
Vol:.(1234567890)

Journal of Imaging Informatics in Medicine (2024) 37:230–246
https://doi.org/10.1007/s10278-023-00906-w

1 3

Machine Learning‑Based Multiparametric Magnetic Resonance 
Imaging Radiomics Model for Preoperative Predicting the Deep 
Stromal Invasion in Patients with Early Cervical Cancer

Haowen Yan1,2 · Gaoting Huang3 · Zhihe Yang4 · Yirong Chen4 · Zhiming Xiang4,5

Received: 24 April 2023 / Revised: 12 August 2023 / Accepted: 11 September 2023 / Published online: 10 January 2024 
© The Author(s) 2024

Abstract
Deep stromal invasion is an important pathological factor associated with the treatments and prognosis of cervical cancer 
patients. Accurate determination of deep stromal invasion before radical hysterectomy (RH) is of great value for early clini-
cal treatment decision-making and improving the prognosis of these patients. Machine learning is gradually applied in the 
construction of clinical models to improve the accuracy of clinical diagnosis or prediction, but whether machine learning 
can improve the preoperative diagnosis accuracy of deep stromal invasion in patients with cervical cancer was still unclear. 
This cross-sectional study was to construct three preoperative diagnostic models for deep stromal invasion in patients with 
early cervical cancer based on clinical, radiomics, and clinical combined radiomics data using the machine learning method. 
We enrolled 229 patients with early cervical cancer receiving RH combined with pelvic lymph node dissection (PLND). 
The least absolute shrinkage and selection operator (LASSO) and the fivefold cross-validation were applied to screen out 
radiomics features. Univariate and multivariate logistic regression analyses were applied to identify clinical predictors. All 
subjects were divided into the training set (n = 160) and testing set (n = 69) at a ratio of 7:3. Three light gradient boosting 
machine (LightGBM) models were constructed in the training set and verified in the testing set. The radiomics features were 
statistically different between deep stromal invasion < 1/3 group and deep stromal invasion ≥ 1/3 group. In the training set, 
the area under the curve (AUC) of the prediction model based on radiomics features was 0.951 (95% confidence interval (CI) 
0.922–0.980), the AUC of the prediction model based on clinical predictors was 0.769 (95% CI 0.703–0.835), and the AUC 
of the prediction model based on radiomics features and clinical predictors was 0.969 (95% CI 0.947–0.990). The AUC of 
the prediction model based on radiomics features and clinical predictors was 0.914 (95% CI 0.848–0.980) in the testing set. 
The prediction model for deep stromal invasion in patients with early cervical cancer based on clinical and radiomics data 
exhibited good predictive performance with an AUC of 0.969, which might help the clinicians early identify patients with 
high risk of deep stromal invasion and provide timely interventions.
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Introduction

Cervical cancer is the fourth most common malignancy 
and the fourth leading cause of cancer-associated death in 
females [1]. Previous evidence has reported that there will 
be 604,000 new cases of cervical cancer and 342,000 deaths 
in 2020, posing a serious threat to global women’s health 
all over the world [2]. Over the past few decades, increas-
ing number of cervical cancer patients were detected at an 
early stage due to the spread of cervical cancer screening 
[3]. Deep stromal invasion is an important pathological fac-
tor associated with the treatments and prognosis of cervical 
cancer patients [4, 5]. Patients with moderate or 1/3 deep 
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stromal invasion were recommended to receive adjuvant 
radiotherapy after radical hysterectomy (RH), especially for 
cervical cancer patients with vascular infiltration and other 
risk factors [5, 6]. At present, the diagnosis of deep stromal 
invasion is mainly confirmed by postoperative pathology 
data [7]. Accurate determination of deep stromal invasion 
before RH is of great value for early clinical treatment deci-
sion-making and improving the prognosis of these patients.

Magnetic resonance imaging (MRI) is a routine imaging 
examination method for diagnosis, staging, and monitoring 
of cervical cancer [8]. Currently, studies based on MRI fea-
tures or quantitative imaging parameters were extracted by 
naked eyes, which can observe limited visual image gray 
scale, and some microscopic imaging features related to clin-
ical results may be lost, hampering the accurate representa-
tion of tumor heterogeneity [9, 10]. The visual assessment 
of MRI features by trained radiologists is prone to inter-
observer variability and lacks generalizability across dif-
ferent institutions [11]. Radiomics is an emerging technol-
ogy with quantitative features extracted from radiographic 
medical images by data-characterization algorithms, which 
is designed to develop prognostic prediction tools and treat-
ment decision support tools in cancers [12]. The predictive 
value of radiomics using MRI data for preoperative lymph 
node metastasis, vascular invasion, and parastatal invasion 
of early cervical cancer has been confirmed previously [10, 
13, 14]. Recently, Ren et al. constructed a MRI-based radi-
omics model to predict the preoperative deep stromal inva-
sion, and the AUC of the model based on radiomics features 
constructed by logistics regression was 0.879, and combined 
with clinical features, the AUC was 0.886 [15]. Nonetheless, 
the predictive values of prediction models for preoperative 
deep stromal invasion in patients with early cervical cancer 
still need improving.

The conventional logistic regression model can only 
explore the linear associations, and nonlinear associations 
cannot be solved; the accuracy of the prediction models 
was not always good [16]. Lack of high-quality dataset 
algorithm training and development and proper validation 
using more updated methods might be major drawbacks 
in current clinical practices to predict preoperative deep 
stromal invasion in patients with early cervical cancer. In 
order to improve the accuracy of clinical diagnosis or pre-
diction, machine learning is gradually applied in the con-
struction of clinical models, which showed better effects 
than traditional models such as logistic regression [17, 
18]. Machine learning involves the utilization of com-
puter algorithms to derive predictive models from data, 
and these algorithms ascertain mathematical functions 
that elucidate the relationships between features within a 
given dataset [19]. Lately, increasing studies revealed that 
the integration of radiomics and machine learning ena-
bled the development of classification models for targeted 

diagnosis of various diseases [19, 20]. However, there 
was no study combining radiomics and machine learning 
methods to construct prediction models for preoperative 
diagnosis of deep stromal invasion in patients with early 
cervical cancer. Light gradient boosting machine (GBM) 
is one of the machine learning methods that can reduce 
calculation time and allow missing values for prediction, 
which is more advantageous than the conventional logistic 
regression model [21]. Compared to deep learning and 
other traditional machine learning algorithms, LightGBM 
showed better generalization ability [22]. Whether Light-
GBM can improve the preoperative diagnosis accuracy 
of deep stromal invasion in patients with cervical cancer 
based on radiomics data was still unclear.

