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Abstract
Background  Personalized medicine offers targeted therapy options for cancer treatment. However, the decision whether to 
include a patient into next-generation sequencing (NGS) testing is not standardized. This may result in some patients receiving 
unnecessary testing while others who could benefit from it are not tested. Typically, patients who have exhausted conventional 
treatment options are of interest for consideration in molecularly targeted therapy. To assist clinicians in decision-making, 
we developed a decision support tool using routine data from a precision oncology program.
Methods  We trained a machine learning model on clinical data to determine whether molecular profiling should be performed 
for a patient. To validate the model, the model’s predictions were compared with decisions made by a molecular tumor board 
(MTB) using multiple patient case vignettes with their characteristics.
Results  The prediction model included 440 patients with molecular profiling and 13,587 patients without testing. High area 
under the curve (AUC) scores indicated the importance of engineered features in deciding on molecular profiling. Patient 
age, physical condition, tumor type, metastases, and previous therapies were the most important features. During the valida-
tion MTB experts made the same decision of recommending a patient for molecular profiling only in 10 out of 15 of their 
previous cases but there was agreement between the experts and the model in 9 out of 15 cases.
Conclusion  Based on a historical cohort, our predictive model has the potential to assist clinicians in deciding whether to 
perform molecular profiling.

Keywords  Decision support · Machine learning · Imbalanced data · Next-generation sequencing · Molecular tumor board · 
Health informatics

Introduction

The concept of precision oncology is based on the fact that 
cancers can be characterized by specific biomarkers.

Based on comprehensive molecular profiling of an indi-
vidual’s cancer, precision oncology aims to assign specific 
molecularly guided treatment options to patients. Recent 
advances in NGS and the advent of multiple innovative-
targeted agents have put the concept of precision oncol-
ogy further into the spotlight. However, since resources are 
limited, sustainable ways to implement precision oncology 
are needed to increase the number of patients potentially 
benefitting from the combination of molecular profiling and 
targeted treatment [1].

In the clinical setting, results of molecular profiling are 
often discussed in so-called MTBs [2, 3]. While the tar-
geted approaches are still experimental in some cases, their 
effectiveness has already been shown for some types of 
cancer (e.g., lung cancer) [4, 5]. However, while the poten-
tial of precision oncology is becoming more evident, there 
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is limited guidance to determine which patients should 
receive molecular profiling and be discussed in an MTB [6, 
7]. Currently, most of the patients discussed in MTBs have 
exhausted all standard therapeutic options. This approach 
might not be the most suitable in all instances, as some 
patients benefit from up-front testing, while others do not 
benefit from testing at all. Irrespective of this considera-
tion, inexperienced physicians may encounter challenges in 
identifying the appropriate subset of patients, particularly 
those who have exhausted conventional treatment options, 
for potential inclusion in molecularly targeted therapy 
initiatives.

Here, we present a prognostic model for predicting the 
likelihood of the necessity to perform molecular profiling 
based on routinely collected data and the historical decisions 
of experts in molecularly targeted therapy regarding patient 
inclusion into molecular profiling. Our model might func-
tion as a decision support system and could support existing 
inclusion criteria for MTB patients. As the local tumor docu-
mentation and molecular database of the Comprehensive 
Cancer Center at Ludwig Maximilian University of Munich 
(CCC MunichLMU) provided the basis for the development of 
this model, this also highlights the secondary use capabili-
ties of routinely collected clinical data while also discussing 
potential and limitations of such data sources.

Materials and methods

Disclaimer: according to the Bavarian hospitals act [8], 
all analyses were conducted on site in LMU hospital’s 
own IT infrastructure. At no point, aside from aggregated/
anonymized results, was data transferred out of the hospi-
tal. All analyses were conducted using Python 3.8.8. For 
clarity: within the section of Material and methods as well 
as Results we used the term NGS test in the model synony-
mously to performed molecular profiling.

Data cleaning

The first step was to identify and prepare the relevant data. 
Two datasets, LMU’s local tumor documentation dataset 
(CREDOS—cancer retrieval evaluation and documentation 
system) [9, 10], as well as a custom MTB database, served 
as source data.

