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Abstract
In this paper, we present an intrinsic characterisation of projective special Kähler mani-
folds in terms of a symmetric tensor satisfying certain differential and algebraic conditions. 
We show that this tensor vanishes precisely when the structure is locally isomorphic to a 
standard projective special Kähler structure on SU(n, 1)∕S(U(n)U(1)) . We use this charac-
terisation to classify 4-dimensional projective special Kähler Lie groups.

Mathematics Subject Classification  53C55 · 53C26 · 22E25 · 53C80

1  Introduction

Projective special Kähler manifolds are a special class of Kähler quotients of conic special 
Kähler manifolds which is a class of pseudo-Kähler manifolds endowed with a symplectic, 
flat, torsion-free connection and an infinitesimal homothety.

Explicit examples can be found in [1], where homogeneous projective special Kähler 
manifolds of semisimple Lie groups are classified. A notable case appearing in this list is 
the complex hyperbolic n-space. Many projective special Kähler manifolds can be con-
structed via the so called r-map [15], which is a construction arising from supergravity and 
string theory allowing to build a projective special Kähler manifold starting from a homo-
geneous cubic polynomial. See [13] for a classification of 6-dimensional manifolds that 
can be constructed via the r-map. Another example is obtained by taking the Weil–Peters-
son metric on the space of complex structure deformations on a Calabi-Yau 3-dimensional 
manifold [12].

Projective special Kähler manifolds appear in the study of supergravity and mirror sym-
metry with the name local special Kähler manifolds (see [19] and [20] for more details on 
their history and applications to physics, and in particular [8] for their importance in mirror 
symmetry). The name projective special Kähler was given by Freed in [20] where he also 
shows how such manifolds are quotients of special Kähler ones [20, Proposition 4.6, p. 20] 
(see, e.g. [2] for the relation between this definition and the one we will use in this work).
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Projective special Kähler manifolds are not only interesting on their own, as they 
find an important application in quaternion Kähler geometry. The construction known 
as c-map, also arising from the same areas of physics, allows in fact to create quaternion 
Kähler manifolds of negative scalar curvature starting from projective special Kähler 
ones [15, 3, 4, 26, 9, 18, 23]. Quaternion Kähler manifolds are orientable smooth Rie-
mannian manifolds of dimension 4n with n ≥ 2 , whose holonomy group is a subgroup 
of Sp(n)Sp(1) not contained in Sp(n) . They are important since they are a special fam-
ily of Einstein manifolds with non-vanishing Ricci tensor, corresponding to one of the 
possible holonomy groups of a locally irreducible, non-locally symmetric, simply con-
nected Riemannian manifold in Berger’s list (see [7]).

In this paper, we present a characterisation of projective special Kähler manifolds 
that will hopefully shed more light on this type of structure. Our characterisation is 
intrinsic in the sense that we reduce the projective special Kähler structure to data 
solely defined on the manifold itself. The characterisation is obtained by means of a 
locally defined symmetric tensor that we call deviance, satisfying certain conditions: a 
differential one and an algebraic one. The deviance tensor emerges from the difference 
between two naturally occurring connections on the conic special Kähler manifold over 
a projective special Kähler one. Our description arises by writing the two connections 
with respect to a local frame, and relating the difference to a tensor defined on the basis. 
We also prove a lower bound for the scalar curvature, which is reached exactly when the 
deviance is zero; this condition characterises projective special Kähler manifolds iso-
morphic to the complex hyperbolic n-space if one assumes the manifold complete, con-
nected and simply connected. For projective special Kähler manifolds of elliptic type, 
i.e. such that the corresponding conic special Kähler metric is positive definite, we have 
a similar result in [6, Theorem 16, p. 126], where complex projective spaces are charac-
terised as the only complete projective special Kähler domains of elliptic type. In that 
context, in fact, the vanishing of the deviance is induced by the completeness condition.

Our characterisation provides a simpler way to construct projective special Kähler 
manifolds, and we display this by classifying all possible projective special Kähler 
structures on 4-dimensional Lie groups. Our classification relies on the classification of 
Kähler Lie groups by Ovando [28].

We note that an intrinsic characterisation of projective special Kähler Lie groups has 
been obtained independently in a very recent paper by Macia and Swann [25]. Our set-
ting is slightly more general, since in our study of projective special Kähler Lie groups 
we do not assume the deviance tensor to be left-invariant. In [25] it is also shown that 
projective special Kähler Lie groups determine quaternion Kähler Lie groups via the 
c-map, if one assumes the exactness of the Kähler form and the invariance of the flat 
connection. A similar result, holding in the case that the projective special Kähler Lie 
group is the quotient of an affine special Kähler domain, can be deduced from the more 
general result [16, Corollary 24, p. 33].

Since we are ultimately interested in the c-map, throughout this paper we adopt the 
same convention as [15], where we only consider projective special Kähler manifolds 
obtained from conic special Kähler manifolds with signature (2n, 2). Nonetheless, our 
characterisation can be generalised to generic signatures. It is worth mentioning that the 
deviance, being a symmetric tensor of type (3,0), can often be seen as a homogeneous 
polynomial of degree three, which may have a role in providing a partial inversion to the 
r-map.

We also use our characterisation to show that, on a Kähler manifold, the existence of 
a symmetric tensor satisfying the deviance conditions implies the existence of a whole 
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family of projective special Kähler structures and we provide sufficient conditions for 
said structures to be isomorphic.

2 � Definitions

In this section, we are introducing the basic objects that we are going to discuss in this 
work.

The coming definition involves a flat connection ∇ and its exterior covariant deriva-
tive operator d∇.

Definition 2.1  A conic special Kähler manifold is the data of a pseudo-Kähler manifold 
(M̃, g̃, Ĩ, �̃) with a flat, torsion-free, symplectic connection ∇ and a vector field � such that 

1.	 d∇ Ĩ = 0 where we interpret Ĩ  as a 1-form with values in TM̃;
2.	 g̃(�, �) is nowhere vanishing;
3.	 ∇� = ∇̃LC� = id;
4.	 g̃ is negative definite on ⟨�, I�⟩ and positive definite on its orthogonal complement.

Here ∇̃LC is the Levi-Civita connection.
We will adopt the convention �̃ = g̃(̃I⋅, ⋅) . Definition 2.1 is identical to Definition 3 in 

[15] if we take −g as metric.
We start by showing how the Lie derivative along � and I� in a conic special Kähler 

manifold behaves on the Kähler structure.

Lemma 2.2  (Lemma 3.2, p. 1336 in [26]) Let (M̃, g̃, Ĩ, �̃,∇, �) be a conic special Kähler 
manifold, then: 

1.	 � is a homothety of scaling factor 2 preserving Ĩ ;
2.	 Ĩ� preserves the Kähler structure.

Proof  See, e.g. [26] where X = −I� . 	� ◻

Before proceeding, we write the following lemma for future reference.

Lemma 2.3  In a conic special Kähler manifold (M̃, g̃, Ĩ, �̃,∇, �) , ∇(̃I�) = Ĩ .

Proof  For all X ∈ �
(
M̃
)
,

	�  ◻

∇X (̃I�) − ĨX = (∇XĨ)� + Ĩ∇X� − ĨX = (∇XĨ)� = (∇� Ĩ)X

= ∇� (̃IX) − Ĩ∇�X = ∇ĨX(�) + [�, ĨX] − Ĩ
(
∇X� + [�,X]

)

= ĨX + L� (̃IX) − ĨX − ĨL�X = (L� Ĩ)X = 0.
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If we compare Definition 2.1 with Definition 3.1 in [26], we notice that the main differ-
ence is the signature of the metric: it is enough to add condition 4 to the latter and to define 
X = −I� in order to obtain two equivalent definitions. The proof of the equivalence is obtained 
by Lemma 2.3.

Definition 2.4  A projective special Kähler manifold is a Kähler manifold M endowed with 
a ℂ∗-bundle � ∶ M̃ → M with (M̃, g̃, Ĩ, �̃,∇, �) conic special Kähler such that � and I� are 
the fundamental vector fields associated to 1, i ∈ ℂ , respectively, and M is the Kähler quo-
tient with respect to the induced U(1)-action. In this case, we say that M has a projective 
special Kähler structure.

For brevity, we will often denote a projective special Kähler manifold by 
(� ∶ M̃ → M,∇).

Remark 2.5  We shall see later that by construction, the action is always Hamiltonian with 
moment map −g̃(�, �) , and the choice of the level set affects the quotient only up to scaling.

Concerning the notation for projective special Kähler manifolds as in Definition 2.4, when 
a tensor or a connection is possessed by both M̃ and M, we will write them and everything 
concerning them (torsion, curvature forms, covariant exterior differentials) on M̃ with (̃⋅) 
above, whereas the corresponding objects on M will be denoted without it.

3 � Difference tensor

This section is devoted to the tensor obtained as difference between the flat and Levi-Civita 
connection on a conic special Kähler manifold. We present the known symmetry of this tensor 
and write the flatness condition in terms of it [20, p. 9-11].

Before talking about the difference tensor, we will introduce some notation and definitions. 
Following [29], if V is a complex representation with a real structure � , we define

Otherwise, for any complex representation V,

where V  is the conjugate representation of V. In particular, the following complex Lie alge-
bra isomorphisms hold:

The same notation is used for the associated vector bundles.
Given an almost complex manifold (M, I), let T1,0M be the holomorphic cotangent bundle. 

For all p ∈ ℕ , we denote its p-th symmetric power by Sp,0M.
Given a (pseudo-)Riemannian manifold (M, g), we denote by ♭ and ♯ the musical isomor-

phisms induced by g, and we can define the following isomorphism

with inverse ♯2 ∶= id⊗ ♯ ⊗ id.

[V] ∶= {v ∈ V|�(v) = v}.

[[V]] ∶= [V ⊕ V]

[V]⊗
ℝ
ℂ ≅ V , [[V]]⊗

ℝ
ℂ ≅ V ⊕ V .

♭2 = id⊗ ♭ ⊗ id ∶ T∗M ⊗ TM ⊗ T∗M → T3M
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Returning now to the main topic of this section, let (M̃, g̃, Ĩ, �̃,∇, �) be a conic special 
Kähler manifold of dimension n + 1 . We define �̃  as the (1,2)-tensor such that for all vector 
fields X, Y on M̃ we have �̃XY = ∇XY − ∇̃LC

X
Y  , where the employed notation �̃XY  means 

�̃(X, Y).
Consider frames adapted to the pseudo-Kähler structure, hence such that the linear 

model is (ℝ2n+2, g0, I0,�0) , where g0 =
∑2k

k=1
(ek)2 − (e2n+1)2 − (e2n+2)2 , I0e2k−1 = e2k for 

k = 1,… , n + 1 and �0 = g0(I0⋅, ⋅) . Let �∇ and �̃LC be the connection forms correspond-
ing, respectively, to the flat and the Levi-Civita connections represented with respect to 
an adapted frame. Thus, we have

We know that by the theory of Hessian manifolds, �̃  is symmetric (see, e.g. [30, §3, p. 194] 
or [31, §1, p. 736]). More precisely, we recall the following result (see [20, Proposition 
1.34, p. 39], or [5, Proposition 4, p. 1743] and [5, Lemma 3, p. 1745]).

Lemma 3.1  On a conic special Kähler manifold (M̃, g̃, Ĩ, �̃,∇, �) , the tensor �̃  is a section 
of ♯2[[S3,0 �M]].

In proving this lemma, one finds the following equality (see, e.g. [5, (3.3), p. 1743]), 
which we write for further reference.

Using the flatness of ∇ , we observe:

where Ω̃LC and d̃LC are, respectively, the curvature and exterior covariant derivative of the 
Levi-Civita connection on M̃.

Arguing as in [20, Proposition 1.34 (a), p. 39] (see also [5, Proposition 4 (iii), p. 
1743]), one obtains

Proposition 3.2  For a Kähler manifold (M̃, g̃, Ĩ, �̃) with a tensor �̃  in T∗M ⊗ TM ⊗ T∗M 
such that ♭2�𝜂  is a section of [[S3,0M̃]] and with a connection ∇ with connection form 
�∇ = �̃LC + �̃  , then

4 � Conic and projective special Kähler metrics

In this section, we will consider the case of a projective special Kähler manifold 
(� ∶ M̃ → M,∇) and we will give the explicit relation between the metric on M̃ and the 
one on M (see, e.g. [14, Section 1.1]).

�∇ = �̃LC + �̃.

(1)∇Ĩ = [�̃, Ĩ] = −2̃I�̃.

0 = Ω∇ = Ω̃LC + d̃LC�̃ +
1

2
[�̃ ∧ �̃],

Ω∇ = 0 if and only if

{
Ω̃LC +

1

2
[�̃ ∧ �̃] = 0

d̃LC�̃ = 0
.
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The mapping � ∶ M̃ → M is a ℂ∗-principal bundle with infinitesimal principal action 
generated by � and Ĩ� . We can always build the function r =

√
−g̃(�, �) ∶ M̃ → ℝ

+ and 
define S = r−1(1) ⊆ �M with inclusion map �S ∶ S ↪ M̃ . Now r has no critical points, 
since

and g̃ is non-degenerate. It follows that S is a submanifold of dimension 2n + 1 whose tan-
gent bundle corresponds to ker(dr) ⊂ T �M . Notice that dr(̃I�) = −

g̃(̃I�,�)

r
= −

�̃(�,�)

r
= 0 , so 

Ĩ� is a vector field tangent to S and it induces a principal U(1)-action. The induced metric 
on S is gS = �∗

S
g̃ , and thus, L

Ĩ�gS = �∗
S
L
Ĩ� g̃ = 0.

The principal action of ℂ∗ on M̃ induces by inclusion an ℝ+-action, and in addition 
we have

Lemma 4.1  The map r ∶ M̃ → ℝ
+ is degree 1 homogeneous with respect to the action of 

ℝ
+ ⊆ ℂ

∗ on M̃ , i.e. for all s ∈ ℝ
+ and p ∈ M̃

As a consequence of this lemma, we can now define a retraction

which is well defined since r(p(u)) = r(u
1

r(u)
) =

r(u)

r(u)
= 1 . Moreover, p�S = idS implies the 

surjectivity of p, which allows us to see p ∶ M̃ → S as a principal ℝ+-bundle and 
�S ∶= ��S ∶ S → M as a principal S1-bundle; the composition of the two gives �.

Lemma 4.2  If (� ∶ M̃ → M,∇) is projective special Kähler, then M̃ is diffeomorphic to 
S ×ℝ

+ , and moreover

Proof  Let a ∶ S ×ℝ
+
→ M̃ be the restriction of the principal right action M̃ ×ℝ

+
→ M̃ to 

S ×ℝ
+ and consider also (p, r) ∶ M̃ → S ×ℝ

+ . These maps are smooth and each an inverse 
to the other, in fact if u ∈ M̃ , a(p, r)(u) = a(p(u), r(u)) = u

1

r(u)
r(u) = u and for all 

(q, s) ∈ S ×ℝ
+ , (�S, r)a(q, s) = (p(qs), r(qs)) = (q

s

r(qs)
, r(q)s) = (q, s).

