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stomatal closure and the crucial roles of GLRs in this sign-
aling process.
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Introduction

The amino acid glutamate (Glu) plays pivotal roles in the 
functioning of the central nervous system in mammals 
(Watkins and Jane 2006). Glu-mediated signaling is initi-
ated by the binding of Glu to several types of Glu receptors, 
including ionotropic Glu receptors (iGluRs) and metabo-
tropic Glu receptors (mGluRs) (Mayer 2005). Plants do not 
have highly regulated nerve systems like animals, but fami-
lies of Glu receptors homologous to mammalian iGluRs 
(GLRs) have been discovered in Arabidopsis (Lacombe 
et al. 2001; Lam et al. 1998), rice (Li et al. 2006), and 
tomato (Aouini et al. 2012). Since the discovery of GLR 
genes in plant cells, Glu-signaling has been studied inten-
sively as a potential amino acid sensor, and Glu was found 
to cause rapid membrane depolarization and Ca2+ flux in 
Arabidopsis roots (Dennison and Spalding 2000). Mutation 
of GLR3.3, one of 20 Arabidopsis genes, impaired both the 
membrane depolarization and the Ca2+ rise triggered by 
Glu (Qi et al. 2006). Moreover, Glu has been found to have 
several roles in plant signaling, which include regulating 
hypocotyl elongation (Dubos et al. 2003; Lam et al. 1998), 
sensing mineral nutrient status (Kim et al. 2001), resist-
ing aluminum toxicity (Sivaguru et al. 2003), and regulat-
ing the carbon/nitrogen balance (Kang and Turano 2003), 
abscisic acid (ABA) synthesis (Kang et al. 2004), cold 
(Meyerhoff et al. 2005), root meristem function (Li et al. 
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2006; Walch-Liu et al. 2006), plant defense against patho-
gens (Vatsa et al. 2011), pollen tube development (Michard 
et al. 2011), and long-distance wound signaling (Mousavi 
et al. 2013).

Stomata are pores on the surface of leaves, and the open-
ing and closing of these pores control the diffusion of gases 
into and out of plant tissues. Stomata are formed by pairs of 
guard cells that sense environmental signals such as light, 
humidity, carbon dioxide (CO2), and pathogens, and also 
respond to hormones including ABA, auxin, and ethylene 
(Melotto et al. 2006; Schroeder et al. 2001; Shimazaki et al. 
2007; Shope et al. 2008). Numerous signaling components 
act in the induction of stomatal closure. Among them, Ca2+ 
is the important signaling molecule in guard cell signaling. 
An increase in the cytosolic Ca2+ concentration ([Ca2+]cyt) 
can transduce cellular responses to various biotic and abi-
otic stimuli, including light, gravity, oxidative stress, cold 
shock, drought, hormones, salt stress, and fungal elicitors 
(Berridge et al. 2003; Sanders et al. 2002). The plant hor-
mone ABA causes increases in the [Ca2+]cyt in guard cells 
via Ca2+ influx through plasma membrane Ca2+-permeable 
channels and Ca2+ release from internal stores, resulting in 
stomatal closure (Kwak et al. 2003; MacRobbie 2000; Pei 
et al. 2000; Staxen et al. 1999). Cho et al. (2009) demon-
strated that GLR3.1 participates in external Ca2+ influx into 
the cytosol as well as external Ca2+-induced stomatal clo-
sure, but they did not show whether Glu induces stomatal 
closure through GLRs.

In the current study, we examined the possibility that 
Glu plays a role in guard cell signaling. We found that Glu 
functions as a signal for stomatal closure in both Arabidop-
sis and fava bean. This response required Glu receptors, 
activation of plasma membrane Ca2+-permeable channels, 
and protein phosphorylation, as revealed by pharmacologi-
cal, electrophysiological and genetic analyses. Loss-of-
function analyses demonstrated that one of the Arabidop-
sis GLR genes, GLR3.5, plays a pivotal role in this guard 
cell signaling. This is the first report demonstrating Glu-
induced stomatal closure in higher plants.