While the local tumor documentation at CCC MunichLMU 
contains more than 46.000 (19.07.2022) tumor entries, 
only a fraction of those have been discussed by the MTB 
(N = 1834, 19.07.2022). The MTB cases are labeled with a 
specific flag in the CREDOS database and have additional 
information—e.g., the occurrence of pathogenic alterations.

As the tumor documentation is complex (more than 2000 
data fields), the quality of its contents can be challenging, 

as is the case with most routine data in general. To improve 
this situation, based on discussions with data experts of the 
CCC, the data contents were restricted and filtered for fur-
ther analysis. Only those cases primarily treated at the CCC 
are referred to as primary cases (according to OnkoZert 
guidelines [11]). About 63% of the CREDOS cohort consists 
of primary cases. Non-primary cases were not considered 
for the next steps, as they typically lack data completeness. 
Another way to improve the data quality was to only include 
cases with a diagnosis date after 01.01.2016. According 
to the Center, this decision was based on the introduction 
of new data standards, which were imposed due to new 
regional laws (Bayerisches Krebsregistergesetz (state law 
on the Bavarian cancer registry), [12]). This improved the 
completeness for many data categories.

Furthermore, a filter was set to exclude benign tumors, 
defined as those beginning with a ‘D’ code in the ICD-10 
classification—e.g., D17—benign lipomatous neoplasm 
[13]. In addition, those patients with two or more tumors 
were removed because the MTB database contained only 
patient IDs but no tumor IDs; hence, the link to CREDOS 
(which also contains individual tumor IDs) would have 
been ambivalent. Finally, we considered those patients who 
received only one NGS test.

While CREDOS contains most of the clinical information 
about a tumor case, some of the data is difficult to process. 
For example, chemotherapy substances have been docu-
mented quite heterogeneously. For this reason, we trans-
lated substance names into standardized ATC codes—e.g., 
Cisplatin → L01XA01 [14]—which facilitated further steps.

Despite the presence of information regarding patient 
mutations in the MTB database, the primary aim of this 
study is not to predict mutations. Instead, it focuses on facili-
tating the decision-making process for including patients 
in an MTB. Hence, only this information from the MTB 
database was necessary for the study’s objectives.

Selection and description of the features

After restricting the number of patients, we then selected 
the features of interest. These features were selected accord-
ing to interviews with local data experts as well as MTB 
experts. Some features were added from other data sources, 
in particular information about the NGS test performed, 
which came from the molecular database, and additional 
information on transport data, which came from the hospital 
admission or cancer incidence calculated from The German 
Centre for Cancer Registry Data [15]. Table 1 shows the 
final selection of features.

The selected features can be divided into 5 categories; 
see Table 1. The first category contains the demographic 
data gender and age at diagnosis, which are examples of the 
features that were only added after discussion with the MTB 
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experts, as they pointed out that they are very important in 
deciding whether a patient should receive an NGS test. The 
younger the patient, the higher the probability that a gene 
mutation is the cause of the tumor [16–19].

The next category is anamnesis, which includes infor-
mation about initial findings, such as initial diagnosis 
according to the ICD-10 classification and number of initial 
metastases, as well as UICC [20], TNM [21], and grading, 

which are common staging classifications used to describe 
the severity of a case. ECOG performance status describes 
the physician’s impression about a patient’s well-being as a 
value between ‘0’ and ‘4’ [22]. ECOG was one of the fields 
identified to have insufficient data quality/completeness.

The following category includes those features that 
describe the patient’s progress. Here, some features from 
the previous category were reused for the model. Staging, 

Table 1   Final selection of features with possible values

Demographics Values
 Gender Female, male
 Age at diagnosis 1–100
Anamnesis Values
 Cancer entity Breast, lung, pancreas, prostate, colon, biliary tract, others
 UICC staging I, II, III, IV
 TNM staging Tis, Ta, T0-T4, N0-N3, M0-M1
 Grading G1, G2, G3, G4, unknown
 Metastases present Yes/no
 Metastases Number of detected metastases
 ECOG performance status Unknown, 0, 1, 2, 3, 4
Progress Values
 UICC staging I, II, III, IV, unknown
 Grading G1, G2, G3, G4, unknown
 TNM staging Tis, Ta, T0-T4, N0-N3, M0-M1
 Metastases present Yes/no/unknown
 Metastases Number of detected metastases
 ECOG performance status unknown, 0, 1, 2, 3, 4
 Revaluation Remission, progression, recurrence, stable, mixed response, unknown
 Situation Curative, palliative, unknown
 Survival status Death due to tumor, death independent of tumor, cause of death 

unknown, lost to follow-up, live
Treatments Values
 Type of therapy:
• Surgery,
• Radiotherapy,
• Medical therapy,
• Medical therapy with personalized treatment,
• Others

