
ORIGINAL PAPER

Parametric modeling of quantile regression coefficient
functions with count data

Paolo Frumento1 • Nicola Salvati2

Accepted: 19 January 2021 / Published online: 17 February 2021
� The Author(s) 2021

Abstract
Applying quantile regression to count data presents logical and practical compli-

cations which are usually solved by artificially smoothing the discrete response

variable through jittering. In this paper, we present an alternative approach in which

the quantile regression coefficients are modeled by means of (flexible) parametric

functions. The proposed method avoids jittering and presents numerous advantages

over standard quantile regression in terms of computation, smoothness, efficiency,

and ease of interpretation. Estimation is carried out by minimizing a ‘‘simultane-

ous’’ version of the loss function of ordinary quantile regression. Simulation results

show that the described estimators are similar to those obtained with jittering, but

are often preferable in terms of bias and efficiency. To exemplify our approach and

provide guidelines for model building, we analyze data from the US National

Medical Expenditure Survey. All the necessary software is implemented in the

existing R package qrcm.

Keywords Quantile regression (QR) � Quantile regression coefficients

modeling (QRCM) � R package qrcm � NMES data

1 Introduction

The analysis of count data represents an important topic in the statistic literature and

numerous textbooks (e.g., Cameron and Trivedi 1998; McCullagh and Nelder 1989;

Hastie and Tibshirani 1990; Winkelmann 2005) have been partially or entirely

dedicated to the subject. The most well-established approach is to utilize parametric

or semiparametric regression models that are typically based on the Poisson
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distribution and its generalizations, and maximize a pseudo-likelihood to estimate

conditional means (Gourieroux et al. 1984).

Machado and Santos Silva (2005) proposed analyzing count data using quantile

regression (qr; Koenker and Bassett 1978; Koenker 2005). Their approach permits

avoiding strong parametric assumptions and enables investigating every aspect of

the conditional distribution, and not just its mean. This idea, however, comes with

some complications. The fact that the conditional density of the data is not

absolutely continuous, in combination with the non-smoothness of the objective

function, causes a non-standard rate of convergence (Manski 1975, 1985) and may

as well generate identifiability issues and computational problems.

The solution proposed in Machado and Santos Silva’s paper is to artificially

smooth the data by applying jittering (Stevens 1950). A continuous outcome is

generated by adding a random quantity in [0, 1) to the original counts, and

estimation and inference are carried out by applying standard qr. A one-to-one

correspondence between the quantiles of the counts and those of the artificial data

can be established. This method has been applied in various fields including analysis

of fertility (Miranda 2008; Booth and Kee 2009), frequency of doctor visits

(Moreira and Barros 2010; Winkelmann 2006), car accidents (Qin and Reyes 2011),

and capacity of pre-enrollment test to predict students’ performance (Grilli et al.

2016). A Bayesian version of jittering has been proposed by Lee and Neocleous

(2010). Jittering has been advocated as a computational trick to avoid degenerated

solutions (e.g., Koenker 2017), which commonly occur in presence of discrete

responses.

Other recent approaches include that of Congdon (2017), in which the

asymmetric Laplace distribution is combined with a Poisson model in a Bayesian

framework, and the model-based quantile regression of Padellini and Rue (2018), in

which quantiles are mapped to the parameters of a generalized linear model

identified by a continuous version of a valid count distribution. Tzavidis et al.

(2015) proposed a semiparametric M-quantile approach for counts that extends the

ideas of Cantoni and Ronchetti (2001) and Breckling and Chambers (2001). These

methods avoid jittering, but depend on a limited choice of predefined parametric

models.

The idea presented in this paper is to describe the quantile regression coefficients,

say bðpÞ, by parametric, smooth functions of p, say bðp j hÞ, using the quantile
regression coefficients modeling (QRCM) framework described in Frumento and

Bottai (2016, 2017). With this approach, the conditional quantile function is

modeled parametrically as if the response variable was continuous. The goal is to

utilize a ‘‘working model’’ that does not reflect the actual data distribution, but

permits estimating a smooth quantile function by minimizing a smooth loss

function, in the same spirit of Efron (1992).

The proposed method bears some similarities with Padellini and Rue’s (2018)

approach, in which a statistical model describes a hypothetical continuous

counterpart of an originally discrete response. Our modeling framework, however,

does not utilize known families of distributions such as Poisson or Negative

Binomial, and allows to estimate quantile functions with an arbitrary parametric

structure. As shown in the paper, this approach not only permits to avoid jittering,
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but also generates more efficient estimators, simplifies estimation and inference, and

facilitates the interpretation of the results.

The paper is structured as follows. In Sect. 2 we describe the qrcm framework in

a general quantile regression situation. In Sect. 3 we show how qrcm can be applied

to count data. We describe computation and inference in Sect. 4, and report

simulation results in Sect. 5. In Sect. 6 we show the usefulness of the proposed

method by analyzing a dataset relating the frequency of doctor’s visits to a set of

demographic and socio-economic predictors. The R package qrcm implements the

described estimator and includes all the necessary functions for inference,

prediction, and plotting.

