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Abstract
Fuzzy clustering methods allow the objects to belong to several clusters simultane-
ously, with different degrees of membership. However, a factor that influences the 
performance of fuzzy algorithms is the value of fuzzifier parameter. In this paper, 
we propose a fuzzy clustering procedure for data (time) series that does not depend 
on the definition of a fuzzifier parameter. It comes from two approaches, theoreti-
cally motivated for unsupervised and supervised classification cases, respectively. 
The first is the Probabilistic Distance clustering procedure. The second is the well 
known Boosting philosophy. Our idea is to adopt a boosting prospective for unsu-
pervised learning problems, in particular we face with non hierarchical clustering 
problems. The global performance of the proposed method is investigated by vari-
ous experiments.
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1 Introduction

We propose a fuzzy approach for clustering data (time) series. The goal of clustering is 
to discover groups so that objects within a cluster have high similarity among them, and 
at the same time they are dissimilar to objects in other clusters. Many clustering algo-
rithms for time series have been introduced in the literature. Since clusters can formally 
be seen as subsets of the data set, one possible classification of clustering methods can 
be according to whether the subsets are fuzzy (soft) or crisp (hard). Let D be a data set 
consisting of N series {y1, y2, ..., yN} ⊂ ℝ

n and let K be an integer, with 2 ≤ K < N , 
the goal is to partition D into CK groups. Crisp clustering methods are based on clas-
sical set theory, and restrict that each object of data set belongs to exactly one cluster. 
It means partitioning the data D into a specified number of mutually exclusive clusters 
C1, C2,⋯ , CK.

The idea of fuzzy set was conceveid by Zadeh (1965). Fuzzy clustering methods do 
not assign objects to a cluster but suggest degrees of membership to each group. The 
larger is the value of the membership value for a given object with respect to a cluster, 
the larger is the probability of that object to be assigned to that cluster. Several cluster-
ing criteria have been proposed to identify fuzzy partition in D . Among these propos-
als, the most popular method is fuzzy c-means.

Proposed by Dunn (1973) and developed by Bezdek (1981), fuzzy c-means consid-
ers each data point as a possible member of multiple clusters with a membership value. 
This algorithm is based on minimization of the following objective function:

s.t.

In the Eq. (1), m is any real number greater than 1, �ik is the degree of member-
ship of yi in the cluster k and ‖ ⋅ ‖ is any norm expressing the similarity between 
any measured data and the center. The parameter m is called fuzzifier or weighting 
coefficient. To perform fuzzy partitioning, the number of clusters and the weight-
ing coefficient have to be choosen. The procedure is carried out through an itera-
tive optimization of the objective function shown above, with the update of mem-
bership value �ik and the cluster centers ck by solving:
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The loop will stop when

where � is a small number for stopping the iterative procedure, and l indicates the 
iteration steps.

One of limitations of fuzzy c-means clustering is the value of fuzzifier m. A large 
fuzzifier value tends to mask outliers in data sets, i.e. the larger m, the more clusters 
share their objects and viceversa. For m → ∞ all data objects have identical mem-
bership to each cluster, for m = 1 , the method becomes equivalent to k-means. The 
role of the weighting exponent has been well investigated in literature.

