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Abstract
The first objective of the paper is to implement a two stage Bayesian hierarchical

nonlinear model for growth and learning curves, particular cases of longitudinal

data with an underlying nonlinear time dependence. The aim is to model simulta-

neously individual trajectories over time, each with specific and potentially different

characteristics, and a time-dependent behavior shared among individuals, including

eventual effect of covariates. At the first stage inter-individual differences are taken

into account, while, at the second stage, we search for an average model. The

second objective is to partition individuals into homogeneous groups, when inter

individual parameters present high level of heterogeneity. A new multivariate

partitioning approach is proposed to cluster individuals according to the posterior

distributions of the parameters describing the individual time-dependent behaviour.

To assess the proposed methods, we present simulated data and two applications to

real data, one related to growth curve modeling in agriculture and one related to

learning curves for motor skills. Furthermore a comparison with finite mixture

analysis is shown.

Keywords Individual differences � Bayesian mixed model � Motor

control � Growth curve � Cluster analysis

1 Introduction

Behavioral science faces a dilemma: how to model individual differences without

treating every individual as entirely unique? Models that impose uniformity on the

population may miss significant, theoretically meaningful differences between

individuals. But modeling every individual completely independently is
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incompatible with scientific generalization and looses all the information about what

they have in common (Samuels 2012). Recent literature has highlighted the risks of

modeling aggregated data without considering possible individual differences. Estes

(1956) was a pioneer in using formal modeling approaches to build an understand-

ing of the fundamental properties of human cognition and stated that the form of the

individual functions or the distribution of individual parameters rarely can correctly

be inferred from aggregated data, i.e. obtained by average the data at each point and

look for a curve on grouped data. On the other hand, Cohen et al. (2008)

demonstrated conditions in which group analysis outperforms individual analysis,

for example due to the difficulties or impossibility to collect much data from an

individual for each condition.

Longitudinal studies, where data consist of measures repeated over time from the

same unit, e.g., an individual (Villarroel et al. 2009), emphasize changes within

individuals rather than differences between individuals, which is the focus of cross-

sectional studies. Growth and learning curve models are particular cases of

longitudinal data. Growth curve data consist of repeated measurements of a growth

process over time among a population of individuals. Flexibility of growth curve

modelling allows to simultaneously analyze both within-subject effects and

between-subject effects.

Similarly, a learning curve is defined as a mathematical description of subject’s

performance in repetitive tasks. Despite many studies on learning analyze

performances averaged across participants (Newell and Rosenbloom 1993), inter-

individual differences in the ability to learn new tasks have long been observed

(Chapman 1919). Thus, learning curves show an inherent hierarchy related to the

individual performance (Rice and Leyland 1996). The confounding nature of

averaging becomes serious when the model of acquisition process is approximated

by a group learning curve, rather than the curve typical of the individuals (Gallistel

et al. 2004). In contrast, measures of subject-specific, or within-subject change,

allow to understand how people differ from each other when changing over time. It

is, thus, possible to model individual trajectories over time, and to compare these

trajectories across individuals and groups (Oravecz and Muth 2018).

Models proposed for longitudinal data include multilevel models, mixed models,

latent growth models (Duncan et al. 2006), and random coefficient models

(Raudenbush 2001). When the function that depends on parameters of interest is

a non-linear function, nonlinear mixed-effects models have been introduced.

However, they are considerably more difficult and computationally intensive to fit

because, due to nonlinearity, there are no close-form solutions for the temporal

parameters (Davidian and Giltinan 1995, 2003). To model longitudinal data, a

Bayesian approach is attractive, as it has some unique advantages while its major

limitation due to its high computational complexity is being progressively overcome

by the dramatic increase recently seen in computing power (Zhang et al. 2007;

Oravecz and Muth 2018; Ghosh et al. 1997). The primary benefit of using Bayesian

approaches lies in their ability to generate the full posterior distribution of the

parameters, without additional constraints or assumptions on prior distributions, as

in the frequentist method, and on variables, which are allowed to depart from the

standard normal paradigm (Davidian and Giltinan 1995). Fong et al. (2010) review
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different approaches to Bayesian mixed model. In Cafarelli et al. (2019) a Bayesian

nonlinear hierarchical model for growth curve in marine species has been proposed.

Additionally, nonparametric regression with splines has high flexibility because the

data is expected to find its regression curve estimation form without being

influenced by the researcher’s subjectivity (Welham 2009; Becher et al. 2009;

Green and Silverman 2019; Lestari et al. 2012).

Here, we aim at estimating individual learning or growth curves with nonlinear

time dependence and characterizing inter-individual differences. To address the first

objective, we propose a method based on a two stage Bayesian hierarchical model.

In the first stage units are the repeated measurements, and the specific nonlinear

curve of each individual is described. The specified curve include eventual effect of

covariates. In the second stage, an overall model is estimated where the units are all

the individuals. To characterize inter-individual differences in learning processes

and growth curves, our second objective, we partition individuals into homogeneous

groups. Previous studies have addressed the issue of individual differences by

focusing on individual data (Cohen et al. 2008), clustering to identify groups of

subjects (Lee and Webb 2005), using hierarchical random-effect models to allow for

continuous variation between subjects (Rouder and Lu 2005; Shiffrin et al. 2008).

Different methods for clustering longitudinal data have been proposed, including

variants of k-means (Tarpey and Kinateder 2003; Genolini et al. 2015) and various

model-based classification methods relying on mixture models (Muthén and

Shedden 1999; James and Sugar 2003; Paddock and Savitsky 2013), or Bayesian

Gaussian mixture model (Vimal et al. 2020). We propose to partition individuals

according to the posterior distributions of the parameters describing the curve,

rather than according only to the temporal pattern (Genolini et al. 2015). The

method then captures both the entire behaviour through time and the uncertainties

about the parametric time curve. The main innovation of our method is the

computation of the overlap between posterior distributions as the measure of

similarities used to partition individuals, which provides a novel approach for

clustering longitudinal data.