In the present study, the machine learning method was 
used to construct three preoperative diagnostic models for 
deep stromal invasion in patients with early cervical can-
cer based on clinical, radiomics, and clinical combined 
radiomics data, respectively. The predictive efficacy of 
different models was compared. The findings might help 
identify a novel tool for risk stratification of deep stromal 
invasion in patients with early cervical cancer in a quicker 
and more accurate manner. This might help guide the cli-
nicians to make proper treatment adjustments for these 
patients and improve their prognosis.

Methods

Study Design and Population

This cross-sectional study enrolled 245 patients with 
early cervical cancer receiving RH combined with pel-
vic lymph node dissection (PLND) in the local hospi-
tal. The inclusion criteria were as follows: (1) patients’ 
age ≥ 18 years old, (2) patients with primary cervical 
cancer confirmed by pathology, (3) patients receiving RH 
combined with PLND, (4) patients who underwent MRI 
examination within 2 weeks before surgery, (5) patients 
with complete clinical data. The exclusion criteria were 
(1) patients with other malignant tumors, (2) patients 
undergoing palliative tumor resection, (3) pregnant or 
lactating women, (4) patients who received neoadjuvant 
therapy before surgery, and (5) MRI data does not meet 
the requirements of post-processing. After excluding 
participants who received neoadjuvant therapy before 
surgery, subjects receiving RH combined with PLND in 
other hospital, and patients with positive circumferential 
resection margin, 229 patients were included. This study 
was approved by the Ethics Committee of the local hos-
pital. Informed consent was obtained from all individual 
participants included in the study.
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Radiomic Features Extraction

T2-weighted images and contrast-enhanced T1-weighted 
imaging were exported from the workstation of image 
storage and transmission system in Digital Imaging and 
Communications in Medicine format. A semi-automatic 
threshold classification method was used to select region 
of interest (ROI) of MRI using the 3D region growing 
GrowCut algorithm from the medical image analysis and 
visualization Slicer platform (3D-Slicer; version 4.3.1). 
Given a set of initial label points, the 3D-Slicer algorithm 
can automatically segment the remaining images through 

cellular automation, which achieves reliable and reasonably 
fast segmentation of moderately difficult objects in 2D and 
3D using an iterative labeling procedure resembling com-
petitive region growing [23]. Since the MRI were collected 
from different devices, the images were normalized before 
extraction, and all images were unified into a resolution 
of 1 × 1 mm by means of interpolation. ROI covered the 
entire tumor region. For each patient, a total of 2632 fea-
tures (T2-weighted images + T1-weighted imaging) were 
extracted using the “PyRadiomics” package implemented 
in Python 3.11.1 (Supplementary Table 1). The features 
included first-order features (n = 18), texture features derived 

Table 1   The parameters used 
for training each prediction 
model

Parameters Radiomics features Clinical features Radiomics and 
clinical features

boosting_type gbdt gbdt gbdt
objective binary binary binary
metric auc auc auc
max_depth 6 8 5
num_leaves 12 14 13
min_data_in_leaf 15 7 7
max_bin 127 31 31
feature_fraction 0.9 0.7 0.7
bagging_fraction 0.6 0.9 0.8
lambda_l1 0.006587301 0.057721404 0.002437294
lambda_l2 0.029924765 0.000530493 0.000600306
learning_rate 0.01 0.01 0.01
random_state 3000 3000 3000

Fig. 1   The proposed model’s whole architecture
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from texture matrices including grey-level co-occurrence 
matrix (n = 24), grey-level run length matrix (n = 16), grey-
level size zone matrix (n = 16), grey-level dependence matrix 
(n = 14), neighboring gray tone difference matrix (n = 5) and 
shape-based (n = 14), wavelet transform features includ-
ing first-order features (n = 144), grey-level co-occurrence 
matrix (n = 192), grey-level dependence matrix (n = 112), 
grey-level run length matrix (n = 128), grey-level size zone 
matrix (n = 128) and neighboring gray tone difference matrix 
(n = 40), and local binary pattern including first-order fea-
tures (n = 90), grey-level co-occurrence matrix (n = 120), 
grey-level dependence matrix (n = 70), grey-level run length 
matrix (n = 80), and grey-level size zone matrix (n = 80) and 
neighboring gray tone difference matrix (n = 25).

Clinical Variables

Age (years), body mass index (BMI, kg/m2), menopausal 
status (premenopausal, perimenopause or postmenopausal), 
the International Federation of Gynecology and Obstetrics 
(FIGO) staging (IA, IIA, IB, or IIB), marital status (married 
or unmarried), preterm birth history (yes or no), reproduc-
tive history (primipara or meningopara), history of abortion 
(yes or no), histological subtype (adenocarcinoma, squamous 
cell carcinoma or other), complicated with other diseases 
(yes or no), red blood cell (RBC), white blood cell (WBC), 
platelet (PLT), neutrophil percentage (NEU; %), lympho-
cyte percentage (LYM; %), monocyte percentage (MONO; 
%), eosinophil percentage (EOS; %), basophil percentage 
(BASO; %), NEU (109/L), LYM (109/L), MONO (109/L), 
EOS (109/L), BASO (109/L), tumor size, carcinoembryonic 
antigen (CEA; normal or abnormal; ng/mL), squamous cell 
carcinoma antigen (SCC-Ag; normal or abnormal; ng/mL), 
carbohydrate antigen-125 (CA125; normal or abnormal; 
ng/mL), and carbohydrate antigen-199 (CA199; normal or 
abnormal; U/mL) were analyzed.