Materials and methods

Plant materials and growth conditions

Arabidopsis Columbia (Col) and Landsberg erecta (Ler) 
ecotypes were used. Arabidopsis mutant lines aba2-1, 
abi1-1, abi2-1, slac1-2, cpk6-1, and cpk6-2 were studied, 
and T-DNA insertion lines of glr1.1, glr1.2, glr1.4, glr3.3, 
glr3.5, and glr3.7 in the Col background were obtained 
from the Arabidopsis Biological Research Center (ABRC). 
Plants were grown in soil (1:1 Metromix:vermiculite) in a 
controlled environment at 23 °C with a 11-h light:13-h dark 

cycle. Seeds of fava bean (Vicia faba L. cv. House Ryousai) 
were purchased from Kyouwa Seed Co. (Chiba, Japan). 
Plants were grown in a growth chamber at 23 °C with a 
16-h light:8-h dark cycle.

Stomatal aperture measurements

Epidermal strips were peeled from abaxial young, fully 
expanded leaves. Epidermal strips were floated in petri 
dishes (diameter, 9 cm) containing opening medium A 
[10 mM MES–KOH (pH 6.15), 50 mM KCl, 0.1 mM 
CaCl2] for Arabidopsis, or opening medium B [10 mM 
MES–KOH (pH 6.15), 50 mM KCl] for fava bean and were 
kept for 2 h at 23 °C under light (50 μmol m−2 s−1). The 
strips were then transferred to opening medium containing 
sodium glutamate, glycine, and/or the pharmacological rea-
gents (AP-5, EGTA, BAPTA-AM) and kept for 3 h at 23 °C 
under light irradiation. For light-induced stomatal opening, 
Glu was applied to the epidermal strips after the 2 h of dark 
period and subsequently exposed to light for 3 h. Following 
treatment, the stomata were photographed under a micro-
scope (Eclipse E600; Nikon Corp. Tokyo, Japan) using a 
digital camera (Ds-L2, Nikon Corp.). Inner widths of sto-
matal pores were measured using a digital micro-analyzer 
(Japan Polaroid Digital Products, Tokyo). At least four 
strips containing 20 stomata were measured for each treat-
ment. Experiments were repeated at least three times, and 
Student’s t test was used to assess significant differences.

Patch‑clamp analysis

Calcium-permeable channel current (ICa) was recorded 
essentially as published previously and described below 
(Ye et al. 2013). Patch-clamp data were recorded using a 
MultiClamp 700B amplifier equipped a CV-7B headstage 
and pClamp software 10.3, and analyzed with Clampfit 
10.3 software (Molecular Devices, Sunnyvale, California, 
USA). Guard cell protoplasts for patch-clamping were 
isolated from Arabidopsis (Col) as described by Ye et al. 
(2013).

The pipette solution contained 10 mM BaCl2, 0.1 mM 
dithiothreitol, 4 mM EGTA and 10 mM MES-Tris (pH 7.1), 
and the bath solution contained 100 mM BaCl2, 0.1 mM 
dithiothreitol and 10 mM MES-Tris (pH 5.6). Osmolar-
ity of the solutions was adjusted with sorbitol to 500 and 
485 mmol kg−1, respectively. Recording was started 10 min 
after the establishment of whole cell configuration in the 
absence of glutamate in the bath solution and successively 
recorded in the presence of glutamate after perfusion with 
bath solution containing 10 mM Glu. The voltage was 
ramped from −18 to −218 mV (after liquid junction poten-
tial compensation) with a ramp speed of 0.1 V s−1. The 
ramp voltage protocol was applied 10 times to obtain an 
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average of a cell. Significance of difference between data 
sets was assessed by Wilcoxon signed ranks test.

Purification of guard cell protoplasts

Guard cell protoplasts were isolated enzymatically from 
the abaxial epidermis of approximately 100 rosette Arabi-
dopsis leaves, as described previously (Pandey et al. 2002; 
Ueno et al. 2005). Purified guard cells were visually 
inspected for purity using a light microscope, and RNA 
was isolated immediately.