The paper is organized as follows. In Sect. 2 we introduce a hierarchical

Bayesian framework for individual longitudinal data, in the particular case of

growth and learning curves. A Bayesian approach allows individual data to be

modeled jointly, with an aggregate model at the second stage. On the other hand, the

flexibility of a Bayesian approach can be exploited easily to include linear and

nonlinear component of the independent variables, error distribution for the

response variables other than Gaussian and effects of covariates. Bayesian

approaches also explicitly model the variation in parameters across individuals,

making them superior to approaches that model each individual separately. The

natural correlation among the measurements within an individual is thus taken into

account. In Sect. 3 we study the posterior distributions of the individual parameters.

The logical foundation is that the task of comparing units becomes the task of

comparing the distribution of parameters of individual trajectories. Following a

Bayesian approach, individuals are compared according to their individual posterior

distributions. Thus, individual differences or similarities are investigated through

the distance among posterior distributions. Section 3.1 is dedicated to the
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description of two methods to measure the overlap of multivariate distributions.

Once the overlap of the posterior distributions is defined as a measure of distance (or

similarities) between individuals, they can be partitioned through a hierarchical

agglomerative clustering approach. Sections 4 and 5 focus on two example

applications of the method to growth curve modeling in agriculture and motor

learning. In Sect. 6 a sensitivity analysis is performed, model evaluation is

presented and results on simulated data are shown. In Sect. 7 finite mixture

modeling is compared with the proposed method. Finally, in Sect. 8 we discuss the

significance of the methods introduced.

2 Bayesian hierarchical model for longitudinal data

We propose a two stage Bayesian hierarchical model for longitudinal data.

According to our model, at the first stage the individual response variable Y is

assumed distributed according to a distribution belonging to the exponential family,

in particular Yij is the response variable of individual i at trial (or time) j.
The expected value, or a function g of the expected value (g is any of the usual

link function) is a function of j, either time o trial, and, eventually, of P-dimensional

vector of covariates Xij:

g EðYijÞ
� �

¼ f ðj;Xij; ai; bÞ ð1Þ

Function f can be any linear or non linear function, a is the matrix of the individual

parameters (ai), each row describes the longitudinal curve of the i-subject, while b is

the vector of parameters linked to the covariates effect, bp is the parameter

describing the effect of the p-th covariate, that we assume the same between sub-

jects but it can easily be generalized to be subject specific. In the review paper of

Craig et al. (2002), a list of different learning curves as a function of repetition, as

trial number or time, is provided. This list includes curves with a variety of shapes:

linear, quadratic, cubic, power law, exponential, double exponential, logarithmic,

Gompertz, Weibul, log-linear, log-log linear and logistic. The advantage of the

Bayesian approach is its flexibility, as it allows to fit all the listed curves, as function

f() in (1), and to naturally take into account random effects.

The examples illustrated in Sects. 4 and 5 focus on two particular cases of

longitudinal data: growth curve and learning curve. In the illustrated examples, the

response variable is distributed, respectively as a Gaussian or a Binomial. The non-

linear function is a logistic function, such that the vector parameters ðaiÞ is generally
linked with the asymptote, the value at the inflection point of the curve and a scale

parameter, in the first case, and the starting performance level, the rate of learning

and final performance level, in the second case.

Prior distributions on the individual parameters and the parameters linked with

covariates effects need to be specified. We present two possible sets of prior

distributions. Defining prior distributions corresponds to specifying the second stage

of the hierarchical model, which relates individual performance to an average

performance across all the subjects, described by vector of parameters (a).
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The following prior distributions allow the component of the parameter ðaiÞ to be
correlated.

ai �MNða;RaÞ ð2Þ

Ra �WishartðX; sÞ ð3Þ

The third level is defined as:

a�MNð0;WÞ ð4Þ

Moreover for each component p of the vector b we assume the following prior

distributions:

bp �Nð0; r2pÞ ð5Þ

p ¼ 1; . . .;P

r2b � InvGammaðmrb ; krbÞ
ð6Þ

Component of the parameter (a) are the overall population parameters, describing

the overall learning or growth curve model. The posterior distribution of the matrix

R will indicate the strength of the correlation.

The following set of prior distributions replaces (2) and (3), does not consider the

possible correlation between the parameters and simplifies the computations:

ahi �Nðah; r2ahÞ ð7Þ

for h ¼ 1; 2; 3

r2ah � InvGammaðmrah ; krah Þ
ð8Þ

Then, the third level is now defined as:

ah �Nð0; s2Þ ð9Þ

When the distribution of Yij has a scale parameter, r2i , the following distribution is

considered:

r2i � InvGammaðmr; krÞ ð10Þ

The distribution in (10) allows modelling intra-individual variability, r2i is defined

to be subject-specific. Intra-individual variability represents individuals’ variability

around their own mean, which is necessary to model to characterize individual

behavior (Wiley et al. 2014). Whileðr2ahÞ in (8) or possibly Ra in (2) represent the

between-subjects variance.
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3 Posterior distributions and cluster analysis

In the Bayesian framework, prior distributions need to be updated to posterior

distributions via appropriate likelihood functions. However, closed-form exact

expressions for most of the relevant joint and marginal posterior distributions are

not available. Instead, we rely here on sampling-based approximations to the

distributions of interest via Markov chain Monte Carlo (MCMC) methods: we use a

Gibbs sampler or a Metropolis-within-Gibbs algorithm to explore the posterior.