Building Prediction Classifiers

The radiomics features were extracted after image segmen-
tation on the original MRI image to delineate the ROI, and 
features with statistical significance (P < 0.05) were included 
(SciPy tool in Python version 1.10.0). Then Pearson’s cor-
relation coefficient was applied; when the Pearson correla-
tion coefficient between the two features > 0.85, the features 
with higher P-value were excluded (Pandas tool in Python 
version 1.5.3). Further, the analysis of variance (ANOVA) 
was applied to select the top 15 radiomics features with high 
variance (scikit-learn tool in Python version 1.2.1). Next, the 
least absolute shrinkage and selection operator (LASSO) and 
the fivefold cross-validation were applied to further screen 
out features (coefficent ≠ 0). Univariable and multivariate 

logistic regression analyses were applied to identify clini-
cal predictors associated with the deep stromal invasion in 
patients with early cervical cancer, and variables with sta-
tistical association with deep stromal invasion in patients 
with early cervical cancer were included as clinical predic-
tors (P < 0.05). All subjects were randomly divided into 
the training set (n = 160) and testing set (n = 69) at a ratio 
of 7:3. Three LightGBM models were constructed in the 
training set: a radiomics model constructed with radiom-
ics features alone (model 1), a clinical model constructed 
with clinic features alone (model 2), and a combined model 
constructed with the combination of radiomics features and 
clinical predictor (model 3). The parameters set for training 
each model are shown in Table 1. During the training of each 
model, optuna ultra parameter optimization tool was adopted 
to optimize the parameters, the optimized model was used 
to verify in the training set, and the corresponding evalua-
tion indexes were calculated. The predictive performances 
of the models were verified in the testing set. The proposed 
model’s whole architecture is exhibited in Fig. 1. The pseu-
docode for the proposed work was shown as follows:

Algorithm 1: Histogram algorithm 

Input: I: training data, d: max depth 

Input: m: feature dimension 

nodeset: Tree nodes in current level, rowset: data indices in tree nodes 

For i in (1, d): 
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Measurement of the Performance  
of the Prediction Model

The proposed model more accurately predicted the deep 
stromal invasion in patients with early cervical cancer. The 
robustness of the model was assessed in the training set and 
the testing set. F1 score, accuracy, sensitivity, specificity, 
negative predictive value (NPV), positive predictive value 
(PPV), and area under the curve (AUC) were employed to 
evaluate the predictive values of the models. The receiver 
operator characteristic (ROC) curves and Kolmogorov– 
Smirnov (KS) curves were plotted.

Output: newBin, binRanges 

The accuracy assessment parameter is calculated:

SN, sensitivity; TP, true positive; TN, true negative; FP, 
false positive; FN, false negative; PRE, TP/(TP + FP).

Statistical Analysis

The measurement data of normal distribution were expressed 
as mean and standard deviation (Mean (SD)), and t test was 
used to compare the differences between the two groups. 
Median and quartiles were used to describe the distribution 
of non-normally-distributed measurement data, and Wilcoxon 
rank sum test was used to compare the difference between 
the two groups. The enumeration data were displayed using 

F1score =
2 × SN × PRE

SN + PRE

Accurancy =
TP + TN

TP + TN + FP + FN

Sensitivity = TP∕(TP+FN)

Specif icity = TN∕(TN+FP)

Algorithm 2: Gradient-based One-Side Sampling

Input: T: training data, i: iterations

Input: l: sampling ratio of large gradient data

Input: r: sampling ratio of small gradient data

Input: loss: loss fuction, learn: weak learner

fact = (1 - l) / r

topN = l × len(T); randN = r × len(T)

for n in (1, d):
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the number of cases and percentages, and the chi-square test 
was used to compare differences between groups. The radi-
omics features were extracted, and features were selected via 
Pearson’s correlation coefficient, ANOVA, LASSO regres-
sion analysis, and the fivefold cross-validation. Univariable 
and multivariate logistic regression analyses were applied to 
identify clinical predictors associated with the deep stromal 
invasion in patients with early cervical cancer. All subjects 
were randomly split into the training set (n = 160) and testing 
set (n = 69) at a ratio of 7:3. Three LightGBM models were 
constructed in the training set: model 1 included radiomics 
features, model 2 included clinical predictors, and model 3 
included radiomics features and clinical predictors. The mod-
els were verified in the testing set. The ROC and KS curves 
were plotted. The confidence level was alpha = 0.05. R (Insti-
tute for Statistics and Mathematics, Vienna, Austria) was used 

for data analysis. Python 3.11.1 was used for radiomics fea-
tures extraction and model construction.

Results

Identification of Predictors in the Models for Deep 
Stromal Invasion in Patients with Early Cervical Cancer

In total, 245 patients with early cervical cancer who under-
went RH combined with PLND in the local hospital were 
enrolled. Among them, participants who received neoadju-
vant therapy before surgery (n = 6), subjects receiving RH 
combined with PLND in other hospital (n = 1), and patients 
with positive circumferential resection margin (n = 9) were 

Fig. 2   The screen process of the participants
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excluded. Finally, 229 patients were included. The screen 
process of participants is shown in Fig. 2.

A total of 2632 features were extracted from MRI, and 
those with statistical significance (P < 0.05) were kept. 
When the Pearson correlation coefficient between the two 
features were > 0.85, the features with higher P-value were 
excluded. Further, the ANOVA was applied to select the top 
15 radiomics features with high variance. Finally, LASSO 
regression analysis was applied to screen out the features 
(Fig. 3, Table 2). We used fivefold cross-validation to find 
the optimal value of regularization parameter lambda with 
mean square error, and MSE was changed with lambda. The 
optimal lambda value was used for variable selection and 
was 0.019179102616724848 (Fig. 4). The coefficients of 
features finally included are exhibited in Table 2 and Fig. 5.

As presented in Table 3, age, postmenopausal, FIGO-IIA, 
LYM, tumor size, SCC-Ag, and CA125 might be associated 
with deep stromal invasion in patients with early cervical 
cancer. Multivariate logistical regression analysis revealed 
that FIGO-IIA (OR = 2.43, 95% CI 1.36–4.37), FIGO-IB 
(OR = 1.87, 95% CI 1.05–3.33) and FIGO-IIB (OR = 3.42, 
95% CI 1.28–9.15), and SCC-Ag (OR = 1.38, 95% CI 
1.19–1.59) were correlated with deep stromal invasion in 
patients with early cervical cancer.