RT‑PCR

Total RNA was extracted using TRIzol® (Invitrogen, Carls-
bad, CA, USA). First strand cDNA was synthesized from 
1 μg of total RNA using ReveTra Ace® (Toyobo, Osaka, 
Japan) in a 10-μl reaction mixture. RT-PCR was per-
formed for 30–35 cycles using GoTaq® (Promega, Fitch-
burg, WI, USA). The primer sequences used in RT-PCR 
analysis were GLR3.5 Fw (GAGGAGCGAGGAGGCT), 
GLR3.5 Rv (AGTTTCGTGATCTTTCGACT), ACTIN2 

Fw (GCCATCCAAGCTGTTCTCTC) and ACTIN2 Rv 
(GAACCACCGATCCAGACACT).

Results

Glu promotes stomatal closure in both Arabidopsis 
and fava bean

To ascertain whether Glu promotes stomatal closure, 
we applied sodium l-glutamate monohydrate to epider-
mal strips prepared from Arabidopsis and fava bean. As 
observed in ABA treatments, 1 mM Glu potentiated sto-
matal closure in Arabidopsis (Fig. 1a). Next, we examined 
the effect of Glu on stomatal movement in Arabidopsis 
ecotypes and in fava bean. In the Columbia ecotype (Col), 
stomata started to close in response to 0.1 mM Glu, but 
did not respond to 0.01 mM Glu. In the Landsberg erecta 
ecotype (Ler), however, stomata closed even at 0.01 mM 
Glu. Glu-induced stomatal closure was also observed in 
fava bean (Fig. 1b). We also examined whether Glu inhibits 
light-induced stomatal opening or not in Arabidopsis (Col). 

Fig. 1  Glu induces stomatal 
closure in both Arabidopsis 
and fava bean. a Stomatal 
aperture of Arabidopsis (Col) 
after incubation with ABA 
(10 μM) and Glu (1 mM) for 
3 h. b Stomatal response of 
Arabidopsis ecotypes (Col, Ler) 
and fava bean exposed to the 
indicated concentration of Glu 
for 3 h. c Effects of Glu (1 mM) 
on the light-induced stomatal 
opening in Arabidopsis (Col). 
Stomatal aperture after dark 
incubation (D) and subsequent 
light exposure without or with 
Glu (DL, DL + Glu) were 
measured. Each bar indicates 
the mean ± S.D. of 80–120 
measurements. Statistical dif-
ferences were detected using 
a two-tailed t test (*P < 0.05, 
**P < 0.01, ***P < 0.001)
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We found Glu not only induce stomatal closure, but also 
inhibit light-induced stomatal opening (Fig. 1c).

Participation of Glu receptors in Glu‑induced stomatal 
closure

We used pharmacological reagents to probe the involve-
ment of N-methyl-d-aspartate (NMDA)-type iGluRs in 
Glu-induced stomatal closure. Initially, we examined the 
effects of D-(−)-2-amino-5-phosphonopentanoic acid (AP-
5), a specific antagonist of NMDA GLRs, on Glu-induced 
stomatal closure. AP-5 inhibited Glu-induced stomatal 
closure in both Arabidopsis and fava bean (Fig. 2a). Mag-
nesium chloride, which is known to block NMDA iGluR 
channels, suppressed the Glu-induced stomatal closure 
in both species (Fig. 2b). Since apoplastic concentration 
of free Mg2+ was shown to below 0.5 mM in fava bean 
(Mühling and Sattelmacher 1995), 5 mM Mg2+ used in 
this experiment was reasonable for assessing the inhibitory 

effect of NMDA GLRs. Glycine (Gly), which functions 
as a iGluR agonist (Chatterton et al. 2002; Dubos et al. 
2003; Ivanovic et al. 1998), induced stomatal closure at 
1 mM (Fig. 2c), but no additive effect of Gly and Glu was 
observed. A low concentration of Gly (10 μM) alone did 
not induce stomatal closure. However, when 10 μM Glu 
was applied with 10 μM Gly, the stomata closed (Fig. 2c). 
These results suggested the participation of NMDA iGluRs 
in Glu-induced stomatal closure.