The algorithm is implemented using Just another Gibbs sampler (JAGS), using an

interface of the CRAN R-packages. JAGS is a program for Bayesian graphical

modelling developed by Plummer (2003). It is written in C?? and it allows for an

object-oriented programming style that is extremely useful in this context. JAGS has

the advantages of running on all platforms and of interfacing with R. The algorithm

is based on adaptive rejection Metropolis sampling and it generalizes adaptive

rejection sampling including a Hastings Metropolis algorithm step to address non

log-concave full conditional distributions. After a sufficient number of burn-in

iterations, the remaining samples from the MCMC simulations are used to obtain

the distribution of any function of the parameters of interest. To assess the stability

of the final estimates, multiple MCMC simulations are run with different initial

values and starting points. The convergence of the MCMC samples of the

parameters after excluding the initial burn-in samples are monitored using the R

package CODA.

These models allow to asses both the within-subject effects (e.g., assessing

change over time for one subject) and between-subjects effects. The next two

subsections illustrates two methods to measure the distance between posterior

distributions, that will be interpreted as distance between subjects. The similarities

and differences between the individual parameters posterior distributions will be

used to assess the existence of partitions.

3.1 Overlap multivariate distribution as a distance between subjects

According to model described in previous section each subject is characterized by a

vector of parameters: ðaiÞ. The closer are the values ðaiÞ to ðai0 Þ, the more similar

are subject i and subject i0. Instead of comparing only the posterior point estimates

of the individual temporal behaviour, through the distance between the vectors ðaiÞ
and ðai0 Þ, we compare the whole distribution of the parameters, taking into account

the relative uncertainties. Within each individual fit, the posterior distributions of

each component of the parameter (ai) might be strongly correlated, thus a tool to

compare multivariate distributions is necessary.

To quantify distances between the multivariate distributions of the subject i and
the subject i0, we define two measures of overlap among multivariate distributions.

They are both defined in terms of the pairwise distances between all points in the

two distributions.

1. The first one has been introduced by Gutierrez-Pena and Walker (2019). Let us

consider two multivariate distributions f 1 and f 2, and let us assume that we
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observe x1 and x2, respectively from the two distributions. We indicate with xj a
matrix of sj observations and p variables. In our context, sj is the number of

samples simulated from the posterior distribution while K is the number of

individual parameters describing the time curve. We consider one matrix

Z ¼ ½x1; x2�. For each row i of the matrix, for i ¼ 1; . . .; s1 þ s2, we look for the

closest vector among the others s1 þ s2 � 1 vectors, where closeness is defined

according to the Euclidean distance. Function v associates to each index i an
index i0 such that zi and zi0 are the closest vectors among all pairs ði; kÞ with

k ¼ 1; . . .; s1 þ s2, i.e. vðiÞ ¼ i0 if the vector zi0 is the closest to zi between all the
vectors zk. The function d is a binary function that associates to each row the

value 1 if the closest vector is a point from the same distribution, that is:

di ¼

1 vðiÞ� s1 and i� s1

1 vðiÞ[ s1 and i[ s1

0 vðiÞ[ s1 and i� s1

0 vðiÞ� s1 and i[ s1

8
>>><

>>>:

The following indexes are defined:

m1 ¼
Xs1

i¼1

dðiÞ and m2 ¼
Xs1þs2

i¼1þs1

dðiÞ:

However, if f 1 and f 2 overlap completely we would expect roughly s1=ðs1 þ s2Þ
of the observations from f 1 to be matched with observations from the same

distribution f 2. In this case, m1 would be approximately s21=ðs1 þ s2Þ. A similar

argument can be made for the observations from f 2. On the other hand, if f 1 and

f 2 do not have any point of intersection, m1 would be equal to s1.
As most approaches in the literature, we would like our measure of overlap to

take the value 0 for no overlap and the value 1 for a complete overlap. We

define index DO1, the degree of overlap of f 1 and f 2 as:

DO1 ¼ min 1;
sðs1 � m1Þ

s1s2

� �
ð11Þ

where s ¼ s1 þ s2
2. As a second measure, we propose the following empirical comparison between

multivariate distributions. If we compute all the pairwise distance of the

observation in Z, the distance matrix D can be interpreted as a block matrix

D ¼
D11 D12

D21 D22

� �

where D11 is a s1 � s1 matrix containing the pairwise distances between the

observations from f 1, D22 is a s2 � s2 matrix containing the pairwise distances

between the observations from f 2, D12 is a s1 � s2 matrix containing the cross-

distances between observations from f 1 and f 2. If f 1 and f 2 do not overlap at all,

we expect the distances in the matrices D11 and D22 to be smaller than those in
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the matrix D12 (or equivalently D21). Conversely, if f 1 and f 2 overlap

completely, the distances in D11 and D22 would be of the same order as those in

D12. The degree of overlap is then defined as the empirical overlap of the two

univariate distributions, following Inman and Bradley (1989): distribution gA is

the distribution of all the elements in D11 and D22, while gB is the distribution of

the elements in D12.

DO2 ¼
Z

R

minðgAðxÞ; gBðxÞÞdx ð12Þ

3.2 Partitioning individuals

Individuals are clustered into homogeneous groups by means of an agglomerative

hierarchical approach. As a measure of similarities and dissimilarities between

individuals, one of the two measures described above is used. Classical algorithms

such as agglomerative hierarchical clustering or the k-means algorithm are popular

but they only explore a nested subset of partitions or require specifying the number

of clusters apriori (Hartigan and Wong 1979).

There is a vast literature devoted to the issue of choosing the number of clusters,

as illustrated in McLachlan and Peel (2000), but there is no consensus on a reliable

method to determine the true number of clusters in a dataset (Everitt et al. 2001).