Construction of the Prediction Models for Deep 
Stromal Invasion in Patients with Early Cervical Cancer

All the samples were randomly divided into the training set 
(n = 160) and the testing set (n = 69). There was no statistical 

Fig. 3   The results of LASSO 
regression analysis for radiom-
ics features

Table 2   The radiomics features 
associated with deep stromal 
invasion in patients with early 
cervical cancer screened by 
LASSO

LASSO least absolute shrinkage and selection operator

Features Coefficient

wavelet-LLL_glrlm_RunLengthNonUniformityNormalized_t2 −0.08381
wavelet-LHH_glszm_ZonePercentage_t2 −0.06938
log-sigma-5–0-mm-3D_gldm_DependenceVariance_t2 −0.03851
original_glrlm_RunLengthNonUniformityNormalized_t1 −0.03422
log-sigma-5–0-mm-3D_glszm_ZonePercentage_t2 −0.00558
log-sigma-3–0-mm-3D_glrlm_ShortRunLowGrayLevelEmphasis_t2 −0.00195
original_gldm_LargeDependenceHighGrayLevelEmphasis_t2 0.082895
original_shape_Flatness_t2 0.084346
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difference between the data in the training set and testing set 
according to the results of equilibrium test (all P > 0.05) (Table 4). 
The numbers of samples with deep stromal invasion < 1/3 and 
deep stromal invasion ≥ 1/3 in different dataset are presented in 
Table 5. The percentages of patients with different FIGO staging 

and abnormal SCC-Ag (11.86% vs 54.46%) were statistically 
different between deep stromal invasion < 1/3 group and deep 
stromal invasion ≥ 1/3 group. The radiomics features were also 
statistically different between deep stromal invasion < 1/3 group 
and deep stromal invasion ≥ 1/3 group (Table 6).

Fig. 4   The optimal Lambda 
value of LASSO regression 
analysis

Fig. 5   The coefficients of features screened out by LASSO regression analysis



238	 Journal of Imaging Informatics in Medicine (2024) 37:230–246

1 3

Table 3   Clinical predictors 
for deep stromal invasion in 
patients with early cervical 
cancer

Univariate Multivariable

Characteristics Odd ratio P Odd ratio P

Age (years) 1.01 (1.00–1.02) 0.012 1.00 (0.99–1.01) 0.585
BMI 1.00 (0.98–1.03) 0.780
Menopausal status
    Premenopausal Ref Ref
    Perimenopause 1.37 (0.92–2.03) 0.122 1.37 (0.95–1.96) 0.091
    Postmenopausal 1.22 (1.05–1.42) 0.009 1.20 (0.99–1.46) 0.067

FIGO staging
    IA
    IIA 2.46 (1.26–4.79) 0.009 2.43 (1.36–4.37) 0.003
    IB 1.78 (0.93–3.40) 0.085 1.87 (1.05–3.33) 0.035
    IIB 2.72 (0.89–8.30) 0.081 3.42 (1.28–9.15) 0.016

Marital status
    Married Ref
    Unmarried 1.45 (0.56–3.76) 0.446

Preterm birth history
    No Ref
    Yes 0.53 (0.21–1.37) 0.192

Reproductive history
    Primipara Ref
    Meningopara 0.89 (0.55–1.43) 0.621

History of abortion
    No Ref
    Yes 0.93 (0.80–1.09) 0.379

Histological subtype
    Adenocarcinoma Ref
    Squamous cell carcinoma 1.10 (0.90–1.34) 0.356
    Other 1.16 (0.82–1.64) 0.406

Complicated with other diseases
    No Ref
    Yes 0.96 (0.81–1.15) 0.677

RBC 0.91 (0.80–1.04) 0.165
WBC 1.02 (0.99–1.05) 0.208
PLT 1.00 (1.00–1.00) 0.193
NEU% 1.01 (1.00–1.01) 0.111
LYM% 0.99 (0.98–1.00) 0.046 0.99 (0.99–1.00) 0.060
MONO% 0.98 (0.94–1.03) 0.471
EOS% 1.02 (0.98–1.06) 0.343
BASO% 1.14 (0.85–1.52) 0.378
NEU 1.03 (0.99–1.06) 0.140
LYM 0.97 (0.86–1.09) 0.586
MONO 0.91 (0.76–1.09) 0.320
EOS 1.23 (0.76–2.00) 0.407
BASO 1.54 (0.37–6.43) 0.556
Tumor size 1.01 (1.01–1.02)  < 0.001 1.00 (1.00–1.01) 0.165
CEA
    Normal Ref
    Abnormal 1.18 (0.93–1.49) 0.174

SCC-Ag
    Normal Ref
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Evaluation of the Predictive Performance 
of the Prediction Models for Deep Stromal Invasion 
in Patients with Early Cervical Cancer

The AUC of the prediction model based on radiomics 
features was 0.951 (95% CI 0.922–0.980) in the training 
set. The AUC of the prediction model based on clini-
cal predictors was 0.769 (95% CI 0.703–0.835) in the 
training set. The AUC of the prediction model based on 
radiomics features and clinical predictors was 0.969 (95% 
CI 0.947–0.990) in the training set (Table 7). The AUC 

Table 3   (continued) Univariate Multivariable

Characteristics Odd ratio P Odd ratio P

    Abnormal 1.52 (1.32–1.75)  < 0.001 1.38 (1.19–1.59) < 0.001
CA125
    Normal Ref Ref
    Abnormal 1.31 (1.02–1.68) 0.033 1.21 (0.96–1.53) 0.105

CA199
    Normal Ref
    Abnormal 1.15 (0.91–1.44) 0.242

BMI body mass index, FIGO International Federation of Gynecology and Obstetrics, RBC red blood cell, 
WBC white blood cell, PLT platelet, NEU neutrophil, LYM lymphocyte, MONO monocyte, EOS eosino-
phil, BASO basophil, CEA carcinoembryonic antigen, SCC-Ag squamous cell carcinoma antigen, CA125 
carbohydrate antigen-125, CA199 carbohydrate antigen-199

Table 4   Comparisons of the variables in the training set and the testing set

SD standard deviation, FIGO International Federation of Gynecology and Obstetrics, SCC-Ag squamous cell carcinoma antigen

Variables Training set (n = 160) Testing set (n = 69) P

FIGO staging 0.930
    IA 2 (1.25) 1 (1.45)
    IIA 30 (18.75) 13 (18.84)
    IB 127 (79.38) 55 (79.71)
    IIB 1 (0.62) 0 (0.00)

