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Abstract Cardiac muscle tissue during relaxation is com-
monly modeled as a hyperelastic material with strongly
nonlinear and anisotropic stress response. Adapting the
behavior of such a model to experimental or patient data gives
rise to a parameter estimation problem which involves a sig-
nificant number of parameters. Gradient-based optimization
algorithms provide a way to solve such nonlinear parame-
ter estimation problems with relatively few iterations, but
require the gradient of the objective functional with respect
to the model parameters. This gradient has traditionally been
obtained using finite differences, the calculation of which
scales linearly with the number of model parameters, and
introduces a differencing error. By using an automatically
derived adjoint equation, we are able to calculate this gradi-
ent more efficiently, and with minimal implementation effort.
We test this adjoint framework on a least squares fitting prob-
lem involving data from simple shear tests on cardiac tissue
samples. A second challenge which arises in gradient-based
optimization is the dependency of the algorithm on a suitable
initial guess. We show how a multi-start procedure can alle-
viate this dependency. Finally, we provide estimates for the
material parameters of the Holzapfel and Ogden strain energy
law using finite element models together with experimental
shear data.
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1 Introduction

The personalization of computational models in cardiology
is akey step toward making models useful in clinical practice
and cardiac surgery. A computational model, once properly
calibrated, has the potential to forecast cardiac function and
disease, and can aid in planning treatments and therapies.
To describe the mechanical function of the heart, the pas-
sive elasticity of the muscle tissue needs to be represented.
Personalizing the effects of this elasticity in a computational
model is typically accomplished by tuning a set of material
parameters so that the output of the model fits observed data.
Gradient-based optimization algorithms have successfully
been used in the past to automatically perform the parameter
tuning at an organ scale (Augenstein et al. 2005; Wang et al.
2009). In these studies, the gradient of the objective func-
tional is approximated using one-sided finite differences.

Compared to using a global optimization method, local
gradient-based methods have the advantage of using rel-
atively few optimization iterations. This is an important
consideration when optimizing organ scale finite element
models, for which running a single forward model can take
hours or days. On the other hand, a disadvantage of using
local optimization methods is the fact that they can converge
to local, globally suboptimal, minima. One way to combine
the speed of a local optimization with the robustness of a
global optimization is to use the multi-start method. In this
method, many local optimizations are run starting from vari-
ous points in parameter space and the best fitting solution of
the group is taken to be the global optimum.
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Another popular approach to parameter fitting is the
reduced order unscented Kalman filter. This approach was
successfully used to fit a transversely isotropic passive
mechanics model to synthetic data (Xi et al. 2011), to par-
tially calibrate a multi-physics model (Marchesseau et al.
2013), and to estimate regional contractility parameters
(Chabiniok et al. 2012). Note however that the use of both
unscented Kalman filtering and finite differences carries a
computational cost that increases with the number of model
parameters.

Assuming there are k parameters to be estimated, an
unscented Kalman filter with a minimal sigma-point con-
figuration requires k + 1 model evaluations at a single time
level for each assimilated data point. An evaluation of a finite
difference derivative on the other hand requires k + 1 runs of
the model throughout the full span of model configurations
considered.

In contrast to these two techniques, the adjoint approach
computes the objective functional gradient via the solution
to an adjoint equation, which involves only a single solve
of a linearized system for any number of model parameters.
Thus, for models involving many parameters, either due to
model complexity or spatiotemporal parameter variation, the
adjoint approach offers a computationally attractive approach
for parameter estimation.

There are some previous results involving adjoint equa-
tions and cardiac elasticity. Sundar et al. (2009) developed
a framework for the estimation of wall motion based on
cine-MRI images and adjoint inversion, and Delingette et al.
(2012) used an adjoint equation to estimate contractility para
meters. However, both of these studies involve linear and
isotropic elasticity models, which represent a significant sim-
plification of the orthotropic and highly nonlinear behavior
reported in the contemporary cardiac mechanics literature
(Costa et al. 2001; Dokos et al. 2002; Holzapfel and Ogden
2009).

One reason why it is difficult to use an adjoint equation
with modern nonlinear anisotropic models is the complexity
required in deriving and implementing code for the solution
of the adjoint problem. In order to resolve this issue, we make
use of an automatic framework for generating adjoint code
(Farrell et al. 2013). Here, we use this adjoint framework
to estimate the material parameters of an invariant-based
orthotropic myocardial strain energy law (the Holzapfel-
Ogden model) (Holzapfel and Ogden 2009). This law is
embedded here in an incompressible finite element frame-
work, and we use the raw data from a simple shearing
experiment (Dokos et al. 2002) as a target for optimization.
These data have previously been used to estimate material
parameters for a variety of other strain energy functions using
afinite element framework, but with a gradient obtained using
finite differences (Schmid et al. 2008, 2009). The material
parameters of the particular strain energy density that we are
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using have also been previously estimated using digitized
data based on Figure 6 of Dokos et al. (2002), and a homo-
geneous deformation model (Holzapfel and Ogden 2009;
Wang et al. 2013; Goktepe et al. 2011). Our study is, how-
ever, the first to use the adjoint approach for the estimation
of cardiac hyperelasticity parameters and the first to pro-
vide optimized material parameters for the incompressible
Holzapfel-Ogden model for non-homogeneous deforma-
tions.

