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Abstract
In this paper we obtain symmetry and monotonicity results for positive solutions to some 
p-Laplacian cooperative systems in bounded domains involving first-order terms and under 
zero Dirichlet boundary condition.
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symmetry · Radial symmetry · Qualitative properties
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1 Introduction

The aim of this work is to get some symmetry and monotonicity results for nontrivial solu-
tions (u1, u2,… , um) ∈ C1(Ω) × C1(Ω)… × C1(Ω) to the following quasilinear elliptic 
system
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where i = 1,… ,m , pi > 1 , qi = max{1, pi − 1} , Ω is a smooth bounded domain (connected 
open set) of ℝN , N ≥ 2 , Δpi

ui ∶= div(|∇ui|pi−2∇ui) is the p-Laplace operator and ai, fi are 
problem data that obey to the set of assumptions (hp∗) . The solution (u1, u2,… , um) has to 
be understood in the weak distributional meaning. Our result will be obtained by means 
of the moving plane method, which goes back to the papers of Alexandrov [1] and Serrin 
[27]. In this work we use a nice variant of this technique: in particular the one of the cele-
brated papers of Berestycki-Nirenberg [3] and Gidas-Ni-Nirenberg [16], where the authors 
used, as essential ingredient, the maximum principle by comparing the values of the solu-
tion of the equation at two different points after a suitable reflection. Such a technique can 
be performed in general convex domains providing partial monotonicity results near the 
boundary and symmetry properties when the domain is convex and symmetric. For sim-
plicity of exposition and without loss of generality, since the system ( S ) is invariant with 
respect to translations and rotations, we assume directly in all the paper that Ω is a convex 
domain in the x1-direction and symmetric with respect to the hyperplane {x1 = 0} . When 
m = 1 the system ( S ) is reduced to a scalar equation, that was already studied in [15] in the 
case of Ω = ℝN

+
 and 1 < p < 2.

The moving plane procedure was applied to investigate symmetry properties of solu-
tions of cooperative semilinear elliptic systems in bounded domains, firstly by Troy [28] 
(see also [11, 12, 26]): in this paper, the author considers the case pi = 2 and ai = 0 
of  (S ). This technique is very powerful and was adapted also in the case of coopera-
tive semilinear systems in the half-space ℝN

+
 by Dancer [10] and in the entire space 

ℝN by Busca and Sirakov [4]. For other results regarding semilinear elliptic systems in 
bounded or unbounded domains, involving also critical nonlinearities, we refer to [13].

The moving plane method for quasilinear elliptic equations in bounded domains 
was developed in several papers by Damascelli, Pacella and Sciunzi [7–9] and in [14, 
18] for quasilinear elliptic equations involving the Hardy–Leray potential and other 
more general singular nonlinearities. For the case of quasilinear elliptic systems in 
bounded domains we refer to [23, 24], where the authors considered the case m = 2 and 
a1 = a2 = 0 of ( S ). Moreover, for other questions regarding existence, non-existence 
and Liouville type results, in the case of (pure, i.e., ai = 0 in ( S )) p-Laplace systems, we 
refer the readers to the papers (and references therein) [2, 5, 6, 20, 21].

In this work we consider the general case of m p-Laplace equations with first-order 
terms.

To deal with the study of the qualitative properties of solutions to ( S ), first we point 
out some regularity properties of the solutions to ( S ), see Sect. 2. Indeed the fact that 
solutions to p-Laplace equations are not in general C2(Ω) , leads to the study of the sum-
mability properties of the second derivatives of the solutions. Thanks to these regularity 
results, we are able to prove a weak comparison principle in small domains, i.e., Propo-
sition 2.5, that is a first crucial step in the proof of the main result of the paper, namely 
Theorem 1.1. Moreover, we also get some comparison and maximum principles that we 
will exploit in the Proof of Theorem 1.1.

Through all the paper, we assume that the following hypotheses (denoted by (hp∗) in 
the sequel) hold: 

⎧⎪⎨⎪⎩

−Δpi
ui + ai(ui)�∇ui�qi = fi(u1, u2,… , ui,… , um) in Ω

ui > 0 in Ω

ui = 0 on 𝜕Ω,

(S)
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(hp∗)  (i)  For any 1 ≤ i ≤ m , ai ∶ ℝ → ℝ are locally Lipschitz continuous 
functions.

(ii)  For any 1 ≤ i ≤ m , fi ∶ ℝ
m

+
→ ℝ are locally C1 functions, i.e., fi ∈ C1

loc
(ℝ

m

+
) , 

and assume that 

 for all ti > 0 . Moreover, the functions fi satisfy 

 The monotonicity conditions (1.1) are also known as cooperativity conditions, see [10, 24, 
26, 28].