SCC-Ag (abnormal) 62 (38.75) 33 (47.83) 0.257
wavelet.LHH_glszm_ZonePercentage_t2 (median [IQR]) 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.495
wavelet.LLL_glrlm_RunLengthNonUniformityNormalized_t2 (median 

[IQR])
0.11 [0.08, 0.14] 0.11 [0.08, 0.15] 0.905

original_glrlm_RunLengthNonUniformityNormalized_t1 (median [IQR]) 0.09 [0.07, 0.12] 0.09 [0.07, 0.12] 0.739
original_shape_Flatness_t2 (mean (SD)) 0.56 (0.13) 0.56 (0.15) 0.911
original_gldm_LargeDependenceHighGrayLevelEmphasis_t2 (median 

[IQR])
2117.57 [1826.07, 2412.38] 2186.58 [1891.59, 2399.83] 0.443

log.sigma.3.0.mm.3D_glrlm_ShortRunLowGrayLevelEmphasis_t2 (median 
[IQR])

0.11 [0.10, 0.13] 0.11 [0.10, 0.13] 0.609

log.sigma.5.0.mm.3D_gldm_DependenceVariance_t2 (median [IQR]) 27.99 [25.43, 30.79] 28.30 [25.92, 30.64] 0.808
log.sigma.5.0.mm.3D_glszm_ZonePercentage_t2 (median [IQR]) 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.573
Deep stromal invasion ≥ 1/3 101 (63.12) 41 (59.42) 0.598

Table 5   The numbers of samples with deep stromal invasion < 1/3 
and deep stromal invasion ≥ 1/3 in different dataset

Datasets Sample size Deep stromal 
invasion < 1/3

Deep stromal 
invasion ≥ 1/3

Total 229 87 142
Training set 160 59 101
Testing set 69 28 41
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of the prediction model based on radiomics features and 
clinical predictors was 0.914 (95% CI 0.848–0.980) in the 
testing set (Table 7, Fig. 6). The KS curves of the predic-
tion models based on radiomics features, clinical predic-
tors, and radiomics features combined with clinical pre-
dictors were plotted. The KS test was used to assess the 
agreement between the predicted and actual probabilities 
of deep stromal invasion and higher KS values indicating 
greater ability of the model to discriminate the samples. 
Generally, KS > 0.2 denotes a strong risk differentiation 
ability of the model developed. The KS values of the 
prediction models based on radiomics features, clinical 
predictors, and radiomics features combined with clini-
cal predictors were 0.59 (Fig. 7), 0.47 (Fig. 8), and 0.69 
(Fig. 9), respectively. The variable importance of all the 
predictors in the prediction model based on radiomics 

features combined with clinical predictors is presented 
in Fig. 10.

Discussion

The present study constructed three preoperative diagnos-
tic models for deep stromal invasion in patients with early 
cervical cancer based on clinical, radiomics, and clini-
cal combined radiomics data based on machine learning 
method. The model combined with radiomics features and 
clinical predictors showed better predictive performance 
than the prediction models based on radiomics features or 
clinical predictors. The findings might provide an effective 
tool to help clinicians early identify patients with the deep 
stromal invasion and guide the treatments accordingly.

Table 6   Comparisons of variables of patients between deep stromal invasion < 1/3 group and deep stromal invasion ≥ 1/3 group

FIGO International Federation of Gynecology and Obstetrics, SCC-Ag squamous cell carcinoma antigen

Variables Deep stromal invasion < 1/3 (n = 59) Deep stromal invasion ≥ 1/3 (n = 101) P

FIGO staging 0.002
    IA 2 (3.39) 0 (0.00)
    IIA 3 (5.08) 27 (26.73)
    IB 54 (91.53) 73 (72.28)
    IIB 0 (0.00) 1 (0.99)

SCC-Ag (abnormal) (%) 7 (11.86) 55 (54.46)  < 0.001
wavelet.LHH_glszm_ZonePercentage_t2 (median [IQR]) 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] < 0.001
wavelet.LLL_glrlm_RunLengthNonUniformityNormalized_

t2 (median [IQR])
0.14 [0.13, 0.17] 0.10 [0.07, 0.12] < 0.001

original_glrlm_RunLengthNonUniformityNormalized_t1 
(median [IQR])

0.11 [0.10, 0.14] 0.08 [0.07, 0.10] < 0.001

original_shape_Flatness_t2 (mean (SD)) 0.49 (0.14) 0.60 (0.11) < 0.001
original_gldm_LargeDependenceHighGrayLevelEmphasis_

t2 (median [IQR])
1827.87 [1358.60, 2036.52] 2300.27 [2067.12, 2464.69] < 0.001

log.sigma.3.0.mm.3D_glrlm_
ShortRunLowGrayLevelEmphasis_t2 (median [IQR])

0.13 [0.11, 0.15] 0.11 [0.09, 0.13] < 0.001

log.sigma.5.0.mm.3D_gldm_DependenceVariance_t2 
(median [IQR])

30.71 [28.31, 34.02] 26.73 [24.52, 29.08] < 0.001

log.sigma.5.0.mm.3D_glszm_ZonePercentage_t2 (median 
[IQR])

0.00 [0.00, 0.00] 0.00 [0.00, 0.00] < 0.001

Table 7   The predictive values of the models

NPV negative predictive value, PPV positive predictive value, AUC​ area under the curve

Models Cut-off Sensitivity Specificity PPV NPV F1 score Accuracy AUC (95% CI)

Training set
    Radiomics features 0.546 0.871 0.881 0.926 0.800 0.892 0.875 0.951 (0.922–0.980)
    Clinical predictors 0.630 0.683 0.847 0.885 0.610 0.771 0.744 0.769 (0.703–0.835)
    Radiomics and clinical predictors 0.623 0.901 0.932 0.958 0.846 0.929 0.912 0.969 (0.947–0.990)

Testing set
    Radiomics features 0.571 0.878 0.714 0.818 0.800 0.833 0.812 0.882 (0.806–0.959)
    Clinical predictors 0.630 0.756 0.714 0.795 0.667 0.775 0.739 0.767 (0.663–0.870)
    Radiomics and clinical predictors 0.633 0.829 0.857 0.895 0.774 0.861 0.841 0.914 (0.848–0.980)
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Previously, there were several prediction models based 
on MRI data for deep stromal invasion in patients with 
cervical cancer. Song et al. constructed a prediction model 
based on amide proton transfer weighted imaging combined 

with dynamic contrast-enhanced MRI and found that 
Ktrans + SCC-Ag had the AUC of 0.819 for predicting deep 
stromal invasion in patients with IB1-IIA1 cervical cancer 
[24]. Another prospective multicenter study constructed a 