The rest of this paper is organized as follows. In Sect. 2 we
describe the variational formulation of the elasticity model,
the optimization problem for identifying the material para-
meters, and how the adjoint gradient formula can be used to
calculate a functional gradient. In Sect. 3 we describe the ver-
ification of the forward and inverse solvers, present timings
to show the efficiency of the adjoint method, and show the
results of parameter estimations. Finally, we test a multi-start
optimization method in order to reduce the dependence of the
gradient-based algorithm on the choice of initial parameter
set. We conclude by discussing our findings in Sect. 4 and
drawing some conclusions in Sect. 5.

2 Mathematical models and methods

We shall use the notion of the directional derivative fre-
quently throughout. For a functional f : ¥ — R for some
vector space Y, we define the directional derivative of f with
respect to the argument named y in the direction 8y

0
Dy f(y)[8y] = gf(y + € 8y) o

Furthermorg:, we denote the total derivative by the usual
notation g—f; to mean the derivative of f with respect to all
arguments depending on .

2.1 Hyperelasticity model

Let 2 C R? be an open and bounded domain with coordi-
nates X and boundary 952, occupied by an incompressible
hyperelastic body. We consider the quasi-static regime of
a body undergoing a large deformation x = x(X) and are
interested in finding the displacement u = u(X) = x — X
and the hydrostatic pressure p = p(X) that minimize the
incompressible strain energy IT = I1(u, p, m):

(u, p.m) =/ ¥(C.m) + p(J — 1) dx )
2

over the space of admissible displacements and pressures
satisfying any given Dirichlet boundary conditions. In (1), m
is a set of material parameters, J = detF, where F = Vx =
Vu + I denotes the deformation gradient, I is the identity
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tensor in R3, C = J ~3FTF denotes a volume-preserving
right Cauchy—Green strain tensor, and v denotes an isochoric
strain energy density.

The incompressible Holzapfel and Ogden hyperelasticity
model (Holzapfel and Ogden 2009) describes large deforma-
tions and stresses in cardiac tissue via the following energy
density ¥:

Y(Cm) = = (exp (11 (©) = 3)] - 1)

+> h(lsi(©)a (exp [b,- (14,-(6)—1)2]—1)

s 2
+2abf;s (exp [b e (6)] - 1) . ?)

Here f, s denote fiber and sheet directions, respectively; 2 (x)
is a Heaviside function with ajump at x = 1, and the material
parameters are

m = (a, b, af, bf, dg, bs, Aafs, bfs). (3)

Moreover, 11, Iy, I45, Ings are rotation invariant functions
given by

I1(C) =t C
1i(C)=¢ -Ce; i=fs
I3£5(C) = e, - Cey 4)

where tr denotes the tensor trace and e 7, €; denote unit vec-
tors pointing in the local myocardial fiber and sheet directions
(Holzapfel and Ogden 2009). The strain energy density  is
rotation invariant, and polyconvex if m > 0 (Holzapfel and
Ogden 2009).

The Euler-Lagrange equations for the minimizing dis-
placement u and pressure p of (1) read: for given m, find
w = (u, p) such that

R(w,m; 6w) = Dy pI1(u, p, m)[éu, 6p] =0, 5)
for all admissible virtual variations éw = (8u, §p). Inserting
the total potential energy from (1) and taking the directional

derivatives, we obtain

Dy pI1(u, p, m)[u, 5p] (6)

_ / ((M n pJF—T) LV Su + (J—l)(Sp) dx.
o oF

2.2 Parameter estimation as a PDE-constrained
optimization problem

In the general case, the passive material parameters m enter-
ing the constitutive relationship (2) are not known. In order

to estimate these parameters from data, we propose to use
a numerical approximation in combination with a gradient-
based optimization algorithm in which the gradients are
computed via an adjoint model. The optimization algorithm
seeks to minimize the misfit between model output and obser-
vations. Denoting the misfit functional by / = I (w(m), m),
the optimization problem reads:

min / (w(m), m) subjectto R(w,m;déw) =0 VéweW,
m

(N

together with suitable Dirichlet boundary conditions on w.
We also require that m > 0 to ensure the functional (1)
is polyconvex (Holzapfel and Ogden 2009). For notational
convenience, we will sometimes use the reduced formula-
tion of the misfit functional and its gradient with respect to
the material parameters m. In particular, we introduce the
reduced functional /

[(m) = I(w(m), m). (8)

In our numerical experiments, we use Sequential Least
Squares Programming (SLSQP) as implemented in Kraft
(1988) and wrapped in the package SciPy (Jones et al. 2001)
in order to solve (7).

2.3 Multi-start Optimization

A common challenge with gradient-based algorithms is that
the solution obtained depends on the choice of initialization
point for the algorithm. Moreover, the optimized solution
may be a local minimum only and not necessarily a global
minimum. One way to attack these issues is to run many
optimizations from randomly chosen initial parameter points
and to chose the resulting optimized material parameter set
that gives the best fit. This method is often referred to as
multi-start optimization (Boender and Kan 1987) and is an
example of combining global and local optimization.

Due to the presence of exponential functions in the strain
energy (2), it is possible for calculated stresses to become
very large, which may result in convergence issues for the
numerical solution of the Euler—Lagrange equation (5). This
can easily occur if several material parameters have large
values. In order to minimize this problem, we have designed
a procedure to generate random initial guesses which lim-
its the number of large material parameter values while still
allowing for a large range of initial possible values for each
parameter. The procedure works as follows: first set a maxi-
mum parameter value Ppax. Then choose N (with N = 8 in
our case) points p;, i € {1,2,3...n}, from auniform distri-
bution defined over the interval [0, Pmax] and let pg = 0. The
parameter values m; are then set to be the distances between
successive randomly drawn points, that is m; = p; — pi—1.
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2.4 Computing the functional gradient via the adjoint
solution

Gradient-based optimization algorithms in general, and the
SLSQP algorithm in particular, rely on the total derivative
of the objective functional (8). By introducing an adjoint
state variable, this derivative may be computed efficiently.
We summarize this result below. Our presentation is based
on Gunzburger (2003), and is adapted here to the solid
mechanics setting.

