Skip to main content
Log in

Chromosome diversity and evolution in tribe Lilieae (Liliaceae) with emphasis on Chinese species

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

In this paper, karyotype data of the tribe Lilieae in China were analyzed and been superimposed onto a phylogenetic framework constructed by the internal transcribed spacer to investigate the karyotype evolution. Ten parameters for analyzing karyotype asymmetry were assessed and karyotypic idiogram of five genera of Lilieae were illustrated. The results showed that, the relationship of genera in Lilieae that inferred from Maximum Parsimony criteria and Bayesian Inference were congruent with previous studies, which focused on higher level of Liliales. The karyotype showed distinctive among genera, mainly expressed on the location and amount of secondary constrictions and intercalary satellites: the genus Notholirion have neither of them, and the genera Cardiocrinum and Fritillaria have the secondary constriction alone; the genera Lilium and Nomocharis showed both features, and the distribute pattern of the intercalary satellites showed similarity among related clades. The asymmetry that assessed by several methods indicated that the evolution trend of Lilieae did not follow a single direction, but different in each genus. On the sectional level of the genus Lilium (including Nomocharis) the karyotype evolution included three major periods. Combining the chromosomal structure variations and karyotype asymmetry, the chromosome diversity and evolution in Lilieae were quite clear in the light of molecular inference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161(2):105–121

    Article  Google Scholar 

  • Arano H (1963) Cytological studies in subfamily Carduoideae (Compositae) of Japan. IX. The karyotype analysis and phylogenic considerations on Pertya and Ainsliaea. Botanical Magazine (Tokyo) 76:32–39

    Google Scholar 

  • Ceccarelli M, Minelli S, Maggini F, Cionini PG (1995) Genome size variation in Vicia faba. Heredity 74:180–187

    Article  CAS  Google Scholar 

  • Comber HF (1949) A new classification of genus Lilium. Royal Horticultural Society of the Liliy Year Book, vol 13. p 85

  • Das AB, Mohanty S, Marrs RH, Das P (1999) Somatic chromosome number and karyotype diversity in fifteen species of Mammillaria of the family Cactaceae. Cytobios 97:141–151

    Google Scholar 

  • De Melo Nationiel F, Guerra M, Benko-Iseppon AM, De Menezes NL (1997) Cytogenetics and cytotaxonomy of Velloziaceae. Plant Syst Evol 204:257–273

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Fay MF, Chase MW, Rønsted N et al (2006) Phylogenetics of Liliales: summarized evidence from combined analyses of five plastid and one mitochondrial loci. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds) Monocots: comparative biology and evolution (excluding Poales). Rancho Santa Ana Botanic Garden, Claremont, pp 559–565

    Google Scholar 

  • Gao YD, Zhou SD, He XJ (2009) Karyotype of four genera in Liliaceae (s. str.) from Hengduan Mountains of Southwest China. Acta Botanica Yunnancia 31:399–405

    Google Scholar 

  • González-Aguilera JJ, Fernández-Peralta AM (1984) Phylogenetic relationships in the family Resedaceae. Genetica 64:185–198

    Article  Google Scholar 

  • Greilhuber J, Speta F (1976) C-banded karyotypes in the Scilla hohenackeri group, S. persica and Puschkinia (Liliaceae). Plant Syst Evol 126:149–188

  • Hayashi K, Kawano S (2000) Molecular systematics of Lilium and allied genera (Liliaceae): phylogenetic relationships among Lilium and related genera based on the rbcL and matK gene sequence data. Plant Species Biol 15:73–93

    Article  Google Scholar 

  • Hong DY (1990) Plant cytotaxonomy. Science Press, Beijing

    Google Scholar 

  • Huziwara Y (1962) Karyotype analysis in some genera of Compositae. VIII. Further studies on the chromosome of Aster. Am J Bot 49:116–119

    Article  Google Scholar 

  • İkinci N, Oberprieler C, Güner A (2006) On the origin of European lilies: phylogenetic analysis of Lilium section Liriotypus (Liliaceae) using sequences of the nuclear ribosomal transcribed spacers. Willdenowia 36:647–656

    Article  Google Scholar 

  • Kelchner SA (2000) The evolution of non-coding chloroplast DNA and Its application in plant systematics. Ann Missouri Bot Garden 87:482–498

    Article  Google Scholar 

  • Liang SY (1995) Chorology of Liliaceae (S. Str.) and its bearing on the Chinese flora. Acta Phytotaxonomica Sinica 33:27–51