Fig. 6   The ROC curves showing the AUCs of different models in the testing set

Fig. 7   The KS curves of the 
prediction model based on 
radiomics features
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preoperative prediction model for deep stromal invasion 
in women with invasive cervical cancer using 2D and 3D 
ultrasound and showed an AUC of 0.93 [25]. These models 
mostly constructed based on the conventional logistic regres-
sion model, which can only explore the linear associations, 
and the predictive ability still needs improvement [16]. To 
use the machine learning algorithm to train and validate the 
prediction model might help improve the predictive accu-
racy of deep stromal invasion in patients with early cervical 
cancer. In our study, the model based on radiomics features 

had an AUC of 0.951, and the AUC of the model based on 
radiomics features and clinical predictors was 0.969. The 
models presented better predictive performance for deep 
stromal invasion in patients with early cervical cancer than 
previous models. The detailed information on database, 
computational complexity, and reliability of our model and 
previous prediction models are exhibited in Table 8. MRI 
had the advantages of relatively low cost, high spatial res-
olution and contrast of pelvic tissues and organs, and no 
radiation [26, 27]. MRI was highly individual specific and 

Fig. 8   The KS curves of the 
prediction model based on clini-
cal predictors

Fig. 9   The KS curves of the 
prediction model based on radi-
omics features combined with 
clinical predictors
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non-invasive, which has been applied to clinical decision 
support for the improvement of the screening accuracy, diag-
nosis, and prognosis prediction [28]. The prediction model 
in our study was constructed using LightGBM, which used 
histogram-based segmentation algorithm instead of pre-
sort traversal algorithm to reduce the number of features 
by gradient-based one-side sampling (GOSS) and exclusive 
feature bundling (EFB) [29]. LightGBM had higher effi-
ciency and accuracy [30] and better generalization ability 
[22]. The model combining LightGBM methods and MRI in 
the current study might provide a convenient and easy tool 
for early identification of those at a high risk of deep stromal 
invasion in patients with early cervical cancer. The accuracy 
for predicting deep stromal invasion in patients with early 
cervical cancer was improved compared to previous mod-
els, which might help guide the treatments options of these 

patients with high risk of deep stromal invasion, and early 
interventions might improve their prognosis.

MRI is a vital exam for the initial assessment of loco-
regional involvement of cervical cancer. In previous studies, 
multiple studies found that MRI was applied to evaluate the 
early response to radiochemotherapy before image-guided 
brachytherapy in patients with locally advanced cervical can-
cer [31]. Multiparametric MRI–derived radiomics was also 
applied for the prediction of disease-free survival in early-
stage squamous cervical cancer [32]. Multimodal MRI was 
reported to have good diagnostic value for the discrimina-
tion of metastatic and non-metastatic pelvic lymph nodes in 
cervical cancer [33]. Another prospective preliminary study 
applied the synthetic MRI to evaluate the prognostic factors in 
cervical cancer [34]. These studies gave support to the results 
of this study, which elucidated that MRI-derived radiomics 

Fig. 10   The variable importance of all the predictors in the prediction model based on radiomics features combined with clinical predictors

Table 8   Comparisons of our prediction model and previous prediction models for deep stromal invasion in patients with early cervical cancer

AUC​ area under the curve, LightGBM light gradient boosting machine

Models Samples (n) Database Space complexity AUC​ Sensitivity Specificity

Our model (LightGBM) 229 Guangzhou Panyu Central 
Hospital

Memory cost O (nfea-
ture × ndata)

0.969 0.901 0.932

Calculation of split gain O 
(nbin × nfeature)

Exclusive feature bundling 
O (ndata × nfeature) → O 
(ndata × nbundle)

Pálsdóttir et al. (logistic regres-
sion)

104 Lund University Hospital 
and Karolinska University 
Hospital

O (nfeature) 0.930 0.905 0.972

Ren et al. (logistic regression) 234 Peking Union Medical College 
Hospital

O (nfeature) 0.886 0.879 0.846
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features were important predictors for deep stromal invasion 
in patients with early cervical cancer. Cancer staging is an 
essential index for the diagnosis, prognosis, and treatment of 
cervical cancer [35]. The FIGO staging system was widely 
applied in cervical cancer [36], which was reported to be asso-
ciated with the treatment outcomes in early-stage cervical can-
cer patients [37]. Herein, the FIGO staging system was also 
found to be an important predictor for deep stromal invasion 
in patients with early cervical cancer. Another predictor for 
deep stromal invasion in patients with early cervical cancer 
in this study was SCC-Ag. This was allied by previous evi-
dence. SCC-Ag was used in outcome prediction after concur-
rent chemo-radiotherapy and treatment decisions for patients 
with cervical cancer [38]. SCC-Ag changes in patients with 
locally advanced cervical cancer were one of the parameters 
of prognostic evaluation [39].

The current study compared the predictive abilities of three 
preoperative diagnostic models using the machine learning 
method for preoperative non-invasive diagnosis of deep stromal 
invasion in patients with early cervical cancer based on clinical, 
radiomics, and clinical combined radiomics data, respectively. 
The predicting performance of the model for deep stromal inva-
sion in patients with early cervical cancer based on clinical 
combined radiomics data was good. The findings might pro-
vide a tool to help clinicians identify deep stromal invasion 
in patients with early cervical cancer and formulate treatment 
strategies accordingly. There were several limitations in this 
study. Firstly, the participants were from a single center, and 
there might be selection bias. Secondly, the MRI images were 
collected from different devices, which might have a poten-
tial impact on the stability of radiomics features. Therefore, 
the images were normalized before feature extraction, and all 
images were unified to a resolution of 1 × 1 mm. The standardi-
zation process was considered a useful way to promote good 
feature robustness in cervical cancer. In recent years, more and 
more deep learning methods such as automated in-depth feature 
learning algorithm [40] and a deep convolutional neural net-
work-based approach [41] were widely applied for disease pre-
diction and prognosis evaluation. These methods are unsuper-
vised active learning, which increase efficiency and accuracy of 
diseases and prognosis prediction including cancers [42]. The 
future of applied deep learning in cervical cancer might help 
integrate medical images and clinical data to construct more 
reliable prediction models. In the future, more well-designed 
studies using deep learning methods were needed to verify the 
results in this study.