We define three abstract spaces W, M, and &, where
W is the space of all possible solutions to the variational
equation (5) which also satisfy any given Dirichlet bound-
ary conditions, M is the material parameter vector space,
and @ is the space of virtual variations. The Lagrangian
L:W x M x ® — Ris defined as:

L(w,m, ) = I(w,m) — R(W,m; ). (€))

For all m € M, w € W solving the state equation (5), we
have

D Rwm),m; ¢) =0
ﬁ w(m), m; ¢) = 0,

such that the total derivatives of I and L coincide,

b 1 = b L 10
Dm (w(m),m)—ﬁ (w(m), m, ¢). (10)

If we choose ¢ € @ such that
DwL(w, m, ¢)[sw] =0 (11)

for all sw € W, which in particular includes sw =
Dpw(m)[Sm], the total derivative of L with respect to m in
the direction §m simplifies as follows using the chain rule:

D
Dm L(w(m), m, ¢) = Dy L(W, m, ¢)[ Dy w(m)[6m]]
m

+DpL(w, m, ¢)[dm]
= D L(w, m, ¢)[6m] (12)

Then, for any infinitesimal variation in the material para-
meters §m, combining (10), (12), and (9) yields an efficient
evaluation formula, not requiring derivatives of the state vari-
able w with respect to the material parameters m, for the total
derivative of I:

ﬂl(w(m), m) = Dy [/ (w, m)[dm]
Dm

—DpR(w, m, ¢)[dm]. (13)

@ Springer

We still need to compute ¢. By defining the form Ry, and its
adjoint R},

Rw(w, m; 6w, ¢) = Dy R(wW, m; ¢)[w],
Ry, (W, m; ¢, W) = Ry(W, m; 5w)[¢],

we can rewrite (11) as

DwL(w,m, ¢)[6W] = DyI(w, m)[5w]
—Rj(w,m; ¢, 5w) =0,

and thus recognize the adjoint equation: given m, w, find
¢ € @ such that

Ry (w, m; ¢, W) = Dy I (w, m)[Sw] (14)

for all 5w € W.

In summary, the adjoint-based gradient evaluation formula
is: given m, first compute w by solving the state equation (5),
next compute ¢ by solving (14), and finally evaluate (13).

2.5 Description of shearing experiments

We aim to optimize the material parameters of the Holzapfel—
Ogden model (2) with respect to target experimental data, in
particular data resulting from an earlier set of simple shearing
experiments (Dokos et al. 2002). In these experiments, 6 pig
hearts were extracted. From each heart, three adjacent 3mm x
3mm x 3mm cubic blocks were cut in such a way that the sides
of the cubes were aligned with the local myocardial fiber and
sheet directions. A device held two opposing faces of each
cube between two plates using an adhesive. The top plate was
displaced in order to put each specimen in simple shear. For
each specimen, 6 different modes of shear were tested. These
modes are described using the F, S, N coordinate system,
which refer to the myocardial fiber, sheet and sheet normal
directions, respectively. Each mode is denoted by two letters,
where the first defines the normal of the face of the cube that
is being displaced, and the second refers to the direction of
displacement. These 6 modes are FS, FN, SF, SN, NF, NS.

In order to remove the effects of strain softening, prelim-
inary displacements were applied to the tissue samples until
no further softening was observed. After that, displacements
were once again applied, and the forces in the shear direction
were measured on the top plate. These measurements were
taken for circa 200-250 various states of shear per mode.

In Fig. 1 we display the stress—strain relations for positive
displacements that were obtained from the shearing experi-
ments (Dokos et al. 2002). As can be seen in Figures 4 and
6 of Dokos et al. (2002), the experimentally obtained curves
contain a high degree of symmetry through the line y = —x.
We can expect the same symmetry in the stresses computed
by finite element models which use the strain energy (2) since
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Fig. 1 Stress—strain relations, numbered 1 through 6, obtained from
simple shearing experiments performed on 3 mm x 3 mm x 3 mm cubes
of myocardium extracted from 6 porcine hearts. The modes are ordered
from highest to lowest stiffness in each experiment. The data originate

changing the sign of the displacement map will change the
sign of the resulting stresses but preserve their magnitude. In
the previous studies Holzapfel and Ogden (2009), Goktepe
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from the study Dokos et al. (2002), but were not published in the sub-
sequent article. In Experiment 4 the data for one of the NS-NF curves
were copied into the other before we received it, so the two curves lie
here on top of one another

etal. (2011), and Wang et al. (2013), only the data for positive
shear displacements were used. For the sake of comparabil-
ity, we restrict our data in the same way.

@ Springer
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In our numerical experiments, we use two data sets with
reference to the numbering of Dokos et al. (2002). The first
is Data Set 6, and the second data is Data Set 2 with the
SF and SN curves swapped. This swap and the choice of
data sets are discussed further in Sect. 4. For clarity, we shall
refer to Data Set 6 as “transversely isotropic” and Data Set 2
with the swap as “orthotropic”, as the respective stress—strain
curves are typical of materials of these types. For each mode,
the prescribed shear displacement is modeled as a Dirichlet
boundary condition for the displacement on the respective
top and bottom faces in the respective direction.