Pal and Bezdek (1995) suggested taking m ∈ [1.5, 2.5] . Dembélé and Kastner 
(2003) obtain the fuzzifier with an empirical method calculating the coefficient 
of variation of a function of the distances between all objects of the entire data-
set. Yu et  al. (2004) proposed a theoretical upper bound for m that can prevent 
the sample mean from being the unique optimizer of a fuzzy c-means objective 
functions. Futschik and Carlisle (2005) search for a minimal fuzzifier value for 
which the cluster analysis of the randomized data set produces no meaningful 
results, by comparing a modified partitions coefficient for different values of both 
parameters. Schwämmle and Jensen (2010) showed that the optimal fuzzfier takes 
values far from the its frequently used value equal to 2. The authors introduced a 
method to determine the value of the fuzzifier without using the current working 
data set. Then for high dimensional ones, the fuzzifier value depends directly on 
the dimension of data set and its number of objects. For low dimensional data 
set with small number of objects, the authors reduce the search space to find 
the optimal value of the fuzzifier. According to the authors, this improvement 
helps choosing the right parameter and saving computational time when process-
ing large data set. In the robust learning-based algorithm proposed by Yang and 
Nataliani (2017) the same value of 2 is chosen for the weighting coefficient. On 
the basis of a robust selection analysis of the algorithm, Wu (2012) founds that 
a large value of m will make fuzzy c-means algorithm more robust to noise and 
outliers. The author suggested to use value of the fuzzifier ranging between 1.5 
and 4. By exploiting the quantum concept, Patel et  al. (2015) proposed an evo-
lutionary fuzzy c-means where the value of fuzzification index is represented in 
terms of quantum bits. Dotto et al. (2017) for choosing the fuzzification param-
eter monitor simultaneously the proportion of hard assignments and the relative 
entropy of fuzzy weights. By plotting the proposed procedure for different values 
of m, the user can set the degree of fuzzification by considering a compromise 
between the above mentioned quantities. Within the framework of robust cluster-
ing presented in Cerioli et  al. (2018), Farcomeni and Dotto (2018) generalized 
Average Within-Cluster Distance to fuzzy clustering by setting a grid of values 
for the parameters and choosing m = 1.3 . In order to increase efficiency of deriv-
ing a valid fuzzifier value, Cho (2022) introduced the Interval type-2 possibilistic 
fuzzy C-means in which suitable fuzzifier values for each data are obtained by an 
algorithm that includes the analysis of histogram and the Gaussian Curve Fitting 
method.

maxik|𝜇
(l+1)

ik
− 𝜇

(l)

ik
| < 𝜀,
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Since the weighting coefficient determines the fuzziness of the resulting clas-
sification, we propose a method that is independent from the choice of the fuzzi-
fier. It comes from two approaches, theoretically motivated for unsupervised and 
supervised classification cases respectively. The first is the Probabilistic Distance 
(PD) clustering procedure defined by Ben-Israel and Iyigun (2008). The second is 
the well known Boosting philosophy. From the PD approach we took the idea of 
determining the probabilities of each series to any of the k clusters. As this prob-
ability is unequivocally related to the distance of each series from the centers, there 
are no degrees of freedom in determine the membership matrix. From the Boost-
ing approach (Freund and Schapire 1997) we took the idea of weighting each series 
according some measure of badness of fit in order to define an unsupervised learn-
ing process based on a weighted re-sampling procedure. As a learner for the boost-
ing procedure we use a smoothing spline approach. Among the smoothing spline 
techniques, we chose the penalized spline approach (Eilers and Marx 1996) because 
of its flexibility and computational efficiency. This paper is organized as follows: 
Sect. 2 contains our proposal, in Sect. 3 the results of some experimental evaluation 
studies are carried out and some concluding remarks are presented in Sect. 4.

2  Boosted‑oriented probabilistic clustering of time series

2.1  The key idea

The boosting approach is based on the idea that a supervised learning algorithm 
(weak learner) improves its performance by learning from its errors (Freund 
and Schapire 1997). It consists of an ensemble method that works with a resam-
pling procedure (Dietterich 2000). Our idea is to adapt the boosting philosophy 
to unsupervised learning problems, specially to non hierarchical cluster analysis. 
In such a case there not exists a target variable, but as the goal is to assign each 
instance (i.e. a series) to a cluster, we have a target instance. In other words, we 
switch from a target variable to a target instance point of view. We take each 
cluster center as a representative instance for each series and we assume as a 
synthetic index of the global performance a loss function to be minimized. The 
probability of each instance to belong to a given cluster is assumed to be the 
individual contribution of a given instance to the overall solution. In contrast to 
the boosting approach, the larger the probability of a given series to be member 
of a given cluster, the larger the weight of that series in the resampling process. 
As a learner either a smoothing spline techniques or a regression model can be 
used. We decided to use a penalized spline smoother because of its flexibility and 
computational efficiency. To define the probabilities of each series to belong to 
a given cluster we use the PD clustering approach (Ben-Israel and Iyigun 2008). 
This approach allows us to define a suitable loss function and, at the same time, 
to propose a fuzzy clustering procedure that does not depend on the definition of 
a fuzzifier parameter.
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2.2  P‑splines smoothing