Ca2+ is required for Glu‑induced stomatal closure

To further elucidate the possible relevance of GLRs in 
Glu-induced stomatal closure, we examined whether Ca2+ 
affects this signaling process. EGTA (extracellular Ca2+-
chelator) and BAPTA-AM (intracellular Ca2+-chelator) 
inhibited the Glu-induced stomatal closure in Arabidopsis 
and fava bean, indicating that Ca2+ influx to the cytosol 
is required for this effect (Fig. 3a, b). We also examined 

Fig. 2  Involvement of iGluRs 
in Glu-induced stomatal 
closure. a Effect of the iGluR 
antagonist AP-5 on Glu-induced 
stomatal closure in Arabi-
dopsis and fava bean; 1 mM 
and 0.1 mM Glu were used 
in Arabidopsis and fava bean, 
respectively. The concentration 
of AP-5 was 1 mM. b Effect of 
MgCl2 on Glu-induced stomatal 
closure in Arabidopsis and 
fava bean; 1 mM and 0.1 mM 
Glu were used in Arabidopsis 
and fava bean, respectively. 
The concentration of MgCl2 
was 5 mM. c Effect of Gly on 
Glu-induced stomatal closure; 
amino acids were applied sepa-
rately or concurrently at 1 and 
0.01 mM. Each bar indicates 
the mean ± S.D. of 80–120 
measurements. Statistical dif-
ferences were detected using 
a two-tailed t test (*P < 0.05, 
**P < 0.01, ***P < 0.001)
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the effect of LaCl3 (Ca2+ channel blocker) on the Glu-
induced stomatal closure. La3+ inhibited the Glu-induced 
stomatal closure in Arabidopsis and fava bean (Fig. 3c). 
These results indicated that Ca2+ influx occurred after Glu 
sensing.

Glu activates plasma membrane Ca2+− permeable 
channel currents (ICa) in Arabidopsis guard cells

It has been shown that ICa of guard cells is activated by 
ABA, MeJA and microbe-associated molecular patters 
(Murata et al. 2015). Here we conducted patch-clamp 
analyses to examine activation of ICa by Glu application 

(Fig. 4). In the absence of Glu small whole cell current 
(−46 ± 20 pA at −198 mV) was observed. The current 
was significantly activated by perfusion with 10 mM Glu-
containing bath solution to −92 ± 40 pA at −198 mV 
(P = 0.046, Wilcoxon signed ranks test, n = 6). These cur-
rents were substantially diminished by addition of 1 mM 
La3+ (−18 ± 5 pA at −198 mV). These results indicate 
that Glu activated ion current of which charge carrier was 
Ba2+ and capable to be blocked with La3+ similarly to 
ABA-activated ICa (Pei et al. 2000). The current amplitude 
appeared fairly variable among cells, while the reason was 
unresolved in this study.

Fig. 3  Ca2+ is required for 
Glu-induced stomatal closure. a 
Effect of EGTA on Glu-induced 
stomatal closure in Arabidopsis 
and fava bean; 1 and 0.1 mM 
Glu were used in Arabidopsis 
and fava bean, respectively. 
EGTA was used at 0.1 and 
1 mM in Arabidopsis and fava 
bean, respectively. b Effect of 
BAPTA-AM on Glu-induced 
stomatal closure in Arabidopsis 
and fava bean; 1 and 0.1 mM 
Glu were used in Arabidopsis 
and fava bean, respectively. 
The concentration of BAPTA-
AM was 0.25 mM. c Effect of 
LaCl3 on Glu-induced stomatal 
closure in Arabidopsis and 
fava bean; 1 and 0.1 mM Glu 
were used in Arabidopsis and 
fava bean, respectively. The 
concentration of LaCl3 was 
5 mM. Each bar indicates the 
mean ± S.D. of 80–120 meas-
urements. Statistical differences 
were detected using a two-tailed 
t test (*P < 0.05, **P < 0.01, 
***P < 0.001)
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Arabidopsis GLR3.5 is involved in Glu‑induced 
stomatal closure