For the second statement, consider the symmetric tensor

We want to prove it is basic, that is horizontal and invariant with respect to the principal ℝ+

-action.
Since there is only one vertical direction, and since g′ is symmetric, it is enough to 

check whether g′ vanishes when evaluated on the fundamental vector field � in one compo-
nent. Using (2) we obtain

(2)
dr =

d(r2)

2r
=

�∇LC(r2)

2r
= −

�∇LC(�g(𝜉, 𝜉))

2r

= −
2�g(�∇LC𝜉, 𝜉)

2r
= −

�g(⋅, 𝜉)

r
= −

1

r
𝜉♭

r(ps) = r(p)s.

p ∶ M̃ ⟶ S, u ⟼ u
1

r(u)
,

g̃ = r2p∗gS − dr2.

g� =
1

r2
(g̃ + dr2).
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And now for the ℝ+-invariance:

Therefore g′ is basic, which in turn implies it is of the form p∗g�� for some tensor g�� ∈ T2S , 
so that

The proof is ended by the following observation:

	�  ◻

The ℂ∗-bundle � ∶ M̃ → M has a unique principal connection orthogonal to the fibres 
with respect to g̃ ; the connection form can be written as

Explicitly, we can describe �̃ using the metric:

If we restrict it to S, we obtain a connection form � = �∗
S
�̃ = −�∗

S
(���) corresponding to the 

S1-action on S.
Notice that p∗� = �̃ , because the connection form (3) is right-invariant, so �̃ = p∗�� for 

some �′ , and thus, � = �∗
S
�̃ = �∗

S
p∗�� = (p�S)

∗�� = ��.
The moment map for the action generated by Ĩ� is � ∶ M̃ → �(1) ≅ ℝ such that 

d𝜇 = 𝜄�I𝜉𝜔 = −𝜉♭ = rdr = d
(

r2

2

)
 , so up to an additive constant, we can assume

Since S = �−1(
1

2
) is a level set of the moment map and M is the Kähler quotient, 

�S ∶ S → M is a pseudo-Riemannian submersion, and thus, we can write gS = �∗
S
g − �2.

Proposition 4.3  A projective special Kähler manifold (� ∶ M̃ → M,∇) satisfies

Proof  From the previous arguments

g�(�, ⋅) =
1

r
(g̃(�, ⋅) + dr(�)dr) =

1

r
(−rdr + rdr) = 0.

L�g
� = −2

L�r

r3
(g̃ + dr2) +

1

r2
(L� g̃ + 2L�(dr)dr)

= −2
dr(�)

r3
(g̃ + dr2) +

1

r2
(2g̃ + 2(d��dr + ��d

2r)dr)

= −2
r

r3
(g̃ + dr2) +

1

r2
(2g̃ + 2dr2) = 0.

g̃ = r2p∗g�� − dr2.

gS = �∗
S
g̃ = �∗

S

(
r2p∗g�� − dr2

)
= �∗

S
p∗g�� − �∗

S
dr2 = (p�S)

∗g�� = g��.

(3)
dr

r
+ i�̃.

�𝜑 =
�g(�I𝜉, ⋅)

�g(�I𝜉,�I𝜉)
= −

1

r2
I𝜉♭ = −

1

r2
𝜄𝜉 �𝜔.

� =
r2

2
.

g̃ = r2�∗g − r2�̃2 − dr2,

�̃ = r2�∗�M + r�̃ ∧ dr.
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For the Kähler form, it is enough to notice that � is holomorphic, M being a Kähler quo-
tient, and that

	�
◻

For future reference, we give the following

Remark 4.4  The curvature of � is computed using Lemma 2.2:

in fact, the restriction to S of �̃ maps fixes r = 1 and thus kills dr.
It will be useful to compute also

5 � Lifting the coframe

The purpose of this section is to lift a generic unitary coframe on a projective special 
Kähler manifold to one on the corresponding conic special Kähler. This will enable us to 
give a more explicit formulation of the Levi-Civita connection and associated curvature 
tensor on the conic special Kähler manifold.

In our convention, on a Kähler manifold (M, g, I,�) , the Hermitian form is h = g + i� . 
Given a projective special Kähler manifold (� ∶ M̃ → M,∇) and an open subset U ⊆ M , 
consider a unitary coframe � = (�1,… , �n) ∈ Ω1(U,ℂn) on M, then we can build a cof-
rame �̃ ∈ Ω1(�−1(U),ℂn+1) on M̃ as follows:

This coframe is compatible with the U(n, 1)-structure because it takes complex values and

We will denote the dual frame to a given coframe by the same symbol, but with lower 
indices.

Remark 5.1  Let T = ℂ
n+1 be the standard real representation of U(n, 1) , and let 

T ⊗
ℝ
ℂ ≅ T1,0 ⊕ T0,1 be the holomorphic, anti-holomorphic split. Given a connec-

tion on a Kähler manifold, it can be represented by a connection form � with values in 
�(n, 1) whose complexification is ��(n + 1,ℂ) ≅ T1,0 ⊗ T1,0 ⊕ T0,1 ⊗ T1,0 , so we obtain 

g̃ = r2p∗gS − dr2 = r2p∗(�∗
S
g − �2) − dr2

= r2(�Sp)
∗g − r2�̃2 − dr2 = r2�∗g − r2�̃2 − dr2.

(r�𝜑)◦�I = −
1

r
�I𝜉♭�I = −

1

r
𝜉♭ = dr.

d� = −d�∗
S
���̃ = �∗

S
(−L��̃ + ��d�̃) = −2�∗

S
�̃ = −2�∗

S
�M .

d�̃ = −2�∗�M .

(4)�̃k =

{
r�∗�k if k ≤ n

dr + ir�̃ if k = n + 1
.

n∑
k=1

�̃k�̃k − �̃n+1�̃n+1 = r2�∗

(
n∑

k=1

�k�k

)
− dr2 − r2�̃2 = g̃.
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projections in each component, respectively �1,0

1,0
 and �0,1

0,1
 such that � = �1,0

1,0
+ �0,1

0,1
 . Notice 

that �0,1

0,1
= �1,0

1,0
 because � comes from a real representation and to give the first component 

is equivalent to give the whole form. Notice also that ([[T]], I) , as complex representation, 
is isomorphic to T1,0 and the component A1,0

1,0
 of an endomorphism A gives the correspond-

ing endomorphism of T1,0 . We will often present connection forms by giving only the T1,0

1,0
 

component.
We will call ℜ the projection from the complex tensor algebra to the real representation, 

defined so that ℜ(�) = � + � where the conjugate is the real structure.

Proposition 5.2  Let (� ∶ M̃ → M,∇) be a projective special Kähler manifold, let (U, �) be 
a local unitary coframe on M lifted as in (4) to a coframe �̃  adapted to the U(n, 1)-structure 
on M̃ . With respect to �̃  , the Levi-Civita connection form on M̃ is represented by

that is

and its curvature form is

Proof  The connection form (5) is metric if and only if the matrix is anti-Hermitian with 
respect to g̃ and since �LC is anti-Hermitian with respect to g, we get

The torsion form of this connection is Θ̃LC = d�̃ + �̃LC ∧ �̃  , so for 1 ≤ k ≤ n

In the last component

�̃LC =

�
�∗�LC 0

0 0

�
+

1

r

⎛⎜⎜⎜⎜⎜⎝

iIm
�
�̃n+1

�
0 �̃1

⋱ ⋮

0 iIm
�
�̃n+1

�
�̃n

�̃1 ⋯ �̃n iIm
�
�̃n+1

�

⎞⎟⎟⎟⎟⎟⎠

,

(5)�𝜔LC =

(
𝜋∗𝜔LC + i�𝜑 ⊗ In 𝜋∗𝜃

𝜋∗𝜃⋆ i�𝜑

)

�ΩLC =

(
𝜋∗(ΩLC + 𝜃 ∧ 𝜃∗ − 2i𝜔M ⊗ id) 0

0 0

)
.

(�𝜔LC)⋆ =

(
𝜋∗(𝜔LC)⋆ − i�𝜑 ⊗ In − 𝜋∗𝜃

−𝜋∗𝜃⋆ − i�𝜑

)
= −�𝜔LC.

(
Θ̃LC

)k

= d�̃k +

n∑
j=1

(
�̃LC

)k
j
∧ �̃j +

(
�̃LC

)k
n+1

∧ �̃n+1

= d
(
r�∗�k

)
+

n∑
j=1

(
�∗(�LC)k

j
+ i�̃�k

j

)
∧
(
r�∗�j

)
+ �∗�k ∧ �̃n+1

= r�∗(ΘLC)k + (dr + ir�̃) ∧ �∗�k + �∗�k ∧ �̃n+1

= 0 + �̃n+1 ∧ �∗�k + �∗�k ∧ �̃n+1 = 0.
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�̃LC is metric and torsion-free; therefore by uniqueness, it must be the Levi-Civita 
connection.

Now let us compute its curvature form Ω̃LC = d�̃LC + �̃LC ∧ �̃LC . For 1 ≤ k, h ≤ n we 
have

and

Since the curvature form must also be anti-Hermitian, we also get

Finally,

	�
◻

Remark 5.3  The tensor 𝜃 ∧ 𝜃⋆ − 2i𝜔M ⊗ id , or explicitly

is a curvature tensor of the complex projective space of dimension n; in fact, Ω
ℙ
n
ℂ

 is the cur-
vature with respect to the Fubini-Study metric (see for example [24, II, p. 277]). In order to 
verify that Ω

ℙ
n
ℂ

 is exactly the curvature of the Fubini-Study rather than a multiple, we com-
pute the Ricci tensor:

(Θ̃LC)n+1 = d�̃n+1 +

n∑
j=1

�∗�j ∧ r�∗�j + i�̃ ∧ �̃n+1

= d(dr + ir�̃) + r�∗

(
n∑
j=1

�j ∧ �j

)
+ i�̃ ∧ �̃n+1

= idr ∧ �̃ + ir(d�̃ + 2�∗�M) + i�̃ ∧ dr = 0.

(
Ω̃LC

)h

k
= d(�̃LC)h

k
+ (�̃LC)h

j
∧ (�̃LC)

j

k

= d�∗(�LC)h
k
+ id�̃�h

k
+

n∑
j=1

(�∗(�LC)h
j
+ i�̃�h

j
) ∧ (�∗(�LC)

j

k
+ i�̃�

j

k
) + �∗�h ∧ �∗�k

= �∗d(�LC)h
k
− 2i�∗�M�

h
k
+ �∗((�LC)h

j
∧ (�LC)

j

k

+ i�̃ ∧ �∗(�LC)h
k
+ �∗(�LC)h

k
∧ i�̃ − �̃ ∧ �̃�h

k
+ �∗�h ∧ �∗�k

= �∗(ΩLC)h
k
− 2i�∗�M�

h
k
+ �∗(�h ∧ �k)

(
Ω̃LC

)h

n+1
= d�∗�h +

n∑
j=1

(�∗(�LC)h
j
+ i�̃�h

j
) ∧ �∗�j + �∗�h ∧ i�̃ = �∗

(
ΘLC

)h
= 0.

(
�ΩLC

)n+1

k
= −

((
�ΩLC

)⋆
)n+1

k

=
(
�ΩLC

)k

n+1
= 0.

(
Ω̃LC

)n+1

n+1
= id�̃ +

n∑
j=1

�∗�j ∧ �∗�j − �̃ ∧ �̃ = id�̃ + 2i�∗�M = 0.

Ω
ℙ
n
ℂ

∶= ℜ
(
(𝜃k ∧ 𝜃h)⊗ 𝜃k ⊗ 𝜃h − (𝜃k ∧ 𝜃k)⊗ 𝜃h ⊗ 𝜃h

)
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Then,

Thus Ω
ℙ
n
ℂ

 corresponds exactly to the curvature of ℙn
ℂ
 with the Fubini-Study metric.

Now, whenever we have a smooth map f ∶ M → N between Riemannian manifolds, we 
can extend the pull-back f ∗ ∶ T∙N → T∙M on the covariant tensor algebra to the whole 
tensor algebra, using the musical isomorphisms in each contravariant component. Explic-
itly, for X vector field on N, we define f ∗X ∶= ♯f ∗♭X = (f ∗X♭)♯ . Notice that this extension 
of the pull-back is still functorial, since if f ∶ M → N , g ∶ N → L are smooth maps, then 
f ∗g∗X = ♯f ∗♭♯g∗♭X = ♯f ∗g∗♭X = ♯(gf )∗♭X = (gf )∗X.

Since M̃ and M are Riemannian manifolds, we have �∗ ∶ T ∙
∙
M → T ∙

∙
M̃ , and in particu-

lar, for 1 ≤ k ≤ n we have

Remark 5.4  In this notation,

6 � Deviance

In this section, we will continue the analysis of the tensor �̃  started in section 3. The aim 
is to reduce it to a locally defined tensor on M that we call deviance. We will then use it to 
give an explicit local description of the Ricci tensor and the scalar curvature.

Lemma 6.1  On a projective special Kähler manifold (� ∶ M̃ → M,∇) , if 
�̃XY = ∇XY − ∇̃LC

X
Y  , then ♭2�𝜂  is horizontal with respect to �.

In other words, ♭2(�𝜂) is a section of 𝜋∗[[S3,0M]] ⊂ [[S3,0
�M]] . Explicitly, �̃v , �̃v and g̃(�̃, v) 

vanish for all v ∈ ⟨�, I�⟩.

Proof  First notice that �̃(�) = ∇� − ∇̃LC� = 0 , so by symmetry �̃� = 0 and g(�, �) = 0 , so 
♭2(�𝜂) in each component vanishes  when evaluated at � . From this fact and (1), we also 
deduce �̃(̃I�) = Ĩ�̃(�) + [�̃, Ĩ]� = 0 − 2̃I�̃(�) = 0 . By symmetry, we conclude that ♭2�𝜂  van-
ishes in every component on I� . Linearity then completes the proof. 	�  ◻

Lemma 6.2  Let (M̃, g̃, Ĩ, �̃,∇, �) be a conic special Kähler manifold and �̃  be as above, 
then 

1.	 L� �̃ = 0;

2.	 L
Ĩ� �̃ = −2̃I�̃ .

(6)Ric
ℙ
n
ℂ

= ℜ
(
n𝜃h ⊗ 𝜃h + 𝛿h,k𝜃

h ⊗ 𝜃k
)
= ℜ((n + 1)h) = 2(n + 1)g.

scal
ℙ
n
ℂ

= 2(n + 1).

𝜋∗𝜃k = (𝜋∗𝜃♭
k
)♯ =

1

2
(𝜋∗𝜃k)♯ =

1

2r
(�𝜃k)♯ =

1

r
�𝜃k.

Ω̃LC = r2�∗(ΩLC + Ω
ℙ
n
ℂ

).
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Proof  The proof relies on a generic formula satisfied by a torsion-free connection D (see, 
e.g. [26, equation (3.1), p. 1336]), that is:

 

1.	 We check the formula on vector fields X, Y ∈ �
(
M̃
)

 Lowering the contravariant index of the curvature form, for Z ∈ �
(
M̃
)
 , thanks to the 

symmetries of the Riemannian tensor we obtain 

 proving that Ω̃LC(�,X)Y = 0 , which implies the statement.
2.	 As before, 

 Proceeding as in the previous point 

LA(DXY) − DLAX
Y − DXLAY = ΩD(A,X)Y − DDXY

A + DXDYA.

