et al. 2000).

Here, we only discuss the IAE approach based on the KF-

AR.

Taking the application situations and computational

complexity into account, we utilize the covariance-match-

ing technique (Mehra 1972) to deal with the fluctuation of

vehicle motion or the maneuver of different levels. The

basic idea behind the covariance-matching technique is to

make the residuals consistent with their theoretical

covariance. As shown in Fig. 1, the actual innovation

covariance is computed by the measurement minus the

predicted state, and then is employed to compute the pro-

cess noise covariance Qk or the measurement noise

covariance Rk. Finally, the Kalman filter can use the

statistic information which is computed online.

According to (19d), we can obtain

HPkjk�1 ¼ SkK
T
k ð24Þ

so that (19f) can be expressed as:

Pkjk ¼ Pkjk�1 � KkSkK
T
k ð25Þ

Substituting (19b) in (25), we obtain

Fig. 1 Covariance-matching technique in adaptive Kalman filter

algorithm
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Pkjk ¼ Fkjk�1Pk�1jk�1F
T
kjk�1 þ Qk � KkSkK

T
k ð26Þ

So that the process noise covariance is

Qk ¼ Pkjk � Fkjk�1Pk�1jk�1F
T
kjk�1 þ KkSkK

T
k ð27Þ

and can be approximated by

Qk ¼ KkSkK
T
k ð28Þ

According to the covariance-matching principle, the

theoretical innovation covariance, Sk, can be replaced by

the actual one, so that the process noise covariance can be

adapted as follows:

Qk ¼ KkŜkK
T
k ð29Þ

where Ŝk is obtained by averaging the previous residual

sequence over a window:

Ŝk ¼
1

W

XW�1

i¼0

dk�id
T
k�i ð30Þ

where dk ¼ zk �Hxkjk�1 is the innovation residual from

the KF-AR, and the correct window sizeW also needs to be

identified to obtain the correct balance between the filter

adaptivity and stability. Considering the situation when the

epoch k is less than window length W, we define

Ŝk ¼

k � 1

k
Ŝk�1 þ

1

k

Xk
i¼1

did
T
i ; k\W

1

W

Xk
i¼k�Wþ1

did
T
i ; k�W

8>>>><
>>>>:

ð31Þ

A full derivation of the filter statistical information

matrices is given by the maximum likelihood (ML) method

in Mohamed and Schwarz (1999). Assumed that the mea-

surement noise covariance Rk is completely known, the

explicit expression for Qk by the ML method is the same as

(29). Hence, the results of the filter statistical information

matrices by the covariance-matching technique are con-

sistent with that by the ML method. The same strategy used

for Qk can also be used to obtain an estimate of Rk.

According to (19c), the measurement noise covariance can

be computed adaptively using the actual innovation

covariance as follows:

Rk ¼ Ŝk �HPkjk�1H
T ð32Þ

where Ŝk is also given by (31). For a detailed derivation of

Rk using the ML method, see Mohamed and Schwarz

(1999). These equations result in a full variance/covariance

matrix that attempts to model some of the inherent

correlations.

According to the tests in Mohamed and Schwarz (1999),

the error spectrum in the Q-only adaptive case is flatter

than in the R-only and both Q and R adaptive cases. In

other words, the Q-only adaptive algorithm is superior to

the other two algorithms in the practical estimating per-

formance. Assume that the measurement noise covariance

is a priori known, and the process noise covariance is

computed adaptively online, the proposed adaptive Kalman

filtering algorithm based on optimal AR predictive model

(AKF-AR) is given in Table 1.

From the computational standpoint, the proposed algo-

rithm adds the blocks of computing the state transition

matrix and the process noise covariance into the traditional

Kalman filter. Since the closed-form of AR model coeffi-

cients can be obtained, it is comparable with the traditional

Kalman filter in the computational complexity. The pro-

posed algorithm can modify the dynamic model in the

meaning of MMSE to utilize the real-time information

adequately. Hence, the proposed adaptive algorithm can

suppress the noise better than the conventional adaptive

KF.

Validation

The simulation experiment and field test have been carried

out to evaluate the performance of the proposed model and

algorithm. In the simulation, the AR model is compared

with the traditional discrete-time differential model (CV

model) in a one-dimensional constant velocity scene. In the

field test, the AKF-AR competes with the traditional

adaptive KF based on the CV model (AKF-CV) in a two-

dimensional maneuvering situation.