Number of respective therapy

 Therapy phase Primary, secondary
 Therapeutic goal Curative, palliative, neoadjuvant, adjuvant, diagnostic, unknown
Others Values
 Quarters since the first event date Number of quarters since the first event date in the patient record
 Transport information:
•  By foot,
•  Bed,
•  Stretcher,
•  Material transport,
•  Wheelchair,
•  Heavy duty bed,
•  Heavy duty wheelchair

Number of respective transports

 NGS test performed 0, 1
 Frequency of cancer (relative cancer incidence) at given age, gender, 

and entity relative to gender and entity cohort
Relative frequency between [0, 1]
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ECOG and number of metastases can change during the 
course of the patient’s disease, and such information might 
be important for further treatment. The revaluation feature 
identified the status of a tumor at different timestamps in 
terms of remission, progression, recurrence, stable and 
mixed response. The next feature showed whether the patient 
was in a curative or palliative situation, while the survival 
status provided information about the date of death or the 
last vital date. Acquiring vital data is often a problem, but 
the primary cases in CREDOS usually have a follow-up rate 
of over 80%. This high follow-up rate is due to the CCC’s 
own efforts as well as supporting information from the 
Bavarian Cancer Registry [23].

The next category includes treatment features such as the 
type of therapy, which is differentiated into surgery, radia-
tion therapy, medical therapy with and without personalized 
treatment, and ‘others’. The next feature, the therapy phase, 
described whether the therapy performed was in the primary 
or secondary phase. The last feature from this category was 
used to describe the therapeutic goal, and it had the fol-
lowing values: curative, palliative, neoadjuvant, adjuvant or 
diagnostic.

The last category includes features that do not fit into 
any of the above categories. The first feature is informa-
tion on how many quarters have passed since the patient’s 
first event (e.g., initial diagnosis) until the next event (e.g., 
until the performing of an NGS test or the start of personal-
ized therapy). The transport data, which give information 
similar to that of the ECOG in that they indicate a patient’s 
condition, were added after consultation with the MTB 
experts in order to solve the problem of the ECOG’s lack 
of completeness. When cancer patients are transported at 
the hospital, they are either coming by foot or are moved 
(e.g., in a wheelchair or bed). While these data are not as 
precise as the ECOG, it has been documented for many more 
timestamps. If an NGS test had been performed is another 
feature of this category. The value ‘0’ was given when the 
test was not performed in a given quarter, and the value ‘1’ 
was give when it was performed in given quarter. The last 
feature is the cancer incidence, which was calculated using 

age at diagnosis, gender and tumor entity in relation to the 
epidemiological cohorts represented in The Centre for Can-
cer Registry Data, resulting in individual incidence-values 
ranging from 0 to 1 for each case.

Additional feature preparation

After selecting the features, some of them had to be pre-
pared according to the requirements of the prediction model. 
In some cases, we trimmed down complexity and reduced 
dimensionality by aggregating some of the data into general-
ized groups.

The generalization into groups was applied to the ini-
tial diagnosis (ICD-10 codes) of the tumor documentation, 
which was grouped into the following subgroups: breast, 
lung, pancreas, prostate, colon, biliary tract and others. 
Generalization was also used for UICC, TNM, grading, and 
revaluation, reducing the dimensionality of their categories 
by about half.

Another method of preparing some of the features was to 
represent their value set via the count of their occurrences in 
a quarter instead of their actual value. For example, instead 
of storing two individual surgery dates, a count of ‘2’ was 
documented. To illustrate this better, the aforementioned 
procedure is shown in the ‘Type of therapy—surgery’ col-
umn in Table 2. This was done analogously for the transport 
data as well, which showed how often the patient moved 
(e.g., by foot or in a wheelchair) during a given quarter.