(L� �̃)XY = L�(�̃XY) − �̃L�X
Y − �̃XL�Y

= L�∇XY − L�∇̃
LC
X
Y − ∇L�X

Y + ∇̃LC
L�X

Y

− ∇XL�Y + ∇̃LC
X
L�Y

= Ω∇(�,X)Y − ∇∇XY
� + ∇X∇Y� − Ω̃LC(�,X)Y

+ ∇̃LC

∇̃LC
X
Y
� − ∇̃LC

X
∇̃LC

Y
�

= −∇XY + ∇XY − Ω̃LC(�,X)Y + ∇̃LC
X
Y − ∇̃LC

X
Y

= −Ω̃LC(�,X)Y .

g̃
(
Ω̃LC(�,X)Y , Z

)
= g̃

(
Ω̃LC(Y , Z)�,X

)

= g̃
(
∇̃LC

Y
∇̃LC

Z
� − ∇̃LC

Z
∇̃LC

Y
� − ∇̃LC

[Y ,Z]
�,X

)

= g̃
(
∇̃LC

Y
Z − ∇̃LC

Z
Y − [Y , Z],X

)

= g̃
(
ΘLC(Y , Z),X

)
= 0,

(LĨ� �̃)XY = Ω∇(̃I�,X)Y − ∇∇XY
(̃I�) + ∇X∇Y (̃I�) − Ω̃LC (̃I�,X)Y

+ ∇̃LC

∇̃LC
X
Y
(̃I�) − ∇̃LC

X
∇̃LC

Y
(̃I�)

= −Ĩ∇XY + ∇X (̃IY) − Ω̃LC (̃I�,X)Y + Ĩ∇̃LC
X
Y − ∇̃LC

X
(̃IY)

= (∇Ĩ)(X, Y) − Ω̃LC (̃I�,X)Y .
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 This quantity is zero as shown in the previous point, so it follows that L
Ĩ� �̃ = ∇Ĩ  , so 

(1) ends the proof.	�  ◻

We can now use a coframe �̃  as in section 5 in order to progress in the study of �̃  . We 
then write

Since every operator we use is ℂ-linear, we can study only the component in 
T1,0 ⊗ T0,1 ⊗ T1,0 , that is �𝜂j

k,h
�𝜃k ⊗ �𝜃j ⊗ �𝜃h . Because of Lemma 6.1, the coefficients �̃j

k,h
 van-

ish if any one of the indices is n + 1 ; moreover, �̃j
k,h

 is completely symmetric in its indices. 
The last statement follows from the fact that ♭2�𝜂  is a tensor in �∗S3,0M , and such tensors 
are expressed using only �∗�k for 1 ≤ k ≤ n , where the metric is positive definite, and thus, 
♭2 does not change the signs of the coefficients of �̃ .

We are now ready to reduce �̃  to an object defined locally on the base space.

Proposition 6.3  Given a projective special Kähler (� ∶ M̃ → M,∇) and a section 
s ∶ U → S ⊆ �M inducing a trivialisation (�|�−1(U), z) ∶ �−1(U) → U × ℂ

∗ , there exists a 
tensor � in T1,0U ⊗ T0,1U ⊗ T1,0U such that ♭2𝜂 is a tensor in S3,0U and

where z = rei�.

Proof  For every point p ∈ M , we can find a local unitary coframe � defined on an open set 
containing p, and the corresponding coframe �̃  on M̃ as in (4).

For the coming arguments, we first compute the following Lie derivatives

g̃
(
Ω̃LC (̃I�,X)Y , Z

)
= g̃

(
Ω̃LC(Y , Z)(̃I�),X

)

= g̃
(
∇̃LC

Y
∇̃LC

Z
(̃I�) − ∇̃LC

Z
∇̃LC

Y
(̃I�) − ∇̃LC

[Y ,Z]
(̃I�),X

)

= g̃
(
ĨΩ̃LC(Y , Z)�,X

)
= −g̃

(
Ω̃LC(Y , Z)�, IX

)

= −g̃
(
Ω̃LC(�, ĨX)Y , Z

)
.

�𝜂 = ℜ(�𝜂
j

k,h
�𝜃k ⊗ �𝜃j ⊗ �𝜃h).

�̃ = ℜ(z2�∗�) = r2 cos(2�)2Re�∗� + r2 sin(2�)2Im�∗�

L𝜉
�𝜃k = d𝜄𝜉(r𝜋

∗𝜃k) + 𝜄𝜉d(r𝜋
∗𝜃k) = 0 + 𝜄𝜉(dr ∧ 𝜋∗𝜃k) + r𝜄𝜉d𝜋

∗𝜃k

= dr(𝜉)𝜋∗𝜃k + r𝜄𝜉𝜋
∗d𝜃k = r𝜋∗𝜃k + 0 = �𝜃k;

L𝜉
�𝜃k = �g(L𝜉

�𝜃k, ⋅)♯ = L𝜉

(
�g(�𝜃k, ⋅)

)
♯
−
(
L𝜉�g(�𝜃k, ⋅)

)
♯

=
1

2

(
L𝜉

�𝜃k
)

♯

− 2�g(�𝜃k, ⋅)♯ =
1

2
�𝜃k♯ − 2�𝜃k = −�𝜃k;

L�I𝜉
�𝜃k = d𝜄�I𝜉

�𝜃k + 𝜄�I𝜉d
�𝜃k = d𝜄�I𝜉(r𝜋

∗𝜃k) + 𝜄�I𝜉d(r𝜋
∗𝜃k)

= 0 + r𝜄�I𝜉d𝜋
∗𝜃k = r𝜄�I𝜉𝜋

∗d𝜃k = 0;

L�I𝜉
�𝜃k = �g(L�I𝜉

�𝜃k, ⋅)♯ = L�I𝜉

(
�g(�𝜃k, ⋅)

)
♯
=

1

2

(
L𝜉

�𝜃k
)

♯

= 0.
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Lemma 6.2 implies

and

Independent components must vanish, so we obtain a family of differential equations for 
1 ≤ j, k, h ≤ n

We define � , as the component in T1,0M ⊗ T0,1M ⊗ T1,0M of s∗�̃  , so that ℜ(�) = s∗�̃ .
Notice that since �s = idM , the pullbacks satisfy s∗�∗ = idT ∙

∙
M , so

Thus 𝜂 = s∗�𝜂
j

k,h
𝜃k ⊗ 𝜃j ⊗ 𝜃h and we define �j

k,h
∶= s∗�̃

j

k,h
.

Now we will use (7) to find �̃j
k,h

 at a point of �∗U . We define the function f ∶ ℝ → ℂ 
such that f (t) ∶= �̃

j

k,h
(s(u)et) for u ∈ U and compute its derivative at t0 ∈ ℝ.

Moreover, f (0) = �̃
j

k,h
(s(u)) = �

j

k,h
(u) , so f satisfies the following initial value problem

0 = L𝜉�𝜂 = L𝜉ℜ

(
�𝜂
j

k,h
�𝜃k ⊗ �𝜃j ⊗ �𝜃h

)

= ℜ

(
L𝜉�𝜂

j

k,h
�𝜃k ⊗ �𝜃j ⊗ �𝜃h + �𝜂

j

k,h
L𝜉

�𝜃k ⊗ �𝜃j ⊗ �𝜃h

+ �𝜂
j

k,h
�𝜃k ⊗ L𝜉

�𝜃j ⊗ �𝜃h + �𝜂
j

k,h
�𝜃k ⊗ �𝜃j ⊗ L𝜉

�𝜃h
)

= ℜ

(
L𝜉�𝜂

j

k,h
�𝜃k ⊗ �𝜃j ⊗ �𝜃h + �𝜂

j

k,h
�𝜃k ⊗ �𝜃j ⊗ �𝜃h

)

= ℜ

((
L𝜉�𝜂

j

k,h
+ �𝜂

j

k,h

)
�𝜃k ⊗ �𝜃j ⊗ �𝜃h

)
.

0 = L�I𝜉�𝜂 + 2�I�𝜂 = L�I𝜉ℜ

(
�𝜂
j

k,h
�𝜃k ⊗ �𝜃j ⊗ �𝜃h

)
+ℜ

(
2�𝜂

j

k,h
�𝜃k ⊗�I

(
�𝜃j

)
⊗ �𝜃h

)

= ℜ

(
L𝜉�𝜂

j

k,h
�𝜃k ⊗ �𝜃j ⊗ �𝜃h − 2i�𝜂

j

k,h
�𝜃k ⊗ �𝜃j ⊗ �𝜃h

)

= ℜ

((
LI𝜉�𝜂

j

k,h
− 2i�𝜂

j

k,h

)
�𝜃k ⊗ �𝜃j ⊗ �𝜃h

)
.

(7)

{
L� �̃

j

k,h
= −�̃

j

k,h

L
Ĩ� �̃

j

k,h
= 2i�̃

j

k,h

.

s∗�𝜂 = s∗ℜ(�𝜂
j

k,h
�𝜃k ⊗ �𝜃j ⊗ �𝜃h) = ℜ(s∗(r3�𝜂

j

k,h
𝜋∗𝜃k ⊗ 𝜋∗𝜃j ⊗ 𝜋∗𝜃h))

= ℜ((r◦s)3(�𝜂
j

k,h
◦s)s∗𝜋∗𝜃k ⊗ s∗𝜋∗𝜃j ⊗ s∗𝜋∗𝜃h)

= ℜ((�𝜂
j

k,h
◦s)𝜃k ⊗ 𝜃j ⊗ 𝜃h).

d

dt
f |t0 =

d

dt
�̃
j

k,h
(s(u)et)|t=t0 =

d

dt
�̃
j

k,h
(s(u)et0+t)|t=0 = d

dt
�̃
j

k,h
(�t

�
(s(u)et0 ))|t=0

= (L� �̃
j

k,h
)(s(u)et0 ) = −�̃

j

k,h
(s(u)et0 ) = −f (t0).
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which has a unique solution, that is f (t) = �
j

k,h
(u)e−t . This means that �̃j

k,h
(s(u)et) = �

j

k,h
(u)e−t 

or equivalently, for all � ∈ ℝ
+ we have �̃j

k,h
(s(u)�) =

1

�
�
j

k,h
(u) = (

1

r
�∗�

j

k,h
)(s(u)�).

Similarly, consider the function f ∶ ℝ → ℂ such that f (t) ∶= �̃
j

k,h
(s(u)�eit) and compute 

its derivative at t0 ∈ ℝ.

And this time, f (0) = �̃
j

k,h
(s(u)�) =

1

�
�
j

k,h
(u) , so that for f

Its unique solution is f (t) = �
j

k,h
(u)

e2it

�
 , which implies

Let now z ∶ �−1(U) → ℂ
∗ be as in the statement, then in particular for all w ∈ �−1(u) , we 

have w = s(u)z(u) . Then, �̃j
k,h
(w) = z2

�∗�
j

k,h

r3
(w) . So finally we have

	�  ◻

Definition 6.4  Given a section s ∶ U → S with U open subset of M, we will call the cor-
responding tensor � found in Proposition 6.3 the deviance tensor with respect to s.

We can give a more global formulation of Proposition 6.3 in the following terms

Proposition 6.5  Given a projective special Kähler manifold (� ∶ M̃ → M,∇) , there 
exists a map 𝛾 ∶ �M → ♯2S3,0M ⊂ T1,0M ⊗ T0,1M ⊗ T1,0M of bundles over M, such that 
�(ua) = a2�(u) and for every local section s ∶ U → S ⊂ �M , the deviance induced by s is 
� = �◦s.

Let L ∶= M̃ ×
ℂ∗ ℂ , then � can be identified with a homomorphism of complex vector 

bundles �𝛾 ∶ L⊗ L → ♯2S3,0M such that 𝛾(u) = �𝛾([u, 1]⊗ [u, 1]).

{
f � = −f

f (0) = �
j

k,h
(u)

d

dt
f |t0 =

d

dt
�̃
j

k,h
(s(u)�eit)|t=t0 =

d

dt
�̃
j

k,h
(s(u)�eit0+it)|t=0

=
d

dt
�̃
j

k,h
(�t

I�
(s(u)�eit0 ))|t=0 = (LI� �̃

j

k,h
)(s(u)�et0 )

= 2i�̃
j

k,h
(s(u)�et0 ) = 2if (t0).

{
f � = 2if

f (0) =
1

�
�
j

k,h
(u)

.

�̃
j

k,h
(s(u)�eit) = �

j

k,h
(u)

e2it

�
=

(
�∗�

j

k,h

r3

)
(s(u)�eit)�2e2it.

�𝜂 = ℜ(�𝜂
j

k,h
�𝜃k ⊗ �𝜃j ⊗ �𝜃h) = ℜ

(
z2
𝜋∗𝜂

j

k,h

r3
(r𝜋∗𝜃k ⊗ r𝜋∗𝜃j ⊗ r𝜋∗𝜃h)

)

= ℜ(z2𝜋∗𝜂
j

k,h
𝜋∗𝜃k ⊗ 𝜋∗𝜃j ⊗ 𝜋∗𝜃h) = ℜ(z2𝜋∗𝜂).
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Proof  Let u ∈ M̃ , then there exists an open neighbourhood U ⊆ M of u and local trivi-
alisation (�|�−1(U), z) ∶ �−1(U) → U × ℂ

∗ induced by a section s ∶ U → S so, for all 
w ∈ �−1(U) we have w = s(�(w))z(w) . Let now 𝜂 ∶ U → ♯2S3,0M be the deviance corre-
sponding to s; we define �(u) ∶= z(u)2�(p) where p = �(u) . This definition is independ-
ent on the choice of s. In order to prove it take another s� ∶ U�

→ S with p ∈ U� and 
the corresponding z′ and �′ , then, on U ∩ U� , there is a map c ∶= z◦s� ∶ U ∩ U�

→ ℂ 
whose image is in S1 , as both s and s′ are sections of S. By definition, s� = s ⋅ c . 
Since sz = s�z� , z(u) = z(s�(p)z�(u)) = z(s�(p))z�(u) = c(p)z�(u) , so z = z��∗c . Now, 
by construction ℜ(z�2�∗��) = �̃ = ℜ(z2�∗�) = ℜ(z�2�∗c2�∗��) , so �� = c2� . Thus, 
z(u)2�(p) = z�(u)2c(p)2�(p) = z�(u)2��(p) , and thus, � is well defined.

Moreover, �(ua) = z(ua)2�(�(ua)) = z(u)2a2�(p) = a2�(u).
We can define the homomorphism L⊗ L → ♯2S3,0M locally: given a section s ∶ U → S , 

we map [u,w]⊗ [u�,w�] to z(u)z(u�)ww� ⋅ �s
p
 where p = �(u) = �(u�) . This map does not 

depend on the choice of the section as one can see from the relations above, and it is also 
independent on the representatives chosen of these classes; for the first class for example 
z(ua)w = z(u)aw.

This map commutes with the projections on M and it is ℂ-linear on the fibres, so it is a 
complex vector bundle map. 	�  ◻

Definition 6.6  We call 𝛾 ∶ S → ♯2S3,0M of Proposition 6.5 the intrinsic deviance of the 
projective special Kähler manifold.

Remark 6.7  Given a section s ∶ U → S and the corresponding function z ∈ C
∞
(
�−1(U),ℂ∗

)
 

such that sz = id�−1(U) , we can compute dz = z(
1

r
dr + id�) , since locally z = rei� . Notice 

that � is not globally defined on �−1(U) , but d� and ei� are. Moreover,

is a principal connection form, in fact it is equivariant for the action of ℂ∗ as z(ua) = az(u) 
for all a ∈ ℂ and, given a complex number a and its corresponding fundamental vector 
field a◦ ∈ �

(
M̃
)
,

Remark 6.8  A local section s ∶ U → S induces � ∶= s∗�̃ = s∗� ∈ Ω1(U) such that on 
�−1(U)

and thus, on �−1
S
(U):

If we consider in fact the form �̃ − d� , we notice that it is basic, as it can also be seen as 
the difference of two connection forms on �−1(U) (namely (3) and (8)) up to a multiplica-
tion by i. Therefore, �̃ − d� = �∗� for some � ∈ Ω1(U) . The second equation is simply 
obtained from the first by restriction to S ⊆ �M.

(8)
1

z
dz =

1

r
dr + id� ∈ Ω1(�−1(U),ℂ)

1

z
dz(a◦)u =

1

z
dz(

d

dt
ueat|t=0) = 1

z(u)

d

dt
z(ueat)|t=0 = 1

z(u)

d

dt
z(u)eat|t=0 = a.

�̃ = d� + �∗�,

� = d�|S + �∗
S
�.
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7 � Characterisation theorem

In this section, we prove our main theorem, characterising projective special Kähler mani-
folds in terms of the deviance. We start by deriving necessary conditions on the deviance, 
reflecting the curvature conditions of Proposition 3.2.

Proposition 7.1  For a projective special Kähler manifold (� ∶ M̃ → M,∇) with 
(M̃, g̃, Ĩ, �̃,∇, �) , and a local section s ∶ U → S , then the corresponding deviance � satisfies

where � = s∗� ∈ Ω1(U).