2 Quantile regression coefficients modeling

We denote by Yi a response variable of interest, and by xi a q-dimensional vector of

observed covariates, i ¼ 1; . . .; n. The standard quantile regression (QR) model

assumes that

QTðYÞðp j xÞ ¼ xTbðpÞ ð1Þ

is the conditional quantile function of some known, monotone transformation Tð�Þ
of Y. Working with a transformed response is common in practice and may be

convenient with non-negative or bounded outcomes. Note that, in a general qr

framework, the response variable is assumed to be sampled from an absolutely

continuous population, which is not true if Y is a count. Estimation of bðpÞ is carried
out by minimizing the objective function

LðbðpÞÞ ¼
Xn

i¼1

ðp� xp;iÞðTðyiÞ � xT

ibðpÞÞ; ð2Þ

in which yi is a realization of Yi, and xp;i ¼ IðTðyiÞ� xT

ibðpÞÞ.
Quantile regression does not require distributional assumptions and permits

investigating every aspect of possibly asymmetric, heavy-tailed, or multimodal

response variables, showing the effect of covariates at different quantiles. Although

the distribution-free nature of qr is generally seen as an advantage, it also represents

its main weakness. Quantiles are estimated one at a time and no parametric structure

is assigned to the coefficient functions bðpÞ. This makes estimation inefficient,

generates a large amount of random variability, and causes both the loss function,

LðbðpÞÞ, and the estimated coefficients, b̂ðpÞ, to be non-smooth functions of their

arguments.

Joint estimation of multiple quantiles has been discussed by numerous authors

(e.g., Tokdar and Kadane 2012; Reich 2012; Reich and Smith 2013; Yang and

Tokdar 2017; Das and Ghosal 2017, 2018; Fabrizi et al. 2020), and is implemented

in the R packages BSquare (Smith and Reich 2013) and qrjoint (Tokdar and

Cunningham 2018). The idea of simultaneous quantile regression is recurrent in the

literature on quantile crossing (e.g., He 1997; Bondell et al. 2010; Liu and Wu
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2011), and can be used to improve estimation of individual fixed effects (Koenker

2004).

Frumento and Bottai (2016, 2017) suggested using a fully parametric approach

and reformulated model (1) as

QTðYÞðp j x; hÞ ¼ xTbðp j hÞ; ð3Þ

where h is a vector of model parameters that describe the functional form of the

coefficient functions, bðpÞ ¼ bðp j hÞ. This approach is referred to as quantile
regression coefficients modeling (QRCM) and is implemented in the qrcm R package

(Frumento 2020). An estimate of h can be obtained by minimizing

LðhÞ ¼
Z 1

0

Lðbðp j hÞÞdp; ð4Þ

which is the integral, with respect to the order of the quantile, of the loss function of

standard quantile regression displayed in (2). Unlike LðbðpÞÞ, the loss defined in

Eq. (4) is a smooth function of its arguments, which permits using Newton-type

algorithms to carry out minimization, and applying the standard theory of M-esti-

mator (e.g., Newey and McFadden 1994) to derive and implement asymptotics.

An illustration of the parametric approach described in model (3) is given in

Fig. 1, which is constructed using simulated data. On the left, we report the

estimated qr coefficients of order p ¼ 0:01; 0:02; . . .; 0:99. On the right, we show a

parametric fit based on a cubic function, bðp j hÞ ¼ h0 þ h1pþ h2p2 þ h3p3.
Describing coefficients by smooth functions with closed-form mathematical

expressions comes with an obvious gain in efficiency, especially in the tails, and

makes it simpler to report and interpret the results.
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Fig. 1 Comparison between qr and qrcm. Left: coefficient function estimated by standard quantile

regression. Right: the coefficient is modeled by a cubic function, bðp j hÞ ¼ h0 þ h1pþ h2p2 þ h3p3, and
estimation is carried out by minimizing LðhÞ (Eq. 4). Shaded areas represent pointwise confidence
intervals
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3 Quantile regression coefficients modeling with counts

When qr is applied to count data, a non-standard rate of convergence is obtained as

a result of the non-smoothness of the objective function in conjunction with the

discreteness of the response variable. The problem was undertaken, among others,

by Manski (1975, 1985) and Huber (1981). In their paper, Machado and Santos

Silva (2005) suggested generating an artificial continuous variable Y� ¼ Y þ U by

adding a quantity U 2 ½0; 1Þ to the original counts Y, a procedure that was referred

to as jittering (Stevens 1950). The most common choice is to define U to be a

uniform random variable, independent of Y and x. A quantile regression model of

the form

QTðY�Þðp j xÞ ¼ xTbðpÞ ð5Þ

is assumed to hold for some known monotone transformation Tð�Þ of Y�. Because Y�

is continuous, ordinary quantile regression can be applied to TðY�Þ and standard

asymptotic theory holds. Given an estimate b̂ðpÞ of bðpÞ, quantiles of the original

count Y are consistently estimated by

Q̂Yðp j xÞ ¼ dT�1ðxTb̂ðpÞÞ � 1e; ð6Þ

where dae denotes the ceiling operator. Because the value of b̂ðpÞ depends on the

specific realization fugni¼1 ofU, it is preferable to compute b̂ðpÞ as the average estimate

acrossm jittered samples (average-jittering). Another solution is to adopt the Bayesian

framework described by Lee and Neocleous (2010), in which new values of U are

simulated at each iteration of the Monte Carlo Markov Chain algorithm.