Although various indices have been suggested, none is completely satisfactory and

this issue remains practically unsolved. The main objective of the search for clusters

is, on one hand, homogeneity (elements in the same cluster should all look like each

other) and, on the other hand, separation (elements in different clusters should look

different from each other). Generally, model parsimony is preferred, using as few

clusters as possible. Bayesian model selection or different information criteria can

be used for this purpose, but the selection of the number of clusters is beyond the

aim of the current paper. In Vimal et al. (2020) difference between clusters is

evaluated through appropriate measures of distance.

Once defined a partition of the subjects, it is possible to define a hierarchical

Bayesian modeling under a formulation that permits the borrowing of strength

across clusters, by shrinking parameters at the second stage towards a common

parameters. There has been many studies on how to define model to allow

information borrowing within and across clusters, (Xu et al. 2020; Quintana and

Iglesias 2003; Leon-Novelo et al. 2012). The second stage of the hierarchical

model, specified in (2)-(3) or, alternatively in (7)-(8), can be redefined taken into

account the partition, such as:

ai �MNðam;RaÞ
if i 2 m� th cluster

ð13Þ

or, equivalently
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ahi �Nðahm; r2ahÞ
for h ¼ 1; 2; 3

if i 2 m� th cluster

ð14Þ

4 Application to growth of soybean plants

The example discussed in this Section illustrates an important area of application of

non linear mixed effect models: growth curve data. We considered the soybean data

described in Davidian and Giltinan (1995) and in Pinheiro and Bates (2000). The

response variable is the average leaf weight of 6 plants of two different genotypes

chosen at random from each of 8 experimental plots and measured at approximately

weekly intervals, between two and eleven weeks after planting. The two genotypes

of soybeans considered are: Plant Introduction ]416937 (P), an experimental strain,

and Forrest (F), a commercial variety. Moreover, the experiment was carried out

over three different planting years: 1988, 1989 and 1990.

20 40 60 80
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F

1988
1989
1990

yearvariety

Fig. 1 Curves for soybean growth. Average leaf weight per plant of two soybean genotypes (left) and for
three different planting years (right) as a function of time since planting. Within each year data were
obtained on eight plots of each variety of soybean
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The growth pattern of leaf weight (in grams) for two genotypes of soybeans is

illustrated in Fig. 1 as the temporal trajectories of the average leaf weight for

individual plots. It is apparent that the experimental strain yielded heavier leaves

that the commercial variety, at least on average. There also seem to be differences

between planting years, with a wider spread of the curves in 1989. Previous analyses

of these data have focused on the average growth curves (Davidian and Giltinan

1995; Pinheiro and Bates 2000), we propose an individual model for each subject.

We assume a Gaussian distribution for the weight of each plot and the same logistic

model as that in Pinheiro and Bates (2000) to explain the relation between the

expected value and the time (measured in days).

The following model is considered, with i indicating the plot and j the time:

Yij �Nðlij; r2i Þ ð15Þ

lij ¼
a1i

1þ exp ða2i � jÞ=a3ið Þ
ð16Þ

In the following equation, possible effect of covariates is added:

Yij �Nðlij; r2i Þ

lij ¼
a1i þ

P
p b

p
1X

p
ij

1þ exp
a2i þ

P
p
bp
2
Xp
ij�j

a3i þ
P

p
bp
3
Xp
ij

� � ð17Þ

The covariates used are Variety and Year that does not depend on time, so we

remove the index j in Xh
ij .

Xi, as a 5 dimensional variable is defined as dummy variables from variable Zi
defines as:

Zi ¼

1 if Variety ¼ P and Year ¼ 1988

2 if Variety ¼ P and Year ¼ 1989

3 if Variety ¼ P and Year ¼ 1990

4 if Variety ¼ F and Year ¼ 1988

5 if Variety ¼ F and Year ¼ 1989

6 if Variety ¼ F and Year ¼ 1990

8
>>>>>>>><

>>>>>>>>:

We explore two different models: expected value illustrated in (16) and expected

value illustrated in (17) and different set of prior distributions.

When a model without covariates is fitted, Figure 2 shows a comparison of the fit

of the individual model assuming prior distributions as in (7)–(10) and the fit of an

average model, where the hypothesis is that all the plants have the same growth

curve. In the Figure it is also shown the fit of the overall model from the second

stage of the hierarchical model (green line).

The posterior distribution of ahi are compared between subjects through the

percentage of overlap. Parameters a1i show the lowest percentage of overlap
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between individual specific distribution, (416 comparisons lower than 0.05, while

301 comparisons lower than 0.01), while parameters a3i show the highest percentage

of overlap between individual specific distribution (3 comparisons lower than 0.05,

while 750 comparisons greater than than 0.5). Implement the cluster analysis of

Sect. 3.2, using distance DO1 defined in (11), we obtain the results shown in Fig. 3.

The first four columns represent the partitioning according to 3 up to 6 groups. The

last two columns represent year and genotype. In each column, the color identifies

the cluster, year, or genotype. Each row represents a plant. The clusters do not

match specific years or genotypes, but it is possible to observe similarities. For

instance, plants from 16 to 23, corresponding to plants of genotype F planted in

1989, belong to same cluster.

When model in (17) is considered and 5-dummy variables are added, only b41,
corresponding to Zi ¼ 5, has a credible interval that does not contain 0, confirming

partially the results obtained with partitioning subjects. We apply the procedure

shown in Sect. 3, and the partition found does not provide further information.