Suppose we observe a set of data {x, y}n
t=1

 , where the vector x indicates the inde-
pendent variable (e.g. time) and y is modeled as y = � + � where � is a random 
error term and � is a smooth signal. We can estimate the mean function using 
penalized splines (or simply P-splines) (Eilers and Marx 1996). P-splines are 
flexible smoothers combining B-spline bases (De Boor 1978) and discrete differ-
ence penalty operators. In order to estimate � , we need to solve of the penalized 
least squares problem

where B is a B-spline basis matrix built on a generous set of equally spaced internal 
knots (Eilers and Marx 2010), a is a vector of spline coefficients and D(d) is d−order 
difference operator (usual choices are d = 2 or 3). The regularization parameter � 
tunes the amount of smoothing applied to the final fit (for � → ∞ the estimates tend 
to be constant while for � → 0 the smoother tends to interpolate the observations). 
The parameter � must be selected using a suitable procedure. Common criteria 
are, the Akaike Information Criterion (AIC) and the (generalized) cross validation 
method. Here, we adopt the V-curve method proposed by Frasso and Eilers (2015). 
Differently from the aforementioned alternatives, the V-curve is computationally 
efficient (because does not require the computation of the effective degrees of free-
dom) and ensures a more robust fit against possible noise serial correlation.

2.3  PD clustering approach

Let D be a dataset consisting of N series {y1, y2, ..., yN} ⊂ ℝ
n and let Ck be k − th 

cluster, with k ∈ (1,K) , partitioning D . We suppose that each series has the same 
domain of length n. If the time series included in the sample are not aligned (i.e., the 
start and end point of the domain are not the same) we need a pre-processing step. 
To this end, we suggest to adopt the parametric time warping (PTW) framework 
(Eilers 2004).

At each cluster Ck is associated a cluster center ck , with k = 1, ...,K.
Let di,k = d(yi, ck) be a distance function of the i − th series from the k − th cluster 

center.
Let Pi,k = P(yi, Ck) be the probability of the i − th series belonging to the k − th 

cluster.
For each series y ∈ D and each cluster Ck , we assume the following relation 

between probabilities and distances (Ben-Israel and Iyigun 2008):

The constant in (2) only depends on series y and it is independent of the cluster 
k. Equation (2) allows to define the membership probabilities as (Heiser 2004; Ben-
Israel and Iyigun 2008):

argmin
a

S(a) = ‖y − �(a)‖2 + Pen(a) = ‖y − Ba‖2 + �‖D(d)a‖2

(2)Pi,kdi,k = constant(i).
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2.4  The algorithm

Since the probabilities as defined in Eq. (3) sum up to one among the clusters, 
we use the quantity 

∏K

k=1
Pi,k as a measure of compliance representation of the 

i − th series with respect to the overall solution of the clustering procedure. It is 
easy to note that 

∏K

k=1
Pi,k = 0 if the i − th series exactly matches with one of the 

K cluster centers, as well as ∏K

k=1
Pi,k = K−K if there is maximum uncertainty in 

assigning the i − th series to any cluster center. For this reason, to measure the 
clustering compliance solution, we adopted a Badness of Clustering (BC) index 
defined as follows:

Equation (4) is a synthetic uncertainty clustering measure: the lower its value, 
the better the solution. It equals zero when there is a perfect solution (i.e., each 
series has probability equal to one to belong to some cluster center). The maxi-
mum possible value of Eq. (4) is 1, when each series has probability equal to K−1 
to belong to each of the K cluster. The BC index allows to compare the overall 
clustering solution when the number K of the clusters differs.