Alternative approaches, that are briefly discussed in Machado and Santos Silva’s

paper, aim to replace LðbðpÞÞ with a smooth objective function. This can be

obtained by replacing the indicator functions xp;i ¼ IðTðy�i Þ� xT

ibðpÞÞ (Eq. 2) with
a smooth counterpart (e.g., an integrated kernel), or by directly using a different

loss, such as the asymmetric maximum likelihood proposed by Efron (1992).

In this paper, we suggest applying the qrcm framework to model a discrete

response, using a parametric quantile function as if the data were generated from an

absolutely continuous population. The objective is that of imposing some degree of

smoothing to the assumed distribution, without altering the response itself.

Our proposal is based on the empirical evidence that almost identical estimators

are obtained by applying qrcm to the jittered response, Y� ¼ Y þ U, and directly to

Y� ¼ Y þ E½U�. Such equivalence results from the parametric structure that is

imposed to the quantile function, which permits ‘‘smoothing away’’ the points of

mass in the empirical distribution of the data.

Without loss of generality, we assume E½U� ¼ 0:5 and apply model (3) to some

transformation Tð�Þ of Y� ¼ Y þ 0:5,

QTðY�Þðp j x; hÞ ¼ xTbðp j hÞ: ð7Þ

Here, bðp j hÞ is a vector of parametric coefficient functions that are assumed to be

continuous and differentiable functions of p. The resulting quantile function is itself
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continuous, and depends on the covariates according to the same modeling structure

used in standard quantile regression. The function to be minimized, LðhÞ, is given in
Eq. (4) and, unlike LðbðpÞÞ, is also continuous and continuously differentiable.

After an estimate ĥ of h has been computed, quantile regression coefficients are

obtained as b̂ðpÞ ¼ bðp j ĥÞ, and Eq. (6) can be used to estimate the quantiles of Y,

QYðp j x; ĥÞ ¼ dT�1ðxTbðp j ĥÞÞ � 1e: ð8Þ

By definition, model (7) cannot be the true data-generating process and should be

thought of as a ‘‘working model’’. Although an interpretation in terms of a latent

continuous variable is possible, the idea of fitting a continuous quantile function to a

discrete outcome should be regarded as a computational expedient and can be seen

as an implicit way of performing jittering.

3.1 A toy example

Suppose that a discrete response variable Y is uniformly distributed on the support

f0; 1; 2; . . .9g. Assuming U�U½0; 1Þ, the jittered response Y� ¼ Y þ U has a

continuous U[0, 10) distribution, with quantile function QY� ðpÞ ¼ 10p. To imple-

ment qrcm, define a parametric model Qðp j hÞ ¼ hp, in which the true value of the

parameter is h ¼ 10. Simple algebra permits showing that the minimizer of LðhÞ
under this model solves n�1

P
i minðyi=h; 1Þ2 ¼ 1=3 and is a function of the

quadratic mean of the data. It can be easily shown that, asymptotically, the same
estimators of quantiles are obtained with the following three methods: (1) standard

qr applied to Y�; (2) qrcm estimator applied to Y�; and (3) qrcm estimator applied to

Y� ¼ Y þ
ffiffiffiffiffiffiffiffi
903

p
=6� 4:5 	 Y þ 0:508. To prove this result, just note that

ð3E½ðY�Þ2�Þ1=2 ¼ ð3E½ðY�Þ2�Þ1=2 ¼ 10. While the equivalence between (1) and (2)

is straightforward, point (3) shows that the same estimator can be obtained without

jittering.

3.2 Model building

As shown in simulations in Sect. 5, a ‘‘good’’ parametric model may outperform

standard qr with uniform jittering in terms of bias and standard error. Defining a

parametric model for a quantile function, however, is not trivial. Numerous

alternative strategies to model bðp j hÞ parametrically are presented in Frumento

and Bottai’s (2016; 2017) papers, and the excellent book by Gilchrist (2000) can

also be used for inspiration. The coefficient functions are usually simple, often

monotone, and can sometimes be well approximated by linear or even constant

functions. On the other hand, when flexibility is needed, polynomials or spline

functions can be used. Some sensible options for model building are reported in

Table 1.

Note that standard qr estimators can be obtained as a special case of qrcm by

allowing bðp j hÞ to be an arbitrarily flexible function of p. The linear regression

model, in which Y �Nðb0 þ b1x1 þ b2x2 þ � � � ; r2Þ, is also a special case of model
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(3) and corresponds to the parametric quantile function defined by

QYðp j xÞ ¼ b0 þ rzðpÞ þ b1x1 þ b2x2 þ � � �, where z(p) is the quantile function of

a standard Normal distribution.

In this section, we describe a general strategy to formulate parametric quantile

regression models that can be applied to count data. We assume to fit the working

model defined by (7),

QTðY�Þðp j x; hÞ ¼ xTbðp j hÞ;

where Y� ¼ Y þ 0:5.
In their 2005 paper, Machado and Santos Silva suggested modeling the following

quantity: TðY�; pÞ ¼ logðY� � pÞIðY� [ pÞ þ logð�ÞIðY� � pÞ, where Y� ¼ Y þ U
is the jittered variable, and � some small positive number. This transformation is

justified by the fact of using uniform jittering and, being a function of p, is only

convenient when quantiles are estimated one at a time.