Proof  Thanks to Proposition 6.3, we know that there exists z = rei� and 
𝜂 ∈ T1,0U ⊗ T0,1U ⊗ T1,0U such that on �−1(U) we have �̃ = ℜ(z2�∗�).

Now we would like to describe d̃LC�̃  in terms of dLC� . Notice that

The next step is to compute d̃LC�∗� , but since we are using the Levi-Civita connection, 
it is equivalent to compute ♯2(�dLC𝜋∗𝜎) , where 𝜎 = ♭2𝜂 ∈ S3,0U . Let us consider a local 
coframe � in M and the corresponding lifting �̃  as in (4), so that we can denote explicitly 
𝜎 = 𝜎k,j,h𝜃

k ⊗ 𝜃j ⊗ 𝜃h . We have

We can now compute the following for X ∈ �
(
�−1(U)

)
:

dLC� = 2i� ∧ �

(9)
d̃LC�̃ = d̃LCℜ(z2�∗�) = ℜ(d̃LC(z2�∗�)) = ℜ(2zdz ∧ �∗� + z2d̃LC�∗�)

= ℜ
(
z2
(
2(
1

r
dr + id�) ∧ �∗� + d̃LC�∗�

))
.

�∇LC𝜋∗𝜃k = �∇LC
�𝜃k

r
= −

dr

r2
⊗ �𝜃k −

1

r

(
(�𝜔LC)k

j
⊗ �𝜃j

)

= −
dr

r
⊗ 𝜋∗𝜃k −

1

r

(
n∑
j=1

𝜋∗(𝜔LC)k
j
⊗ �𝜃j + i�𝜑 ⊗ �𝜃j + 𝜋∗𝜃k ⊗ 𝜃n+1

)

= −
dr

r
⊗ 𝜋∗𝜃k − 𝜋∗

(
(𝜔LC)k

j
⊗ 𝜃j

)
− i�𝜑 ⊗ 𝜋∗𝜃j − 𝜋∗𝜃k ⊗

1

r
𝜃n+1

= 𝜋∗
(
∇LC𝜃k

)
−

1

r
𝜃n+1 ⊗ 𝜋∗𝜃k − 𝜋∗𝜃k ⊗

1

r
𝜃n+1.
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In general then, if 𝜎 = 𝜃k ⊗ 𝜎k , where 𝜎k = 𝜎k,j,h𝜃
j ⊗ 𝜃h ∈ S2,0U , we have by symmetry

Notice in particular that the last two rows are symmetric in the first two indices.
In order to compute d̃LC�∗� we need to antisymmetrise ∇̃LC�∗� in the first two indices 

and multiply by two, so only the first row survives and we get

and therefore

Substituting this value in (9), we obtain

As observed in Remark 6.8, �̃ − d� = �∗� , so we have

From Proposition 3.2, we know that d̃LC�̃ = 0 , and since 𝜂 ∈ Ω1(U, T0,1 ⊗ T1,0) , � and � 
are linearly independent, so this quantity vanishes if and only if z2�∗

(
dLC� − 2i� ∧ �

)
 does. 

Therefore,

�∇LC
X
𝜋∗𝜎 = �∇LC

X
𝜋∗(𝜎k,j,h𝜃

k ⊗ 𝜃j ⊗ 𝜃h) = �∇LC
X
(𝜋∗𝜎k,j,h𝜋

∗𝜃k ⊗ 𝜋∗𝜃j ⊗ 𝜋∗𝜃h)

= d𝜋∗𝜎k,j,h(X)𝜃
k ⊗ 𝜃j ⊗ 𝜃h + 𝜋∗𝜎k,j,h

(
�∇LC
X
𝜋∗𝜃k ⊗ 𝜋∗𝜃j ⊗ 𝜋∗𝜃h

+𝜋∗𝜃k ⊗ �∇LC
X
𝜋∗𝜃j ⊗ 𝜋∗𝜃h + 𝜋∗𝜃k ⊗ 𝜋∗𝜃j ⊗ �∇LC

X
𝜋∗𝜃h

)

= 𝜋∗d𝜎k,j,h(X)𝜃
k ⊗ 𝜃j ⊗ 𝜃h + 𝜋∗𝜎k,j,h𝜋

∗
(
∇LC𝜃k

)
X
⊗ 𝜋∗𝜃j ⊗ 𝜋∗𝜃h

+ 𝜋∗𝜎k,j,h𝜋
∗𝜃k ⊗ 𝜋∗

(
∇LC𝜃j

)
X
⊗ 𝜋∗𝜃h

+ 𝜋∗𝜎k,j,h𝜋
∗𝜃k ⊗ 𝜋∗𝜃j ⊗ 𝜋∗

(
∇LC𝜃j

)
X
−

3

r
�𝜃n+1(X)𝜋∗𝜎

−
1

r

(
𝜋∗𝜎k,j,h𝜋

∗𝜃k(X)�𝜃n+1 ⊗ 𝜋∗𝜃j ⊗ 𝜋∗𝜃h

+𝜋∗𝜎k,j,h𝜋
∗𝜃k ⊗ 𝜋∗𝜃j(X)�𝜃n+1 ⊗ 𝜋∗𝜃h

+𝜋∗𝜎k,j,h𝜋
∗𝜃k ⊗ 𝜋∗𝜃j ⊗ 𝜋∗𝜃h(X)�𝜃n+1

)

= 𝜋∗
(
∇LC𝜎

)
X
−

2

r
�𝜃n+1(X)𝜋∗𝜎 −

1

r
�𝜃n+1(X)𝜋∗𝜎 −

1

r
�𝜃n+1 ⊗ 𝜋∗𝜎(X, ⋅, ⋅)

−
1

r
𝜋∗𝜎(⋅,X ⊗ �𝜃n+1, ⋅) −

1

r
𝜋∗𝜎(⋅, ⋅,X ⊗ �𝜃n+1).

�∇LC𝜋∗𝜎 = 𝜋∗
(
∇LC𝜎

)
−

2

r
�𝜃n+1 ⊗ 𝜋∗𝜎 −

2

r
((�𝜃n+1)(𝜋∗𝜃k))⊗ 𝜋∗(𝜎k,j,h𝜃

j ⊗ 𝜃h)

−
2

r

(
𝜋∗(𝜎k,j,h𝜃

k ⊗ 𝜃j)⊗ ((�𝜃n+1)(𝜋∗𝜃h))
)
.

d̃LC�∗� = �∗(dLC�) −
2

r
�̃n+1 ∧ �∗�,

d̃LC�∗� = �∗(dLC�) −
2

r
�̃n+1 ∧ �∗�.

d̃LC�̃ = ℜ
(
z2
(
2(
1

r
dr + id�) ∧ �∗� + �∗(dLC�) −

2

r
�̃n+1 ∧ �∗�

))

= ℜ
(
z2
(
�∗dLC� − 2i(�̃ − d�) ∧ �∗�

))
.

d̃LC�̃ = ℜ
(
z2�∗

(
dLC� − 2i� ∧ �

))
.
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ending the proof. 	�  ◻

Let us now look at the final ingredient of the curvature tensor, that is 1
2
[�̃ ∧ �̃] . In the set-

ting of Proposition 6.3, given a section s ∶ U → S , and the induced deviance � , then

We can compute this tensor for a local coframe � on M. Since we have

and �∗�k◦�∗�h = �∗�k◦�∗�h = 0 , then

and

Therefore

Remark 7.2  Note that [� ∧ �] is independent on the local coframe, and if we consider another 
section such that s� = sa on the intersection of their domains, with a taking values in S1 , if 
�′ is the deviance corresponding to s′ , then [�� ∧ ��] = [�a ∧ �a] = |a|2[� ∧ �] = [� ∧ �] . 
So, there is a globally defined section M → S2(�(n)) mapping p to [�p ∧ �p].

For a projective special Kähler manifold (� ∶ M̃ → M,∇) of real dimension 2n, Propo-
sition 3.2, interpreted in the light of the last observations and the ones made in Section 5 
(see Remark 5.4), says that 0 = r2�∗(ΩLC + Ω

ℙ
n
ℂ

+ [� ∧ �]) ; thus, we have the following 
equation:

This is a curvature tensor, so we can compute its Ricci and scalar component.

dLC� − 2i� ∧ � = 0,

1

2
[�̃ ∧ �̃] =

1

2
[ℜ(z2�∗�) ∧ℜ(z2�∗�)] =

1

2
[z2�∗� + z

2
�∗� ∧ z2�∗� + z

2
�∗�]

=
1

2
ℜ
(
z4[�∗� ∧ �∗�]

)
+ |z|4[�∗� ∧ �∗�].

�∗�k◦�∗�h =
1

r
�̃k(

1

r
�̃h) =

1

r2
�̃k(�̃h) =

1

r2
�k
h
=

1

r2
�∗(�k◦�h)

[𝜋∗𝜂 ∧ 𝜋∗𝜂] = [𝜋∗𝜂
j

k,h
𝜋∗𝜃k ⊗ 𝜋∗𝜃j ⊗ 𝜋∗𝜃h ∧ 𝜋∗𝜂

j�

k�,h�
𝜋∗𝜃k

�

⊗ 𝜋∗𝜃j� ⊗ 𝜋∗𝜃h
�

]

= 𝜋∗𝜂
j

k,h
𝜋∗𝜃k ∧ 𝜋∗𝜂

j�

k�,h�
𝜋∗𝜃k

�

⊗ [𝜋∗𝜃j ⊗ 𝜋∗𝜃h,𝜋∗𝜃j� ⊗ 𝜋∗𝜃h
�

] = 0

[𝜋∗𝜂 ∧ 𝜋∗𝜂] = [𝜋∗𝜂
j

k,h
𝜋∗𝜃k ⊗ 𝜋∗𝜃j ⊗ 𝜋∗𝜃h ∧ 𝜋∗𝜂

j�

k� ,h�
𝜋∗𝜃k� ⊗ 𝜋∗𝜃j� ⊗ 𝜋∗𝜃h� ]

= 𝜋∗𝜂
j

k,h
𝜋∗𝜃k ∧ 𝜋∗𝜂

j�

k�,h�
𝜋∗𝜃k� ⊗ [𝜋∗𝜃j ⊗ 𝜋∗𝜃h,𝜋∗𝜃j� ⊗ 𝜋∗𝜃h� ]

= 𝜋∗(𝜂
j

k,h
𝜃k ∧ 𝜂

j�

k� ,h�
𝜃k� )⊗

1

r2
𝜋∗(𝜃j ⊗ 𝜃h(𝜃j� )⊗ 𝜃h� − 𝜃j� ⊗ 𝜃h� (𝜃j)⊗ 𝜃h)

=
1

r2
𝜋∗[𝜂 ∧ 𝜂].

(10)1

2
[�̃ ∧ �̃] =

|z|4
r2

�∗[� ∧ �] = r2�∗[� ∧ �].

(11)ΩLC + Ω
ℙ
n
ℂ

+ [� ∧ �] = 0.
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Proposition 7.3  Let (� ∶ M̃ → M,∇) be a projective special Kähler manifold of dimension 
2n, then

Proof  The first summand in (11) gives the Ricci tensor of M, the second gives the Ricci 
tensor of the projective space (6). In order to compute the last term, consider a unitary 
frame � ; from previous computations,

then the Ricci component Ric([� ∧ �]) evaluated on X = ℜ(Xk�k) and Y = ℜ(Yk�k) is the 
trace of [� ∧ �](⋅, Y)X , which is

Its trace is therefore

or equivalently, Ric([� ∧ �]) = −ℜ
(
�h
u,j
�
j

k,h
�u�k

)
 . Thus, we obtain (12).

From this tensor, we can now obtain (13) by computing the scalar component, that is 
by taking the trace, raising the indices with g and then dividing it by the dimension of M. 
Thus, the first summand gives scalM , the second gives 2(n + 1) and the third

	�  ◻

In particular, since the norm of � is non-negative, we obtain a lower bound for the 
scalar curvature:

Corollary 7.4  Let (� ∶ M̃ → M,∇) be a projective special Kähler manifold, then

Equality holds at a point if and only if the deviance vanishes at that point.

Remark 7.5  The lower bound is reached by projective special Kähler manifolds with zero 
deviance; we will see that this condition characterises the complex hyperbolic space (Prop-
osition 9.5).

(12)RicM(X, Y) + 2(n + 1)g(X, Y) −ℜ(h(�X , �Y )) = 0;

(13)scalM + 2(n + 1) −
2

n
‖�‖2

h
= 0.

[𝜂 ∧ 𝜂] = (𝜂
j

k,h
𝜃k ∧ 𝜂

j�

k�,h�
𝜃k� )⊗ (𝛿h

j�
𝜃j ⊗ 𝜃h� − 𝛿h

�

j
𝜃j� ⊗ 𝜃h)

= ℜ
(
𝜂
j

k,h
𝜂h
k� ,h�

𝜃k ∧ 𝜃k� ⊗ 𝜃j ⊗ 𝜃h�
)

[𝜂 ∧ 𝜂](⋅,Y)X = 𝜂
j

k,h
𝜂h
u,v
(𝜃kYu − Yk𝜃u)⊗ 𝜃j ⊗ Xv + 𝜂

j

k,h
𝜂h
u,v
(𝜃kYu − Yu𝜃k)⊗ 𝜃j ⊗ Xv

= ℜ
(
𝜂
j

k,h
𝜂h
u,v
(𝜃kYu − Yk𝜃u)⊗ 𝜃j ⊗ Xv

)
.

−ℜ
(
�
j

k,h
�h
j,v
YkXv

)
= −ℜ

(
�
j

k,h
�h
u,j
YkXu

)
= −ℜ(h(�X , �Y )),

1

2n
tr
�
−ℜ

�
𝜂h
u,j
𝜂
j

k,h
(𝜃u)♯𝜃

k
��

= −
1

2n
tr
�
ℜ
�
𝜂h
u,j
𝜂
j

k,h
(2𝜃u)𝜃

k
��

= −
1

n

�
j,h,k

ℜ
�
𝜂
j

k,h
𝜂h
k,j

�
= −

2

n
‖𝜂‖2

h
.

scalM ≥ −2(n + 1).
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We can now state the main result:

Theorem 7.6  On a 2n-dimensional Kähler manifold (M, g, I,�) , to give a projective special 
Kähler structure is equivalent to give an S1-bundle �S ∶ S → M endowed with a connection 
form � and a bundle map 𝛾 ∶ S → ♯2S3,0M such that: 

1.	 d� = −2�∗
S
�;

2.	 �(ua) = a2�(u) for all a ∈ S1;
3.	 for a certain choice of an open covering {U�|� ∈ A} of M and a family {s� ∶ U� → S}�∈A 

of sections, denoting by �� the local 1-form taking values in T0,1M ⊗ T1,0M determined 
by �◦s� , for all � ∈ A:

 D1 ΩLC + Ω
ℙ
n
ℂ

+ [�� ∧ ��] = 0;
 D2 dLC�� = 2is∗

�
� ∧ ��.

In this case, 3 is satisfied by every such family of sections.
Proof  Given a projective special Kähler manifold, we define S ∶= r−1(1) ⊂ �M and 
� ∶= −���|S . The principal action on S is generated by I� which is tangent to S since 
TuS = ker(dr) and dr(I𝜉) = −

1

r
𝜉♭(I𝜉) = −

�g(𝜉,I𝜉)

r
 . The curvature is then d� = −2�∗

S
� as 

shown in Remark 4.4, so the first point is satisfied. The second condition holds thanks to 
Proposition 6.5. For the third point, we get D1 from the arguments leading to equation (11) 
and D2 from Proposition 7.1.