The pharmacological experiments indicated the involve-
ment of iGluRs in Glu-induced stomatal closure. To con-
firm the possibility, we used several T-DNA knockout lines 
of Arabidopsis GLRs and examined whether the mutations 
affect guard cell response to Glu. Arabidopsis has 20 GLR 
genes in its genome (Chiu et al. 2002; Roy et al. 2008). 
We obtained information on the expression of each GLR 
in Arabidopsis guard cells from the data published by Roy 
et al. (2008) and also from the Arabidopsis eFP Browser 
(http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi). 
We estimated that the genes GLR1.1, GLR1.2, GLR1.4, 
GLR3.2, GLR3.3, GLR3.5, and GLR3.7 were expressed in 
guard cells, so we examined them further.

Among the seven lines tested, glr3.5 and glr3.7 impaired 
Glu-induced stomatal closure, whereas Glu induced sto-
matal closure in glr1.1, glr1.2, glr1.4, and glr3.3 (Fig. 5). 
We focused on GLR3.5. To ascertain whether GLR3.5 
functions in guard cells, we prepared cDNA from guard 
cell protoplasts (GCPs) and confirmed its expression in 
these cells. The purity of GCPs was examined according 
to the expression of phosphoenolpyruvate carboxylase 2 
(ATPPC2, At2g42600), which shows low-level expression 
in guard cells and high-level expression in mesophyll cells 
(Leonhardt et al. 2004), and hydroxyproline-rich protein 
(HPRP, At2g21140), which shows high-level expression in 
guard cells (Cho et al. 2009). We found a strong ATPPC2 
signal in mesophyll cell cDNA compared with GCP cDNA 
(Fig. 6a). In contrast, HPRP was highly expressed in GCPs, 
but was scarce in mesophyll cells. As RT-PCR reflects the 
purity and specificity of GCP cDNA, we performed RT-
PCR analyses on GLR3.5 using GCP cDNA and examined 

the expression in GCPs (Fig. 6b). We used two independ-
ent T-DNA lines, glr3.5-1 and glr3.5-2 (Fig. S1), and con-
firmed the disruption of this gene in these two lines via 
RT-PCR. Both lines showed impaired Glu-induced stoma-
tal closure (Fig. 6c), whereas ABA and darkness induced 
stomatal closure (Fig. 6d, Fig. S2). These results suggest 
that GLR3.5 is expressed in guard cells and contributes to 
Glu-induced stomatal closure.

Glu response does not mediate ABA signaling, 
but requires CPK6 and SLAC1 in an ABA‑independent 
manner

To clarify the signaling pathway leading to Glu-induced 
stomatal closure, we examined Glu-sensitivity in several 
Arabidopsis mutants having impaired guard cell responses. 

Fig. 4  Glu activation of ICa in plasma membrane of Arabidopsis 
guard cells. a Typical raw current traces; top horizontal scale indi-
cates membrane voltage, and traces indicate typical whole cell cur-
rent without Glu, with Glu (10 mM) and with Glu (10 mM) and 
LaCl3 (1 mM), respectively. Vertical scale bar indicates 40 pA. b 

Averaged whole cell currents (n = 6 cells). Current from a cell was 
an average of 10 repeated records from a cell with 1-s intervals. 
Error bars represent SEM. Asterisks indicates significance (Wilcoxon 
signed ranks test, α = 0.05)