Conclusions

The AUC values of the prediction model for deep stromal 
invasion in patients with early cervical cancer based on clini-
cal and radiomics data were 0.969 in the training set and 

0.914 in the testing set, which exhibited good predictive per-
formance than previous prediction models. The prediction 
model might help the clinicians early and accurately identify 
patients with high risk of deep stromal invasion and provide 
timely interventions.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10278-​023-​00906-w.

Acknowledgements  None.

Author Contribution  HY and ZX designed the study. HY wrote the 
manuscript. GH, ZY, and YC collected, analyzed, and interpreted the 
data. ZX critically reviewed, edited, and approved the manuscript. All 
authors read and approved the final manuscript.

Funding  This study was supported by National Natural Science Foun-
dation of China [No. 82171931], the Science and Technology Pro-
gram of Guangzhou [Nos. 201903010032 and 202102080572], and the 
Panyu Science and Technology Program of Guangzhou [Nos. 2019-
Z04-01, 2019-Z04-23, and 2022-Z04-013].

Data Availability  Data will be made available on request.

Declarations 

Ethics Approval  This study was approved by the Ethics Committee of 
The First Affiliated Hospital of Jinan University and Guangzhou Panyu 
Central Hospital (ZN2022-5).

Consent to Participate  Informed consent was obtained from all indi-
vidual participants included in the study.

Consent for Publication  Not applicable.

Competing Interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 D'Oria O, Corrado G, Laganà AS, Chiantera V, Vizza E, Giannini 
A: New Advances in Cervical Cancer: From Bench to Bedside. 
International journal of environmental research and public health 
19, 2022

	 2.	 Sung H, et al.: Global cancer statistics 2020: GLOBOCAN esti-
mates of incidence and mortality worldwide for 36 cancers in 185 
countries. CA: a cancer journal for clinicians, 2021

	 3.	 Gavinski K, DiNardo D: Cervical Cancer Screening. The Medical 
clinics of North America 107:259-269, 2023

https://doi.org/10.1007/s10278-023-00906-w
http://creativecommons.org/licenses/by/4.0/


245Journal of Imaging Informatics in Medicine (2024) 37:230–246	

1 3

	 4.	 Biewenga P, et al.: Prognostic model for survival in patients with 
early stage cervical cancer. Cancer 117:768-776, 2011

	 5.	 Cao L, Wen H, Feng Z, Han X, Zhu J, Wu X: Role of adjuvant 
therapy after radical hysterectomy in intermediate-risk, early-stage 
cervical cancer. International journal of gynecological cancer : 
official journal of the International Gynecological Cancer Society 
31:52-58, 2021

	 6.	 Cibula D, et al.: The European Society of Gynaecological Oncol-
ogy/European Society for Radiotherapy and Oncology/European 
Society of Pathology guidelines for the management of patients 
with cervical cancer. Radiotherapy and oncology : journal of 
the European Society for Therapeutic Radiology and Oncology 
127:404-416, 2018

	 7.	 Zhu J, Cao L, Wen H, Bi R, Wu X, Ke G: The clinical and prog-
nostic implication of deep stromal invasion in cervical cancer 
patients undergoing radical hysterectomy. Journal of Cancer 
11:7368-7377, 2020

	 8.	 Matani H, Patel AK, Horne ZD, Beriwal S: Utilization of func-
tional MRI in the diagnosis and management of cervical cancer. 
Front Oncol 12:1030967, 2022

	 9.	 Wu Q, Zheng D, Shi L, Liu M, Wang M, Shi D: Differentiating 
metastatic from nonmetastatic lymph nodes in cervical cancer 
patients using monoexponential, biexponential, and stretched 
exponential diffusion-weighted MR imaging. Eur Radiol 27:5272-
5279, 2017

	10.	 Wu Q, et al.: Radiomics analysis of magnetic resonance imag-
ing improves diagnostic performance of lymph node metastasis 
in patients with cervical cancer. Radiotherapy and Oncology 
138:141-148, 2019

	11.	 Lefebvre TL, et al: Development and Validation of Multiparamet-
ric MRI-based Radiomics Models for Preoperative Risk Stratifica-
tion of Endometrial Cancer. Radiology 305(2):375-386, 2022

	12.	 Gillies RJ, Kinahan PE, Hricak H: Radiomics: Images Are More 
than Pictures, They Are Data. Radiology 278:563-577, 2016

	13.	 Li Z, et al.: MR-Based Radiomics Nomogram of Cervical Cancer 
in Prediction of the Lymph-Vascular Space Invasion preoperatively. 
Journal of magnetic resonance imaging : JMRI 49:1420-1426, 2019

	14.	 Wang T, et al.: Preoperative prediction of parametrial invasion in 
early-stage cervical cancer with MRI-based radiomics nomogram. 
Eur Radiol 30:3585-3593, 2020

	15.	 Ren J, et al.: MRI-based radiomics analysis improves preoperative 
diagnostic performance for the depth of stromal invasion in patients 
with early stage cervical cancer. Insights into imaging 13:17, 2022

	16.	 Stoltzfus JC: Logistic regression: a brief primer. Academic emer-
gency medicine : official journal of the Society for Academic 
Emergency Medicine 18(10):1099-1104, 2011

	17.	 Lam LHT, Chu NT, Tran TO, Do DT, Le NQK: A Radiomics-
Based Machine Learning Model for Prediction of Tumor Muta-
tional Burden in Lower-Grade Gliomas. Cancers 14, 2022

	18.	 Yang R, Xiong X, Wang H, Li W: Explainable Machine Learning 
Model to Prediction EGFR Mutation in Lung Cancer. Frontiers in 
oncology 12:924144, 2022

	19.	 Gitto S, et al.: MRI radiomics-based machine learning classifica-
tion of atypical cartilaginous tumour and grade II chondrosarcoma 
of long bones. EBioMedicine 75:103757, 2022

	20.	 Zhu L, et al.: Machine learning-based radiomics analysis of pre-
operative functional liver reserve with MRI and CT image. BMC 
medical imaging 23(1):94, 2023