2.6 Choice of objective functional

In order to estimate the passive material parameters of the
Holzapfel-Ogden model, we make use of a least squares
objective functional. This functional defines a distance from
the model output to the data points of the shearing exper-
iment, and we seek the material parameter set m that
minimizes this. Before introducing our objective functional,
we define the set of directions D = {F, S, N}, referring to
fiber, sheet and sheet normal directions. We also use the nota-
tion (i, j) to refer to a mode, with the index i referring to the
normal of the face that is shifted, and j to the direction in
which the shift occurs.

Our fit function is similar to that used in Schmid et al.
(2007) and is given by

G
fm? =" 3" 3" o (gl m) exper<ck)) (15)

i€D jeD k=1

In (15) texper is the force measured during the experiment,

and tmod | is the force generated by the finite element model
at each prescribed shear displacement ¢ € [0, C'-J1, where
C'J is the maximal prescribed displacement of the mode
(i, j) in the experiment. Each ¢ is chosen to be a Gauss point
of a G-point Gauss integration rule defined over [0, C Lj ], and
wy, is the value of the Gauss weight related to c¢x. Explicitly,
for mode (i, j) with top face 0£2;, [rlr;édel is given by

model(ck’m) / Md& (16)
392 oF; ;

where F; ; = e;-Fe; is a shear component of the deformation
gradient.

Evaluating the inner loop of I requires solving (5) once for
each given shear displacement cj. The motion given by the
calculated displacements is then a quasi-static approximation
of the motion undergone by the corresponding tissue in the
shearing experiment.

Following Schmid et al. (2007), we evaluate the least
squares fit (15) at G Gauss integration points, rather than
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for all 250 recorded points for each shear mode, in order
to greatly reduce the computational expense of evaluating
I. At each Gauss point, we obtain the corresponding shear
stress by linearly interpolating between the two neighboring
stresses which were recorded in the experiments of Dokos
et al. (2002).

The use of Gauss integration is based on the observation
that 7 (m) is an approximation to the following expression

ciJ ; . 2
Z z / model (c,m) — té}{Per(c)) de

jeDieD
(17)

By setting tm del = = 0 and approximating the integral by
the midpoint rule applied to the full dataset, we can determine
the quality of the Gauss approximation. In order to do this,
we define the relative error

i_ fmid (18)

€rel =

~

Inmid

where Iy is the midpoint rule approximation of (17) eval-
uated over the full data, and I , given by (15), is evaluated
at a reduced set of Gauss points. We noticed that 9 Gauss
points are sufficient to reduce €, to less than 0.01. However,
in our numerical experiments we use G = 40 Gauss points
as this guaranteed small enough changes in the solution of
the Euler—Lagrange equation (5) from one Gauss point to
the next, so that our Newton’s method solution of (5) always
converged.

2.7 Finite element discretization of the hyperelasticity
equations

We represent each tissue sample of the shearing experiments
by a three-dimensional cube §2 = [0, 3]3 (mm3). An N x N x
N mesh of this cube was constructed by uniformly dividing
the mesh into N x N x N boxes and then subdividing the
boxes into tetrahedra. The local myocardial fiber and sheet
orientations were represented as spatially constant vectors
aligned with the coordinate axes.

On these geometries, we solve (5) and its adjoint, using a
Galerkin finite element method with the Taylor—Hood finite
element pair (Hood and Taylor 1974); e.g., a continuous
piecewise quadratic vector field for the displacement and a
continuous piecewise linear scalar field for the pressure. For
the solution of the nonlinear system of equations, we use a
Newton trust region method. The absolute tolerance of the
nonlinear solver was set to 10710 in the numerical experi-
ments below. Linear systems are solved by LU factorization.
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Fig. 2 Finite element
representation of cubes of
cardiac tissue undergoing
simple shear in the NS mode.
The bottom of the cube is fixed,
and the top displacement is
given. Left homogeneous
deformation with a constant
shear angle. Right finite element
solution on a 6 x 6 x 6 mesh.
The plot shows the value of the
NS-component of the right
Cauchy—Green strain tensor C

Additionally, we model the case of a homogeneous defor-
mation which corresponds to a linear displacement with a
constant shear angle throughout the domain. Such a model
can be represented by discretizing the cubes with a single
layer of linear finite elements: the resulting displacement is
completely determined by the prescribed boundary condi-
tions. Figure 2 illustrates the two kinds of deformations on
cube meshes.

The discrete variational formulation of the Euler—
Lagrange equations is implemented using the FEniCS Project
software (Alnas et al. 2014; Logg et al. 2011) and dolfin-
adjoint (Farrell et al. 2013). From a FEniCS forward model,
dolfin-adjoint automatically generates the symbolic adjoint
system of equations and computes the functional gradi-
ent (13) using the adjoint solution. The FEniCS framework
automatically generates and compiles efficient C++ code for
the assembly of the relevant linear systems from the sym-
bolic representations of both forward and adjoint equations,
and solves the nonlinear and linear systems using e.g., PETSc
(Balay etal. 2015). With this setup, we observed that a typical
solution of the Euler—Lagrange equation (5) takes 6 Newton
iterations.