Fig. 5  Stomatal response of T-DNA GLR1.1, GLR1.2, GLR1.4, 
GLR3.2, GLR3.3, GLR3.5, and GLR3.7 knockout mutants. Expres-
sion of these genes was reported in guard cells (eFP Browser). 
These mutants were exposed to 1 mM Glu. Each bar indicates the 
mean ± S.D. of 80–120 measurements. Statistical differences 
were detected using a two-tailed t test (*P < 0.05, **P < 0.01, 
***P < 0.001)

http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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First, we tested the ABA-deficient mutant aba2-1 and the 
ABA-insensitive mutants abi1-1 and abi2-1. Glu induced 
stomatal closure in these mutants (Fig. 7a, b), indicat-
ing that Glu signaling operates independently from ABA 
signaling in guard cells. We also used the slac1-2 mutant 
to ascertain whether this S-type anion channel gene, which 
has been shown to be involved in CO2 and ABA signaling 
(Xue et al. 2011), acts downstream of Glu-signaling. We 
found that slac1-2 lost its sensitivity for Glu-induced sto-
matal closure (Fig. 7c). Next, we examined whether protein 
phosphorylation is involved in Glu-dependent guard cell 
signaling. To address this question, we used protein kinase 
inhibitors of K252a and staurosporine. These reagents con-
currently inhibited Glu-induced stomatal closure (Fig. 8a). 
The same concentration of solvent (dimethyl sulfoxide) 
used for dissolving these two inhibitors had no effect on 
Glu-dependent stomatal movement (Fig. S3). We also 
tested a loss-of-function mutation in Calcium Dependent 
Protein Kinase 6 (CPK6), which is a positive regulator of 
ABA-signaling (Mori et al. 2006). CPK6 has been shown 

to phosphorylate and activate SLAC1 protein (Brandt et al. 
2012). We used two independent T-DNA knockout lines, 
cpk6-1 and cpk6-2. These mutants impaired Glu-induced 
stomatal closure (Fig. 8b), indicating that CPK6 protein 
kinase is involved in Glu-induced stomatal closure in an 
ABA-independent manner.

Discussion

Since the discovery of GLRs in the Arabidopsis genome 
(Lam et al. 1998), numerous studies have investigated 
Glu as a plant signaling molecule. Glu plays roles in, for 
example, the nitrogen to carbon balance (Kang and Turano 
2003), regulation of ABA synthesis (Kang et al. 2004), 
control of root growth (Li et al. 2006; Miller et al. 2010), 
and leaf-to-leaf wounding response (Mousavi et al. 2013). 
We assessed the possibility that Glu functions in guard 
cell signaling. In this study, we found that Glu induced 
stomatal closure in both Arabidopsis and fava bean in a 

Fig. 6  Loss-of-function of the 
Arabidopsis GLR gene GLR3.5 
prevented Glu-induced stomatal 
closure. a RT-PCR analysis of 
the mesophyll cell marker gene 
AtPPC2 and guard cell marker 
gene HPRP in guard cell pro-
toplasts (GCPs) and leaf tissue. 
Total RNA (1 μg) was prepared 
from GCPs and entire leaves 
for cDNA synthesis. b RT-PCR 
analysis of the GLR3.5 gene in 
GCPs. c Stomatal response of 
glr3.5-1 and glr3.5-2 mutants 
exposed to Glu (1 mM). d 
Stomatal response of glr3.5-1 
and glr3.5-2 mutants exposed 
to ABA (10 μM). Each bar 
indicates the mean ± S.D. of 
80–120 measurements
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dose-dependent manner. Pretreatment with a Ca2+ chela-
tor and a Ca2+ channel blocker weakened Glu-induced 
stomatal closure. Furthermore, an antagonist and channel 
blocker of the NMDA receptor (AP-5, Mg2+) also inhibited 
Glu-induced stomatal closure. In contrast, glycine, which 
acts as an agonist of the NMDA receptor, promoted sto-
matal closure. Moreover, we have obtained direct evidence 
of Glu-dependent Ca2+ channel activity in guard cells by 
patch-clamp analysis. These results suggested that Glu 
indeed functions in guard cells and promotes stomatal clo-
sure through GLR-type Ca2+ channels in higher plants.