    Google Scholar 

  • Liang SY, Tamura M (2000) In: Wu ZY, Raven PH (eds.) Flora of China, vol 24. Science Press/Missouri Botanical Garden Press, Beijing/St. Louis, pp 135–159

  • Lifante ZD (1996) A karyological study of Asphodelus L. (Asphodelaceae) from the Western Mediterranean. Bot J Linn Soc 121:285–344

    Google Scholar 

  • Morrison DA (2009) A framework for phylogenetic sequence alignment. Plant Syst Evol 282:127–149

    Article  Google Scholar 

  • Muratović E, Bogunić F, Šoljan D, Siljak-Yakovlev S (2005) Does Lilium bosniacum merit species rank? A classical and molecular-cytogenetic analysis. Plant Syst Evol 252:97–109

    Article  Google Scholar 

  • Muratović E, Robin O, Bogunić F, Šoljan D, Siljak-Yakovlev S (2010a) Karyotype evolution and speciation of European lilies from Lilium sect. Liriotypus. Taxon 59:165–175

    Google Scholar 

  • Muratović E, Hidalgo O, Garnatje T, Siljak-Yakovlev S (2010b) Molecular phylogeny and genome size in European Lilies (Genus Lilium, Liliaceae). Adv Sci Lett 3:180–189

    Article  Google Scholar 

  • Narayan RKJ, Rees H (1976) Nuclear DNA variation in Lathyrus. Chromosoma 54:141–154

    Article  CAS  Google Scholar 

  • Nishikawa T, Okazaki K, Uchino T, Arakawa K, Nagamine T (1999) A molecular phylogeny of Lilium in the internal transcribed spacer region. J Mol Evol 49:238–249

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T, Okazaki K, Arakawa K, Nagamine T (2001) Phylogenetic analysis of section Sinomartagon in genus Lilium using sequences of the internal transcribed spacer region in nuclear ribosomal DNA. Breed Sci 51:39–46

    Article  CAS  Google Scholar 

  • Noda S (1991) Chromosomal variation and evolution in the genus Lilium. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution, part B. Elsevier, Amsterdam, pp 507–524

    Google Scholar 

  • Nylander JAA (2004) MrModeltest 2.0. Program distributed by the author. Department of Systematic Zoology, EBC, Uppsala University, Uppsala

  • Paszko B (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Syst Evol 258:39–48

    Article  Google Scholar 

  • Patterson TB, Givnish TJ (2002) Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: Insights from rbcL and ndhF sequence data. Evolution 56:233–252

    PubMed  CAS  Google Scholar 

  • Peruzzi L, Leitch IJ, Caparelli KF (2009) Chromosome diversity and evolution in Liliaceae. Ann Bot 103:459–475

    Article  PubMed  CAS  Google Scholar 

  • Raina SN, Rees H (1983) DNA variation between and within chromosome complements of Vicia species. Heredity 51:335–346

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rønsted N, Law S, Thornton H, Fay MF, Chase MW (2005) Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Mol Phylogenet Evol 35:509–527

    Article  PubMed  Google Scholar 

  • Rudall PJ, Stobart KL, Hong WP, Conran JG, Funess CA, Kite GC, Chase MW (2000) Consider the lilies-systematics of Liliales. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO Publishing, Australia, pp 347–359

    Google Scholar 

  • Shan F, Yan G, Plummer JA (2003) Karyotype evolution in the genus Boronia (Rutaceae). Bot J Linn Soc 142:309–320

    Article  Google Scholar 

  • Siljak-Yakovlev S, Peccenini S, Muratovic E, Zoldos V, Robin O, Vallés J (2003) Chromosomal differentiation and genome size in three European mountain Lilium species. Plant Syst Evol 236:165–173

    Article  CAS  Google Scholar 

  • Smyth DR, Kongsuwan K, Wisudharomn S (1989) A survey of C-band patterns in chromosomes of Lilium (Liliaceae). Plant Syst Evol 163:53–69

    Article  Google Scholar 

  • Stace HM (1978) Cytoevolution in the genus Calotis R. Br. (Compositae: Astereae). Aust J Bot 26:287–307

    Article  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Stewart RN (1947) The morphology of somatic chromosomes in Lilium. Am J Bot 34:9–26

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Tamura MN (1998) Liliaceae. In: Kubitzki K (ed) The families and genera of vascular plants. III. Flowering plants-monocotyledons, Lilianae (except Orchidaceae). Springer, Berlin, pp 343–353

    Google Scholar 

  • Tamura MN, Yamashita J, Fuse S, Haraguchi M (2004) Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences. J Plant Res 117:109–120