From Eq. (4) we define the following loss function to be minimized as

Let �i,k = di,k∕maxK
k=1

di,k be the contribution of the i − th series to generate the 
k − th cluster.

Let � be a N × K indicator matrix whose entries are 1 if Pi,k > Pi,h ( k, h = 1,… ,K , 
k ≠ h ) and −1 otherwise.

We define the weight of the i − th series for the k − th cluster as

For each cluster k, the weights are first normalized in this way:

then within each cluster we set

(3)Pi,k =

∏
j≠k di,j

∑K

k=1

∏
j≠k di,j

(4)BC =
1

N

N∑

i=1

(
K∏

k=1

Pi,k

)
KK .

(5)� =

N∑

i=1

(
K∏

k=1

Pi,k

)
KK .

wi,k = ��i,kΓi,k .

w⋅

i,k
=

wi,k

∑K

h=1
wi,h

,
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For each cluster k, a sample L(k) is extracted with replacement from D , taking 
in account Eq. (6). Then the cluster centers ĉk = Bâ , k = 1,… ,K are estimated by 
using a P-spline smoother. These centers are then used to compute the membership 
probabilities according to Eq. (3) for the next iteration. The cluster centers are re-
estimated and adaptively updated with an optimal spline smoother.

The choice of the metric depends on the nature of the series, the optimal P-spline 
smoothing procedure frames our approach in the class of model-based clustering 
techniques but any suitable smoother can be adopted. Box 1 shows the pseudo-code 
of our the Boosted-Oriented Smoothing Spline Probabilistic Clustering algorithm. 

The procedure described in Box 1 is repeated a certain number of time due to the 
sensitivity of final solution to the random choice of cluster center.

(6)Wi,k =
w⋅

i,k

∑N

i=1
w⋅

i,k

.
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3  Experimental evaluation

To evaluate the performance of the proposed algorithm, we conducted three 
experiments. In estimating the optimal P-splines smoother, always we used the 
V-curve criterion to select the optimal � parameter, and we used a number of 
interior knots equal to min(

n

4
;40) , in which n is the length of time domain, as sug-

gested by Ruppert (2002). As a measure of goodness of fuzzy partitions, we use 
the Adjusted Concordance Index (ACI) proposed by D’Ambrosio et  al. (2021), 
which is the fuzzy extension of the Adjusted Rand Index (Hubert and Arabie 
1985).

As true fuzzy partition, we always computed the true cluster centers with an 
optimal P-spline smoother, and then we computed the true probabilities by apply-
ing Eq. (3).

3.1  Simulated data

As a first experiment, we generated K = 6 clusters of numerical series at n = 10 
equally spaced time points in [0,  1] as described in Coffey et  al. (2014). Dis-
tinct cluster specific models were used (subscript i refers to the series, subscript j 
refers to the time domain):

where:
�i ∼ N(

√
2;�2

e
) with �2

e
= 0.08 , �i ∼ N(4 ∗ �;�2

e
) , �i ∼ N(0.75;�2

e
),

�i ∼ N(1;�2
e
) , �i ∼ N(0;�2

e
) , �i ∼ N(2;�2

e
) , �i ∼ N(2;�2

v
) with �2

v
= 0.85 , 

�i ∼ N(4;�2
v
) , �i ∼ N(6;�2

e
) , �i ∼ N(0;�2

u
) with �2

u
 ranging from 0.3 to 1 and �ij is an 

autoregressive model of order 1.
Cluster means were chosen to reflect the situation where there are series that 

show little variation in value over time (as given by cluster 3) and series which 
have distinct signal over time. Cluster sizes were equal to 90, 50, 100, 25, 60 and 
35, for cluster 1, 2, 3, 4, 5, 6 respectively, giving a total number of 360 simulated 
series. Data set is plotted in Fig.1.