Once subjects are partitioned according to partition in second column in Fig. 3, a

hierarchical bayesian model defined as in (15) and (16) with second stage as in (14)

is considered. In Fig. 4 the four fitted curves from the second stage of the
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Fig. 2 Soybean growth fitted curves. Observed soybean growth data (black) and curves fitted with the
individual model (red), the average model (blue) and the average model (green) from the second stage of
the hierarchical model
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Fig. 3 Clustering of soybean data. The first four columns show results of cluster analysis when searching
from 3 to 6 clusters. Column 5 indicates planting year and column 6 indicates genotype. Different
categories are represented by different colors
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hierarchical model are illustrated and it shows how the clustered structure will help

‘borrow strength’

5 Application to motor learning after extended practice with virtual
surgeries

The proposed algorithm is applied to experimental data describing the performance

of subjects learning a novel motor task, i.e., generating novel muscle activation

patterns to displace a cursor in a virtual environment to compensate for a

perturbation in the forces generated at the hand by arm muscles simulated using

myoelectric control (‘virtual surgery’, Berger et al. (2013)). Before the perturbation

the observed muscle activation patterns (i.e. time-series of vectors representing the

level of activation of a set of muscles) required to move the cursor in different

directions could be described as linear combinations of specific sets of time-

invariant muscle activation vectors, or spatial ’muscle synergies’. The aim of the

experiment was to compare how participants adapted to two types of perturbations

across multiple sessions. Seventeen right-handed subjects participated in the

experiments after giving written informed consent. All procedures were conducted

in conformance with the Declaration of Helsinki.

The task consisted in quickly and precisely moving a cursor over a virtual

desktop to reach one of eight targets equally spaced on a circle in the horizontal

plane. The cursor displacement from a central rest position was proportional to the

cluster 1 cluster 2

10 20 30 40 50 60 70 80 90
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15

20

25

30
cluster 3 cluster 4

day

w
ei
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g]

Fig. 4 Soybean growth fitted curves. Average model from the second stage of the hierarchical model:
subjects partitioned in 4 clusters
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sum of the muscle pulling forces estimated, in real-time, from the activity of 15

shoulder and elbow muscles of the right arm, collected with bipolar wireless surface

electromyographic sensors. The distance of the targets from the rest position

corresponded to a force magnitude equal to 20% of the maximum voluntary force.

Participants performed 3 sessions in different days, each composed of three phases:

baseline, perturbation, and washout. During the perturbation phase the muscle

pulling could be altered according to one of two types of virtual surgeries. One type

was incompatible with the muscle synergies identified in each subjects in the

baseline phase and required learning of new synergies to perform the task. The

second type was compatible with the muscle synergies and only required new

synergy combinations. In each session, during the perturbation phase each

participant performed 288 reaching trials, subdivided in 36 sets of trials cycling

through the 8 targets, in random order. The seventeen participants were randomly

assigned to one of two groups who were exposed to either an incompatible virtual

surgery (participants 1–9) or a compatible virtual surgery (participants 10–17).

To assess and compare the ability of the participants to overcome compatible and

incompatible surgeries and, thus, to improve their performance, the fraction of trials

in which the cursor reached the target during each cycle in the perturbation phase

was considered. Let Yijkh be the binary response variable of subject i at cycle (time)

j, h is the target index for each cycle, and k the experimental session in one of three

different days ðk ¼ 1; 2; 3Þ. We assume that the relation between success/failure

probability and the time is non linear, as the following:

Yijkh �BernoulliðpijkÞ

logitðpijkÞ ¼ a1ik þ a2ik
1

1þ expð�a3ikðj� t0kÞÞ
ð18Þ

Equation (18) is an extension of Equation (1) since it depends on an extra index, k,

representing the day (experimental session). Parameters a3ik are constrained to be

positive. According to this model each subject is characterized by nine parameters,

as ða1ik; a2ik; a3ikÞ depend also on k, the day of the experimental session, with

k ¼ 1; 2; 3. The area of the overlapping region between posterior distributions of

each pair of subjects is empirically computed. The parametersða3ikÞ show high

degree of overlap between individual distributions. In contrast, parameters ða2i1Þ,
linked to the final performance at the end of each session, show the highest inter-

individual differences.

We run a second model in which t0k , that represents the inflection point of the

learning curve at day k, is also a random variable, with the following prior

distributions:
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t0i1 �Uniformð1; 36Þ
t0i2 �Uniformð37; 72Þ
t0i3 �Uniformð73; 108Þ

Assuming that the inflection point may vary across subjects, i.e. t0ik, Equation (18)

can be rewritten as:

logitðpijkÞ ¼ a1ik þ a2ik
1

1þ expð�a3ikðj� t0ikÞÞ
ð19Þ

Moreover, parameters ða3ikÞ encounter problems in reaching convergence, we run the

following model, letting a3k be constant for each subject:

logitðpijkÞ ¼ a1ik þ a2ik
1

1þ expð�a3kðj� t0ikÞÞ
ð20Þ

Again, as in the previous example, we include eventual effect of covariates,

assuming trial and day independent, and modify the equation in (19) as follows:

logitðpijkÞ ¼ ða1ik þ
X

p

bp1kX
p
i Þ þ

ða2ik þ
P

p b
p
2kX

p
i Þ

1þ expð�ða3ik þ
P

p b
p
3kX

p
i Þðj� t0ikÞÞ

ð21Þ

We introduce one covariate, X, binary variable indicating compatible and incom-

patible, model in (21) is rewritten as:

logitðpijkÞ ¼ ða1ik þ b1kXiÞ þ
ða2ik þ b2kXiÞ

1þ expð�ða3ik þ b3kXiÞðj� t0ikÞÞ
ð22Þ

Two different sets of prior distributions can be assumed, as shown in Sect. 2:

ahik �Nðahk ; r2ahÞ ð23Þ

r2ah � InvGammaðmrah ; krah Þ
for i ¼ 1; . . .; n h ¼ 1; 2; 3

ð24Þ

ahk �Nð0; s2Þ ð25Þ

bhk �Nð0; r2bhkÞ ð26Þ

r2bhk � InvGammaðmrb ; krbÞ
for h ¼ 1; 2; 3 k ¼ 1; 2; 3

ð27Þ

In alternative, the following prior can be assumed:

ðaikÞ�MNðak;RÞ ð28Þ
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R�WishartðX; sÞ ð29Þ

ak �MNð0;WÞ ð30Þ

As an alternative, we used a spline approach to explain the motor learning and the

performance at each cycle. We follow a Bayesian implementation as presented in

Stenglein and Van Deelen (2016) and Crainiceanu et al. (2005), where it is provided

background, implementation, and R (Yan et al. 2000) and WinBUGS (Spiegelhalter

et al. 2003) code for Bayesian analysis of penalized spline regression. We modified

their code for our model, and refer to Ruppert et al. (2003) and Crainiceanu et al.

(2005) for additional details. The general methodology of semiparametric modeling

using the equivalence between penalized splines and mixed models is presented in

Ruppert et al. (2003), we focus on low-rank thin-plate splines which tend to have

very good numerical properties. The model is as follows:

Yijkh �BernoulliðpijkÞ

logitðpijkÞ ¼ b0ik þ
XH

h¼1

bhik j j� jh j3
ð31Þ

where ðbhikÞ is the vector of regression coefficients, and j1\j2\. . .\jH are fixed

knots. We consider H ¼ 10, and jh is the sample quantile of x’s corresponding to

probability h=ðH þ 1Þ.
In Fig. 5 the observed success probability values (black lines and markers) of

each subject is compared with the individual logistic non linear model (red lines),

with prior distributions in (23)–(27), the the overall logistic non linear model (blue

lines) and the fitted curve according to splines interpolation as in (31).

Subjects are then partitioned according to the method illustrated in Sect. 3.1.

Partitions are obtained using either distance DO1, in (11) or DO2, in (12). The

partitions are slightly dependent on the distance or the prior distributions assumed.
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Fig. 5 Curves for learning a novel motor skill. Observed probability of success over time (cycles, black),
individual logistic fitted model (red), individual splines fitted model (green) and overall logistic model
(blue). Each plot presents a different subject. Success probability is computed over cycles of 8 trials
performed in 3 sessions (cycles 1� 36, 37� 72, 73� 108, different gray background) practicing a
reaching task after a virtual surgery

123

1260 M. Mezzetti et al.



Using the distance defined in (11) we obtain a partition of the participants into two

groups. Subjects ð2; 5; 7; 9; 12Þ belong to one group, and they are characterized by

a low final performance (mean performance in the last three cycles of the last

session less than 0.33). Subject 15 also has a low final performance, but it is

assigned to the second group. However, as our method takes into account the whole

learning curve and the uncertainty of the estimated parameters, subject 15 has other

distinguishing features. For example, in Fig. 5 it can be appreciated that subject 15,

differently for the subjects in the first group, has a higher and more variable

performance on the first two days.

Increasing the number of clusters, features characterizing further partitions of

subjects into groups can be highlighted, as shown in Fig. 6. Subject 15 is matched

with subject 16, who has a better final performance. The two subjects are

characterized by the highest initial slope on the second day. With three partitions,

the third cluster also contains subject 11, who has unique learning curve parameters,

the best overall performance and, again, good initial performance the second day.

Indeed with four partition, the addition cluster contains only the subject 11. In Fig. 7

the fitted curves from the second stage of the hierarchical model after partitioning

the subjects are shown. The model is defined in (20), and the prior distributions

defined as in (14). Moreover, a partition of subjects is searched from distance of

posterior distributions of parameters of the the splines fit. The concordance between

the partition obtained from distribution of parameters b describing the splines and

the partition presented in the paper is above 73%.
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6 Sensitivity analysis

Updating the prior distribution in (10) to the posterior distribution, through the

likelihood as in the model presented in (15) and (16), allows the posterior estimation

of r2i . Posterior distributions of r2i provide hints on differences in individual

variability. Different prior distributions for the variance can be defined as in

Demirhan and Kalaylioglu (2015). However, alternative prior distributions, such as

a joint prior distribution for the variance or a multivariate normal distribution on the

logarithm of the variance, do not improve the model.

In the second example (Sect. 5), we encounter some problems in the convergence

of the posterior estimates when lower hyperparameters for the prior distribution of

the precision parameters in (7)–(8) are assumed. We then choose hyperparameters

ðmH; kHÞ equal to (10; 0:1Þ and s equal to 0.01. On the other hand, in the first

example (Sect. 4), where fewer parameters are estimated and sample size is larger,

posterior estimates result less sensitive to the choice of ðmH; kHÞ and we let them to

be equal to (0.01, 0.01). In the second example, furthermore, parameters a3ik are very
sensitive to the hyperparameters chosen, and reducing to just three parameters a3k
improves either the fit and the diagnostic on the chains.

Bayesian models can be evaluated and compared in several ways (Gelfand and

Dey 1994; Wasserman 2000; Gelman et al. 2014). Tables 1 and 2 show
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Fig. 7 Learning a novel motor skill fitted curves. Average model from the second stage of the
hierarchical model: subjects partitioned in 4 clusters
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comparisons between different models. The second column of the Tables reports the

log likelihood. Although it plays an important role in statistical model comparison,

it also has some drawbacks, among them its dependence on the number of

parameters and on the sample size. To overcome the limitations of the log

likelihood, a reasonable alternative is to evaluate a model through the log predictive

density and its accuracy. Log pointwise predictive density (lppd) for a single value

yi is defined as (Vehtari et al. 2017);

lppd ¼
Xn

i¼1

logpðyi j yÞ ¼
Xn

i¼1

log

Z
pðyi j hÞpðh j yÞdh

To compute lppd in practice, we can evaluate the expectation using draws from the

posterior simulation.