Evaluating the performance of the AR model

Assume that a vehicle moves with the constant velocity

v = 20 m/s. The measurement error variance of the vehicle

position is in direct proportion to the signal-to-noise ratio

(Tsui 2005) and the measurement noise variance is

R = 100 m2, and the sampling interval T = 1 s. In the AR

models, the polynomial degree is N = 1 for estimating the

position, and the number of AR model coefficients is

M = 2, 3, 4, respectively. The process noise covariance of

the AR model is given in (18). To maintain consistency

with the AR model, the process noise covariance in CV

model is given by (Jin et al. 2015)

QCV
k ¼ qrT � 1 1=T

1=T 2
�
T2

� �
ð33Þ

The two cases of parameter, qr matching (qr = 0) and

not matching (qr = 0.1), with the actual vehicle motion are

considered. The root-mean-square error (RMSE) compar-

isons of estimated position in two cases are shown in

Figs. 2 and 3. The Monte-Carlo simulation with 1000 runs

is carried out for a period of 100 s. The kinematic accuracy
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(the mean of the RMSE) for the CV and AR models in

different cases of parameter setting is given in Table 2.

From the simulation results above, we find that:

1. The AR model (N = 1, M = 2) has the same posi-

tioning accuracy as the CV model, since it is equiv-

alent to the CV model as mentioned above. Both the

models have the same degrees of freedom, and can

depict the constant velocity motion equally.

2. The AR models (N = 1, M = 3) and (N = 1, M = 4)

perform better than the CV model in the aspect of

positioning accuracy. Because both the models not

only satisfy the constraint of polynomial motion as the

CV model, but also reduce the noise with the extra

degrees of freedom.

3. The AR model (N = 1, M = 4) is superior to the AR

models (N = 1, M = 2) and (N = 1, M = 3). Because

the longer the length of the AR model coefficients, the

more information the filter can utilize, and the higher

the positioning accuracy of the KF-AR. However, the

vehicle may maneuver at unknown times in practice, it

Fig. 2 RMSE of estimated position for CV and AR models when

qr = 0

Table 1 Adaptive Kalman

filtering algorithm based on AR

model (AKF-AR)

Initialization

Given M, N with M C N ? 2.

Initial estimate: x0j0 ¼ z0 z�1 � � � z�Mþ1½ �T, where z0 z�1 � � � z�Mþ1½ �T is the position

measurements before the filter start time k = 1;

Initial covariance: P0j0 ¼ R � I, where R is the measurement noise variance;

Process noise covariance: Q0 ¼ qrT � I.
For k = 1, 2, …
Step 1. Calculation of transition matrix

The coefficients of AR model: u�k ¼ P�1
k�1jk�1A

T AP�1
k�1jk�1A

T
	 
�1

b,

and obtain the transition matrix by (17).

Step 2. Predict the state using AR model

Projected estimate: xkjk�1 u�k
� �

¼ Fkjk�1 u�k
� �

� xk�1jk�1;

Projected covariance: Pkjk�1 u�k
� �

¼ Fkjk�1 u�k
� �

� Pk�1jk�1 � FT
kjk�1 u�k

� �
þ Qk�1.

Step 3. Update the state using the measurements

Compute the gain matrix: Kk u�k
� �

¼ Pkjk�1 u�k
� �

�HT � HPkjk�1 u�k
� �

HT þ Rk

� ��1
;

Updated estimate: xkjk u�k
� �

¼ xkjk�1 u�k
� �

þ Kk u�k
� �

� zk �Hxkjk�1 u�k
� �� �

;

Updated covariance: Pkjk u�k
� �

¼ I � Kk u�k
� �

�H
� �

� Pkjk�1 u�k
� �

.

Step 4. Compute the process noise covariance online

The process noise covariance: Qk ¼ KkŜkK
T
k , where Ŝk is given in (31);

Output the target state estimate xkjk and error covariance Pkjk .

Let k to be k ? 1, and return to Step 1.

Fig. 3 RMSE of estimated position for CV and AR models when

qr = 0.1
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is suggested that the appropriate length of the AR

model coefficient is N ? 1 B M B 5.

4. The comparison of Figs. 2 and 3 reveals that the

optimal AR model performs the traditional discrete-

time differential model much better when the param-

eter setting does not match with the actual vehicle

motion. Because the AR model can adjust itself to the

statistical characteristics of the noise and approach an

optimal performance in that case.

Evaluating the performance of the AKF-AR

To evaluate the positioning accuracy of the proposed

algorithm, a number of field tests were carried out. The

device configuration in the tests is shown in Fig. 4. The

GNSS RTK system was manufactured by HI-TARGET

Surveying Instrument Co. Ltd. Its model is A10, and the

horizontal positioning accuracy was (10 ? 1 9 10-6 9 D)

mm, where D was the distance between the base and rover.