In order to prove the other direction, define M̃ ∶= S ×ℝ
+ , � ∶= �S◦�1 ∶ M̃ → M , and 

t ∶= �2 ∈ C
∞
(
M̃,ℝ+

)
 , where �1 ∶ S ×ℝ

+
→ S and �2 ∶ S ×ℝ

+
→ ℝ

+ are the projec-
tions. Let �̃ ∶= �∗

1
� , in particular d�̃ = �∗

1
d� = −2�∗� as expected. Define now

which is non-degenerate, since r�̃ and dt are linearly independent and transverse to � , so 
we can form a basis for the 1-forms according to which we can see that g̃ has signature 
(2n, 2). Extend now I to Ĩ  so that Ĩ ⋅ (�∗�) = �∗I� for all � ∈ T∗M and Ĩ ⋅ (dt) = t�̃.

The metric g̃ is compatible with Ĩ  since 

We thus have a Kähler manifold (M̃, g̃, Ĩ, �̃) , where

Let � ∶= t�t where �t is the vector field corresponding to the coordinate deri-
vation on ℝ

+ . Notice that the function r =
√
−g̃(�, �) coincides with t, 

as 
√
−g̃(t�t, t�t) =

√
−t2g̃(�t, �t) = t . In particular, g̃(�, �) = −t2 ≠ 0 and 

�g(�I𝜉,�I𝜉) = �g(𝜉, 𝜉) < 0 , so g̃ is negative definite on ⟨�, I�⟩ and hence positive definite on the 
orthogonal complement.

Let now � be a unitary coframe on an open subset U ⊆ M , then we can lift it to a com-
plex coframe �̃  on �−1(U) defined as in (4). It is straightforward to check that �̃  is adapted 
to the pseudo-Kähler structure of M̃ . Notice that the proof of Proposition 5.2 is still valid 
in this situation even though we do not know whether M̃ → M has a structure of projective 

g̃ ∶= t2�∗g − t2�̃2 − dt2

Ĩ ⋅ g̃ = t2 Ĩ ⋅ �∗g − (̃I ⋅ t�̃)2 − (̃I ⋅ dt)2 = t2�∗(I ⋅ g) − (−dt)2 − (t�̃)2 = t2�∗(I ⋅ g) − dt2 − t2�̃2 = g̃.

�̃ ∶= t2�∗� + t�̃ ∧ dt.
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special Kähler manifold; this gives us a description of the Levi-Civita connection form on 
M̃ with respect to �̃  . Notice that �̃k(�) = 0 for k ≤ n and �̃n+1(�) = dt(t�t) + i�̃(t�t) = t so 
� = ℜ(t�̃n+1) . We can thus compute

Each section s� corresponds to the trivialisation (�|�−1(U), z�) ∶ �−1U → U × ℂ
∗ in the 

sense that s(�(u)) ⋅ z�(u) = u for all u ∈ �−1(U�) . For all � on �−1(U�) , define the tensor 
�̃� ∶= ℜ(z2

�
�∗��) . The family {�̃�}�∈A is compatible on intersections U1 ∩ U2 , in fact if 

s1 = cs2 for c ∈ U(1) , then z2 = cz1 and �1 = �◦s1 = �◦cs2 = c2�◦s2 = c2�2 , so

Therefore, this family glues to form a tensor �𝜂 ∈ ♯2S
3 �M.

We can build another connection ∇ ∶= ∇̃LC + �̃  . Notice that 
∇� = ∇̃LC� + �̃(�) = id +ℜ(z2

�
�∗��)(�) = id because locally �� is horizontal for all �.

In order to prove that ∇ is symplectic, since the Levi-Civita connection is symplectic, it 
is enough to prove that �̃(�̃, ⋅) + �̃(⋅, �̃) = 0 . Locally, �̃ =

1

2i

∑n+1

k=1
�̃k ∧ �̃k and in fact, for 

all X = ℜ(Xk�̃k) , Y = ℜ(Yk�̃k) , Z = ℜ(Zk�̃k) vector fields on M̃:

By the symmetry of � , this quantity vanishes.
Proving that d∇ Ĩ = 0 , is equivalent to proving that ∇Ĩ  is symmetric in the two covariant 

indices, and thus, ∇Ĩ = ∇̃LCĨ + [�̃, Ĩ] = [�̃, Ĩ] . Since Ĩ = ℜ(i�̃k�̃
k) , we have

�∇LC𝜉 = dt⊗ℜ(�𝜃n+1) + t�∇LCℜ(�𝜃n+1)

= ℜ(dt⊗ �𝜃n+1) +
t

r
ℜ

(
n∑

k=1

�𝜃k ⊗ �𝜃k + iIm(�𝜃n+1)⊗ �𝜃n+1

)

= ℜ

(
n+1∑
k=1

�𝜃k ⊗ �𝜃k

)
= id.

�̃1 = ℜ(z2
1
�∗�1) = ℜ(z2

1
c2�∗�2) = ℜ(z2

2
�∗�2) = �̃2.

2i(�̃(�̃XY , Z) + �̃(Y , �̃XZ)) =

n+1∑
k=1

(
�̃k(�̃XY)�̃

k(Z) − �̃k(�̃XY)�̃
k(Z)

+�̃k(Y) ∧ �̃k(�̃XZ) − �̃k(Y) ∧ �̃k(�̃XZ)

)

=

n+1∑
k=1

(
z�∗�k

u,v
XuYvZk − Zkz

2
�∗�

k

u,v
XuYv

+ Y
k
z
2
�∗�

k

u,v
XuZv − z2�∗�k

u,v
XuZvYk

)

=

n+1∑
k=1

ℜ
(
z2�∗�k

u,v
XuYvZk − z2�∗�k

u,v
XuZvYk

)

=

n+1∑
k=1

ℜ
(
z2�∗(�k

u,v
− �v

u,k
)XuYvZk

)
.
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which is symmetric, proving d∇I = 0.
For the flatness of ∇ , we compute the curvature locally

By Proposition 5.2, Ω̃LC = r2�∗(ΩLC + Ω
ℙ
n
ℂ

) . For the same reasoning exposed in the proof 
of Proposition 7.1, d̃LC�̃ = 0 if and only if dLC� − 2is∗� ∧ � = 0 , which is granted by D2.

Finally, the computations leading to equation (10) still apply, and thus, we can deduce 
that

making the connection ∇ flat.
Notice that � ∶ M̃ → M is a principal ℂ∗-bundle, where for all lei� ∈ ℂ

∗ and (u, t) ∈ M̃:

The infinitesimal vector field corresponding to 1 at (u, t0) is �(u,t0) and the one corre-
sponding to i is X ∶=

d

dt
((u, t0) exp(it))|t=0 = d

dt
(ueit, t0)|t=0 , which is vertical and such 

that �̃(X) = �(p∗X) = �(
d

dt
(ueit)|t=0) = 1 and dr(X) = 0 . This means that X = I� since 

�g(X, ⋅) = −r2�𝜑 = −rIdr = I𝜉♭.
We are only left to prove that M is the Kähler quotient or M̃ with respect to the U(1)

-action and in order to do so, notice that �̃(I�, ⋅) = −g̃(�, ⋅) = rdr = d
(

r2

2

)
 , so � ∶=

r2

2
 is a 

moment map for I� . Notice that �−1(
1

2
) = S × {1} and S is a principal bundle so, by defini-

tion of g̃ and �̃ , S∕U(1) is isometric to M and this ends the proof. 	� ◻

Remark 7.7  Starting from the family {��}� , we can build a bundle map � ∶ S → M as long 
as the �� ’s are linked by the relation �� = g2

�,�
�� where g�,� is a cocycle defining S.

Remark 7.8  Let (M, g, I) be a Kähler manifold, then if H2(M,ℤ) = 0 , in particular, every 
complex line bundle and every circle bundle are trivial. Moreover, by de Rham’s theorem, 
H2

dR
(M) = H2(M,ℝ) = H2(M,ℤ)⊗ℝ = 0 , so in particular � = d� for some � ∈ Ω1(M).

Corollary 7.9  A Kähler 2n-manifold (M, g, I,�) such that H2(M,ℤ) = 0 , has a projective 
special Kähler structure if and only if there exists a section 𝜂 ∶ M → ♯2S3,0M such that 

D1∗	� ΩLC + Ω
ℙ
n
ℂ

+ [� ∧ �] = 0;

D2∗	� dLC� = −4i� ∧ �;

for some � ∈ Ω1(M) such that d� = �.
Proof  If M has a projective special Kähler structure, then from Theorem  7.6 we obtain 
an S1-bundle p ∶ S → M and the map 𝛾 ∶ S → ♯2S3,0M . Consider the corresponding line 
bundle L = S ×U(1) ℂ . As noted in Remark 7.8, we can assume L = M × ℂ and S = M × S1 . 
In particular, there is a global section s ∶ M → S and if we call 𝜂 = 𝛾◦s ∶ M → ♯2S3,0M , 

[�𝜂,�I] = iz2𝜋∗𝜂u
v,w

�𝜃v ⊗ �𝜃u ⊗ �𝜃w − iz2𝜋∗𝜂u
v,w

�𝜃v ⊗ �𝜃u ⊗ �𝜃w

+ iz2𝜋∗𝜂u
v,w

�𝜃v ⊗ �𝜃u ⊗ �𝜃w − iz2𝜋∗𝜂u
v,w

�𝜃v ⊗ �𝜃u ⊗ �𝜃w = 2i�𝜂 = −2�I�𝜂,

Ω∇ = d�∇ +
1

2
[�∇ ∧ �∇] = Ω̃LC + d̃LC�̃ +

1

2
[�̃ ∧ �̃].

Ω∇ = r�∗(ΩLC + Ω
ℙ
n
ℂ

+ [� ∧ �]) = 0,

(u, t)lei� ∶= (uei� , tl).
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it is a global section satisfying the curvature equation thanks to Theorem  7.6. Defining 
� ∶= −

1

2
s∗� , we have d� = −

1

2
s∗(−2�∗

S
�) = (�Ss)

∗� = � , and thus, also the differential 
condition is satisfied by Theorem 7.6.

Conversely, by de Rham’s Theorem, we have � ∈ Ω1(M) such that d� = � . We define 
�S = �1 ∶ S = M × S1 → M and choose as connection the form � = �∗

2
d� − 2�∗

S
� , where 

d� is the fundamental 1-form on S1 = U(1) . Then, d� = 0 − 2�∗
S
d� = −2�∗

S
� , so S → M 

has the desired curvature. Moreover, it is trivial, so we have a global section s ∶ M → S 
mapping p to (p, 1).

Given 𝜂 ∶ M → ♯2S3,0M as in the statement, we define 𝛾 ∶ S → ♯2S3,0M such that 
�(p, a) ∶= a2�(p) for all p ∈ M and a ∈ U(1) . Notice that �◦s = �(⋅, 1) = � , so the curva-
ture equation of this corollary gives the curvature equation in Theorem 7.6 and the same 
is true for the differential condition, since s∗� = s∗�∗

2
d� − 2s∗�∗

S
� = 0 − 2� . By Theo-

rem 7.6, M is thus projective special Kähler. 	�  ◻

Remark 7.10  Instead of requiring a section � as in Corollary 7.9, we could use a section � 
of S3,0M such that ♯2𝜎 = 𝜂.

8 � Varying the projective special Kähler structure by a U(1)‑valued 
function

Theorem 7.6 allows to find a whole class of projective special Kähler structures from a 
given one, as shown in the following

Proposition 8.1  Let (� ∶ M̃ → M,∇) be a projective special Kähler manifold, let 
𝛾 ∶ S → ♯2S3,0M be its intrinsic deviance and � ∈ Ω1(S) the principal connection form on 
�S ∶ S → M , then for all � ∈ C

∞(M, U(1)) there is a new projective special Kähler struc-
ture (� ∶ M̃�

→ M,∇�) with intrinsic deviance 𝛾𝛽 = 𝛽𝛾 ∶ S → ♯2S3,0M on the same bundle 
S, with principal connection form �� = �∗

S

(
d�

2i�

)
+ �.

Proof  We want to use Theorem 7.6, so consider the same bundle �S ∶ S → M , but with the 
new connection form �� . Notice that �� is a real form, in fact �� = 1 , so

and thus, Im
(

d�

2i�

)
= −

1

2
Re

(
d�

�

)
= 0 . Moreover d�� = −�∗

S

(
d�∧d�

�2

)
+ d� = d� = −2�∗� , 

so condition 1 of Theorem 7.6 this is a compatible principal connection form. The bundle 
map �� is still homogeneous of degree 2. We are only left to prove the two conditions of 
point 3, so consider a family of sections {(U� , s�)}�∈A corresponding to a trivialisation of S 
and let ��� ∶= ��◦s� = ��◦s� = ��� . We thus have

0 = �d� + �d� = ��

(
d�

�
+

d�

�

)
=

((
d�

�

)
+

d�

�

)
= 2Re

(
d�

�

)
,

dLC��
�
= dLC(���) = d� ∧ �� + �2is∗

�
� ∧ �� = 2i

(
d�

2i�
+ s∗

�
�

)
∧ e2i���

= 2is∗
�

(
d�∗

S

(
d�

2i�

)
+ s∗

�
�

)
∧ ��

�
= 2is∗

�
�� ∧ ��

�
.
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As for the curvature condition D1, it still holds because

	�  ◻

These modified deviances do not always provide an entirely new projective special 
Kähler structure. Before entering into the details, we recall the following elementary 
result.

Lemma 8.2  Let M be a smooth manifold and G a Lie group with Lie algebra � such that 
there is a smooth right action

Then, the differential of r at a point (x, a) is

for all X ∈ TxM , A ∈ � , where A◦ denotes the fundamental vector field associated to A.

Proof  See, e.g. [32, Ex. 27.4, p. 326]. 	�  ◻

We now present the following isomorphism result:

Proposition 8.3  In the setting of Proposition 8.1, if moreover � has a square root, meaning 
that � = b2 for some b ∶ M → U(1) , then the map

induces a bundle isomorphism preserving connection and deviance, that is

In particular, if �∗ ∶ ℝ ≅ H1
dR
(S1) → H1

dR
(M) is the zero map, then � has a square root.

Proof  The preservation of � follows from its 2-homogeneity, since for all u ∈ S:

For the connection, we first compute the differential of mb . Let r ∶ S × U(1) → S be 
the principal right action, then we can see mb as r◦(idS × (b◦�S)) . The differential of 
(idS × (u◦�S)) is idTS × �∗

S
db , where db has values in �(1) = iℝ . Lemma 8.2 gives us the 

differential of the action. We have

Now let us compute the pullback of � , using the fact that � is right invariant and 
d� = db2 = 2bdb

[��
�
∧ �

�
� ] = [��� ∧ ���] = [�� ∧ ��].

r ∶ M × G ⟶ M.

r∗(X,A) = (Ra)∗(X) + A◦,

mb ∶ S ⟶ S, u ⟼ u.b(�S(u)) = Rb(�S(u))
(u)

�� = m
∗
b
(�), �� = �◦m

b
.

�◦mb(u) = �(ub(�S(u))) = b(�S(u))
2�(u) = (�◦�S)�(u) = �� .

((mb)∗)u = (Rb�S(u)
)∗ + (d�S(u)b)

◦.
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In order to prove the last statement, let a ∶ U(1) → ℂ be the standard identification of U(1) 
with the unit circle. Denote by � the fundamental form of U(1) , then we can write

Now let � ∶ M → U(1) , and consider the pullback

We have 0 = �∗ ∶ H1
dR
(U(1)) → H1

dR
(M) , so in particular 1

i�
d� is exact. Let � ∈ C

∞(M) be 
such that d� =

1

i�
d� , then e−i�� is a smooth function with image in U(1) and differential

So up to a locally constant function k, we have � = kei� . Without loss of generality, we can 
assume k = 1 (take �� = � − i log(k) ). Then, let b = e

i�

2  and b2 = � . 	�  ◻

Remark 8.4  In the family of projective special Kähler structures constructed in Proposition 
8.1, if H1

dR
(M) = 0 , then there is a unique projective special Kähler structure on M up to a 

natural notion of isomorphism.