Here we suggest two alternative options: (i) to directly model Y�, letting

Tð�Þ ¼ Ið�Þ; and (ii) to use a log transformation, TðY�Þ ¼ logðY�Þ, by analogy with

the standard link function of log-linear models. The choice is mainly determined by

whether the association with the covariates is assumed to be linear or log-linear.

Note, however, that a log-linear association could be well approximated by a linear

model in which the covariates have been suitably transformed, e.g., by replacing

them by the corresponding spline basis.

To formulate a parametric model for the coefficient functions, bðp j hÞ, we

suggest using the following linear parametrization:

bðp j hÞ ¼ hbðpÞ; ð9Þ

where bðpÞ ¼ b1ðpÞ; . . .; bkðpÞ½ �T is a set of k known functions of p, and h is a q
 k
matrix with entries hjh, j ¼ 1; . . .; q, h ¼ 1; . . .; k. The j-th regression coefficient is

given by bjðp j hÞ ¼ hj1b1ðpÞ þ � � � þ hjk bkðpÞ, and the quantile function is rewritten

as

Table 1 Strategies for model building

bðp j hÞ Description

h0 Constant

h0 þ h1p Linear

h0 þ h1pþ h2p2 þ h3p3 þ � � � Polynomial

h0 þ h1pþ h2 cosðppÞ þ h3 sinðppÞ Linear ? trigonometric

h0 þ h1 logðpÞ þ h2 logð1� pÞ Quantile function of asymmetric Logistic

h0 þ h1zðpÞ Quantile function of Nðh0; h21Þ
h0 þ h1s1ðpÞ þ h2s2ðpÞ þ � � � Spline basis or orthogonal polynomial

A list of possible parametrizations of bðp j hÞ
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QTðY�Þðp j x; hÞ ¼ xThbðpÞ: ð10Þ

This parametrization can prove flexible and computationally convenient (Frumento

and Bottai 2016, 2017).

Consider, for example, a regression model with a single covariate x:

QTðY�Þðp j x; hÞ ¼ b0ðp j hÞ þ b1ðp j hÞx:

Some distributional assumptions can be directly translated into a parametric model

for b0ðp j hÞ and b1ðp j hÞ. For instance, if the working model assumes ðY� � h1xÞ
�Expð1=h0Þ, the quantile function is QY� ðp j x; hÞ ¼ �h00 logð1� pÞþ h11x, which
can be written as

QY� ðp j x; hÞ ¼ 1 x½ �
0 h00
h11 0

� �
1

� logð1� pÞ

� �
;

identifying bðpÞ ¼ 1;� logð1� pÞ½ �T as the ‘‘basis’’ to be used for model building.

To avoid strong parametric assumptions, it may be preferable to formulate a more

flexible working model:

b0ðp j hÞ ¼h00 � h01 logð1� pÞ þ h02 sin ðppÞ þ h03 cos ðppÞ;
b1ðp j hÞ ¼h10 þ h14p:

In this model, the intercept is described by the quantile function of an Exponential

distribution, � logð1� pÞ, that determines the shape of the right tail, and a com-

bination of trigonometric functions; while the coefficient associated with x is

assumed to be linear. In matrix form, the model is defined by

QTðY�Þðp j x; hÞ ¼ 1 x½ �
h00 h01 h02 h03 0

h10 0 0 0 h14

� �
1

� logð1� pÞ
sin ðppÞ
cos ðppÞ

p

2
6666664

3
7777775
:

Note that this quantile function does not correspond to any known, closed-form

family of probability distribution.

An alternative flexible parametrization is given by

b0ðp j hÞ ¼h00 þ h01p� h02 logð1� pÞ þ h03 log p;

b1ðp j hÞ ¼h10 þ h11pþ h14ðp� 0:25Þ3 þ h15ðp� 0:75Þ3:

Here, the intercept is modeled by a quantile function that includes as special cases

that of the (shifted) Exponential (h01 ¼ h03 ¼ 0), the asymmetric Logistic (h01 ¼ 0),

the standard Logistic (h01 ¼ 0; h02 ¼ h03), and the Uniform (h02 ¼ h03 ¼ 0). The

slope of x is a combination of linear and cubic functions. If x� 0, then h� 0 is a

sufficient condition for QTðY�Þðp j x; hÞ to be monotonically increasing. This makes

it simple to control for quantile crossing, that represents a common issue in standard

quantile regression.
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Possible choices of bðpÞ include polynomials p; p2; p3; . . .½ �, splines, piecewise
linear functions, roots ½p1=2, ð1� pÞ1=2, p1=3, ð1� pÞ1=3; . . .�, logarithms

logðpÞ;� logð1� pÞ½ �, trigonometric functions cosðppÞ; sinðppÞ½ �, quantile functions
of known distribution (e.g., that of a Beta orGammadistribution), and combinations of

the above. The intercept, b0ðp j hÞ, is more frequently modeled using unbounded

functions, while the coefficients associated with x are usually assumed to be bounded

and, in some situations, can be described by linear or even constant functions. A

variety of modeling options will be used in the application described in Sect. 6.

As shown in the above examples, a common feature of parametric quantile functions

is that the support of the response, which is identified by quantiles of order p ¼ 0 and

p ¼ 1, may depend on estimated parameters. This is always the case, for example, if

bðp j hÞ is assumed to be polynomial. In this situation, maximum likelihood estimators

do not meet regularity conditions and cannot be computed by standard algorithms,

which explains why most methods involving some sort of parametric modeling (e.g.,

Reich and Smith 2013) use Bayesian inference. This does not represent an issue in the

current framework, where the likelihood function is not used. The minimizer of the

simultaneous loss function LðhÞ defined in (4) always corresponds to an interior point.