Watanabe-Akaike Information Criteria (WAIC) (Watanabe and Opper 2010), is

shown in fifth column of the Tables. WAIC, as already introduced with deviance

Table 1 Soybean Growth: Model Comparison

Model Log

Likel

# of par
P

i �
2 WAIC LOOIC

Individual Logistic priors as in

(7)–(8)

- 488.72 3� ðnþ 1Þ 387.8 36650.4

(204.4)

31481

(66.6)

Individual Logistic priors as in

(2)–(3)

- 492.28 3� ðnþ 1Þ 393.5 37135.9

(272.1)

31584.3

(56.5)

Individual Logistic Partitioned in

4 clusters

- 488.02 3� ðnþ 4Þ 390.1 36846.8

(215.6)

31371.8

(51.6)

Overall Logistic - 805.39 3 1618.2 49096.8

(26.4)

49118.2

(33.6)

Individual Logistic with

covariates

- 517.14 3� ðnþ 1Þ þ 10 450.1 41610.0

(465.8)

33392.4

(91.2)

Table 2 Motor Learning Example: Model Comparison

Model Log Likel # of par
P

i �
2 WAIC LOOIC

Logistic Overall - 8534.596 12 122.93 512321.4

(26.6)

512356

(24))

Prior as in (23)–(27) s ¼ 0:001 - 7032.077 12� n 31.68 426594.4

(79.2)

423563.8

(30.6)

Prior as in (23)–(27) a3ik ¼ a3k and

s ¼ 0:01

- 7032.728 9� nþ 3 33.46 425327.1

(82)

423374.4

(45.2)

Priors as in (28)–(30) - 7034.666 12� n 33.07 425710.4

(165.8)

423521.4

(75.6)

Logistic with covatiates as in (22) - 6797.361 12� nþ 9 31.78 413905.4

(158.6)

409756.2

(67.2)

Splines (10 knots) - 7019.182 30� n 28.75 429697.8

(139.8)

423426.2

(38.2)
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information criterion (DIC) (Burnham 1998), estimates the effective number of

parameters to adjust for overfitting. Compared to Akaike Informarion Criteria (AIC)

(Burnham 1998) and DIC, WAIC has the desirable property of averaging over the

posterior distribution rather than conditioning on a point estimate and is defined as

WAIC ¼ lppd � pWAIC

and

pWAIC ¼
Xn

i¼1

Varhjyðlogðyi j hÞÞ

As with AIC and DIC, we define WAIC as �2 times the previous expression. WAIC

is particularly helpful for models with hierarchical and mixture structures in which

the number of parameters increases with sample size.

In Bayesian cross-validation, the data are repeatedly partitioned into a training set

ytrain and a holdout set yholdout, and then the model is fit to ytrain with the fit evaluated

using an estimate of the log predictive density of the holdout data. The Bayesian

leave-one-out cross-validation information criterion (LOOIC) is defined as:

LOOIC ¼ �2�
Xn

i¼1

logðpðyi j y�iÞÞ ¼ �2�
Xn

i¼1

log

Z
pðyi j hÞpðh j y

i
Þdh

where y�i represents the data without the ith data point. Approximate LOOIC can be

computed easily using importance sampling as described in Vehtari et al. (2017).

Each prediction is conditioned on n� 1 data points, which causes under-estimation

of the predictive fit. For large n the difference is negligible. In Column 6 it is

illustrated the point estimates and standard errors of LOOIC. Fourth column of the

Tables shows sum of squared errors for each fit.

Table 1 shows the comparisons between the models presented in Sect. 4, in

particular the hierarchical bayesian individual logistic model defined as in (15) and

(16) with second stage as in (14), overall model and individual logistic model with

covariates as in (17). Models are all very similar in terms of model evaluation, a part

for the overall model. Prior distribution as in (7)–(8) perform slightly better than

prior distribution as in (2)–(3). The hierarchical bayesian model with subjects

partitioned in four groups results a good model to explain the data. The fit from the

second stage model as shown in Fig. 4 facilitates a parsimonious modeling.

Table 2 shows the comparisons between the models presented in Sect. 5, in

particular, the overall logistic model, the individual logistic model with different

priors, the individual logistic model with covariate effect included as in (22), and

the splines model with 10 knots. The models show similar results in terms of

measures of evaluation. Increasing the number of parameters, makes it harder to

reach convergence in the simulation chains. The second line presents a good

performance in terms of model evaluation but the chains show troubles in reaching

convergence. The third line in Table 2 shows the individual logistic model

assuming prior as in (23)–(27) and a3ik ¼ a3k and s ¼ 0:01. Individual curves from
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this model are shown in Fig. 5, since the curves are considered the best one to

explain the data.

To test the performance of the proposed partition procedure, we simulated 300

data sets. The Bayesian hierarchical model is run and the resulting clustering

performance is assessed. Each dataset consists of 20 subjects belonging to two

different groups. For each time tj data are sampled from two Gaussian distribution,

with a four parameter logistic function as the expected value. The response variable

Yg
ijk, observed at repetition k and time tj, for subject i belonging to group g is

distributed according the following parametric curve:

Yg
ijk �Nðlgij; r2i Þ

logit lgij
� 	

¼ agi þ bgi
1

1þ expð�cgi ðtj � t0gi ÞÞ
ð32Þ

the parameters are sampled from the following distributions:

agi �Nð�2:1972; 0:05Þ g ¼ 1; 2

b1i �Nð3:044; 0:05Þ
b2i �Nð4:3944; 0:05Þ
c1i �Nðd1; 0:01Þ
c2i �Nðd2; 0:01Þ
dg �Nð0:25; 0:2Þ
t01i �Nð24; 5Þ
t02i �Nð30; 5Þ

The parameters are chosen such that the starting point of both group is on average

0.1, while the final point for the first group is on average 0.7 and for the second

group is on average 0.9. For each simulated dataset, we assessed how well our

procedure can recover the groups from the posterior estimates. The concordance

between the generating partition and the partition obtained with our procedure is

satisfactory and, as expected, concordance decreases as the within subject variance

increases. By assuming ri �Uð0:05; 2Þ average concordance is 0.87 and it

decreases to 0.71 when ri �Uð2; 5Þ.