The measurements obtained by the GNSS RTK system

were considered as the truth reference. The transceiver

UHF radio enabled the working mode to be switchable

between the base and rover. The base was set on the roof of

the Jidian Buiding at Northwest A&F University. It is

labeled by the red dot in Fig. 5. The rover and the handheld

GNSS receiver were installed on the roof of a car. The

handheld GNSS receiver was manufactured by the Uni-

Strong Science and Technology Co. Ltd., and its model is

G130. The blue line in the Fig. 5 shows the trajectory of

the car. The theoretical positioning accuracy of the hand-

held GNSS receiver is 3–5 m. The raw data collected by

the handheld GNSS receiver were then post-processed by

the different filtering algorithms in the software Matlab

R2008b (Takasu and Yasuda 2008). The sampling rate of

both the receivers was 1 Hz.

Since the tests focused on the performance evaluation of

the AR model, the AKF-CV was chosen and compared

with the AKF-AR in the post-processing procedure. For

AKF-AR, we selected polynomial degree N = 1 and the

model coefficients number M = 3. For the both compared

algorithms, the process noise intensity was qr = 0.01, the

measurement error variance R = 100 m2, and the sliding

window length was W = 50.

Table 2 Performance of KF-

AR vs KF-CV for different

parameters

Kinematic accuracy (m)

R = 100 m2 qr = 0.01

qr = 0 qr = 0.1 qr = 0.5 R = 25 m2 R = 100 m2 R = 400 m2

CV model 3.5959 4.8462 5.5632 4.5030 4.1121 3.8357

AR model (N = 1, M = 2) 3.5921 4.8399 5.5723 4.5110 4.1110 3.8522

AR model (N = 1, M = 3) 3.4731 4.3643 5.0102 4.0928 3.7780 3.5832

AR model (N = 1, M = 4) 3.3577 4.0726 4.6169 3.8090 3.5685 3.4561

Fig. 4 Device configuration in field test Fig. 5 Test trajectory for navigating accuracy evaluation
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Figures 6 and 7 give the 2D position estimated error of

AKF-AR and AKF-CV, respectively. It can be seen that the

position errors of the AKF-AR (N = 1, M = 3) are much

smaller than those of the AKF-CV, since the AKF-AR can

reduce the noise as much as possible in the sense of MMSE

during the straight-line driving motion of the vehicle and

modify the dynamic model in real time with the real-time

information during the tuning motion. The AKF-AR can

utilize the online information through the innovation

sequence adequately. Comparison of the figures reveals

that the proposed algorithm performs better than the tra-

ditional one in the performance of reducing noise.

Table 3 shows the kinematic accuracy of the AKF-AR

and AKF-CV algorithms for the different sampling inter-

vals and window lengths. The AKF-AR performs better

than the AKF-CV for the different sampling intervals at the

same window length. The advantage of the proposed

algorithm becomes more evident when the sampling

interval is larger. Four different window lengths are chosen

to analyze the performance of AKF-AR and AKF-CV. It

also shows that the AKF-AR (N = 1, M = 3) performs

better than the AKF-CV at the same sampling interval.

However, the correct window size needs to be chosen

according to the extent and frequency of maneuvering. The

empirical value of W is common in the range of 50–200 for

a sampling rate of 1 Hz.

Conclusions

We incorporate the AR model into the KF for vehicle

navigation, and its closed-form solution can be derived

from a convex quadratic programming. The AR model

not only satisfies the polynomial constraints of the state

variable, but also reduces the noise by the criterion of

MMSE with the extra degrees of freedom. An adaptive

filtering algorithm, namely IAE, is improved based on

KF-AR. The process noise covariance is computed

using the real-time information of the innovation

sequence.

The proposed algorithm can be applied to the single-

state estimation before the information fusion in a loosely

coupled GPS/INS system, or to the noise reducing in the

post-processing procedure of the GPS receiver. Compared

with the traditional algorithm, the proposed algorithm has

some advantages as follows:

Fig. 6 Estimated position error for AKF-AR
Fig. 7 Estimated position error for AKF-CV
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1. The KF-AR algorithm essentially filters the measure-

ment data twice, i.e., first by the Finite Impulse

Response (FIR) filter, and second by the Kalman filter.

The coefficients of the FIR filter (AR model) are

obtained in accordance with the principle of MMSE.

So the denoising effect of the KF-AR algorithm is prior

to the traditional one which filters the data once.

2. The KF-AR algorithm first approximates the vehicle

trajectory by a polynomial of a certain degree, and then

predicts the vehicle position using an AR model. The

linearization technique can be applied to the other

estimation problems of the non-linear variable.