4 Computation and inference

Define the model as in (7),

QTðY�Þðp j x; hÞ ¼ xTbðp j hÞ;

where Y� ¼ Y þ 0:5, and denote by y�i ¼ yi þ 0:5, i ¼ 1; . . .; n, a vector of observed
responses. We remark that, since Y is a count while QTðY�Þðp j x; hÞ describes a

continuous response, the model does not directly reflect the true data-generating

process. If an underlying continuous variable Z is invoked such that Y ¼ bZc, where
bac denotes the floor operator, then the model may be assumed to correctly describe

the quantile function of Z. In this case, however, Y� ¼ Y þ 0:5 should be considered
interval-censored between Y� � 0:5 and Y� þ 0:5. Here we avoid questioning

whether ĥ consistently estimates a true parameter h0, and treat QTðY�Þ as a working

model.

As shown in (4), an estimate ĥ of h is computed as the minimizer of

LðhÞ ¼
Z 1

0

Lðbðp j hÞÞdp ¼
Z 1

0

Xn

i¼1

ðp� xp;iÞðTðy�i Þ � xT

ibðpÞÞdp:

Numerical integration can be used to evaluate LðhÞ, and Newton-type algorithms

can be applied to perform optimization. When bðp j hÞ ¼ hbðpÞ as in model (9), the

following expression can be obtained (Frumento and Bottai 2016):

LðhÞ ¼
Xn

i¼1

Tðy�i Þðpi � 0:5Þ þ xT

i h
�B� BðpiÞ½ �;

where
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BðpÞ ¼
Z p

0

bðuÞdu; B ¼
Z 1

0

BðuÞdu:

In the above formulas, pi ¼ FðTðy�i Þ j xi; hÞ corresponds to the cumulative distri-

bution function of y�i evaluated at h, and can be obtained as the inverse of QTðY�Þ. In

the implementation of the qrcm R package, BðpÞ and �B are evaluated numerically,

and a bisection algorithm is used to compute pi at the current estimate of h.

Following the standard theory of M-estimators (e.g., Newey and McFadden

1994), an estimate of covðĥÞ can be obtained as

dcovðĥÞ ¼ Ĥ
�1
X̂Ĥ

�1
; ð11Þ

where Ĥ is the matrix of second derivatives of LðhÞ, evaluated at ĥ, and X̂ is the

outer product of the summands of the gradient. The exact expressions for H and X,

of which Ĥ and X̂ are the sample counterparts, are provided in Frumento and Bottai

(2016). Note that, unlike standard qr, the asymptotic covariance matrix of qrcm

estimator does not involve nuisance parameters, which makes it unnecessary to

estimate the sparsity function (e.g., Koenker and Machado 1999) or to use bootstrap

to perform inference.

If bðp j hÞ ¼ hbðpÞ as in model (9), an estimate of covðb̂ðp j hÞÞ is easily

obtained from dcovðĥÞ by using quadratic forms. Obviously, the described inferential

procedures are imperfect, as they ignore the fact that QTðY�Þ is not the true quantile

function. However, simulation results show that reliable estimates of the standard

errors are obtained even with a relatively small sample size.

5 Simulation results

We considered a model of the form

Qðp j xÞ ¼ b0ðpÞ þ b1ðpÞx1 þ b2ðpÞx2; ð12Þ

where x1 was uniform between 0 and 3, and x2 was binary with Pðx2 ¼ 1Þ ¼ 0:5. To
generate discrete data, we first simulated a continuous variable Z from model (12);

then, we defined Y ¼ bZc. We considered two scenarios. In scenario 1 we defined

b0ðpÞ ¼ � logð1� pÞ; b1ðpÞ ¼ 2ð1þ pÞ; b2ðpÞ ¼ 2p1=2:

In scenario 2 we defined

b0ðpÞ ¼ 10ð1� ð1� pÞ1=4Þ; b1ðpÞ ¼ 3; b2ðpÞ ¼ 5p5:

These scenarios were regarded as ‘‘true’’ models, although they describe the con-

ditional quantile function of the unobserved response Z, and not that of the observed

count Y. Both scenarios generate relatively small counts, rarely exceeding Y ¼ 15.

For each scenario, we simulated R ¼ 1000 datasets of size n ¼ 300. For each

simulated dataset we computed: (1) the qr estimators of bðpÞ, using average jittering
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with m ¼ 100 replicates; (2) the qrcm estimators, defining bðp j hÞ as for the ‘‘true’’
model; and (3) the qrcm estimators, defining bðp j hÞ to be a third-degree shifted

Legendre’s polynomial (e.g., El Attar 2009), an orthogonal polynomial in (0, 1) that

can be used to formulate flexible models for the coefficient functions. qr estimators

were applied to the response variable Y� ¼ Y þ U with U�U½0; 1Þ, while qrcm

were applied to Y� ¼ Y þ 0:5.
In Tables 2 and 3, we report the average estimates of bðpÞ at different values of

p, and the corresponding standard errors. When the ‘‘true’’ model was fitted, qrcm

estimators were much more efficient than standard qr, and their average was closer

to the ‘‘true’’ parameters. When a flexible model was used instead, the performance