7 Comparison with finite mixture model

Finite mixture models represent an adaptive class of statistical models that gained

strong interest in recent years. Finite mixture models and latent class analysis have

been extensively used for providing a convenient framework for clustering and

classification (McLachlan and Peel 2000; Melnykov and Maitra 2010).

We implement the estimation of finite mixture model for the dataset illustrated in

Sect. 4, and compare the classification obtained with the classification shown in

Sect. 4.
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The idea is to assume that K latent groups exist, The distribution of each Y is

given by;

hðy j t; a; r2Þ ¼
XK

k¼1

pkfkðy j t; ak; r2kÞ

pk � 0
XK

k¼1

pk ¼ 1

Each subject is a member of one of the K classes with the following posterior

probability:

Pðk j yÞ ¼ pkfkðy j t; ak; r2kÞPK
k¼1 pkfkðy j t; ak; r2kÞ

ð33Þ

We implement the estimation using the R package flexmixNL (Omerovic 2019).

flexmixNL was developed as an extension of package flexmix (Leisch 2004).

Mixtures of generalized nonlinear models are fitted for a given number of com-

ponents and component- specific starting values for the regression coefficients. The

component-specific parameters are assumed to vary over all components. The EM

algorithm might either fail to converge or only converge to a local optimum

depending on the initial values selected. Thus the fitting procedure is applied several

times with different starting values and the solution with the best log-likelihood

value is retained.

Due to the possible multimodality of the log-likelihood function, the convergence

of the EM algorithm is sensitive to well chosen initial values. Furthermore the fitting

requires a properly chosen number of components K. Prior knowledge on possible

groups within the population may indicate a suitable number of components. If the

number of latent groups present is unknown, the final choice of K can be derived in

a data-driven way by means of model selection criteria based on the penalisation of

the log-likelihood function (such as the AIC or the corrected AIC for small data sets,

the BIC and the WAIC).

The posterior estimates of the probability in (33) has a satisfactory concordance

with the clusters shown in Sect. 4, indicating that mixture model and our procedure

provide similar clustering information. Three groups classification provide a 96% of

concordance, four groups classification provide a 75% concordance and, finally, five

groups classification has 83% concordance.

Alternatively the Bayesian hierarchical semiparametric proposal for longitudinal

data in Paddock and Savitsky (2013) can be implemented. A Dirichlet prior

distributions can be assumed.

8 Conclusion

Studies involving multiple individuals are usually performed with the implicit

assumption that individual data are generated by the same unique model, and that

discrepancies among individuals are due to irrelevant individual characteristics.
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Therefore, these studies attempt to reduce the variability by pooling together or

averaging data collected from different individuals. However, this approach is not

always optimal, because variability may be a consequence of major differences

among individuals, which would be hidden by pooling or averaging data from

different individuals.

To characterize inter-individual differences in learning and growth curves,

specific cases of longitudinal data, where intra-individual correlations may be

present and may be related to individual-specific features, we used a two stage

Bayesian nonlinear model. Mixed-effects modeling has a long tradition in statistical

applications (Pinheiro and Bates 1995, 2000), and nonlinear mixed-effects models

provide a powerful and useful tool for analyzing repeated-measures data in different

fields of research. Bayesian nonlinear mixed-effects models have also been

successfully presented in literature (Lachos et al. 2013). While inter-individual

variability is commonly investigated as a continuous function of some parameters,

other applications may require a discrete subdivision of individuals into separate

clusters. In this study we exploit the two stage Bayesian nonlinear model to

introduce a novel approach for clustering different individuals, taking into account a

large number of parameters that influence the output. The separation of individuals

in groups allows the investigation of the differences among clusters or the specific

characteristics of a single cluster. Moreover, partitioning individuals may open

novel research approaches related to the investigation of the differences across

individuals of different clusters.

Clustering of longitudinal data have been presented (Genolini et al. 2015) and

well motivated (de Cassia et al. 2018). The innovation here is the introduction of a

new metric, such that all the uncertainties from the fitted nonlinear mixed model can

be taken into account. The posterior distributions of the parameters defining the

temporal pattern are in fact used as a tool to partition individuals. One advantage of

the proposed method is that response variables do not have to be measured at the

same time points, nor at the same number of time points, as already present in

Paddock and Savitsky (2013). This can be an advantage compared with most of the

existing multivariate growth curve models that assume identically time-structured or

balanced response variables (Hwang and Takane 2004).

We presented application to two real data set, one related to learning curves for

motor skills and one related to growth curve modeling in agriculture. However, our

model may be generalized to many different applications and different types of

nonlinear parametric curves, with relatively limited effort from a computational

point of view, since the code is written in JAGS. Being able to identify, classify, and

predict individual differences, through a parametric curve, has recognised advan-

tages (Vimal et al. 2020). Moreover, being able to partition different individuals

according to their time-dependent behavior may be useful in many fields. For

example, in the biomedical field, assigning a patient to a specific cluster might lead

to the identification, and the consequent administration, of the most efficient

personalized treatment.
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