Finally we have the following

Theorem  1.1 Assume that hypotheses (hp∗) hold. If Ω is convex in the x1-direction and 
symmetric with respect to the hyperplane T0 = {x ∈ ℝN ∶ x1 = 0} , then any solution 
(u1, u2,… , um) ∈ C1(Ω) × C1(Ω)… × C1(Ω) to ( S ) is symmetric with respect to the hyper-
plane T0 and nondecreasing in the x1-direction in the set Ω0 = {x1 < 0} , namely

and

for every i ∈ {1,… ,m}. In particular, if Ω is a ball, then ui are radially symmetric and 
radially decreasing, i.e.,

Moreover, if pi > (2N + 2)∕(N + 2) for every i ∈ {1,… ,m} , then we have

for every i ∈ {1,⋯ ,m}.

The paper is organized as follows: In Section 2 we recall some preliminary results and 
we prove Proposition 2.5. The Proof of the Theorem 1.1 is contained in Sect. 3.

2  Preliminaries

In this section, we are going to give some results for p-Laplace equations involving a first-
order term. Through all the paper, generic fixed and numerical constants will be denoted by 
C (with subscript or superscript in some case) and it will be allowed to vary within a single 
line or formula. Moreover, by L(Ω) we will denote the Lebesgue measure of a measurable 
set Ω.

fi(t1, t2,… , tm) > 0,

(1.1)
�fi

�tk
(t1, t2,… , tm) ≥ 0 for k ≠ i, 1 ≤ i, k ≤ m.

ui(x1, x2,… , xN) = ui(−x1, x2,… , xN) in Ω

(1.2)
�ui

�x1
(x) ≥ 0 in Ω0,

𝜕ui

𝜕r
(r) < 0 for r ≠ 0.

(1.3)
𝜕ui

𝜕x1
(x) > 0 in Ω0,
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Firstly, we recall the following inequalities (see, for example, [7]) that we are going to use 
along the paper:

For all �,�� ∈ ℝN with |𝜇| + |𝜇�| > 0 there exist two positive constants C, C̄ depending on 
p such that

In the following two theorems we give some regularity results and comparison/maximum 
principles for the solutions to ( S).

Theorem 2.1 (See [19, 22]). Let Ω a bounded smooth domain of ℝN , N ≥ 2 , 1 < p < ∞ , 
q ≥ max{p − 1, 1} and consider u ∈ C1(Ω) a positive weak solution to

with

(i)  a ∶ ℝ → ℝ a locally Lipschitz continuous function;
(ii)  f ∈ C1(Ω × [0,+∞)).

 Denoting uxi = �u∕�xi and setting ∇uxi = 0 on Zu , for any Ω� ⊂ Ω�� ⊂⊂ Ω , we have

uniformly for any y ∈ Ω� , with

for any 0 ⩽ 𝛽 < 1 and 𝛾 < N − 2 if N ≥ 3 , or � = 0 if N = 2.

Moreover, if f (x, ⋅) is positive in Ω�� , then it follows that

uniformly for any y ∈ Ω� , with

for any r < 1 and 𝛾 < N − 2 if N ≥ 3 , or � = 0 if N = 2.

In particular, these regularity results apply to the solutions ui to ( S ) with

(2.1)
[|𝜇|p−2𝜇 − |𝜇�|p−2𝜇�][𝜇 − 𝜇�] ≥ C(|𝜇| + |𝜇�|)p−2|𝜇 − 𝜇�|2,

||𝜇|p−2𝜇 − |𝜇�|p−2𝜇�| ≤ C̄(|𝜇| + |𝜇�|)p−2|𝜇 − 𝜇�|.

−Δpu + a(u)|∇u|q = f (x, u) in Ω,

(2.2)∫Ω�

|∇u|p−2−� |∇uxi |2
|x − y|� dx ⩽ C ∀ i = 1,… ,N,

C ∶= C

�
a, f , p, q, �, � , ‖u‖L∞(Ω��), ‖∇u‖L∞(Ω��)

�
,

(2.3)∫Ω�

1

|∇u|r(p−1)
1

|x − y|� dx ⩽ C
∗,

C
∗ ∶= C

∗
�
a, f , p, q, r, � , ‖u‖L∞(Ω��), ‖∇u‖L∞(Ω��)

�
,

(2.4)f (x, ui) = fi(u1, u2,… , ui,… , um).
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Proof The proof follows exploiting and adapting some arguments contained in [19, 22] 
to (2.4)-type nonlinearities. This would imply some technicalities which we rather avoid 
here.   ◻