	21.	 Kuno T, Sahashi Y, Kawahito S, Takahashi M, Iwagami M, Egorova 
NN: Prediction of in-hospital mortality with machine learning for 
COVID-19 patients treated with steroid and remdesivir. Journal of 
medical virology 94(3):958-964, 2022

	22.	 Ye Z, Ouyang D: Prediction of small-molecule compound solubil-
ity in organic solvents by machine learning algorithms. Journal of 
cheminformatics 13(1):98, 2021

	23.	 Egger J, et al.: GBM volumetry using the 3D Slicer medical image 
computing platform. Scientific reports 3:1364, 2013

	24.	 Song Q, et al.: Amide proton transfer weighted imaging combined 
with dynamic contrast-enhanced MRI in predicting lymphovascu-
lar space invasion and deep stromal invasion of IB1-IIA1 cervical 
cancer. Front Oncol 12:916846, 2022

	25.	 Pálsdóttir K, Fischerova D, Franchi D, Testa A, Di Legge A, Epstein 
E: Preoperative prediction of lymph node metastasis and deep stro-
mal invasion in women with invasive cervical cancer: prospective 
multicenter study using 2D and 3D ultrasound. Ultrasound in obstet-
rics & gynecology : the official journal of the International Society 
of Ultrasound in Obstetrics and Gynecology 45:470-475, 2015

	26.	 Rauch GM, et al.: Optimization of MR imaging for pretreatment 
evaluation of patients with endometrial and cervical cancer. Radi-
ographics : a review publication of the Radiological Society of 
North America, Inc 34:1082–1098, 2014

	27.	 Park JJ, Kim CK, Park SY, Park BK: Parametrial invasion in 
cervical cancer: fused T2-weighted imaging and high-b-value 
diffusion-weighted imaging with background body signal 
suppression at 3 T. Radiology 274:734-741, 2015

	28.	 Chen Q, et al.: Radiomics in precision medicine for gastric cancer: 
opportunities and challenges. European radiology 32:5852-5868, 2022

	29.	 Zhang H, Li Y: LightGBM Indoor Positioning Method Based on 
Merged Wi-Fi and Image Fingerprints. Sensors (Basel, Switzerland) 
21, 2021

	30.	 Wang W: Random Forest and LightGBM-Based Human Health 
Check for Medical Device Fault Detection. Journal of healthcare 
engineering 2022:2847112, 2022

	31.	 Cordoba A, et al.: Prognostic impact of tumor size reduction assessed 
by magnetic resonance imaging after radiochemotherapy in patients 
with locally advanced cervical cancer. Front Oncol 12:1046087, 2022

	32.	 Zhou Y, Gu HL, Zhang XL, Tian ZF, Xu XQ, Tang WW: Mul-
tiparametric magnetic resonance imaging-derived radiomics for 
the prediction of disease-free survival in early-stage squamous 
cervical cancer. European radiology 32:2540-2551, 2022

	33.	 Xu J, Ma Y, Mei H, Wang Q: Diagnostic Value of Multimodal 
Magnetic Resonance Imaging in Discriminating Between Meta-
static and Non-Metastatic Pelvic Lymph Nodes in Cervical Can-
cer. International journal of general medicine 15:6279-6288, 2022

	34.	 Zhang W, et al.: Application of synthetic magnetic resonance 
imaging and DWI for evaluation of prognostic factors in cervical 
carcinoma: a prospective preliminary study. The British journal 
of radiology 96:20220596, 2023

	35.	 Soares LC, Junior JCD, de Souza RJ, de Oliveira MAP: Critical 
analysis of the FIGO 2018 cervical cancer staging. Journal of the 
Turkish German Gynecological Association 23:325-326, 2022

	36.	 Meng Q, Wang W, Liu X, Wang D, Zhang F: Nomograms Predict-
ing Survival of Cervical Cancer Patients Treated With Concurrent 
Chemoradiotherapy Based on the 2018 FIGO Staging System. 
Front Oncol 12:870670, 2022

	37.	 Kaur S, Garg H, Nandwani M, Kalita M, Bansal S, Singh R: 
Influence of New FIGO 2018 Staging on Treatment Outcomes in 
Early-Stage Cervical Cancer: A Single-Center Study. South Asian 
journal of cancer 11:213-217, 2022

	38.	 Fu J, Wang W, Wang Y, Liu C, Wang P: The role of squamous cell 
carcinoma antigen (SCC Ag) in outcome prediction after concurrent 
chemoradiotherapy and treatment decisions for patients with cervical 
cancer. Radiation oncology (London, England) 14:146, 2019

	39.	 Chen W, et al.: Prognostic value of tumor measurement parameters 
and SCC-Ag changes in patients with locally-advanced cervical 
cancer. Radiation oncology (London, England) 17:6, 2022

	40.	 Mahmood T, Li J, Pei Y, Akhtar F: An Automated In-Depth Fea-
ture Learning Algorithm for Breast Abnormality Prognosis and 
Robust Characterization from Mammography Images Using Deep 
Transfer Learning. Biology 10(9), 2021



246	 Journal of Imaging Informatics in Medicine (2024) 37:230–246

1 3

	41.	 Mahmood T, Li J, Pei Y, Akhtar F, Rehman MU, Wasti SH: Breast 
lesions classifications of mammographic images using a deep convolu-
tional neural network-based approach. PloS one 17(1):e0263126, 2022

	42.	 Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, 
Waddell N: Deep learning in cancer diagnosis, prognosis and 
treatment selection. Genome medicine 13(1):152, 2021

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics Model for Preoperative Predicting the Deep Stromal Invasion in Patients with Early Cervical Cancer
	Abstract
	Introduction
	Methods
	Study Design and Population
	Radiomic Features Extraction
	Clinical Variables
	Building Prediction Classifiers
	Measurement of the Performance of the Prediction Model
	Statistical Analysis

	Results
	Identification of Predictors in the Models for Deep Stromal Invasion in Patients with Early Cervical Cancer
	Construction of the Prediction Models for Deep Stromal Invasion in Patients with Early Cervical Cancer
	Evaluation of the Predictive Performance of the Prediction Models for Deep Stromal Invasion in Patients with Early Cervical Cancer

	Discussion
	Conclusions
	Acknowledgements 
	References