Table 2 Simulation results (1)

b0ðpÞ se bse

p True qr qrcm1 qrcm2 qr qrcm1 qrcm2 qrcm1 qrcm2

0.10 0.11 - 0.01 0.11 0.04 .13 .02 .13 .02 .13

0.25 0.29 0.30 0.29 0.33 .16 .05 .16 .05 .17

0.50 0.69 0.75 0.71 0.69 .22 .12 .22 .12 .23

0.75 1.39 1.47 1.42 1.49 .31 .24 .30 .24 .30

0.90 2.30 2.42 2.35 2.47 .44 .40 .44 .40 .43

b1ðpÞ se bse

p True qr qrcm1 qrcm2 qr qrcm1 qrcm2 qrcm1 qrcm2

0.10 2.20 2.25 2.20 2.22 .10 .08 .10 .08 .10

0.25 2.50 2.51 2.50 2.51 .14 .08 .13 .08 .13

0.50 3.00 2.98 2.99 2.98 .17 .13 .17 .13 .17

0.75 3.50 3.47 3.49 3.48 .21 .19 .20 .18 .20

0.90 3.80 3.76 3.79 3.79 .25 .23 .25 .22 .25

b2ðpÞ se bse

p True qr qrcm1 qrcm2 qr qrcm1 qrcm2 qrcm1 qrcm2

0.10 0.63 0.66 0.63 0.63 .19 .10 .18 .10 .17

0.25 1.00 0.99 1.00 1.00 .24 .17 .24 .16 .23

0.50 1.41 1.40 1.42 1.42 .29 .23 .28 .23 .28

0.75 1.73 1.72 1.73 1.71 .35 .29 .32 .28 .33

0.90 1.90 1.87 1.90 1.88 .43 .31 .41 .31 .43

Results of simulation 1. For p ¼ ð0:10; 0:25; 0:50; 0:75; 0:90Þ, we report the mean and standard error (se)

of qr and qrcm estimators of bðpÞ ¼ fb0ðpÞ; b1ðpÞ;b2ðpÞg. In the table, qrcm1 denotes the estimators

obtained by fitting the ‘‘true’’ model, while qrcm2 refers to a model in which the coefficient functions are

modeled through third-degree shifted Legendre polynomials. The last two columns report the average

estimates ( bse) of the asymptotic standard errors
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of qrcm estimators was more similar to that of average-jittering qr, although some

relevant efficiency gains were observed in the right tails where the data were more

sparse. This suggests that describing bðp j hÞ by a parsimonious model can

substantially improve on standard qr estimators, while overfitting tends to nullify

the gain.

In the last two columns of each table, only for qrcm estimators, we report the

average estimated standard errors computed using the asymptotic covariance matrix

defined by Eq. (11). Results suggest that inferential procedures are reliable,

although the working model is only an approximation of the true data-generating

process.

Table 3 Simulation results (2)

b0ðpÞ se bse

p True qr qrcm1 qrcm2 qr qrcm1 qrcm2 qrcm1 qrcm2

0.10 0.26 0.19 0.26 0.22 .12 .02 .12 .02 .12

0.25 0.69 0.73 0.71 0.76 .16 .05 .17 .05 .18

0.50 1.59 1.64 1.62 1.58 .28 .12 .27 .12 .28

0.75 2.93 2.97 2.98 3.01 .46 .22 .42 .22 .42

0.90 4.38 4.46 4.45 4.52 .64 .34 .61 .33 .59

b1ðpÞ se bse

p True qr qrcm1 qrcm2 qr qrcm1 qrcm2 qrcm1 qrcm2

0.10 3.00 3.00 2.99 3.00 .06 .06 .06 .06 .06

0.25 3.00 3.00 2.99 3.00 .08 .06 .09 .06 .09

0.50 3.00 3.00 2.99 3.00 .15 .06 .15 .06 .15

0.75 3.00 3.00 2.99 2.99 .27 .06 .24 .06 .24

0.90 3.00 2.98 2.99 2.99 .36 .06 .34 .06 .34

b2ðpÞ se bse

p True qr qrcm1 qrcm2 qr qrcm1 qrcm2 qrcm1 qrcm2

0.10 0.00 0.00 0.00 0.01 .12 .00 .11 .00 .11

0.25 0.00 0.02 0.00 0.03 .15 .00 .17 .00 .16

0.50 0.16 0.19 0.15 0.15 .28 .04 .29 .04 .28

0.75 1.19 1.18 1.16 1.28 .55 .30 .47 .30 .48

0.90 2.95 2.88 2.88 2.89 .77 .75 .69 .75 .70

Results of simulation 2
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6 Analysis of NMES data

To illustrate the usefulness of the proposed method, we analyzed data from the US

National Medical Expenditure Survey (NMES) conducted in 1987 and 1988 (Deb and

Trivedi 1997; Kleiber and Zeileis 2008). The dataset includes a representative

sample of n ¼ 4406 US civilians aged � 66, for which numerous socio-economic

indicators (age, gender, marital status, education, income) and indicators of health

condition are available.