Creation of quarterly panel

The cohort with the selected features was reorganized in 
a quarterly panel. Each patient in each quarter between 
Q1-2016 and Q3-2021 was represented as a row. Each row 
contained information on the selected features. Table 2 gives 
an impression of the given data model.

Since multiple events per feature can occur in one quarter, 
we had to aggregate this information to be represented as a 
single row. For some features (therapies, transport data, and 
number of detected metastases), this was explained above. 

Table 2   Extract of the input format for the prognostic model. This example shows how some features, like the type of therapy, were aggregated 
by counting occurrences during a quarter instead of listing each date value in order to decrease complexity.

Patient ID Quarter NGS test Cancer entity Age Gender … UICC Metastases Revaluation Type of therapy—surgery …

12345678 2018-Q3 0 Others 76 F … IV No Stable 2 …
12345678 2018-Q4 0 Others 76 F … IV No Stable 0 …
12345678 2019-Q1 0 Others 76 F … IV No Stable 1 …
12345678 2019-Q2 0 Others 76 F … IV No Stable 0 …
12345678 2019-Q3 0 Others 76 F … IV No Stable 1 …
12345678 2019-Q4 1 Others 76 F … IV Yes Progression 0 …
… … … … … … … … … … … …
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For all other features, only the last available value of a fea-
ture in the given quarter was taken into consideration and 
imputed into the quarterly panel. For example, if a patient’s 
ECOG was documented with a value of ‘0’ at first but then 
with a value of ‘1’ at a later point in the same quarter, the 
value of ‘1’, as the latest documented value, was used for 
further analysis.

The outcome is named ‘NGS Test’ (see Table 2) and indi-
cates whether a NGS test was performed in the given quarter 
(‘NGS Test’ = 1) or not (‘NGS Test’ = 0) for the respective 
patient. The prediction model described in the following sec-
tion is used to estimate this outcome on the first day of each 
respective quarter, given the most recent available informa-
tion about the patient—i.e., aggregated information from the 
previous quarter. For example, a patient’s grading from 15 
January (Q1) is used as a feature for predicting the necessity 
of an NGS test in Q2.

The next step to obtain the best possible data model was 
to replace missing values with three options. First, if no 
value for grading was documented in a given quarter, the 
last available grading value from the previous quarters was 
rewritten. Second, in the case of no therapy per quarter, the 
value ‘0’ was used as a replacement for the missing value. 
Third, for other features, the missing values were labeled as 
‘unknown.’

Implementation of the model

The created data model with all selected features was split 
into training and test data sets. The different splits for the 
training and test sets were not described. Only the best split 
was shown in the work, which resulted in the best model per-
formance. The test set contained data from the last available 
quarter (Q3-2021), while the training set contained all other 
quarters. It is important to note that our dataset is imbal-
anced, and the implications of this are discussed in detail 
later on. This imbalance requires careful consideration and 
planning in the analysis steps that will follow.

To estimate the probability that an NGS test would be 
performed for patients during the test quarter, a machine-
learning algorithm was trained. It can identify the most 
important of the various prepared features and automatically 
approximate the clinically complex function between these 
features and the target variable.

For this paper, LightGBM, a gradient boosting framework 
that uses tree-based learning algorithms [24], was used. 

Gradient boosted trees are a potent machine learning algo-
rithm that typically yields superior performance compared 
to alternative methods, such as neural networks or simple 
statistical models like logistic regression, when applied to 
tabular data [25]. Furthermore, this algorithm is highly rec-
ommended for imbalanced classification tasks [26].

The LGBMClassifier is a class of the framework that can 
predict the probability of class memberships—e.g., the prob-
ability for ‘NGS test’ vs. ‘no NGS test’—and offers many 
hyper-parameters that can be tuned to improve prediction 
accuracy.

Cross-validation was performed, using GridSearchCV 
[27] to find the optimal combination of hyper-parameters 
for the model. In particular, we decided to tune the following 
hyperparameters: the learning rate, the number of boosted 
trees, the number of leaves in each tree and the minimum 
number of observations per leaf in the training data [28].

Evaluation of model performance

The final step in building the prediction model was an evalu-
ation to check the performance of the obtained model.