Previously, Arabidopsis GLR1.1 was shown to par-
ticipate in stomatal movements (Kang et al. 2004). We 
showed that Glu normally induced stomatal closure in 

GLR1.1 knockout mutant glr1.1, indicating that GLR1.1 
is not involved in Glu-induced stomatal closure. In this 
study, we showed that another Arabidopsis GLR, GLR3.5, 
was expressed in guard cells and that its loss-of-function 
mutant impaired Glu-induced stomatal closure. These 
results indicated that GLR3.5 participates in Glu-induced 
stomatal closure, and we confirmed GLR3.7’s involve-
ment as well. Transcripts of GLR3.7 were found in guard 
cells, as revealed by RT-PCR analysis (data not shown). 
However, we could not prepare alternative knockout lines 
of this gene. We also tried to prepare glr3.5;glr3.7 dou-
ble knockout mutant, however, these genes are tandemly 
located in chromosome II (GLR3.5: At2g32390; GLR3.7: 
At2g32400), and this made it difficult to produce double 
mutant. GLR channel may function as a heteromer and dif-
ferent combination of GLR subunit may specify its specific 
roles in different tissues or cells (Nicholas et al. 2008). 
It must be interesting if GLR3.5 and GLR3.7 form com-
plex as a channel in guard cells. Future work will include 
experiments to identify other possible GLRs that function 
in Glu-dependent stomatal signaling.

Drought elicits the synthesis of ABA, which induces sto-
matal closure. Kang et al. (2004) reported that GLR1.1 reg-
ulates ABA synthesis, leading to the possibility that other 
GLRs also regulate ABA synthesis. We tested whether Glu 
affects stomata movements via ABA synthesis. In the ABA-
deficient mutant aba2-1, Glu still induced stomatal closure. 
We also confirmed that Glu-induced stomatal closure was 
not abolished in the ABA-insensitive mutants abi1-2 and 
abi2-1. Based on these results, we concluded that Glu elic-
its stomatal closure in an ABA-independent manner.

Calcium Dependent Protein Kinase 6 (CPK6) is a 
positive regulator in ABA-signaling, and it also regulates 
SLAC1 activity (Brandt et al. 2012; Mori et al. 2006). 
Once we had established that Glu-induced stomatal closure 
requires the activation of Ca2+ channels, protein phospho-
rylation, and SLAC1, we examined whether CPK6 controls 
Glu-induced stomatal response. We prepared two T-DNA 
knockout mutants of CPK6 and observed an impaired 
response to Glu-induced stomatal closure. This protein 
kinase phosphorylates and activates SLAC1 to trigger sto-
matal closure in a Ca2+-dependent manner (Brandt et al. 
2012). Furthermore, CPK6 has been demonstrated to inter-
act weakly with SLAC1 (Geiger et al. 2011). Given that 
SLAC1 was also involved in Glu-induced stomatal closure, 
Glu-dependent elevation of the cytosolic Ca2+ mayand 
activate CPK6 to promote SLAC1 activity. SLAC1 is also 
involved in cryptogein induced ion fluxes, ROS produc-
tion, defense-related gene expression, and hypersensitive 
cell death in tobacco BY-2 cells (Kurusu et al. 2013), which 
may also support the presence of the functional Glu-signal-
ing in guard cells.

Fig. 7  Glu does not mediate ABA-signaling but requires SLAC1 in 
stomatal closure. a Stomatal response of the ABA-deficient mutant 
aba2-1 exposed to Glu (1 mM). b ABA-insensitive abi1-1 and abi2-
1 mutants exposed to Glu (1 mM). Stomatal response of slac1-2 
mutant exposed to Glu (1 mM). Each bar indicates the mean ± S.D. 
of 80–120 measurements. Statistical differences were detected using 
a two-tailed t test (*P < 0.05, **P < 0.01, ***P < 0.001)
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We propose a possible signaling cascade in Glu-induced 
stomatal closure (Fig. 9). Glu may activate GLR3.5 and 
trigger an increase in cytosolic Ca2+, which would then 
activate CPK6 in an ABA-independent manner, and then 
active CPK6 would elevate SLAC1 activity to induce sto-
matal closure. Several reports have indicated that protein 
phosphorylation, especially MAP kinase, is involved in Glu 
signaling. Application of Glu modulates MAMP-triggered 
MAP kinase activity and also affects MAMP-induced 
accumulation of defense gene transcripts in Arabidopsis 
(Kwaaitaal et al. 2011). Arabidopsis MAP kinase kinase 
kinase of MEKK1 plays a key role in Glu-induced root 
architecture (Forde et al. 2013). It must be interesting to 
examine whether or not MAP kinases are also involved 
in Glu-induced stomatal closure. Recently, Teardo et al. 
(2015) found that two isoforms of GLR3.5, isoform1 and 
isoform2, whose are derived from splicing variants are 
localized to mitochondria and chloroplast, respectively. 
Since mitochondria and chloroplast are known to play 
important roles in stomatal movement through modulat-
ing ROS, NO and Ca2+ signaling (Cvetkovska et al. 2014; 
Nomura et al. 2008; Weinl et al. 2008), Glu may changes 
the some physiological status of these two organelles 
through activating GLR3.5 (see Fig. 9). 