3 Numerical results
3.1 Verification

Each of the finite element, adjoint, and optimization solvers
have been carefully verified, separately and combined, as
follows:

(i) The finite element solver was verified by the method of
manufactured solutions (Salari and Knupp 2000). Fol-
lowing this method, we chose an analytic expression for
the displacement and pressure fields

= (”‘3’ Y (ﬁ - 1) ’0) (19)

0.

u
p

Shear Strain

0.4 0.5

0.1 0.2 0.3 .
AL L
| !

0.00359 0.545

Here x, y refer to Cartesian coordinates and ¢ is a scaling
parameter which we set to t+ = 0.2. Using this analytic
expression we derived Dirichlet boundary conditions
over a unit cube, and a loading term f which satisfied a
pointwise form of Eq. (6)

3y (C, m)

-T__ .
oF +pJF = f in$2. (20)

Note that the chosen displacement field satisfies the
incompressibility constraint J — 1 = 0. We then
computed finite element approximations to (19) and
observed the expected second-order convergence of the
displacement gradient to the analytical displacement
gradient (Hood and Taylor 1974).

(i) We verified the computation of stresses in the finite ele-
ment model by prescribing a homogeneous deformation
and comparing the resulting numerically integrated top
face shear stress values to analytically computed val-
ues. The analytic values were based on the calculations
found in Holzapfel and Ogden (2009, Section 5a), and
the numerical values were observed to match closely.

(iii)) We confirmed the correctness of the adjoint gradients
by considering the linearization of the functional I(m)
around m with perturbation Am and using Taylor’s the-
orem: the expression

Di(m)
Dm

f(m) — f(m + Am) + (Am) = O (Amz)

2y

converged to 0 at a rate of 2 as Am —> 0, which can

only be expected if b [I)gl“) is computed accurately.

3.2 Parameter estimation with synthetic data

Additionally, we verified the optimization solver by perform-
ing a synthetic data test. In this test we chose a target set of
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Table 1 Synthetic data test results

a b ay by ag by ags by 1
(kPa) (kPa) (kPa) (kPa) (mN)
Initial 0.059 8.023 18.472 16.026 2.481 11.120 0.216 11.436
Target (80 %) 0.047 6.418 14.778 12.821 1.985 8.896 0.173 9.149
Homogeneous 0.047 6.418 14.778 12.821 1.985 8.896 0.173 9.149 4611 x1078
Finite Element 0.047 6.406 14.778 12.821 1.983 8.938 0.173 9.155 0.00082

The first row (Initial) contains the material parameter values used to initialize the algorithm, while the second row (Target) contains the parameters
that were used to generate the synthetic stresses. The rows marked "Homogeneous’ and "Finite Element’ contain optimized parameter values coming
from homogeneous deformation and finite element models. These optimized values are matched perfectly by the optimized homogeneous model

and very closely by the finite element model

material parameters, Table 1, 2nd line, and used them to com-
pute synthetic integrated stress values for all 6 shear modes
of the tissue experiment (Dokos et al. 2002). These synthetic
stresses were then matched by an optimization starting from
material parameter values 25 % higher than the target.

We performed this test using our two models for defor-
mation. The first model assumed a homogeneous shear angle
through the material and the second model was a finite ele-
ment model with a 1 x 1 x 1 mesh. Since the displacement
field of the finite element model was element-wise quadratic,
it allowed for more flexibility in the deformation field. The
results of this synthetic data test are presented in Table 1
and show that the optimization algorithm was able to closely
match the target material parameters.

3.3 Parameter estimation with experimental stress data

In the following, we present the results of fitting the
Holzapfel-Ogden strain energy law (2) using the objective
function (15) and a SLSQP optimizer with bound constraints.
The SLSQP algorithm makes use of the gradient of the objec-
tive functional which we obtain using the adjoint gradient
formula (13).

Asthe numerical solution of the nonlinear Euler—Lagrange
equation (5) easily fails to converge when a material parame-
ter becomes too small, we set a lower bound of 1.0 x 10~2 on
the components of m while optimizing finite element models.
This bound was not necessary for the homogeneous defor-
mation models as no Euler—Lagrange equation is solved. All
optimizations were carried out until the optimizer was unable
to further reduce the objective functional or an absolute tol-
erance of 1.0 x 1076 in the 2-norm of the functional gradient
was reached.

3.3.1 Material parameter estimation using a priori
knowledge

The material parameters of the Holzapfel-Ogden model have

previously been estimated using a homogeneous deformation
model (Table 1, 2nd row in Holzapfel and Ogden 2009). We
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first used these values as the initial values for optimization of
our homogeneous model targeting the transversely isotropic
and orthotropic data sets. The optimized results are listed in
Table 2 with the label Homogeneous.

We next consider finite element models that allow for het-
erogeneous shear displacements. Beginning witha 1 x 1 x 1
cube and the optimal material parameters from the homoge-
neous model as initial values, we computed optimal values
for the 1 x 1 x 1 case. This procedure was repeated for
N x N x N cubes with N = 2,4, 6,8, using the results
of the previous optimization as the initial condition for the
next case. The resulting parameter values are presented in
Table 2, and the corresponding optimal stress—strain curves
are shown in Fig. 3.

We note that going from N = 8 to N = 10 using both
the transversely isotropic and the orthotropic data does not
change the material parameters rounded to two 2 significant
digits, and therefore consider our finite element models to
be sufficiently refined at this resolution. We also note that
the fit values, I, decreased with mesh refinement up to about
2 digits accuracy. We expect this decrease since increased
mesh refinement gives more flexibility in the deformation
field of the finite element model.

