ERRATUM

Erratum to: Polyhedral approximation of ellipsoidal uncertainty sets via extended formulations: a computational case study

Andreas Bärmann¹ \cdot Andreas Heidt¹ \cdot Alexander Martin¹ \cdot Sebastian Pokutta² \cdot Christoph Thurner¹

Published online: 24 December 2016 © Springer-Verlag Berlin Heidelberg 2016

Erratum to: Comput Manag Sci (2016) 13(2):151–193 DOI 10.1007/s10287-015-0243-0

The purpose of this erratum is to correct a signing error in the statement of the inner approximation of the second-order cone \mathbb{L}^n presented in Bärmann et al. (2016).

In Bärmann et al. (2016), we developed a construction for the inner approximation of \mathbb{L}^n based on the ideas of Ben-Tal and Nemirovski (2001) and Glineur (2000). We showed—using the same decomposition as in the aforementioned papers—that it suffices to find an inner approximation of \mathbb{L}^2 , which in turn can be obtained from an inner approximation of the unit ball $\mathbb{B}^2 \subset \mathbb{R}^2$. However, in the statement of the latter two approximations, there was a signing error which we would like to correct here.

Andreas Bärmann andreas.baermann@math.uni-erlangen.de

> Andreas Heidt andreas.heidt@math.uni-erlangen.de

Alexander Martin alexander.martin@math.uni-erlangen.de

Sebastian Pokutta sebastian.pokutta@isye.gatech.edu

Christoph Thurner christoph.thurner@math.uni-erlangen.de

¹ Lehrstuhl für Wirtschaftsmathematik, FAU Erlangen-Nürnberg, Erlangen, Germany

The online version of the original article can be found under doi:10.1007/s10287-015-0243-0.

² School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Our inner approximation of \mathbb{B}^2 is a regular *m*-gon \overline{P}_m inscribed into it. Via an extended formulation, we can state this *m*-gon using a number of variables and constraints logarithmic in *m*:

Theorem 2.9 The polyhedron

$$\bar{D}_{k} = \begin{cases} (p_{0}, \dots, p_{k-1}, d_{0}, \dots, d_{k-1}) \in \mathbb{R}^{2k} \\ (p_{0}, \dots, p_{k-1}, d_{0}, \dots, d_{k-1}) \in \mathbb{R}^{2k} \end{cases} \begin{vmatrix} p_{i-1} = \gamma_{i} p_{i} + \sigma_{i} d_{i}, & (\forall i = 1, \dots, k-1) \\ -d_{i-1} \le \sigma_{i} p_{i} - \gamma_{i} d_{i}, & (\forall i = 1, \dots, k-1) \\ d_{i-1} \le \sigma_{i} p_{i} - \gamma_{i} d_{i}, & (\forall i = 1, \dots, k-1) \\ p_{k-1} = \gamma_{k}, \\ -d_{k-1} \le \sigma_{k}, \\ d_{k-1} \le \sigma_{k} \end{cases}$$

for $k \geq 2$ is an extended formulation for \bar{P}_{2^k} with $\operatorname{proj}_{p_0,d_0}(\bar{D}_k) = \bar{P}_{2^k}$.

Proof In the following, we describe the construction of the inner approximation as an iterative procedure. We start by defining the polytope

$$P_{k-1} := \{ (p_{k-1}, d_{k-1}) \mid p_{k-1} = \gamma_k, -\sigma_k \le d_{k-1} \le \sigma_k \}.$$

Now, we construct a sequence of polytopes P_{k-1} , P_{k-2} , ..., P_0 . Assume that polytope P_i has already been constructed. In order to obtain polytope P_{i-1} from polytope P_i , we perform the following actions which we will translate into mathematical operations below:

- 1. Rotate P_i counterclockwise by an angle of $\theta_i = \frac{\pi}{2^i}$ around the origin to obtain a polytope P_i^1 ,
- 2. Reflect P_i^1 at the x-axis to obtain a polytope P_i^2 ,
- 3. Form the convex hull of P_i^1 and P_i^2 to obtain polytope P_{i-1} .

The first step is a simple rotation and can be represented by the linear map

$$\mathcal{R}_{\theta}: \mathbb{R}^2 \mapsto \mathbb{R}^2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

The reflection at the x-axis corresponds to the linear map

$$\mathcal{M}: \mathbb{R}^2 \mapsto \mathbb{R}^2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Thus, the composition \mathcal{MR}_{θ_i} which first applies \mathcal{R}_{θ_i} and then \mathcal{M} , is given by

$$\mathcal{MR}_{\theta_i} : \mathbb{R}^2 \mapsto \mathbb{R}^2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