Although we do not yet understand the precise biologi-
cal roles of Glu-induced stomatal closure, some clues may 
support or explain the physiological relevance of Glu-sign-
aling in guard cells. Vatsa et al. (2011) demonstrated that 
the plant pathogen elicitor cryptogein induces the release 
of Glu from plant cells by exocytosis and also increases 

cytosolic Ca2+. They also indicated that the Glu concen-
tration in the apoplast is increased by 2.6 mM after 5 min 
in cryptogein treatment. In addition to Glu, Gly was also 
found to present in the tomato leaf apoplast at a concen-
tration around 0.2 mM (Solomon and Oliver 2001). We 
tried to ascertain whether 0.2 mM of Gly induces stomatal 
closure in Arabidopsis, however, any changes in stomatal 

Fig. 8  Protein phosphorylation 
or calcium-dependent protein 
kinase 6 (CPK6) is prerequi-
site for Glu-induced stomatal 
closure. a Effect of protein 
kinase inhibitor K252a and 
staurosporine on Glu-induced 
stomatal closure in Arabidopsis; 
1 mM Glu and 1 μM K252a and 
1 μM staurosporine were used. 
K252a and staurosporine were 
applied 30 min before Glu treat-
ment. b Stomatal response of 
the wild type (Col), and cpk6-1 
and cpk6-2 mutants exposed to 
Glu (1 mM). Each bar indicates 
the mean ± S.D. of 80–120 
measurements. Statistical dif-
ferences were detected using 
a two-tailed t test (*P < 0.05, 
**P < 0.01, ***P < 0.001)

Fig. 9  Possible model of Glu signaling in stomatal closure. Glu acti-
vates Arabidopsis GLR3.5 and increases cytoplasmic Ca2+. Increased 
Ca2+ may activate CPK6 and subsequently activate anion channel 
SLAC1 to induce stomatal closure. ABA signaling does not partici-
pate in Glu signaling
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movement were observed (Fig. S4). In contrast, we found 
that low concentration of Glu (0.1 mM) did induce stomatal 
closure in both Arabidopsis and fava bean (Fig. 1). We did 
not observe any additive effects of Glu and Gly on stomatal 
closure at the concentration of 1 mM (Fig. 2). These results 
may reflect some physiological aspect of plant iGluRs in 
ligand efficacy. We do not have any information about 
whether the apoplastic concentration of Gly is increased or 
not by certain stimuli. Nevertheless, application of 1 mM 
Gly was shown to trigger the elevation of cytosolic Ca2+ 
in Arabidopsis seedlings (Dubos et al. 2003). These stud-
ies may support the functional roles of Glu in guard cell 
signaling.

Stomata are one of the pores that plant pathogens can 
invade inside the leaf tissues, and several studies have dem-
onstrated that pathogen elicitors trigger stomatal closure 
(Koers et al. 2011; Melotto et al. 2006). In addition, bacte-
ria are capable of secreting Glu or Gly during their growth 
(Park et al. 2003). The Glu secreted from plant cells or bac-
teria may act on the epidermis and play a key role in the 
regulation of stomatal closure to restrict pathogen invasion. 
We will further examine whether exogenous Glu confers 
stomatal defense in higher plants.
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