3.3.2 Material parameter estimation using multi-start
optimization

In this section, we present the results of using the multi-start
method to estimate the optimal material parameters, rather
than relying on a good initial guess. For the calculation of
random initial guesses, we set Ppnax = 40, cf. Sect. 2.3.
This value is close to the largest material parameter found
in Table 2. Note that this choice gives a conservative set of
initial parameters for the optimization algorithm (low initial
values) which in turn enhances the robustness of the proce-
dure. We also set 60 as an upper bound for each material
parameter value during the optimization. Without this upper
bound, we observed that many optimizations crashed or con-
verged to suboptimal local minima.
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Table 2 Material parameters fitted to the orthotropic and transversely isotropic datasets for the Homogeneous and N x N x N finite element

models

a b ay by as by afs by 1 Ev. Grad

(kPa) (kPa) (kPa) (kPa) (mN) Ev.
Transversely isotropic
Homogeneous 0.544 6.869 23.220 39.029 0.0001 0.172 0.248 5.310 3.291 41 21
N=1 0.593 6.841 23.209 38.826 0.010 0.010 0.243 9.531 3.173 44 37
N=2 0.732 6.818 22.110 39.946 0.010 0.010 0.183 13.614 3.010 24 18
N=4 0.807 6.737 21.349 40.468 0.010 0.010 0.122 17.936 2.819 25 18
N=6 0.794 6.859 21.212 40.537 0.010 0.010 0.129 17.462 2.802 22 15
N=8§ 0.784 6.973 21.149 40.584 0.010 0.010 0.145 16.401 2.815 21 14
N=10 0.778 7.048 21.112 40.585 0.010 0.010 0.150 16.036 2.819 24 17
Orthotropic
Homogeneous 0.556 7.940 33.366 14.224 2.804 0.0001 0.588 8.216 6.804 31 20
N=1 0.766 6.857 31.640 15.210 2.069 0.010 0.352 15.243 5.880 29 19
N=2 1.040 6.557 29.375 15.979 1.742 0.010 0.118 23.296 4.565 39 24
N=4 0.979 7.364 28.882 15.813 2.058 0.010 0.107 24.039 3.952 28 16
N=6 0.961 7.495 28.762 15.783 2.088 0.010 0.114 23.549 3.899 21 13
N=8 0.962 7.510 28.649 15.806 2.044 0.010 0.122 23.027 3.899 20 11
N=10 0.959 7.542 28.565 15.813 2.017 0.010 0.123 22.750 3.981 25 12

I refers to the value of the objective functional. The number of functional evaluations (Ev.) and functional gradient evaluations (Grad Ev.) are given

in the two rightmost columns

In each multi-start experiment, 30 random starting points
were used. The mesh fineness was set to the level of N = §,
which was sufficient to give converged material parameter
sets when using a priori knowledge in Sect. 3.3.1. In Table 3
we present the best fitting results of the multi-start exper-
iments and note that they are very close to those obtained
with a priori knowledge in Table 2.

3.3.3 Objective functional values for alternative material
parameters

Several other studies Holzapfel and Ogden (2009), Goktepe
et al. (2011), Wang et al. (2013) have used the Dokos et al.
(2002) shear data to calibrate the Holzapfel and Ogden strain
energy (2). These studies used homogenized deformation
models for the optimization. In Table 4 we list the computed
objective functional value of parameter sets originating from
previous studies using the orthotropic dataset and finite ele-
ment model (N = 8). The results indicate that our parameter
set fits these data better than the previously computed ones.

We also note that our finite element parameter set
with finite element model has a better fit value than
the homogeneous parameter set with the homogeneous
model. Indeed, we expect the finite element fit to be at
least as good as the homogeneous fit, as the finite ele-
ment model allows for greater flexibility in the deforma-

tion field, above and beyond that of the homogeneous
model.

3.4 Computational efficiency of the adjoint-based
functional gradient

Adjoint solver efficiency may be measured by comparing the
runtime of the adjoint and forward solves. Here, we exam-
ine the overall gradient efficiency in a similar manner. We
consider the evaluation of the gradient of the objective func-
tional (15), though in a reduced case with only a single shear
mode included in the sum and a reduced forward solve con-
sisting of a single nonlinear solver iteration. In this case,
the forward and adjoint models each consist of a single lin-
ear solve in addition to a number of residual evaluations.
For larger linear system sizes, the runtime of a linear solve
is expected to dominate the runtime of assembly, and thus
these forward and adjoint models are of roughly the same
computational expense.

For this reduced case, we evaluated the adjoint-based gra-
dient for a range of linear system sizes. For each system size,
we calculated the gradient runtime ratio; that is, the runtime
used by the evaluation of the gradient divided by the runtime
of the forward solve. The resulting ratios are plotted in Fig-
ure 4. The curve indicates that the gradient run-time ratio gets
close to the theoretically optimal value of 1 as we increase
the system size.
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Fig. 3 Comparison of optimized model stress—strain curves with
experimental data. The dots are interpolated experimental data at Gauss
points, the solid lines show the output of the finite element models with
N = 8 elements per edge of the cube

4 Discussion
4.1 Choice of shearing experiment datasets

Of the six shearing experiment datasets, cf. Figure 1, we
have used two for parameter estimation. One of the reasons
for this choice is an incompatibility of most of the datasets
with assumptions made in the design of the strain energy
functional (2). In particular, the strain energy (2) dictates an

ordering of the shear mode stiffnesses in the case of a homo-
geneous shear displacement. We can see this by adapting the
analysis that leads to equations (5.23)—(5.28) of Holzapfel
and Ogden (2009). In this analysis, a parameter y is intro-
duced to represent the amount of simple shear displacement
present in a homogeneous deformation. For example for the
FS mode