Since the model predicts a continuous probability, its out-
puts have to be mapped to one of two decisions or classes 
by using a probability threshold. The model in this paper 
predicted the probability that an NGS test would be per-
formed in the given quarter; thus, it returned a value in the 
interval [0, 1] for each observation. In order to classify the 
observations, a probability threshold for the model at hand 
was set: values below this threshold were interpreted as a 
recommendation for ‘no NGS test’, while values above were 
interpreted as a recommendation for ‘NGS test.’ In general, 
specifying an optimal threshold does not change the method 
of probability estimation, but it does affect the method of 
case classification. The selection of an appropriate threshold 
value is critical for achieving the desired objectives in clas-
sification tasks. The default threshold value is conventionally 
set to 0.5; nevertheless, this value may not always be appro-
priate, especially for models based on imbalanced data [29]. 
In such cases, the model may not achieve high accuracy, or 
it may generate a large number of false positives, resulting 
in elevated costs within the confusion matrix. Therefore, it 
is imperative to adjust the threshold value as necessary to 
optimize model performance.

Positive and negative classifications can be represented 
using a confusion matrix (see Fig. 1).

Fig. 1   General setup of a confu-
sion matrix
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A negative classification means that the event does not 
occur (value ‘N’), while a positive classification indicates 
the occurrence of the event (value ‘P’). Figure 1 summarizes 
the decisions made by the model in relation to the actual val-
ues. The correct decisions are marked in green: true nega-
tives (TN) and true positives (TP). The red identifies errors: 
negative cases classified as positive by the prediction model 
(false positives—FP) and positive cases classified as negative 
(false negatives—FN) [29, 30]. FP for our model indicated 
that patients who did not receive the NGS test were assigned a 
test, while FN indicated that the test was underestimated—i.e., 
patients who actually had the test were classified as patients 
without the test. We aimed for the values for these errors to be 
as low as possible.

Appropriate evaluation metrics are crucial for accurately 
assessing model performance based on the confusion matrix. 
These metrics are used to compare different models and esti-
mate the impact of manipulating the classification threshold. 
While there are numerous evaluation metrics available, in 
this study, we focused solely on those that best reflect the true 
nature of imbalanced data.

In this study, the model was evaluated using the receiver 
operating characteristics (ROC) curve with its associated AUC 
for both the training and test sets. [29, 30].

As an alternative to the ROC curve, we calculated the 
Precision-Recall curve, which can provide better results for 
imbalanced data.

Sensitivity, represented by formula (1), measures how well 
the positive class (‘NGS test’) was predicted. A higher sen-
sitivity value indicates better positive class prediction. This 
metric might be particularly important in medical data, where 
it is desirable to minimize the number of missed positive cases 
[31, 32].

Another important metric is specificity, representing the 
percentage of correctly classified negative cases (‘No NGS 
test’), represented by the formula (2) [29]. In big health data-
sets, it is important to detect rare but significant cases to meas-
ure sensitivity. However, a trade-off between sensitivity and 
specificity should be considered, as indiscriminately increas-
ing the sensitivity score may result in a higher number of false 
positives, and thus a low specificity score [31].

(1)Sensitivity∕recall∕TPR =
TP

(TP + FN)

(2)Specificity =
TN

(FP + TN)

Results

Following the preparatory steps, the data model was con-
structed with 14,027 patients, consisting of 440 patients 
with NGS tests and 13,587 patients without NGS tests. 
The population differences, with 30 times more patients 
without NGS test, favor the usage of an imbalanced classi-
fication. The data model consisted of 146,034 rows cover-
ing all quarters across all patients and 37 columns, which 
was equal to the number of selected features. The data was 
split into a training set consisting of 133,598 rows and a 
test set consisting of 12,437 rows. The number of patients 
with NGS tests performed was 32 in the test set and 408 
in the training set.

The values for the hyper-parameters we chose for mode-
ling were as follows: learning rate = 0.05, number of boosted 
trees = 75, number of leaves in each tree = 30 and minimum 
number of observations per leaf in the training data = 100.