Given the nature of the simulated series, we are interested in the similarity of 
the shape of the series. For this reason the chosen metric was the Penrose shape 
distance (Penrose 1952), defined as:

y
(1)

ij
= �i + sin(�i×�×xij) + �i + �ij

y
(2)

ij
= xij + (�i)

−3 + �i + �i + �ij

y
(3)

ij
= �i + �i + �ij

y
(4)

ij
= �i + cos(�i×�×xij) + �i + �ij

y
(5)

ij
= �i − �i× exp(−�i×xi) + �i + �ij

y
(6)

ij
= −3(xij − 0.5) + �i + �ij
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where d2
i,j is the squared average Euclidean distance coefficient and 

q2
ij
=

1

n2
i

�∑ni
j=1

yji −
∑ni

j=1
cjk

�2

.
We performed five analysis with 100,  500,  1000,  5000 and 10000 boost-

ing iterations. In all cases we set 10 random starting points. Figure 2 shows the 
behavior of the BC function as defined in Eq. (4) during the boosting iterations. 
In this case the BC values appear to be non-increasing as the number of iterations 
increases. The values of the BC function are equal to 0.3615, 0.2783, 0.2643, 0.2
584, 0.2583 for 100, 500, 1000, 5000 and 10000 boosting iterations respectively. 
All the solutions return in fact the same results in terms of estimated centers: in 
example, Fig. 3 shows the estimated cluster centers for each cluster as returned by 
the first analysis. 

For this data set, by using the Penrose shape distance, the ACI is equal to 
0.8599,  0.8954,  0.9059,  0.9178 and 0.9194 for the solutions with respectively 
100, 500, 1000, 5000 and 10000 boosting iterations. Even if the solutions in terms 
of “hard” clustering are the same, the difference in terms of adjusted concordance 
index indicates that the partitions returned by the proposed algorithm are really 
close to the true one. The true value of the BC index is 0.1977.

(7)di,j =

√
ni

ni − 1

(
d2
i,j
− q2

ij

)
,

Fig. 1  Data set generated for simulation study
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3.2  Synthetic data set

synthetic.tseries data set is freely available from the TSclust R-package 
Montero and Vilar (2014). synthetic.tseries data consist of three partial realiza-
tions of length n = 200 of six first order autoregressive models. Figure 4 shows 
separately the six groups of series.

Subplot (a) shows an AR(1) process with moderate autocorrelation. Subplot 
(b) contains series from a bi-linear process with approximately quadratic condi-
tional mean. Subplot (c) is formed by an exponential autoregressive model with 
a more complex non-linear structure. Subplot (d) shows a self-exciting thresh-
old autoregressive model with a relatively strong non-linearity. Subplot (e) con-
tains series generated by a general non-linear autoregressive model and subplot 
(f) shows a smooth transition autoregressive model presenting a weak non-lin-
ear structure. As we did not generated these series we do not show completely 
the simulation setting. For more details about the generating models we refer to 
(Montero and Vilar 2014, p. 24).

Assuming that the aim of cluster analysis is to discover the similarity between 
underlying models, the “true” cluster solution is given by the six clusters involv-
ing the three series from the same generating model. Given the nature of the 
data set considered, we use a periodogram-based distance measure proposed by 

Fig. 2  BC function progress through: a = 100 boosting iterations; b = 500 boosting iterations; c = 1000 
boosting iterations; d = 5000 boosting iterations; e = 10000 boosting iterations
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Caiado et al. (2006). It assesses the dissimilarity between the corresponding spec-
tral representation of time series.

By following also the suggestion of Montero and Vilar (2014), an interest-
ing alternative to measure the dissimilarity between time series is the frequency 
domain approach. Power spectrum analysis is concerned with the distribution of 
the signal power in the frequency domain. The power-spectral density is defined 
as the Fourier transform of the autocorrelation function of i − th series. It is a 
measure of self-similarity of a signal with its delayed version. The classic method 
for the estimation of the power spectral density of an n-sample record is the peri-
odogram introduced by Schuster (1897).