1
F=|0 (22)
0

S~ R
- o O

Using this deformation gradient, and the respective deforma-
tion gradients of the other modes, the shear component of the
Cauchy stress o in the shearing direction can be calculated
for each mode. If we consider the same invariants as in (2),
that is Iy, I45, lss, Ig s, and use the notation y; = g—}/f, we
arrive at the following equations for shear stress as a function
of shear displacement

(FS): ops =201 + Yap)y + Vsfs,

(FN): opn = 2(¥1 + Yap)y.s

(SF): osr =21 + Yus)y + ¥sfs,

(SN): o5y = 2(¥1 + Yas) s

(NF): onfF = 2Y1y,

(NS): ong =2¢1y. (23)

For further details regarding the derivation of these equa-
tions, we refer the reader to Holzapfel and Ogden (2009).
The simple shear stresses (23) reveal two assumptions built
into the design of (2), namely for homogeneous simple shear
deformations

OFS = OFN = ONF,

OSF > OSN = ONF. (24)

Out of the six datasets, only one is consistent with these
orderings, namely the 6th one, which was used here under the
label transversely isotropic. In this dataset the stress—strain

Table 3 Results of fitting

. a b ay by ds by ags by 1

material parameters to the ’ ’

transversely isotropic and (kPa) (kPa) (kPa) (kPa) (mN)

orthotropic data sets using the Transversely isotropic

multi-start method
N=8 0.784 6973  21.149 40.584 0.010 0.010 0.145 16401 2815
Multistart Best Fit ~ 0.795  6.855  21.207  40.545 0.010 0.010 0.130 17.446  2.802
Orthotropic
N=8 0962 7510 28.649 15806 2.044 0.010 0.122 23.027 3.899
Multistart Best Fit ~ 0.964  7.510  28.654 15791 2.051 0.010 0.118 23.230  3.959

The rows labeled "Multistart Best Fit’ correspond to the optimizations with the lowest misfit value /. The
rows labeled N = 8§’ are copied from Table 2 for reference
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Table 4 Holzapfel-Ogden law parameter estimates from this and previous studies
Source a b ar bf Aag bs afs bfs Ihgm Ifem
(kPa) (kPa) (kPa) (kPa) (mN) (mN)
Holzapfel and Ogden (2009) 0.059 8.023 18.472 16.026 2.481 11.120 0.216 11.436 36.143 36.825
Goktepe et al. (2011) 0.496 7.209 15.193 20.417 3.283 11.176 0.662 9.466 28.583 29.480
Wang et al. (2009) 0.2362 0.810 20.037 14.154 3.7245 5.1645 0.4108 11.300 33.271 34.195
Current (hom) 0.556 7.940 33.366 14.224 2.804 0.0001 0.588 8.216 6.804 9.653
Current (fem) 0.962 7.510 28.649 15.806 2.044 0.010 0.122 23.027 41.622 3.899

I'fem indicates the value of the fit function (15) with model stresses from a finite element model (N = 8), and Ijop, the value of the same fit
function but with model stresses computed with a homogeneous deformation model. The material parameters of the last two rows originate from
homogeneous and finite element model fits, respectively, in Table 2. Note that objective functional (/ —) values for parameter sets from other studies
are obtained using the orthotropic data used in this study (experimental data), and not the data used in the studies the parameter sets originate from

(digitized data). The minimum fit values in the groups /s, and Iopn are highlighted in bold

3.5 T T T T T T

3.0

25}

2.0

Runtime ratio

1.0 . . . I n
0 10000 20000 30000 40000 50000 60000

Linear system size

70000

Fig. 4 Gradient efficiency: ratio of gradient evaluation runtime over
single Newton iteration runtime for increasing linear system sizes

relationship is typical of a transversely isotropic material
with a stiffer fiber direction. In several other cardiac mechan-
ics simulation studies Krishnamurthy et al. (2013), Gjerald
etal. (2015), Finsberg et al. (2015), the Holzapfel and Ogden
energy functional (2) has been simplified to model trans-
versely isotropic behavior by removing the terms involving
the invariants Iy, Igfg. For such a simplified model, one
could use the parameter estimates for a, b, ay, by that we
obtained from the Transversely Isotropic dataset.

However, the Holzapfel and Ogden model was originally
proposed to model orthotropic behavior. This motivates also
targeting a dataset displaying fully orthotropic properties. In
particular, dataset 2 in Figure 1 is such and compares well
with Figure 6 of Dokos et al. (2002) and Figure 2 of Holzapfel
and Ogden (2009). By switching the SF and SN curves of
Dataset 2, we were able to reinterpret this data in a way that
is consistent with the interpretation in Holzapfel and Ogden
(2009), and the shear stiffness orderings (24).

4.2 Discussion of optimal material parameter values

We have obtained two sets of material parameters: one cor-
responding to an orthotropic case and one corresponding to
a transversely isotropic case. We observe that for both sets
of material parameters, the b; parameter essentially vanishes.
For the Transversely Isotropic case, both a; and by essentially
vanish, which is in excellent agreement with the transversely
isotropic stress—strain pattern. Furthermore, we note that the
magnitude of both a; and b parameters in the best fitting
parameter sets presented in Table 3 are very small. In light
of the shear stress calculations (23), we can see that the ag
and by parameters are related to the degree of extra stiffness
in the sheet direction over the sheet normal direction. Indeed
when we examine the shear data, Figure 3, we can see that the
SN — SF curves are only slightly stiffer thanthe NF — N S
curves, which explains why the optimal values of a; and by
are so small.