The goal of our analysis was to predict the number of doctor’s visits during a

one-year period. The response variable had a skewed distribution with a very long

right tail (Fig. 2). Higher-order quantiles, which correspond to very frequent

doctor’s visits, were considered particularly important. We formulated the following

quantile regression model:

Qðp j xÞ ¼b0ðpÞ þ b1ðpÞIðHealth = poorÞ þ b2ðpÞIðHealth = excellentÞ
þ b3ðpÞNchronicþ b4ðpÞMaleþ b5ðpÞðAge� 73Þ=10
þ b6ðpÞðSchool� 12Þ þ b7ðpÞMarriedþ b8ðpÞEmployed

þ b9ðpÞðIncome� 1:7Þ þ b10ðpÞInsuranceþ b11ðpÞMedicAid;

where ‘‘Health’’ is a self-perceived health status, with levels ‘‘poor’’, ‘‘average’’,

and ‘‘excellent’’; ‘‘Nchronic’’ is the number of chronic diseases; ‘‘Male’’ is an

indicator of male gender; the age was expressed in decades, and centered at its

median; ‘‘School’’ is the number of years of education, and was centered at its
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Fig. 2 Distribution of the number of doctor’s visit in the NMES dataset (n ¼ 4406)
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modal value of 12 years; ‘‘Married’’ is an indicator of marital status; ‘‘Employed’’ is

an indicator of employment (about 90% of subjects were retired); the household

income (in tens of thousands US dollars) was centered at its median. All individuals

in the sample were covered by Medicare, a public insurance program that offers

protection against health-related costs. ‘‘Insurance’’ is an indicator of whether the

subject was also covered by a private insurance; and ‘‘Medicaid’’ indicates whether

he or she was covered by MedicAid, a federal program complementary to Medicare.

Considering that most predictors were binary, and that the association between

the number of doctor’s visits and the non-binary covariates appeared to be well

approximated by a straight line, we decided not to transform the response variable.

We first estimated a grid of percentiles, p ¼ f0:01; 0:02; . . .; 0:99g, by using

ordinary quantile regression with average-jittering (m ¼ 100). We used bootstrap

(R ¼ 100) to estimate the standard errors. Note that this procedure is very time-

consuming, as it requires to estimate 99
 100
 100 ¼ 990; 000 quantile regres-

sion models. In Figs. 3 and 4, the estimated coefficient functions are represented by

broken dashed lines.

We then formulated a variety of parametric models to be applied to

Y� ¼ Y þ 0:5. We considered the following alternative parametrizations:

bjðp j hÞ ¼ h0j þ h1jpþ h2jp
2 þ h3j logf1� pdg; ðiÞ

bjðp j hÞ ¼ h0j þ h1jpþ h2jp
2 þ h3jð1� pÞd; ðiiÞ

bjðp j hÞ ¼ h0j þ h1jpþ h2jp
2 þ h3j expfpdg; ðiiiÞ

j ¼ 0; . . .; 11. All models were formed by the combination of a 2nd-degree poly-

nomial, and a function that could be used to describe a long right tail. Other flexible

models could be defined using splines, trigonometric functions, or piecewise-linear

functions. We considered a variety of d, namely d ¼ f0:5; 1; 2g in model (i), d ¼
f0:05; 0:10; 0:25g in model (ii), and d ¼ f1; 5; 10g in model (iii). We allowed the

parametric form of b0ðp j hÞ to differ from that of the other coefficients. For

example, we could use model (i) for b0ðp j hÞ, and model (ii) for

b1ðp j hÞ; b2ðp j hÞ; . . ..
Since all models had the same number of parameters, we selected the ‘‘best’’

model based on the minimized loss function. Note, however, that information

criteria such as AIC and BIC can also be used for model selection. For general results

on information criteria for M-estimators, see Machado (1993); a discussion of

criteria for quantile regression models can be found in Lee et al. (2014).

The optimal model had all coefficients parametrized as in (i), with d ¼ 2:

bjðp j hÞ ¼ h0j þ h1jpþ h2jp
2 þ h3j logf1� p2g; j ¼ 0; . . .; 11:

The estimated coefficient functions are represented by continuous lines in Figs. 3

and 4. The model parameters are summarized in Table 4, while selected percentiles

are reported in Table 5.

Result showed that more frequent doctor’s visits were associated with poorer

health conditions, female gender (at least at quantiles below 0.75), higher education,
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and having additional private or public insurances. Age, marital status, and

economic indicators did not appear to have a clear association with the response.

Importantly, predictors affected the large quantiles much more than the low

quantiles of the distribution. For example, the regression coefficient associated with

poor health was less than 2 at the median, greater than 3 at the 75th percentile, and

greater than 6 at the 95th percentile. The quantile function of two representative

individuals, computed using Eqs. (6) and (8), is exemplified in Fig. 5.

The estimates obtained using the described qrcm approach were very close to

those of ordinary quantile regression with average-jittering, showing that the two

methods are virtually equivalent. Using qrcm, however, resulted in a much faster

computation and did not require using bootstrap to compute standard errors.

Additionally, using a parametric model allowed to describe the coefficient functions

by means of simple mathematical equations, improving the efficiency of the

estimators and making it easier to summarize and interpret the results.