Even when H1
dR
(M) ≠ 0 , we can say exactly when a function has a global square root 

by considering the following functional for all p ∈ M:

Notice that, in the notation above,

so, F has image in ℤ.

Lemma 8.5  Let M be a smooth manifold and � ∶ M → U(1) , then there exists 
b ∶ M → U(1) such that � = b2 if and only if for all p ∈ M , the functional

is zero. Explicitly, given yp ∈ U(1) such that y2
p
= �(p) , then for all q ∈ M in the same con-

nected component of p,

m∗
b
(�) = �◦(mb)∗ = �◦(Rb�S(u)

)∗ + �((d�S(u)b)
◦) = R∗

b�S(u)
� +

1

ib
d�S(u)b

= � +
1

i2b2
d�S(u)� = � +

1

i2�
d�S(u)� = �� .

� =
1

ia
da.

�∗� = �∗
(

1

ia
da

)
=

1

i�
d�.

−iei��d� + ei�d� = −
iei��

i�
d� + ei�d� = −ei�d� + ei�d� = 0.

F�,p ∶ �1(M, p) ⟶ ℝ, � ⟼
1

2� ∫�

1

i�
d�.

(14)
1

2� ∫�

1

i�
d� =

1

2� ∫�◦�

1

ia
da =

1

2� ∫�◦�

� ,

[F�,p] ∶ �1(M, p) ⟶ ℤ2, � ⟼
1

2� ∫�

1

i�
d� mod 2
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for all continuous � ∶ [0, 1] → M such that �(0) = p and �(1) = q.

Proof  If � = b2 for some b ∶ M → U(1) , then for all p ∈ M and � ∈ �1(M, p),

Since b◦� is a loop, F�,p(�) is even, so [F�,p] = 0.
Conversely, choose a point in every connected component of M and define b by glue-

ing functions defined as in (15). We can verify � = b2 on each connected component, so 
let p be the chosen point in said component. Connected components on manifolds are also 
path connected components, so for all q in the same connected component, there exists 
a smooth � ∶ [0, 1] → M such that �(0) = p and �(1) = q . The value b(q) is independent 
from the path � chosen, in fact if we pick another such �� ∶ [0, 1] → M , then the composi-
tion of paths (��)−1 ∗ � ∈ �1(M, p) is a loop, and thus

for some k ∈ ℤ . It follows that

We can now compute

Since locally 1

�
d� = d log(�) , up to picking a suitable partition of [0,  1] we have 

exp
(∫

�

1

�
d�

)
= �(q)∕�(p) so b2(q) = �(q) . 	�  ◻

We deduce

Proposition 8.6  Let M be a smooth manifold and � ∶ M → U(1) , then the following are 
equivalent: 

1.	 there exists b ∶ M → U(1) such that � = b2;
2.	 [F�,p] = 0 for all p ∈ M;
3.	 [F�,pk

](�k) = 0 for a set of loops �k ∈ �1(M, pk) corresponding to a set of generators of 
H1(M,ℤ);

4.	 [F�,pk
](�k) = 0 for a set of loops �k ∈ �1(M, pk) corresponding to a set of generators of 

H1(M,ℤ2) = H1(M,ℤ)⊗
ℤ
ℤ2;

5.	 the pullback �∗ ∶ ℤ2 ≅ H1(U(1),ℤ2) → H1(M,ℤ2) is the zero map.

(15)b(q) = yp exp

(
1

2 ∫�

1

�
d�

)

F�,p(�) =
1

2� ∫�

2

ib
db = 2

(
1

2� ∫b◦�

�

)
.

∫�

1

�
d� − ∫��

1

�
d� = ∫�

1

�
d� + ∫(��)−1

1

�
d� = 2�i

(
1

2� ∫(��)−1∗�

1

i�
d�

)
= 4�ik

yp exp

(
1

2 ∫�

1

�
d�

)
= yp exp

(
1

2 ∫��

1

�
d� + 2�ik

)
= yp exp

(
1

2 ∫��

1

�
d�

)

b2(q) = y2
p

(
exp

(
1

2 ∫�

1

�
d�

))2

= �(p) exp

(
∫�

1

�
d�

)
.
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Proof  The equivalence 1 ⇔ 2 is Lemma 8.5.
For 2 ⇔ 3, suppose at first that M is connected and let p ∈ M . The functional 

[F�,p] ∶ �1(M, p) → ℤ2 is a group homomorphism and by Hurewicz theorem, H1(M,ℤ) is 
the abelianisation of �1(M, p) . Since ℤ2 is an abelian group, there are natural isomorphisms

and thus, there is a canonical factorisation of [F�,p] as an abelian group homomorphism 
(i.e. ℤ-linear map) H1(M,ℤ) → ℤ2 which is the zero map if and only if [F�,p] is zero. In 
particular, this proves 2 ⇔ 3. In general, M =

∐
i∈I Mi with Mi connected for all i ∈ I , so 

H1(M,ℤ) =
⨁

i∈I H1(Mi,ℤ) and hence

Thus, 2 holds if and only if [F�,pi
] = 0 for all i ∈ I , and by the previous isomorphism, this 

happens if and only if 3.
3⇔ 4 follows from properties of tensor products and linear maps, in fact, given a ℤ-mod-

ule A, a ℤ-linear map A → ℤ2 vanishes on 2A, and thus, factors as a map A∕2A → ℤ2 . 
Moreover, A∕2A ≅ A⊗

ℤ
ℤ2 (seen by applying the right-exact functor A⊗

ℤ
⋅ to the short 

exact sequence 0 → ℤ
2⋅
�������→ ℤ → ℤ2 → 0 ). From these properties along with the homologi-

cal universal coefficients theorem, we find the following natural isomorphisms

that show the equivalence 3 ⇔4.
Finally, we prove 3 ⇔ 5 by the cohomological universal coefficient theorem, which 

gives the natural isomorphism Hom(H1(M,ℤ),ℤ2) ≅ H1(M,ℤ2) . In particular, the class in 
H1(M,ℤ2) corresponding to [F�,p] , is by construction the pullback along � of the funda-
mental form on U(1) (see (14)). Since H1(U(1),ℤ2) is generated by the integral functional 
associated to the fundamental form, this image is zero if and only if the whole �∗ is the 
zero map. 	�  ◻

This proposition clarifies when two structures built as in Proposition 8.1 are isomor-
phic as in Proposition 8.3. Since �∗ always vanishes on torsion elements, H1

dR
(M) = 0 is 

a sufficient condition for not only �∗ ∶ H1
dR
(U(1)) → H1

dR
(M) being zero, but also for 

�∗ ∶ H1(U(1),ℤ2) → H1(M,ℤ2) being zero. However, the condition �∗ = 0 on the coho-
mology with coefficients in ℤ2 is in general strictly weaker than the same condition in de 
Rham cohomology.

9 � Complex hyperbolic n‑space

In this section, we are going to describe a special family of projective special Kähler mani-
folds, which can be thought of as the simplest possible model in a given dimension.

Let ℂn,1 be the Hermitian space ℂn+1 endowed with the Hermitian form

It is a complex vector space, so it makes sense to consider the projective space associ-
ated to it, that is ℙ(ℂn,1) = (ℂn,1 ⧵ {0})∕ℂ∗ with the quotient topology and the canonical 

Hom(�(M, p),ℤ2) ≅ Hom(H1(M,ℤ),ℤ2) = Hom
ℤ
(H1(M,ℤ),ℤ2),

Hom
ℤ
(H1(M,ℤ),ℤ2) ≅

∏
i∈I

Hom
ℤ
(H1(Mi,ℤ),ℤ2) ≅

∏
i∈I

Hom(�1(Mi, pi),ℤ2).

Hom
ℤ
(H1(M,ℤ),ℤ2) ≅ Hom

ℤ2
(H1(M,ℤ)⊗

ℤ
ℤ2,ℤ2) ≅ Hom

ℤ2
(H1(M,ℤ2),ℤ2),

⟨z,w⟩ = z1w1 +⋯ + znwn − zn+1wn+1.



2673Construction of projective special Kähler manifolds﻿	

1 3

differentiable structure, where ℂ∗ acts by scalar multiplication. We will denote the quotient 
class corresponding to an element z ∈ ℂ

n,1 by [z]. We can define the following open subset:

Let v = (v1,… , vn+1) ∈ ℂ
n,1 , notice that if [v] ∈ H

n
ℂ
 , then |v1|2 +⋯ + |vn|2 − |vn+1|2 < 0 

so |vn+1|2 > |v1|2 +⋯ + |vn|2 ≥ 0 which implies vn+1 ≠ 0 . We thus have a global differen-
tiable chart Hn

ℂ
→ ℂ

n by restricting the projective chart [v] ↦
(

v1

vn+1
,… ,

vn

vn+1

)
.

Remark 9.1  The inverse of this chart ℂn
→ ℙ(ℂn,1) maps z = (z1,… , zn) ∈ ℂ

n to 
[(z1,… , zn, 1)] , which is in Hn

ℂ
 if and only if ‖z‖2 < 1 . We have proven that Hn

ℂ
 is diffeo-

morphic to the complex unit ball, and thus, in particular it is contractible.

Consider now the Lie group SU(n, 1) of the matrices with determinant 1 that are unitary 
with respect to the Hermitian metric on ℂn,1 . We define a left action of SU(n, 1) on H

ℂ
 such 

that A[v] = [Av] ; it is well defined by linearity and invertibility and it is smooth.
This action is also transitive, in fact given [v], [w] ∈ H

n
ℂ
 , without loss of generality, we 

can assume that ⟨v, v⟩ = −1 = ⟨w,w⟩ . Because of this, we can always complete v and w 
to an orthonormal basis with respect to the Hermitian product, obtaining {v1,… , vn, v} 
and {w1,… ,wn,w} . Consider the following block matrices V = (v1|… |vn|v) and 
W = (w1|… |wn|w) which, up to permuting two of the first n-columns, belong to SU(n, 1) . 
The matrix A = WV−1 ∈ SU(n, 1) maps v in w and thus [v] in [w].

We shall now compute the stabiliser of the last element of the canonical basis en+1 for this 
action, that is, the set of matrices A ∈ SU(n, 1) such that Aen+1 = �en+1 for � ∈ ℂ . Observe 
that � ∈ U(1) since

Moreover, the last column of A is An+1 = Aen+1 = �en+1 . This forces A to assume the form

Since A belongs to SU(n, 1) , we must infer that B belongs to U(n) and � = det(B)−1 . The 
stabiliser of en+1 is thus S(U(n)U(1)) , which is isomorphic to U(n) . We deduce that Hn

ℂ
 is a 

symmetric space SU(n, 1)∕S(U(n)U(1)).
We will adopt the nomenclature of [21] for the following

Definition 9.2  We call the Kähler manifold Hn
ℂ
 of complex dimension n the complex 

hyperbolic n-space.

There is a natural Kähler structure on Hn
ℂ
 coming from its representation as a symmetric 

space G/H.
Let � = � +� be the canonical decomposition, in particular

On a symmetric space, there is a one-to-one correspondence between Riemannian metrics 
and Ad(H)-invariant positive definite symmetric bilinear forms on � (See [24, II, Corollary 

H
n
ℂ
∶= {[v] ∈ ℙ(ℂn,1)�⟨v, v⟩ < 0}.

−1 = ⟨en+1, en+1⟩ = ⟨Aen+1,Aen+1⟩ = ⟨�en+1, �en+1⟩ = −���2.

(
B 0

0 �

)
.

� ∶=

{(
0 x

x⋆ 0

)
||x ∈ ℂ

n

}
.
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3.2, p. 200]). Let � ∶ T[en+1]H
n
ℂ
≅ � → ℂ

n be the identification mapping to x the tangent 

vector corresponding to 
(
0 x

x⋆ 0

)
 . With this identification, for A ∈ U(n) we see that the 

Ad(A)-action on � corresponds on ℂn to the x ↦ det(A)Ax.
The metric is induced by the Killing form on ��(n, 1) given by ([22])

We restrict the Killing form to � in order to define an Ad(H)-invariant bilinear form, that 
is, given x, y ∈ ℂ

n , if X, Y are the corresponding tangent vectors,

We define g[en+1] ∶= 𝜃⋆𝜃 , which is Ad(U(n))-invariant, so it extends to a global Riemannian 
metric g. By using the same idea, we can also define an almost complex structure I on � as 
the map corresponding to the scalar multiplication by i on ℂn . This structure is compatible 
with the metric and it is Ad(U(n))-invariant, so it defines a Kähler structure (see [24, II, 
Proposition 9.3, p. 260]). The Kähler form � is then:

Proposition 9.3  The manifold Hn
ℂ
 has curvature tensor −Ω

ℙ
n
ℂ

 and is projective special 
Kähler for all n ≥ 1 with constant zero deviance.

Proof  The computation of the curvature tensor is standard. By Remark 9.1, we know that 
H

n
ℂ
 is contractible, allowing us to apply Corollary 7.9. If we choose as tensor � of type 

♯2S3,0M the 0-section, then the differential condition D2  is trivially satisfied, while condi-
tion D1  follows from the computation of the curvature tensor. 	�  ◻

Notice that the deviance measures the difference of a projective special Kähler manifold 
of dimension 2n from being the complex hyperbolic n-space. More precisely, we have

Proposition 9.4  At a point p of a projective special Kähler manifold M with intrinsic devi-
ance 𝛾 ∶ S → ♯2S3,0M , the curvature tensor ΩM coincides with the one of Hn

ℂ
 exactly in 

those points p where �|p vanishes.

In particular, for any section of S defined on an open neighbourhood of p, the corre-
sponding local deviance vanishes at p whenever the two curvatures coincide.

Proof  One direction follows from condition D1. For the opposite one, if 
ΩM = ΩH

n
ℂ

= −Ω
ℙ
n
ℂ

 , then scalM = −2(n + 1) and the intrinsic deviance vanishes as the 
norm of any local deviance vanishes by (13). 	�  ◻

We can also prove

B(X, Y) = 2(n + 1)tr(XY), ∀X, Y ∈ �(n, 1).

B(X, Y) = 2(n + 1)tr

((
0 x

x⋆ 0

)(
0 y

y⋆ 0

))
= 2(n + 1)tr

(
xy⋆ 0

0 x⋆y

)

= 2(n + 1)Re(x⋆y) = 2(n + 1)(𝜃⋆𝜃)(X, Y).

𝜔(X, Y) = g(IX, Y) = Re(x⋆i⋆y) = Im(x⋆y) = Im(𝜃⋆ ⊗ 𝜃)(X, Y).
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Proposition 9.5  The only complete connected and simply connected projective special 
Kähler manifold of dimension 2n with zero deviance is Hn

ℂ
.

Proof  Let (� ∶ M̃ → M,∇) be such a projective special Kähler manifold. Consider a point 
p ∈ M , then (TpM, g, I) can be seen as a complex vector space compatible with the metric 
and can thus be identified with the tangent space at a point of Hn

ℂ
 via an isomorphism F as 

they are both isomorphic to ℂn with the standard metric. Being complex manifolds, Hn
ℂ
 and 

M are analytic, and since the curvature of M is forced to be −Ω
ℙ
n
ℂ

 , which corresponds to a 
�(n)-invariant map from the bundle of unitary frames to S2(�(n)) , it is also parallel with 
respect to the Levi-Civita connection. It follows that the linear isomorphism F preserves 
the curvature tensors and their covariant derivatives. Thus, F can be extended to a diffeo-
morphism f ∶ M → H

n
ℂ
 (See [24, I, Corollary 7.3, p. 261]) such that F is its differential at 

p.
Since F preserves I and � which are parallel, f is an isomorphism of Kähler manifolds, 

as the latter maps parallel tensors to parallel tensors. Since the deviance of both manifolds 
is zero, we also have an isomorphism of projective special Kähler manifolds. 	�  ◻

10 � Classification of projective special Kähler Lie groups in dimension 4

If M is a Lie group, the conditions of Theorem  7.6 are simpler, because a Lie group is 
always parallelisable. As a consequence, the bundle ♯2S3,0(M) is trivial, and in particular 
we have a global coordinate system to write the local deviances.