With this, we obtain $P_i^1 = \mathcal{R}_{\theta_i}(P_i)$ and $P_i^2 = (\mathcal{MR}_{\theta_i})(P_i)$. Finally, adding the two constraints

$$-d_{i-1} \leq \sigma_i p_i - \gamma_i d_i$$

Deringer

and

$$d_{i-1} \leq \sigma_i p_i - \gamma_i d_i$$

yields a polyhedron whose projection onto the variables (d_{i-1}, p_{i-1}) is $P_{i-1} = conv(P_i^1, P_i^2)$. Keeping this correspondence in mind, we show that $P_0 = \overline{P}_{2^k}$. In each iteration, P_i is rotated counterclockwise by an angle of θ_i around the origin,

In each iteration, P_i is rotated counterclockwise by an angle of θ_i around the origin, such that the vertex of P_i with minimal vertical coordinate is rotated to (γ_k, σ_k) , therefore $P_i^1 = \mathcal{R}(P_i)$. It is $|\mathcal{V}(P_i^1)| = |\mathcal{V}(P_i)|$ and P_i^1 lies strictly above the horizontal axis. Applying \mathcal{M} , we obtain $P_i^2 = \mathcal{M}(P_i^1)$, which satisfies $|\mathcal{V}(P_i^2)| = |\mathcal{V}(P_i^1)|$ and lies strictly below the horizontal axis. Then $P_{i-1} = conv(P_i^1, P_i^2)$ satisfies $|\mathcal{V}(P_{i-1})| = 2|\mathcal{V}(P_i)|$ because all vertices $v \in \mathcal{V}(P_i^1) \cup \mathcal{V}(P_i^2)$ remain extreme points of P_i . We obtain polytope P_0 after k-1 iterations of the above procedure, which has $|\mathcal{V}(P_0)| = 2^k$ vertices. As the interior angles at each vertex of P_0 are of equal size, it follows $P_0 = \bar{P}_{2^k}$. This proves the correctness of our construction.

The intermediate steps of the construction are depicted in Fig. 1 for the case k = 3, which leads to an octagon-approximation. The upper left picture shows the initial polytope P_2 , which is an interval on the line $x = \gamma_k$. The upper middle and upper right picture show its rotation by 45° counterclockwise and subsequent reflection at the x-axis, thus representing P_2^1 and P_2^2 , respectively. The lower left picture shows P_1 as the convex hull of P_2^1 and P_2^2 . The lower middle picture contains both P_1^1 and P_1^2 as a rotation of P_1 by 90° counterclockwise and subsequent reflection at the x-axis, respectively. Finally, the lower right picture shows $P_0 = \bar{P}_{2^3}$ as the convex hull of P_1^1 and P_1^2 .

By homogenization, we can obtain an inner ϵ -approximation of \mathbb{L}^2 , i.e., a set $\overline{\mathcal{L}}^2_{\epsilon}$ with $\{(r, x) \in \mathbb{R} \times \mathbb{R}^2 \mid ||x|| \leq \frac{1}{1+\epsilon}r\} \subseteq \overline{\mathcal{L}}^2 \subseteq \mathbb{L}^2$:

Fig. 1 Construction of the inner approximation of the unit disc \mathbb{B}^2 for k = 3

Corollary 2.10 The projection of the set

$$\bar{\mathcal{L}}_{\epsilon}^{2} = \begin{cases} (s, p_{0}, \dots, p_{k-1}, d_{0}, \dots, d_{k-1}) \in \mathbb{R}^{2k} \\ (s, p_{0}, \dots, p_{k-1}, d_{0}, \dots, d_{k-1}) \in \mathbb{R}^{2k} \end{cases} \begin{vmatrix} p_{i-1} = \gamma_{i} p_{i} + \sigma_{i} d_{i}, & (\forall i = 1, \dots, k-1) \\ -d_{i-1} \leq \sigma_{i} p_{i} - \gamma_{i} d_{i}, & (\forall i = 1, \dots, k-1) \\ d_{i-1} \leq \sigma_{i} p_{i} - \gamma_{i} d_{i}, & (\forall i = 1, \dots, k-1) \\ p_{k-1} = \gamma_{k} s, \\ -d_{k-1} \leq \sigma_{k} s, \\ d_{k-1} \leq \sigma_{k} s \end{cases}$$

with $\epsilon > 0$ and $k = \lceil \log(\pi \arccos(\frac{1}{\epsilon+1})^{-1}) \rceil$ onto the variables (s, p_0, d_0) is an inner ϵ -approximation of \mathbb{L}^2 .

We apologize for the incorrect statements of the two approximations in the initial paper.

References

- Ben-Tal A, Nemirovski A (2001) On polyhedral approximations of the second-order cone. Math Oper Res 26:193–205
- Bärmann A, Heidt A, Martin A, Pokutta S, Thurner C (2016) Polyhedral approximation of ellipsoidal uncertainty sets via extended formulations: a computational case study. Comput Manag Sci 13(2):151– 193
- Glineur F (2000) Computational experiments with a linear approximation of second-order cone optimization. Image Technical Report 001, Faculté Polytechnique de Mons