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • The State Pharmacopoeia Commission of the People’s Republic of China (2000) Pharmacopoeia of the People’s Republic of China. Chemical Industry Press, Beijing

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Vanzela ALL, Ruas PM, Marin-Morales MA (1997) Karyotype studies of some species of Dalechampia Plum. (Euphorbiaceae). Bot J Linn Soc 125:25–33

    Google Scholar 

  • Venora G, Blangiforti S, Ruffini Castiglione M, Pignone D, Losavio F, Cremonini R (2002) Chromatin organisation and computer aided karyotyping of Triticum durum Desf. cv Timilia. Caryologia 55:91–98

    Google Scholar 

  • Wang FZ, Tang J (1980) Lilium L. In: Flora Reipublicae Popularis Sinicae, vol 14. Science Press, Beijing, pp 116–157

  • Watanabe K, King RM, Yahara T, Ito M, Yokoyama J, Suzuki T, Crawford DJ (1995) Chromosomal cytology and evolution in Eupatorieae (Asteraceae). Ann Missouri Bot Garden 82:581–592

    Article  Google Scholar 

  • Watanabe K, Yahara T, Denda T, Kosuge K (1999) Chromosomal evolution in the genus Brachyscome (Asteraceae, Astereae): statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. J Plant Res 112:145–161

    Google Scholar 

  • Wen J (1999) Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annu Rev Ecol Syst 30:421–455

    Article  Google Scholar 

  • Wen J (2001) Evolution of Eastern Asian–Eastern North American biogeographic disjunctions: a few additional issues. Int J Plant Sci 162(6): S117–S122 (Supplement: historical biogeography of the Northern Hemisphere (Nov. 2001))

    Google Scholar 

  • Wen J, Zimmer EA (1996) Phylogeny and biogeography of Panax L. (the Ginseng Genus, Araliaceae): inferences from ITS Sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 6(2):167–177

    Article  PubMed  CAS  Google Scholar 

  • Wen J, Shi SH, Jansen RK, Zimmer EA (1998) Phylogeny and biogeography of Aralia sect. Aralia (Araliaceae). Am J Bot 85:885–875

    Google Scholar 

  • Wu ZY, Li H, Yang CR (1994) Cytogeography and phylogeny of Lilieae. Acta Botanica Yunnanica 1994(Suppl. VI):101–112

  • Xiang QY, Soltis DE (2001) Dispersal-vicariance analyses of intercontinental disjuncts: historical biogeographical implications for angiosperms in the Northern Hemisphere. Int J Plant Sci 162: S29–S39 (Supplement: Historical Biogeography of the Northern Hemisphere (Nov. 2001))

    Google Scholar 

  • Xiang QY, Soltis DE, Soltis PS, Manchester SR, Crawford DJ (2000) Timing the eastern Asian–eastern North American floristic disjunction: molecular clock corroborates paleontological estimates. Mol Phylogenet Evol 15:462–472

    Article  PubMed  CAS  Google Scholar 

  • Zarco CR (1986) A new method for estimating karyotype asymmetry. Taxon 35:526–530

    Article  Google Scholar 

Download references

Acknowledgment

We thank Dr. Yan Yu for providing the karyotype analyses tool package (NucType ver. 1.10, http://mnh.scu.edu.cn/soft/blog/nuctype/) for this study. This work was supported by the National Natural Science Foundation of China (31070166), Doctoral Fund of Ministry of Education of China (20090181110064), the Basic Research Program from the Ministry of Science and Technology of China (Grant No. 2007FY110100) and the Research Fund for the Large-scale Scientific Facilities of the Chinese Academy of Sciences (2009-LSF-GBOWS-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song-Dong Zhou or Xing-Jin He.

Electronic supplementary material

Supplementary data: Supplementary Data is available online and consist of: (1) karyotype features based on the literatures and the present work; and (2) collection information and voucher specimen numbers; and (3) GenBank accession numbers in this work (STable 1). SFig. 1 is available to show the correlations among all asymmetry parameters in present study. Below is the link to the electronic supplementary material.

SFigure 1. The scatter matrix of ten asymmetry indexes. The symbols indicated different genera (PNG 798 kb)

Supplementary material 2 (XLS 90 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, YD., Zhou, SD., He, XJ. et al. Chromosome diversity and evolution in tribe Lilieae (Liliaceae) with emphasis on Chinese species. J Plant Res 125, 55–69 (2012). https://doi.org/10.1007/s10265-011-0422-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-011-0422-1

Keywords

Navigation