Table 4 Estimated model parameters

1 p p2 logf1� p2g p value

Intercept 0.18 (0.11) 0.41 (1.09) 1.07 (2.40) - 4.46 (0.84) 0.000*

Health = poor - 0.29 (0.16) 2.67 (1.94) 0.52 (3.98) - 1.51 (1.42) 0.000*

Health = excellent 0.10 (0.10) - 1.33 (1.00) 1.51 (1.92) 2.15 (0.70) 0.000*

No. of chronic diseases 0.03 (0.04) 3.17 (0.36) - 2.53 (0.79) - 0.57 (0.30) 0.000*

Male - 0.05 (0.07) - 1.26 (0.81) - 0.83 (1.74) - 1.01 (0.69) 0.000*

(Age - 7.3)/10 - 0.02 (0.05) 0.75 (0.60) - 0.60 (1.31) 0.33 (0.52) 0.405

School years - 12 - 0.02 (0.01) 0.48 (0.11) - 0.63 (0.21) - 0.21 (0.08) 0.000*

Married - 0.05 (0.08) 1.55 (0.88) - 1.41 (1.92) 0.74 (0.76) 0.025*

Employed - 0.06 (0.12) - 0.07 (1.32) - 2.31 (3.55) - 1.49 (1.54) 0.600

Income - 1.7 0.02 (0.01) - 0.15 (0.16) 0.38 (0.36) 0.11 (0.13) 0.661

Insurance - 0.12 (0.09) 4.65 (0.90) - 5.03 (1.96) - 1.57 (0.72) 0.000*

MedicAid - 0.33 (0.15) 4.96 (1.73) - 3.19 (3.36) - 0.45 (0.97) 0.000*

p value 0.004* 0.000* 0.000* 0.000*

Summary of the selected model. We report the estimates of h, with asymptotic standard errors in brackets.

For example, the quantile regression coefficient associated with the male gender indicator is given by

b4ðpÞ ¼ �0:05� 1:26p� 0:83p2 � 1:01 logf1� p2g. In the bottom row, we report the p-values for the

null hypothesis fH0 : h�h ¼ 0g, h ¼ 1; . . .; 4, which can be used to assess the significance of each

component of bðpÞ. In the last column, we report the p-values for the null hypothesis fH0 : hj� ¼ 0g,
j ¼ 0; . . .; 11, which can be used to assess the significance of covariates. The asterisk (�) denotes sig-

nificance less than 0.05
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7 Conclusions

We showed how the qrcm paradigm can be applied to count data, using a working

model in which the assumed quantile function describes a continuous response.

This, in combination with the smoothness of the objective function, avoids using

jittering, generates efficient estimators, and simplifies inference.

Unlike other forms of model-based quantile regression, in which estimation is

carried out in a Bayesian framework, the proposed approach adopts the frequentist

paradigm. This is only possible because the minimizers of the objective function

LðhÞ, unlike those of the likelihood function, correspond to interior points whether

or not the model parameters affect the support of the response. This not only avoids

the problem of selecting prior distributions, but may be considered an advantage in

fields, like Medicine and Epidemiology, where Bayesian techniques are only used

sparely.

In the paper, we only considered a linear quantile regression model of the form

QTðYÞðp j x; hÞ ¼ xTbðp j hÞ, and we used a linear parametrization bðp j hÞ ¼ hbðpÞ
to describe the regression coefficients. These assumptions could be relaxed, for

example by allowing QTðYÞðp j x; hÞ to be a nonlinear function of x or b, or by

assuming that bðp j hÞ is a nonlinear function of h. This would not affect the

estimation method, but would make computation much more complicated without

necessarily representing an advantage in terms of model flexibility. Describing a

variety of meaningful parametric quantile functions can be the subject of future

research.

Although empirical evidence suggests that parametric models are relatively

immune to quantile crossing, the monotonicity of the estimated quantile function is
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Fig. 5 Estimated quantile function of the number of doctor’s visits, obtained using quantile regression
with average-jittering (QR) and quantile regression coefficients modeling (QRCM). Left: quantile function
of the ‘‘typical’’ individual: average perceived health, one chronic condition, male, median age, 12 school
years, married, not employed, median income, with a private insurance, no MedicAid. Right: quantile
function of a ‘‘disadvantaged’’ individual: poor health, three chronic conditions, male, age = 80, 6 school
years, not married, not employed, 1st decile of income, no private insurance, no MedicAid
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not generally guaranteed. Some special parametrization (e.g., Reich and Smith

2013; Yang and Tokdar 2017; Das and Ghosal 2017) can be used to avoid crossing.

Alternatively, LðhÞ could be minimized subject to monotonicity constraints. This

represent an important subject for future work, and a challenge from a computa-

tional standpoint.

Quantiles are often more interesting than simple measures of location and scale,

such as the mean and the variance. For example, many applications aim to describe

the tail behavior and the impact of extreme observations. Our proposal may promote

the widespread adoption of quantile regression methods in the analysis of count

data. Possible applications are found in medicine, epidemiology, life sciences in

general, sociology, psychology, and economics.

Providing a user-friendly implementation of the described estimator is an

important part of our work. All software used in this paper is implemented in the

qrcm R package. The package includes a main function iqr that carries out model

fitting, and a variety of auxiliary functions that permit extracting information from

the fitted model, performing prediction and extrapolation, plotting the estimated

regression coefficients, and obtaining goodness-of-fit measures. The R package is

available at http://CRAN.R-project.org/package=qrcm, and upon request to the

authors.
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