The high AUC scores on the training (AUC = 0.99) and 
test data sets (AUC = 0.96) indicate that the engineered 
features are meaningful for deciding whether an NGS test 
should be performed in the test quarter. The ROC curves 
with their AUC values for training data and test data are 
shown in Fig. 2.

Additionally, Fig. 3 shows the results of the Precision-
Recall curve, with an AUC value of 0.2711.

Figure 4 shows the feature importance—i.e., the cal-
culated number of times the feature was used in a model. 
The higher the value of the feature, the higher the impact 
on the prediction model. The five most important features 
were age, cancer incidence, number of quarters elapsed 
since the first patient event, number of bed transfers and 
number of metastases. These features accounted for 55% 
of the use of all features.

The lowest thresholds were 0.0021 and 0.00298 and 
resulted in equal values of the error rates (FPR and FNR), 
the first of which was obtained by setting the maximum 
acceptable value of FN to 0.5. The sensitivity values for 
both thresholds were: 0.96875 and 0.90625 and the speci-
ficity values: 0.8539 and 0.8956. The graph in Fig. 5A 
shows the values of FPR and FNR for different probabil-
ity thresholds. The confusion matrices for the calculated 
thresholds are shown in Fig. 5B and Fig. 5C.

The other calculated threshold that minimizes the mis-
classification cost was 0.00335, the sensitivity was 0.90625 
and the specificity was 0.9072. The cost of correct classifica-
tions (TP and TN) is set as a value of ‘0’, while the cost of 
misclassifications was set to 1,000,000 for FN and 4,000 for 
FP. The cost of misclassification was calculated by multiply-
ing each entry in the confusion matrix by the specified cost 
value [33]. The cost values for probability thresholds and the 
confusion matrix are shown in Fig. 6.
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Figure 7 shows the values of the F1 score for the prob-
ability thresholds and the confusion matrix for the threshold 
of 0.05462 that maximized the F1 score. The sensitivity and 
the specificity for the calculated threshold were 0.375 and 
0.9969.

After receiving different classification thresholds, we 
compared both the distribution of predictions and the con-
fusion matrix for three thresholds as well as the resulting 
sensitivity and specificity values: 0.3 (0.125 sensitivity/1.0 
specificity), 0.03 (0.46875 sensitivity/0.9928 specificity) and 
0.003 (0.90625 sensitivity/0.896 specificity). The graphs 
and matrices are shown in Fig. 8. After discussing the costs 

of false negatives and false positives with MTB experts, a 
threshold value of 0.003 was chosen. This selection favors 
false positive results and, thus, overestimation of NGS tests.

To assess the model’s performance, individual case 
vignettes of past cases were assessed with MTB experts. 
For the discussion, we presented 8 pancreatic cancer patients 
and 7 biliary tract cancer patients, all with engineered fea-
tures but none with the actual or the model’s test decision. 
The cases were selected to cover all fields of the confusion 
matrix equally, leading to a model accuracy of approxi-
mately 50%, by design, on this subset of patients. To be 
specific, the model predicted 8/15 cases correctly. In terms 
of overall model accuracy, the selected threshold of 0.003 
resulted in an accuracy rate of 89.61% (N = 11,145/12,437). 
However, given the imbalanced nature of the dataset, this 
metric may not be of significant importance. Instead, meas-
ures of sensitivity and specificity, as presented previously, 
may be more crucial in evaluating the performance of the 
model.

Based on the provided features, the MTB experts cor-
rectly decided 10/15 cases and slightly outperformed the 
model on this small sample. The MTB experts and the model 
agreed on 9/15 cases.

Discussion

Allocation of patients to comprehensive molecular profiling 
has not been standardized on a regional or national level. As 
of today, the most common recommendation factors are the 
patient’s age, physical condition, type of cancer, presence of 
metastases, and therapies performed so far. It is important 
to note that this study represents a single-center experience.