Definition 10.1  A projective special Kähler Lie group is a Lie group with projective spe-
cial Kähler structure such that the Kähler structure is left-invariant.

Notice that we do not require the deviance to be left-invariant.
An example is Hn

ℂ
 , since the Iwasawa decomposition SU(n, 1) = KAN (see [22, Theo-

rem 1.3, p. 403]) gives a left-invariant Kähler structure on the solvable Lie group AN. We 
denote by H� the hyperbolic plane with curvature −�2 , which is actually just a rescaling of 
H

1
ℂ
.
With Definition 10.1, we are able to classify 4-dimensional projective special Kähler Lie 

groups; we obtain exactly two, which coincide with the two 4-dimensional cases appearing 
in the classification of projective special Kähler manifolds homogeneous under the action 
of a semisimple Lie groups ([1]).

Theorem 10.2  Up to isomorphisms of projective special Kähler manifolds, there are only 
two 4-dimensional connected and simply connected projective special Kähler Lie groups: 
H√

2
×H2 and the complex hyperbolic plane.

Up to isomorphisms that also preserve the Lie group structure, there are four families of 
4-dimensional connected and simply connected projective special Kähler Lie groups, listed 
in Table 1.
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Proof  We will study Kähler Lie groups through Kähler Lie algebras, see, e.g. [17, §1.1, 
p. 26]. We will start from the classification of pseudo-Kähler Lie groups provided by [28]. 
Table 2 displays the eighteen families of non-abelian pseudo-Kähler Lie algebras in dimen-
sion 4.

Among these families, only for the ones in Table 3 the metric can be positive definite, 
i.e. Kähler.

Table 1   Connected projective special Kähler Lie groups

PSK Diff. complex unitary cof. � Riemann curv. �

H√
2
×H2 d�1 = −

√
2

2
�1 ∧ �1

d�2 = −�2 ∧ �2

1

2
(�1 ∧ �1)2 + (�2 ∧ �2)2

3

2
(�1)2�2

H
2

ℂ d�1 =
1

2
�1 ∧ (�2 + �2)

d�2 = −�1 ∧ �1 − �2 ∧ �2

−Ω♭

ℙ
2

ℂ

0

H
2

ℂ d�1 = (
1

2
−

i

�
)�1 ∧ (�2 + �2)

d�2 = −�1 ∧ �1 − �2 ∧ �2

𝛿 > 0

−
1

𝛿
Ω♭

ℙ
2

ℂ

0

H
2

ℂ d�1 = −(
1

�
+

i

2
)�1 ∧ (�2 − �2)

d�2 = −i�1 ∧ �1 − �2 ∧ �2

𝛿 > 0

−
1

𝛿
Ω♭

ℙ
2

ℂ

0

Table 2   Classification of 4-dimensional pseudo-Kähler non-abelian Lie algebras [28, Table 5.1, p. 63]

� I � Conditions

��3 Ie1 = e2, Ie3 = e4 a1(e
13 + e

24) + a2(e
14 − e

23) + a3e
12, a

2

1
+ a

2

2
≠ 0

��3,0 Ie1 = e2, Ie3 = e4 a1e
12 + a2e

34, a1a2 ≠ 0

��′
3,0

Ie1 = e4, Ie2 = e3 a1e
14 + a2e

23, a1a2 ≠ 0

�2�2 Ie1 = e2, Ie3 = e4 a1e
12 + a2e

34, a1a2 ≠ 0

�′
2

Ie1 = e3, Ie2 = e4 a1(e
13 − e

24) + a2(e
14 + e

23), a
2

1
+ a

2

2
≠ 0

�′
2

Ie1 = −e2, Ie3 = e4 a1(e
13 − e

24) + a2(e
14 + e

23) + a3e
12, a

2

1
+ a

2

2
≠ 0

�4,−1,−1 Ie4 = e1, Ie2 = e3 a1(e
12 + e

34) + a2(e
13 − e

24) + a3e
14, a

2

1
+ a

2

2
≠ 0

�′
4,0,�

Ie4 = e1, Ie2 = e3 a1e
14 + a2e

23, a1a2 ≠ 0, 𝛿 > 0

�′
4,0,�

Ie4 = e1, Ie2 = −e3 a1e
14 + a2e

23, a1a2 ≠ 0, 𝛿 > 0

�4,1 Ie1 = e4, Ie2 = e3 a1(e
12 − e

34) + a2e
14, a1 ≠ 0

�4,2 Ie4 = −e2, Ie1 = e3 a1(e
14 + e

23) + a2e
24, a1 ≠ 0

�4,2 Ie4 = −2e1, Ie2 = e3 a1e
14 + a2e

23, a1a2 ≠ 0

�4,1∕2 Ie4 = e3, Ie1 = e2 a1(e
12 − e

34), a1 ≠ 0

�4,1∕2 Ie4 = e3, Ie1 = −e2 a1(e
12 − e

34), a1 ≠ 0

�′
4,�

Ie4 = e3, Ie1 = e2 a1(e
12 − �e34), a1 ≠ 0, 𝛿 > 0

�′
4,�

Ie4 = −e3, Ie1 = e2 a1(e
12 − �e34), a1 ≠ 0, 𝛿 > 0

�′
4,�

Ie4 = −e3, Ie1 = −e2 a1(e
12 − �e34), a1 ≠ 0, 𝛿 > 0

�′
4,�

Ie4 = e3, Ie1 = −e2 a1(e
12 − �e34), a1 ≠ 0, 𝛿 > 0
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It is now straightforward to find a unitary frame u for each case, that is such that 
g =

∑4

k=1
(uk)2 , Iu1 = u2 , Iu3 = u4 and � = u1,2 + u3,4 . With respect to u, we can write the 

new structure constants and compute the Levi-Civita connection form �LC and the corre-
sponding curvature forming its generic form with respect ΩLC . We write

 
From Table 4 we notice that the curvature tensors are of two types: 

	 (i)	 a2H1 + b2H2 for a, b ≥ 0;
	 (ii)	 −a2(Ω

ℙ
2
ℂ

+ 6bH2) for a > 0 and b ∈ {0, 1}.

A Kähler Lie group M of dimension 4 is always solvable [11, Theorem 9, p. 155]. This 
implies that M is the product of a (product of circumferences) and a Euclidean space 
[10, Theorem 2a, p. 675], but M is also simply connected, so it must be an Euclidean 
space, and thus contractible. If now M has a projective special Kähler structure, thanks 
to Corollary 7.9, there is a global section 𝜂 ∶ M → ♯2S3,0M satisfying D1∗ and D2∗ . 
Applying ♭2 we obtain a global section � of S3,0M which better displays the symmetry.

Consider the globally defined complex coframe �1 = u1 + iu2 , �2 = u3 + iu4 . We write � 
in its generic form with respect to �:

for some functions c1, c2, c3, c4 ∈ C
∞(M,ℂ) . By raising the second index, we obtain 

𝜂 = ♯2𝜎 which is

H1 ∶=

⎛⎜⎜⎜⎝

− u12

u12
⎞⎟⎟⎟⎠
, H2 =

⎛⎜⎜⎜⎝
− u34

u34

⎞⎟⎟⎟⎠
.

� = c1(�
1)3 + c2(�

1)2�2 + c3�
1(�2)2 + c4(�

2)3

𝜂 = 2c1𝜃
1 ⊗ 𝜃1 ⊗ 𝜃1 +

2c2

3

(
𝜃1 ⊗ 𝜃1 ⊗ 𝜃2 + 𝜃1 ⊗ 𝜃2 ⊗ 𝜃1 + 𝜃2 ⊗ 𝜃1 ⊗ 𝜃1

)

+
2c3

3

(
𝜃1 ⊗ 𝜃2 ⊗ 𝜃2 + 𝜃2 ⊗ 𝜃1 ⊗ 𝜃2 + 𝜃2 ⊗ 𝜃2 ⊗ 𝜃1

)
+ 2c4𝜃

2 ⊗ 𝜃2 ⊗ 𝜃2.

Table 3   Non-abelian Kähler Lie 
algebras of dimension 4

Case � I � Conditions

I ��3,0 Ie1 = e2, Ie3 = e4 a1e
12 + a2e

34
a1, a2 > 0

II ��′
3,0

Ie1 = e4, Ie2 = e3 a1e
14 + a2e

23
a1, a2 > 0

III �2�2 Ie1 = e2, Ie3 = e4 a1e
12 + a2e

34
a1, a2 > 0

IV �′
4,0,�

Ie4 = e1, Ie2 = e3 a1e
14 + a2e

23
a1 < 0;a2, 𝛿 > 0

V �′
4,0,�

Ie4 = e1, Ie2 = −e3 a1e
14 + a2e

23
a1, a2 < 0;𝛿 > 0

VI �4,2 Ie4 = −2e1,Ie2 = e3 a1e
14 + a2e

23
a1, a2 > 0

VII �4,1∕2 Ie4 = e3, Ie1 = e2 a1(e
12 − e

34) a1 > 0

VIII �′
4,�

Ie4 = e3, Ie1 = e2 a1(e
12 − �e34) a1, 𝛿 > 0

IX �′
4,�

Ie4 = −e3, Ie1 = −e2 a1(e
12 − �e34) a1 < 0;𝛿 > 0
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With respect to this generic section, we can compute [� ∧ �] explicitly:

Notice that if we define v1, v2, v3 ∈ C
∞
(
M,ℂ2

)
 such that

[𝜂 ∧ 𝜂] =
4

9
ℜ

(
𝜃1 ∧ 𝜃1 ⊗

(
9|c1|2 + |c2|2 3c1c2 + c2c3
3c2c1 + c3c2 |c2|2 + |c3|2

)

+ 𝜃1 ∧ 𝜃2 ⊗

(
3c1c2 + c2c3 c1c3 + c2c4|c2|2 + |c3|2 c2c3 + 3c3c4

)

+ 𝜃2 ∧ 𝜃1 ⊗

(
3c2c1 + c3c2 |c2|2 + |c3|2
c3c1 + c4c2 c3c2 + 3c4c3

)

+ 𝜃2 ∧ 𝜃2 ⊗

(|c2|2 + |c3|2 c2c3 + c3c4
c3c2 + 3c4c3 |c3|2 + 9|c4|2

))
.

Table 4   Curvature tensors Case � Str. constants ΩLC

I ��3,0 [u1, u2] = au2

a > 0

a
2
H1

II ��′
3,0

[u1, u3] = −u4
[u1, u4] = u3

0

III �2�2 [u1, u2] = au2

[u3, u4] = bu4

a, b > 0

a
2
H1 + b

2
H2

IV �′
4,0,�

[u1, u2] = au2

[u1, u3] = −�au4
[u1, u4] = �au3
a, 𝛿 > 0

a
2
H1

V �′
4,0,�

[u1, u2] = au2

[u1, u3] = �au4
[u1, u4] = −�au3
a, 𝛿 > 0

a
2
H1

VI �4,2 [u1, u2] = −2au1
[u1, u3] = 2au4
[u2, u3] = −au3
[u2, u4] = au4

a > 0

−a2Ω
ℙ
2

ℂ

− 6a2H2

VII �4,1∕2 [u1, u2] = 2au4
[u1, u3] = −au1
[u2, u3] = −au2
[u3, u4] = 2au4
a > 0

−a2Ω
ℙ
2

ℂ

VIII �′
4,� [u1, u2] = 2a

√
�u4

[u1, u3] = −a
√
�u1 +

2a√
�
u2

[u2, u3] = −
2a√
�
u1 − a

√
�u2

[u3, u4] = 2a
√
�u4

a, 𝛿 > 0

−�a2Ω
ℙ
2

ℂ

IX �′
4,� [u1, u2] = −2a

√
�u3

[u1, u4] = −a
√
�u1 −

2a√
�
u2

[u2, u4] = +
2a√
�
u1 − a

√
�u2

[u3, u4] = −2a
√
�u3

a, 𝛿 > 0

−�a2Ω
ℙ
2

ℂ
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then we have

In other words, the coefficients of [� ∧ �] are the pairwise Hermitian products of v1, v2, v3.
Returning to the classification, if we write H1,H2,Ωℙ

2
ℂ

 with respect to the complex cof-
rame, we notice that the positions corresponding to the mixed Hermitian products are 
always zero.

As a consequence, for all cases, if D1  holds, then v1, v2, v3 must be orthogonal.
Now we will treat each case of possible curvature tensor separately. 

	 (i)	 Let a, b ≥ 0 and ΩLC = a2H1 + b2H2 , then 

 So, by D1  , [� ∧ �] = −ΩLC − Ω
ℙ
2
ℂ

 , which implies 

 These equalities translate to a linear system in the squared norms of x, y, z, w intro-
duced in (16), namely 

 Its solutions are 

(16)v1 ∶=

(
2c1
2c2

3

)
=

(
x

y

)
, v2 ∶=

(
2c2

3
2c3

3

)
=

(
y

z

)
, v3 ∶=

( 2c3

3

2c4

)
=

(
z

w

)
,

[𝜂 ∧ 𝜂] = ℜ

�
𝜃1 ∧ 𝜃1 ⊗

� ��v1��2 ⟨v1, v2⟩
⟨v1, v2⟩ ��v2��2

�
+ 𝜃1 ∧ 𝜃2 ⊗

�⟨v1, v2⟩ ⟨v1, v3⟩��v2��2 ⟨v2, v3⟩
�

+𝜃2 ∧ 𝜃1 ⊗

�
⟨v1, v2⟩ ��v2��2
⟨v2, v3⟩ ⟨v2, v3⟩

�
+ 𝜃2 ∧ 𝜃2 ⊗

� ��v2��2 ⟨v2, v3⟩
⟨v2, v3⟩ ��v3��2

��
.

H1 = ℜ

(
𝜃1 ∧ 𝜃1 ⊗

(
1

2
0

0 0

))
, H2 = ℜ

(
𝜃2 ∧ 𝜃2 ⊗

(
0 0

0
1

2

))
,

Ω
ℙ
2
ℂ

= ℜ

(
𝜃1 ∧ 𝜃1 ⊗

(
−2 0

0 − 1

)
+ 𝜃1 ∧ 𝜃2 ⊗

(
0 0

−1 0

)

+𝜃2 ∧ 𝜃1 ⊗

(
0 − 1

0 0

)
+ 𝜃2 ∧ 𝜃2 ⊗

(
−1 0

0 − 2

))
.

ΩLC = ℜ

(
𝜃1 ∧ 𝜃1 ⊗

(
a2

2
0

0 0

)
+ 𝜃2 ∧ 𝜃2 ⊗

(
0 0

0
b2

2

))
.

‖‖v1‖‖2 = 2 −
a2

2
, ‖‖v2‖‖2 = 1, ‖‖v3‖‖2 = 2 −

b2

2
.

⎧⎪⎨⎪⎩

�x�2 + �y�2 = 2 −
a2

2�y�2 + �z�2 = 1

�z�2 + �w�2 = 2 −
b2

2

.
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 Imposing the orthogonality conditions ⟨v1, v2⟩ = ⟨v2, v3⟩ = ⟨v3, v4⟩ = 0 , we get: 

 Notice that because of (17), y and z cannot vanish simultaneously, so we have (at 
each point) three different cases:

•	 Suppose at first that z = 0 , then s = 0 and ‖y‖ = 1 , so y ≠ 0 and (18) becomes 

 Implying x = w = 0 , so the solutions are (x, y, z,w) = (0, y, 0, 0) for y ∈ C
∞(U, U(1)) . 