3. The adaptive KF-AR algorithm can utilize the real-time

information of the innovation sequence adequately, and

its positioning accuracy for the maneuvering vehicle is

higher than the traditional adaptive algorithm. The

computing load of the proposed algorithm has not risen

much, since the closed-form solution of the AR model

coefficient can be readily obtained.
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Appendix 1: Detailed proof of Eq. (12)

The proof is given by the mathematical induction. Starting

the induction is easy since (10) is the case of n = 1.

For the inductive step, suppose that the result is true for

n = N - 1, that is,

XM
m¼1

hmm
n ¼ 0; n ¼ 1; 2; . . .;N � 1 ð34Þ

According to (8), we have

k þ 1ð ÞN¼
XM
m¼1

hm k þ 1� mð ÞN ð35Þ

By the binomial formula, we have

k þ 1� mð ÞN ¼ k þ 1ð ÞN�C1
N k þ 1ð ÞN�1

m

þ C2
N k þ 1ð ÞN�2

m2 þ � � � þ �1ð ÞNCN
Nm

N

ð36Þ

where Ck
N (k = 1, 2, …, N) denotes the binomial coeffi-

cients, and Ck
N ¼ N!

k! n�kð Þ!. Using (35) in (36), we obtain

k þ 1ð ÞN ¼
XM
m¼1

hm k þ 1� mð ÞN

¼
XM
m¼1

hm
XN
k¼0

Ck
N k þ 1ð ÞN�k

mk

¼
XN
k¼0

Ck
N k þ 1ð ÞN�k

XM
m¼1

hmm
k

¼
XN�1

k¼0

Ck
N k þ 1ð ÞN�k

XM
m¼1

hmm
k þ

XM
m¼1

hmm
N

¼ k þ 1ð ÞN
XM
m¼1

hm þ
XN�1

k¼1

Ck
N k þ 1ð ÞN�k

XM
m¼1

hmm
k þ

XM
m¼1

hmm
N

¼ k þ 1ð ÞNþ
XN�1

k¼1

Ck
N k þ 1ð ÞN�k

XM
m¼1

hmm
k þ

XM
m¼1

hmm
N

¼ k þ 1ð ÞNþ
XM
m¼1

hmm
N

ð37Þ

Note that, in the second line of the chain of equations,

we have used the binomial formula. In the second to last

line, we have used (10), and in the last line we have used

the inductive hypothesis. According to (37), we get

XM
m¼1

hmm
N ¼ 0 ð38Þ

which is the result for n = N, so the proof by induction is

complete.

Appendix 2: Derivation of Eq. (23)

The solution of (22) is presented here for the sake of

completeness. It is standard least squares with conditions as

is typically applied in non-linear cases in surveying and

geodesy (Leick et al. 2015). We define the Lagrangian

function

Table 3 Kinematic accuracy of

AKF-AR vs AKF-CV for

different sampling intervals and

window lengths

Kinematic accuracy (m)

Sampling interval (when W = 50) Window length (when T = 1 s)

T = 1 s T = 5 s T = 10 s T = 20 s W = 20 W = 50 W = 100 W = 200

AKF-CV 3.4709 9.5034 16.4187 28.7676 2.9313 3.2961 2.8345 2.9676

AKF-AR 2.9337 8.9763 14.3172 22.5665 2.9458 3.0213 2.6758 2.6330
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L uk; kð Þ ¼ uTkPk�1jk�1uk � kT Auk � bð Þ ð39Þ

where k is the Lagrange multiplier. Setting the gradient of

the Lagrangian equal to zero, we can obtain

rL uk; kð Þ ¼ Pk�1jk�1uk � ATk

�Auk þ b

" #

¼ Pk�1jk�1 �AT

�A 0

" #
uk

k

� �
þ

0

b

� �
¼ 0

ð40Þ

Since Pk�1jk�1 is a positive definite matrix, and the

Vandermonde matrix A has full row rank, we can show that

the matrix

Pk�1jk�1 �AT

�A 0

� �
ð41Þ

is nonsingular and, therefore, equation (40) has the unique

solution

u�k
k�

� �
¼ � Pk�1jk�1 �AT

�A 0

� ��1
0
b

� �
ð42Þ

It follows that

u�k ¼ P�1
k�1jk�1A

Tk� ð43Þ

where

k� ¼ AP�1
k�1jk�1A

T
	 
�1

b ð44Þ

It is shown that u�k given by (43) with k* determined

using (44) is the unique, global minimum of the opti-

mization problem (22).
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