Let y and y′ be two time series of length n.
Let fj = 2�j∕n , j = 1,… , n∕2 in the range 0 to � , be the frequencies of the 

series.
Let PSDy(fj) =

1

n

∑n

t=1
�yt(fj) exp (−�tfj)�2 and PSDy

� (fj) =
1

n

∑n

t=1
�y�

t
(fj) exp (−�tfj)�2 be the 

periodograms of series y and y′ , respectively.

Fig. 3  Simulated data: recognized bari-center
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Finally, the dissimilarity measure between y and y′ proposed by Caiado et  al. 
(2006) is defined as the Euclidean distance between periodogram ordinates:

We performed our analysis by setting 800 boosting iterations and 10 random starting 
points.

Table 1 shows the results of applying our algorithm to the synthetic.tseries data 
set. Each series is assigned to the estimated cluster according to the value of the 
membership probability matrix (i.e., the largest membership probability value). In 
order to obtain the ACI, we computed the true cluster centers with a periodogram 

(8)dy,y� =

√√√√
(n∕2)∑

j=1

[PSDy(fj) − PSDy
� (fj)]

2.

Fig. 4  Synthetic.tseries data set (color figure online)

Table 1  Confusion matrix from 
clustering on synthetic.tseries 
data set

Estimated clusters

C1 C2 C3 C4 C5 C6

True clusters a 0 0 0 0 0 3
b 0 1 0 2 0 0
c 3 0 0 0 0 0
d 0 3 0 0 0 0
e 0 0 3 0 0 0
f 0 0 0 0 3 0
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modeled by P-spline, then we computed the true probabilities by applying Eq. (3) by 
using the periodogram-based distance as in Eq. (8).

The ACI is equal to 0.9698. Even if the solutions in terms of “hard” clustering 
seems to be excellent (since only one series is misclassified), the difference in terms 
of ACI indicates that the partitions returned by the algorithm are really close to the 
true one.

3.3  A real data example

The “growth” data set is freely available from the internal repository of the R-pack-
age fda (Ramsay et al. 2010). This data set comes from the Berkeley Growth Study 
(Tuddenham 1954). Left hand side of Fig. 5 shows the growth curves of 93 children, 
39 boys and 54 girls, starting by the age of one year till the age of 18. The right 
hand side of the same figure displays the corresponding growth velocities. In the 
framework of cluster analysis this data set was mainly used for problems of cluster-
ing of misaligned data (Sangalli et al. 2010; Vitelli et al. 2010). We performed two 
analysis with 800 boosting iterations and with 10 random starting points with k = 2 . 
In the first partitioning analysis we used the Euclidean distance. The estimated cent-
ers of both the growth curves and the growth velocity curves are displayed respec-
tively in the left and right hand side of Fig. 6. As it can be noted, Euclidean dis-
tance discriminates between children growing more and children growing less. This 
can be appreciated by looking at left hand side of the same figure. On average, as 
expected, boys grow more than girls. Nevertheless, Euclidean distance does not 
seem the right measure to be used in such a case. Probably researchers are interested 
in the shape of both growth and growth velocity curves during the years. For this 
reason, we repeated the analysis by using the Penrose shape distance as defined in 

Fig. 5  Growth curves (left hand side) and growth velocity curves (right hand side) of 93 children from 
Berkeley Growth Study data
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Eq. (7). Figure 7 shows the estimated centers for both the growth and the growth 
velocity curves. The recognized centers are really similar to the ones obtained by 
Sangalli et  al. (2010) and Vitelli et  al. (2010). Firstly, as confirmed by looking at 
tables 4 and 5 with respect to tables 2 and 3, there is a neat separation of boys and 
girls. Secondly, by looking at right hand side of Fig. 7, boys start to grow later but 
they seem to have a more pronounced growth, as it can be noticed by looking at the 