Comparing the orthotropic material parameter values to
the previously published values in Table 4, we observe that
the fit of our material parameters is significantly better, as
expected. By using a finite element model, we have been
able to relax the homogeneous shearing angle assumption
and more realistically model the motion of the cubes in the
shearing experiment. We note that our material parameters
differ from those previously published and also that there is
a significant variability in the parameter values previously
reported. Some of this variability is most likely due to the
differences in the selection of points during the digitization
of [Figure 2 of Holzapfel and Ogden (2009)], which was
done in the studies whose material parameter sets we com-
pare in Table 4. By using original data from the shearing
experiment, we were able to remove the uncertainty due to
digitization in our parameter estimates. Finally we note that
even after the SF-SN curves are swapped in Dataset 2 of
Figure 1, there are still minor differences when compared
to [Figure 7 of Holzapfel and Ogden (2009)] and [Figure 3
of Goktepe et al. (2011)] and [Figure 4 of Wang et al. (2013)].
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This also explains why our parameter sets differ from those
calculated in the previous studies.

4.3 Computing functional gradients in cardiac
mechanics

Figure 4 demonstrates that the computational cost of the
adjoint gradient computation is comparable to that of a single
iteration of the nonlinear solution algorithm of (5) for larger
system sizes. For smaller system sizes, the cost of symbolic
computation and the cost of residual and Jacobian assembly
contribute significantly yielding higher ratios as expected.
Wang et al.’s 2013 simulations of a human left ventricle in
diastole use system sizes of approximately 100,000 degrees
of freedom (Wang et al. 2013). Given the trend in Fig. 4, we
can expect that the adjoint method and solver implemented
in this work will continue to be efficient at this scale and
beyond.

Comparatively, assuming the use of Newton’s method for
the solution of nonlinear systems, the evaluation of a finite
difference gradient requires a linear system assembly and
solve for each Newton iteration, and one nonlinear solve is
required per component of the gradient. Counting the 8 para-
meters in the Holzapfel-Ogden model (2), and assuming a
typical solution of the Euler-Lagrange equation (5) takes
6 Newton iterations, we can expect the computational cost
of finite difference gradient evaluation to be circa 48 times
greater than that of the adjoint method.

In the optimization results of Table 2, we observed itera-
tion counts of up to 44 for the optimization of 8 parameters
using our gradient-based method. This compares favorably
with the circa 7000 iterations needed to estimate 9 parameters
using a global method in (Figure 5 of Wong et al. 2015).

4.4 Implications for organ-scale image-based parameter
estimation with spatially resolved material
parameters

Although we have tested our adjoint-based multi-start opti-
mization method on the 2002 shear data of Dokos et al Dokos
etal. (2002), we believe our methods will provide the biggest
advantage in the case of optimizing cardiac model parame-
ters in high spatial resolution at the organ scale to MRI or
echocardiographic image data. In this case the high spatial
resolution would allow for detailed modeling of regional dif-
ferences in tissue stiffness, which is for example present in
patients with post-infarct fibrosis.

In such an application, a model parameter could be
represented as a finite element function similarly to the dis-
placement or hydrostatic pressure fields (u, p). Doing this
would increase the number of components of the gradient

g—rﬁ by the number of degrees of freedom needed to spatially
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represent the parameter of interest. Using a finite difference
or reduced order Kalman filter approach in this case would
require an additional evaluation of the Euler—Lagrange equa-
tion (5) for each degree of freedom introduced, whereas the
adjoint gradient formula (13) only needs to be calculated
once regardless of the number of additional degrees of free-
dom. In the current study, the adjoint gradient is estimated to
be

(number of model parameters) x 6 = 48

times faster than finite differencing. In the case of a spatially
varying model parameter, the speedup is potentially a lot
more significant.

When fitting material parameters to the Dokos experiment
data, we were able to generate good initial guesses for the
local optimization by progressively refining the mesh and
using the optimal results from the previous coarser refine-
ment level as an initial guess in the successive finer level.
It would be more challenging to apply this technique using
image-based ventricular geometries, due to the problem of
accurately representing the geometry with few elements. As
an alternative we propose the multi-start approach, which we
have shown here to be accurate and viable using the Dokos
experiment data.

One issue that would arise in using the multi-start
approach with image-based geometries would be the choice
of the number of multi-start points; using less points is more
computationally efficient, while using more is potentially
more robust. Possible solutions are the use of optimal stop-
ping criteria Boender and Kan (1987) or more sophisticated
local-global searches Tsai et al. (2003), Goldberg and Voess-
ner (1999).

5 Conclusions

In this work, we have presented a new application of effi-
cient gradient-based optimization methods in the context
of estimating cardiac hyperelastic material parameters from
experimental data. In particular, we have demonstrated how
an adjoint solution can greatly speed up the evaluation of
functional gradients. These methods have produced two new
sets of material parameter values that yield simulated stress—
strain curves that fit closely to orthotropic and transversely
isotropic shear data. For future parameter estimation, studies
using image-based geometries and a local search algorithm,
multi-start or a similar method should be used in order to
avoid suboptimal minima.
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