The prediction model developed in this work could sup-
port experienced physicians in their decision to perform an 
NGS test or not. It may also help identify patients with a 

Fig. 2   ROC curves with AUC values for: A training data and B test data

Fig. 3   The Precision-Recall curve summarizes the relationship 
between precision and recall for different thresholds. The model 
achieved a relatively high precision (precision = 1.0), meaning that it 
correctly predicted the positive cases in most cases. The trade-off is 
that the recall was low (recall = 0.09375), indicating that the model 
captured only a small fraction of all true positive cases in the test set. 
However, this could be due to the small number of positive cases in 
the test set. With only 32 patients with molecular profiling in the test 
set, the model had fewer positive examples to learn from, making it 
more challenging to accurately capture all positive cases



	 Clinical and Experimental Medicine           (2024) 24:73    73   Page 8 of 14

Fig. 4   Feature importance

Fig. 5   A Error rates over prob-
ability thresholds. B Confu-
sion matrix with the thresh-
old = 0.0021 for maximum of 
acceptable value of FN 0.5. 
C Confusion matrix with the 
threshold = 0.00298
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fitting profile who have not yet received NGS and would 
likely have been missed. Likewise, it could also serve as a 
clinical decision support tool for outreach areas where there 
are no MTB practitioners or experts, potentially increasing 
the rate of inclusion of fitting candidates into an MTB, hence 
increasing the actionability of the NGS test results.

The utilization of routine clinical data to build machine 
learning models is common practice. However, one of the 

most prevalent issues with this approach is an imbalanced 
classification, which is characterized by a skewness in the 
class distribution. The majority class, typically referred to as 
the negative outcome, outnumbers the minority class, which 
is typically defined as the positive outcome [26, 31].

In our study, we observed a significant imbalance in 
the number of patients with or without molecular profil-
ing. The minority class, which was represented by patients 

Fig. 6   A Misclassification costs 
over probability thresholds. B 
The confusion matrix with the 
threshold = 0.00335

Fig. 7   A F1 score over prob-
ability thresholds. B The 
confusion matrix for the thresh-
old = 0.05462
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Fig. 8   Distribution of predictions and confusion matrices for the following thresholds: A 0.3, B 0.03 and C 0.003
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with molecular profiling, was considerably smaller than 
the majority class, indicating that the number of NGS tests 
performed is still relatively low compared to the number 
of cancer patients. This may be attributed to the fact that 
conventional treatment methods, such as chemotherapy, 
radiotherapy, and surgery, are commonly used as first-line 
therapy in most types and stages of cancer, while personal-
ized therapy is usually reserved for second-line or subse-
quent lines of treatment [34].

Machine learning models typically assume an equal dis-
tribution of both classes and aim to achieve a high accuracy 
score for the entire model. However, in the case of an imbal-
anced classification, such an approach would prioritize the 
majority class and result in low sensitivity toward the minor-
ity class. Hence, it is crucial to select appropriate evaluation 
metrics that focus on the minority class, despite the scarcity 
of observations in this class. Misclassifying the minority 
class would be much more costly than the majority class, 
particularly when using patients’ health data. In our case, 
misclassifying the minority class would result in a patient 
not receiving NGS test, even though their characteristics 
indicate that the test should be performed. Therefore, we 
advocate for the use of evaluation measures that prioritize 
the minority class, even though it is challenging to identify 
such metrics [26, 29, 31].

We investigated the impact of selecting different thresh-
olds on accuracy, sensitivity, and specificity in our model. 
Our results indicated that choosing a high sensitivity thresh-
old (0.003: 0.90625 sensitivity/0.896 specificity) would 
improve the identification of potential candidates. However, 
the cost of performing a large number of tests would be high, 
making this approach potentially economically unsustain-
able. Conversely, selecting a threshold with high specificity 
(0.3: 0.125 sensitivity/1.0 specificity) would minimize false 
positive results, but the sensitivity would be relatively low, 
potentially leading to too many missed patients.

Given the actionability and the associated current cost of 
NGS testing, it appears reasonable to prioritize a threshold 
with a relatively high specificity. As of today, the cost of cur-
rent comprehensive molecular profiling varies depending on 
the specific test and provider, but a typical test can cost sev-
eral thousand US dollars [35, 36]. In that regard a threshold 
of 0.03 (0.46875 sensitivity/0.9928 specificity) could allow 
for the identification of about half of the potential candi-
dates while minimizing the number of unnecessary tests. It 
is worth noting that selecting a threshold with higher sen-
sitivity may be beneficial when cost is not a major concern. 
Indeed, the trend observed in genome sequencing suggests 
that the cost of NGS testing, besides emerging new methods, 
is likely to decrease further in the foreseeable future [37].