Fig. 6  Estimated centers of growth curves (left hand side) and growth velocities (right hand side): 
Euclidean distance

Fig. 7  Estimated centers of growth curves (left hand side) and growth velocities (right hand side): Pen-
rose shape distance
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higher peak in correspondence of 15 year. The ACI is equal to 0.8884 and 0.8240 by 
using the Euclidean distance for the partitions of growth and growth velocity curves 
respectively. The ACI is equal to 1.000 and 0.9246 by using the Penrose shape dis-
tance for the partitions of growth and growth velocity curves respectively.      

4  Concluding remarks

In this paper we have presented a boosted-oriented probabilistic clustering of time 
series. Unlike the methods proposed so far in the literature, our methodology pro-
duces a final cluster that is independent of the choice of the fuzzifier. Our proposal 
merged two approaches, theoretically motivated for respectively unsupervised and 

Table 2  Confusion matrix 
of growth curves with the 
Euclidean distance. Series 
have been assigned to the 
clusters according the values 
of membership probabilities 
computed as in Eq. (3)

Cluster 1 Cluster 2

Boys 23 16
Girls 16 38

Table 3  Confusion matrix of 
growth velocity curves with 
the Euclidean distance. Series 
have been assigned to the 
clusters according the values 
of membership probabilities 
computed as in Eq. (3)

Cluster 1 Cluster 2

Boys 31 8
Girls 9 45

Table 4  Confusion matrix 
of growth curves with the 
Penrose shape distance. Series 
have been assigned to the 
clusters according the values 
of membership probabilities 
computed as in Eq. (3)

Cluster 1 Cluster 2

Boys 0 39
Girls 52 2

Table 5  Confusion matrix of 
growth velocity curves with 
the Penrose shape distance. 
Series have been assigned to the 
clusters according the values 
of membership probabilities 
computed as in Eq. (3)

Cluster 1 Cluster 2

Boys 36 3
Girls 4 49
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supervised classification cases, to propose a new non-hierachical fuzzy clustering 
algorithm. From the Probabilistic Distance (PD) clustering (Ben-Israel and Iyigun 
2008) approach we shared the idea of determining the probabilities of each series 
to any of the k clusters. As this probability is directly related to the distance of each 
series from the cluster centers, there are no degrees of freedom in determine the 
membership matrix.

From the Boosting approach (Freund and Schapire 1997) we shared the idea of 
weighting each series according some measure of badness of fit in order to define 
an unsupervised learning process based on a weighted resampling procedure. In 
contrast to the boosting approach, the higher the probability of a given instance to 
be member of a given cluster, the higher the weight of that instance in the resam-
pling process. As a learner we can use any smoothing spline technique. We used 
a P-spline smoother (Eilers and Marx 1996) because of its nice properties and we 
choose the optimal spline parameter with the V-curve criterion as defined by Frasso 
and Eilers (2015). In this way we defined a suitable loss function and, at the same 
time, we proposed a fuzzy clustering procedure that does not depend on the defini-
tion of a fuzzifier parameter.

To evaluate the performance of our proposal, we conducted three experiments, 
one of them on simulated data and the remaining two on data sets known in litera-
ture. The results show that our Boosted-oriented procedure show good performance 
in terms of data partitioning. Even if the final fuzzy partition is sensitive to the 
choice of a distance measure, it is independent on any other input parameters. This 
consideration allows to define a suitable true fuzzy partition with which evaluate the 
final solution in terms of Adjusted Concordance Index (D’Ambrosio et  al. 2021). 
The weigthed re-sampling process allows each series to contribute to the composi-
tion of each cluster as well as the adaptive estimation of cluster centers allows the 
algorithm to learn by its progresses.

It is worth-nothing that, as in any partitioning problem, the choice of the distance 
measure can influence the goodness of partition.
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