Now M is simply connected, so y = ei� for some � ∈ C
∞(M) , as y lifts to the univer-

sal cover exp ∶ iℝ → U(1) . Thus, we have (c1, c2, c3, c4) = (0,
3

2
ei� , 0, 0) for some 

� ∈ C
∞(M) . Finally, (17) gives 

, and thus, a =
√
2 and b = 2.

•	 Suppose now that z ≠ 0 and y = 0 , then (18) becomes 

 and then w = x = 0 so, similarly to the previous case, the solutions are 
(c1, c2, c3, c4) = (0, 0, ei� , 0) for � ∈ C

∞(M) and this time, (17) implies a = 2 and 
b =

√
2.

•	 The remaining case has z ≠ 0 and y ≠ 0 . In order to solve it, let us call t ∶= yz ≠ 0 , 
then (17) and (18) give 

(17)

⎧
⎪⎪⎨⎪⎪⎩

�x�2 = 1 −
a2

2
+ s

�y�2 = 1 − s

�z�2 = s

�w�2 = 2 −
b2

2
− s

for s ∈ [0, 1].

(18)

⎧⎪⎨⎪⎩

xy + yz = 0

yz + zw = 0

xz + yw = 0

.

⎧⎪⎨⎪⎩

xy = 0

0 = 0

yw = 0

.

{
1 −

a2

2
= 0

2 −
b2

2
= 0

⎧
⎪⎨⎪⎩

0 = 0

zw = 0

xz = 0
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 in contradiction with t ≠ 0.
		     In conclusion, for this class of curvature tensors, the only solutions are for 

 We deduce that in Table 4 there are no solutions for the cases I, II, IV, V, and the 
only solutions in case III are the ones mentioned before. Moreover, these solutions 
are isomorphic to one another and the isomorphism is obtained by swapping u1 
with u3 and u2 with u4 . The simply connected Lie group corresponding to this case 
is H√

2
×H2 . Notice that the unique abelian Kähler 4-dimensional Lie algebra is 

flat, so its curvature is also of type (i), with a = b = 0 ; thus, it cannot be endowed 
with a projective special Kähler structure.

	 (ii)	 Let now a > 0, b ∈ {0, 1} and ΩLC = −a2(Ω
ℙ
2
ℂ

+ 6bH2) , then 

 Therefore, we obtain equations 

 Giving the conditions 

 with solutions 

z =
ty

|y|2 =
ty

1 − s
,

x = −
ty

|y|2 = −
ty

1 − s
,

w = −
tz

|z|2 = −
t2y

s(1 − s)
,

0 = xz + yw =

(
−

ty

1 − s

)( ty

1 − s

)
+ y

(
−

t2y

s(1 − s)

)

= −t2
(

1

1 − s
+

1

s

)
= −

t2

s(1 − s)
,

a =
√
2, b = 2, � =

3

2
ei�(�1)2�2, for � ∈ C

∞(M), or

a = 2, b =
√
2, � =

3

2
ei��1(�2)2, for � ∈ C

∞(M).

[𝜂 ∧ 𝜂] = −ΩLC − Ω
ℙ
n
ℂ

= (a2 − 1)Ω
ℙ
n
ℂ

+ 6a2bH2

= ℜ

(
𝜃1 ∧ 𝜃1 ⊗

(
2(1 − a2) 0

0 1 − a2

)
+ 𝜃1 ∧ 𝜃2 ⊗

(
0 0

1 − a2 0

)

+𝜃2 ∧ 𝜃1 ⊗

(
0 1 − a2

0 0

)
+ 𝜃2 ∧ 𝜃2 ⊗

(
1 − a2 0

0 2 − 2a2 + 3a2b

))
.

‖‖v1‖‖2 = 2 − 2a2, ‖‖v2‖‖2 = 1 − a2, ‖‖v3‖‖2 = 2 − 2a2 + 3a2b.

⎧⎪⎨⎪⎩

�x�2 + �y�2 = 2 − 2a2

�y�2 + �z�2 = 1 − a2

�z�2 + �w�2 = 2 − 2a2 + 3a2b
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 We now impose the vanishing of ⟨v1, v2⟩ , ⟨v2, v3⟩ , ⟨v3, v4⟩ , that is (18). We have 
four different cases:

•	 Suppose at first that y = z = 0 , then s = 0 and a = 1 , so (18) is always satisfied, 
while (19) becomes 

 It has solutions (x, y, z,w) = (0, 0, 0,
√
3bei�) for � ∈ C

∞(M) , and thus, 

(c1, c2, c3, c4) = (0, 0, 0,
√
3b

2
ei�) . In conclusion, a = 1 and � =

√
3b

2
ei�(�2)

3.
•	 Suppose now that z = 0 but y ≠ 0 , then s = 0 and a2 − 1 ≠ 0 . The system (18) 

implies x = w = 0 , but then by (19), 0 = |x|2 = 1 − a2 ≠ 0 , so in this case there 
are no solutions.

•	 Analogously, if z ≠ 0 but y = 0 , then s = 1 − a2 and (18) gives w = x = 0 , so from 
(19) we get 0 = |x|2 = 2 − 2a2 = 2|z|2 ≠ 0 leaving no solutions.

•	 The remaining case has z ≠ 0 and y ≠ 0 . In order to solve it, let us call 
t ∶= yz ≠ 0 , then (19) and (18) give 

 The latter implies a = 1 , and from (19), we deduce a contradiction: 
0 < |y|2 = −s < 0.

		     In conclusion, the only solutions for this type of curvature tensors are obtained 
for 

 In Table  4, these results correspond to: VI for a = 1 and � =
√
3

2
ei�(�2)3 for 

� ∈ C
∞(M) ; VII for a = 1 and � = 0 ; VIII and IX for a =

1√
�
 , 𝛿 > 0 and � = 0.

(19)

⎧
⎪⎨⎪⎩

�x�2 = 1 − a2 + s

�y�2 = 1 − a2 − s

�z�2 = s

�w�2 = 2 − 2a2 + 3a2b − s

for s ∈ [0, 1 − a2].

⎧⎪⎨⎪⎩

�x�2 = 0

�y�2 = 0

�z�2 = 0

�w�2 = 3b

.

z =
ty

|y|2 =
ty

1 − a2 − s
,

x = −
ty

|y|2 = −
ty

1 − a2 − s
,

w = −
tz

|z|2 = −
t2y

s(1 − a2 − s)
,

0 = xz + yw =

(
−ty

1 − a2 − s

)( ty

1 − a2 − s

)
+ y

(
−t2y

s(1 − a2 − s)

)

= −t2
(

1

1 − a2 − s
+

1

s

)
= −

t2(1 − a2)

s(1 − a2 − s)
.

a = 1, b = 0, � = 0, or

a = 1, b = 1, � =

√
3

2
ei�(�2)3, for � ∈ C

∞(M).
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Table 5 summarises (up to isomorphisms) the cases satisfying the curvature condition, 
showing the non-vanishing differentials of the coframe and the Levi-Civita connection.

Now we must check whether condition D2  holds for the cases left. Notice that for cases 
III, VII, VIII, IX, the Kähler form is exact with invariant potentials, respectively 
−

1√
2
u2 −

1

2
u4 , − 1

2
u4 , − 1

2
u4 , 1

2
u3 . We can immediately say that cases VII, VIII, IX are all 

projective special Kähler because � = 0 , so the differential condition is trivially satisfied.
Concerning case III, we can compute dLC� by understanding how the Levi-Civita con-

nection behaves on the unitary complex coframe �.

Now we can compute

∇LC𝜃1 = ∇LCu1 + i∇LCu2 = −(𝜔LC)1
k
⊗ uk − i(𝜔LC)2

k
⊗ uk

= −
√
2u2 ⊗ u2 + i

√
2u2 ⊗ u1 =

√
2iu2 ⊗ 𝜃1;

∇LC𝜃2 = ∇LCu3 + i∇LCu4 = −(𝜔LC)3
k
⊗ uk − i(𝜔LC)4

k
⊗ uk

= −2u4 ⊗ u4 + i2u4 ⊗ u3 = 2iu4 ⊗ 𝜃2.

Table 5   Cases satisfying the curvature condition

Case Structure constants Levi-Civita connection PSK

III
du

2 = −
√
2u1,2

du
4 = −2u3,4

⎛⎜⎜⎜⎜⎝

√
2u2

−
√
2u2

2u4

− 2u4

⎞⎟⎟⎟⎟⎠

✓

VI du
1 = 2u1,2

du
3 = u

2,3

du
4 = −2u1,3 − u

2,4

⎛⎜⎜⎜⎝

0 − 2u1 u
4

u
3

2u1 0 − u
3

u
4

−u4 u
3 0 − u

1

−u3 − u
4

u
1 0

⎞⎟⎟⎟⎠
VII du

1 = u
1,3

du
2 = u

2,3

du
4 = −2u1,2 − 2u3,4

⎛⎜⎜⎜⎝

0 u
4 − u

1
u
2

−u4 0 − u
2 − u

1

u
1

u
3 0 2u4

−u2 − u
4 − 2u4 0

⎞⎟⎟⎟⎠

✓

VIII du
1 = u

1,3 +
2

�
u
2,3

du
2 = −

2

�
u
1,3 + u

2,3

du
4 = −2u1,2 − 2u3,4

𝛿 > 0

⎛⎜⎜⎜⎜⎝

0
2

�
u
3 + u

4 − u
1

u
2

−
2

�
u
3 − u

4 0 − u
2 − u

1

u
1

u
2 0 2u4

−u2 u
1 − 2u4 0

⎞⎟⎟⎟⎟⎠

✓

IX du
1 = u

1,4 −
2

�
u
2,4

du
2 =

2

�
u
1,4 + u

2,4

du
3 = 2u1,2 + 2u3,4

𝛿 > 0

⎛⎜⎜⎜⎜⎝

0 −
2

�
u
4 − u

3 − u
2 − u

1

2

�
u
4 + u

3 0 u
1 − u

2

u
2 − u

1 0 − 2u3

u
1

u
2 2u3 0

⎞⎟⎟⎟⎟⎠

✓
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If we define � ∶= −
1

4
d� −

1√
2
u2 −

1

2
u4 , we have that d� = � and dLC� = −4i� ∧ � . Thanks 

to Corollary 7.9, we have proven that also case III has a projective special Kähler structure 
for every choice of � ∈ C

∞(M).
Suppose that VI is projective special Kähler, than by Theorem 7.6, locally we must have 

the differential condition D2. Consider the unitary global complex coframe �.

Thus,

Notice that this is never of the form required by condition D2 for any available choice of 

� , since evaluating the last component at �1 , we obtain i
√
3

2
𝜃2 ∧ 𝜃2 ⊗ 𝜃2 , whereas the same 

operation on a form of type i� ∧ � would evaluate to zero. We deduce that VI does not 
admit a projective special Kähler structure.

We are now left with cases III, VII, VIII, IX. At the level of Lie groups, case III corre-
sponds to the connected simply connected Lie group H√

2
×H2 with � =

3

2
(�1)2�2 up to 

isomorphism. The other deviances are in fact obtained by taking ei�� , and thus, we are in 
the situation noted in Remark 8.4. The Lie groups corresponding to the cases VII, VIII and 
IX are in particular homogeneous, and they all have zero deviance, so by Proposition 9.5 
we deduce that they are all isomorphic to H2

ℂ
 as projective special Kähler manifolds. 	� ◻

Remark 10.3  It is striking that in case III, which is obtained via the r-map from the polyno-
mial x2y , the deviance is a global tensor which is a multiple of this polynomial with respect 
to a Kähler holomorphic coframe.

∇LC𝜎 = ∇LC
�
3

2
ei𝛼(𝜃1)2𝜃2

�

=
3

2
id𝛼 ⊗ ei𝛼(𝜃1)2𝜃2 + 3

√
2iu2ei𝛼(𝜃1)2𝜃2 +

3

2
2iu4 ⊗ ei𝛼(𝜃1)2𝜃2

= −4i

�
−
1

4
d𝛼 −

1√
2
u2 −

1

2
u4

�
⊗ 𝜎.

∇LC𝜃2 = ∇LCu3 + i∇LCu4

= u4 ⊗ u1 − u3 ⊗ u2 + u1 ⊗ u4 + i(u3 ⊗ u1 + u4 ⊗ u2 − u1 ⊗ u3)

= u4 ⊗ 𝜃1 + iu3 ⊗ 𝜃1 − iu1 ⊗ 𝜃2 = i𝜃2 ⊗ 𝜃1 − iu1 ⊗ 𝜃2.

∇LC𝜎 = ∇LC

�√
3

2
ei𝛼(𝜃2)3

�

= id𝛼 ⊗

√
3

2
ei𝛼(𝜃2)3 + 3

√
3

2
ei𝛼(∇LC𝜃2)(𝜃2)2

= id𝛼 ⊗ 𝜎 + 3

√
3

2
ei𝛼(i𝜃2 ⊗ 𝜃1 − iu1 ⊗ 𝜃2)(𝜃2)2

= i(d𝛼 − 3u1)⊗ 𝜎 + 3i𝜃2 ⊗

√
3

2
ei𝛼𝜃1(𝜃2)2;

dLC𝜎 = i(d𝛼 − 3u1) ∧ 𝜎 + 3i𝜃2 ∧

√
3

2
ei𝛼𝜃1(𝜃2)2.
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It turns out that all 4-dimensional projective special Kähler Lie groups are simply con-
nected, so this theorem already presents all possible cases.

Proposition 10.4  Let (� ∶ M̃ → M,∇) be a projective special Kähler manifold, then the 
universal cover p ∶ U → M admits a projective special Kähler structure. In particular, if 
𝛾 ∶ S → ♯2S3,0M is the intrinsic deviance for M, then p∗S → U is an S1-bundle and if we 
call p′ the canonical map p∗S → S , then U has deviance p∗◦𝛾◦p� ∶ p∗S → ♯2S3,0U on U.

If M is a projective special Kähler Lie group, then so is U.

Proof  Since p ∶ U → M is a cover, we can lift the whole Kähler structure of M to U 
by pullback (U, p∗g, p∗I, p∗�) (the pullback of I makes sense, since p is a local dif-
feomorphism). We will now use Theorem  7.6. The S1-bundle S lifts to an S1-bundle 
�p∗S ∶ p∗S → U , where the right action can be defined locally, since p is a local diffeo-
morphism. The principal connection � on S lifts to �� = p�∗� and its curvature is, as 
expected, d�� = p�∗d� = −2p��∗

S
� = −2�∗

p∗S
p∗� . Let 𝛾 � = p∗◦𝛾◦p� ∶ p∗S → ♯2S3,0U , then 

� �(ua) = a2� �(u) holds, as the action is defined on the fibres, which are preserved by the 
pullback. The remaining properties also follow from the fact p is a local diffeomorphism.

Finally, if M is a Lie group with left invariant Kähler structure, then U is a Lie group 
and its Kähler structure is also left invariant. 	�  ◻

Given a universal cover p ∶ U → M of a projective special Kähler Lie group, ker(p) is a 
discrete subgroup and when M is connected, ker(p) is in the centre Z(U) of U.

From this observation, we obtain the following corollary

Corollary 10.5  A connected 4-dimensional projective special Kähler Lie group is isomor-
phic to one of the following:

•	 H√
2
×H2 with deviance ♯2(

3

2
(𝜃1)2𝜃2) in the standard complex unitary coframe �;

•	 complex hyperbolic 2-space with zero deviance.

Proof  The proof follows from Theorem 10.2 with Proposition 10.4, as a connected group 
M with universal cover p ∶ U → M is isomorphic to U∕ ker(p) and, if M is a projective spe-
cial Kähler Lie group, so is U by Proposition 10.4. Since U is also simply connected, Theo-
rem 10.2 provides all the possibilities up to isomorphisms preserving the Lie structure. The 
statement follows from the fact that these possibilities for U have trivial centre. 	�  ◻
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