After the MTB experts had validated the model via the 
case vignettes (using the 0.003 threshold/high specific-
ity), they were positively surprised by the agreement of 

prediction results. This was supported by the even better 
results in terms of all cases, as well as the high AUC scores, 
as presented in the results. Questions may arise regarding 
whether a model relying on routinely collected tumor docu-
mentation data could eventually replace human decision-
making. However, it should be emphasized that this system 
is intended solely as a clinical decision support tool, and its 
clinical utility needs to be demonstrated through broader 
testing first.

The data model provides valuable insights into the cur-
rent patient selection process for comprehensive molecu-
lar profiling and case discussion in the MTB at LMU. It 
has the potential for swift updates to reflect any changes in 
criteria by incorporating more recent cases. Moreover, in 
theory, with appropriate local adjustments, the model could 
be potentially adapted for use in other institutions hosting 
tumor documentation databases and patient transport data. 
A necessity for the model to perform is data. In this work, 
we did not collect clean data comparable to a clinical trial; 
instead, we used the already available and routinely collected 
data from LMU’s hospital. Hence, as most sites should be 
able to supply similar data, the methodology could be trans-
ferred to other sites in a federated approach. Data quality is 
the main issue when working with data collected in clinical 
routine.

Our feature-importance analysis revealed that the top 
five rated features were age, cancer incidence, number of 
quarters elapsed since the first patient event, number of bed 
transfers, and number of metastases. These parameters seem 
to wield considerable influence, as they identify patients 
in a relatively poor clinical condition, frequently having 
undergone standard therapies to exhaustion. This holds 
particular relevance for the MTB, which assesses innova-
tive approaches grounded in molecular profiles, typically 
unsuitable for patients who respond favorably to standard 
therapies. Surprisingly, the number of bed transfers was 
rated higher compared to the significantly lower rating of the 
ECOG score. This could be attributed to the incompleteness 
of the ECOG data in the tumor documentation mentioned 
in Sect. “Selection and description of the features”, empha-
sizing the significance of considering additional parameters 
that may not always be evident.

We believe that this work highlights that sites should 
invest resources in improving the quality of their routine 
data for secondary use [38]. Locally, the CCC MunichLMU 
already invests resources in improving the data quality of 
its whole tumor data set and has implemented many plau-
sibility checks and other measures [39]. Incompleteness 
might be the biggest issue [40] observed with data from 
LMU. Regarding this work, the tumor documentation data 
alone was not sufficient, but adding additional data, such as 
the transport data, as well as various data cleaning steps, 
improved the performance. The model is expected to benefit 
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from improvements in data quality in terms of specificity 
and sensitivity.

The potential in routinely collected data has also been 
acknowledged by other groups in the same field. For exam-
ple, Kim et al. [41] implemented a prognostic model to pre-
dict Heme-STAMP (Stanford Actionable Mutation Panel for 
Hematopoietic and Lymphoid Malignancies) pathological 
variants based on electronic health records data.

In general, routinely collected data and, in particular, 
tumor documentation data have been recognized as a very 
important source for clinical research, as demonstrated 
by many large scale projects and initiatives utilizing this 
data source (the national Network Genomic Medicine 
(nNGM) [5], the German Network for Personalized Medi-
cine (DNPM) [42], the Molecular Tumor Board Alliance 
(MTBA) [43], the Bavarian Cancer Research Center (BZKF) 
[44] or the Medical Informatics Initiative Germany (MII) 
[45]).

Potential extensions to the dataset could include imaging 
or biomarker data e.g., from blood and urine. However, due 
to governance issues, these resources were not available to 
us in this study.

At this point, we regard our system and the current model 
as a first prototype that offers potential for improvement, 
refinement and growth. Still, its application in a real-world 
environment would need further testing and metrics to prove 
its benefit in comparison to the traditional decision-making 
process.

Conclusion

Here, based on routinely collected data, we present a first 
pilot for a decision support tool capable of predicting if 
molecular profiling for a cancer patient should be conducted. 
The system is based on a model created by machine learning 
and was validated by expert physicians. The results indicate 
that in prospect of further and possible improvements, such 
a system might be implemented into clinical care.
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