For � ∈ L1(Ω) and 1 ≤ s < ∞ , the weighted space H1,s
�
(Ω) (with respect to � ) is 

defined as the completion of C1(Ω) (or C∞(Ω) ) with the following norm

where

The space H1,s

0,�
(Ω) is, consequently, defined as the closure of C1

c
(Ω) (or C∞

c
(Ω) ), with 

respect to the norm (2.5). We refer to [9] for more details about weighted Sobolev spaces 
and also to [17, Chapter 1] and the references therein. Theorem 2.1 provides also the right 
summability of the weight |∇u(x)|p−2 in order to obtain a weighted Poincaré–Sobolev type 
inequality that will be useful in the sequel. For the proof we refer to [9, Section 3].

Theorem 2.2 (Weighted Poincaré-Sobolev type inequality). Assume that hypotheses (hp∗) 
hold and let (u1, u2,… , um) ∈ C1(Ω) × C1(Ω)… × C1(Ω) be a solution to ( S ). Assume that 
pi ≥ 2 for some i ∈ {1,… ,m} and set �i = |∇ui|pi−2 . Then, for every w ∈ H

1,2

0
(Ω, �i) , we 

have

with CP = CP(Ω) → 0 if L(Ω) → 0.

The following theorem collects some comparison and maximum principles for solu-
tions to the system ( S ). We have

Theorem 2.3 (See [19, 22]). Let Ω a bounded smooth domain of ℝN , N ≥ 2,

and qi ≥ max{pi − 1, 1} for i = 1,… ,m . Let (u1, u2,… , u
m
), (v1, v2,… , v

m
) ∈ C

1(Ω)

×C1(Ω) ×⋯ × C
1(Ω) , with (u1, u2,… , um) a solution to (S ) and let us assume that assump-

tions (hp∗) hold. 

(1) Then, for i = 1, 2,… ,m , any connected domain Ω� ⊆ Ω and for some constant Λ > 0 , 
such that

in the weak distributional meaning, it follows that

(2.5)‖v‖H1,s
�
= ‖v‖Ls(Ω) + ‖∇v‖Ls(Ω,�),

‖∇v‖s
Ls(Ω,�)

∶= ∫Ω

�(x)�∇v(x)�sdx.

(2.6)‖w‖L2(Ω) ⩽ CP‖∇w‖L2(Ω,�i) = CP

�
∫Ω

�i �∇w�2
� 1

2

,

(2.7)pi >
(2N + 2)

(N + 2)

−Δpi
ui + ai(ui)|∇ui|qi + Λui ≤ −Δpi

vi + ai(vi)|∇vi|qi + Λvi, ui ≤ vi in Ω�
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unless ui ≡ vi in Ω�.
(2) For any i = 1, 2,… ,m , for any j = 1, 2,… ,N , and for any connected domain Ω� ⊆ Ω 

such that

it follows that

Proof The part (1) of the statement, follows using the regularity results contained in Theo-
rem 2.1 and then exploiting [19, Theorem 1.2].

To prove the part (2) we need to define the linearized equations to the system ( S ). In 
order to do this, since (u1, u2,… , um) ∈ C1(Ω) × C1(Ω) ×⋯ × C1(Ω) is a weak solution 
of (S ), then we set

where for pi > 1,

for any �1,… ,�m ∈ C1
0
(Ω) . Moreover, using the regularity results contained in Theo-

rem 2.1 (see [22]), the following equation holds

for all (�1,… ,�i,… ,�m) in H1,2

0,�u1
(Ω) ×⋯ × H

1,2

0,�ui
(Ω) ×⋯ × H

1,2

0,�um
(Ω) where

Since fi are locally C1 functions and ‖ui‖L∞(Ω) ≤ C for any i ∈ {1,… ,m} , there exists a 
positive constant Θ such that

ui < vi in Ω�,

�ui

�xj
≥ 0 in Ω�,

𝜕ui

𝜕xj
> 0 in Ω�, unless

𝜕ui

𝜕xj
= 0 in Ω�.

L(u1,…,um)

(
(�xju1,… , �xjui,… , �xjum), (�1,… ,�m)

)

=
(
L1
(u1,…,um)

(
(�xju1,… , �xjui,… , �xjum),�1

)
,… ,

Li
(u1,…,um)

(
(�xju1,… , �xjui,… , �xjum),�i

)
,… ,

Lm
(u1,…,um)

(
(�xju1,… , �xjui,… , �xjum),�m

))
,

Li
(u1,…,um)

(
(�xju1,… , �xjui,… , �xjum),�i

)

= ∫Ω

|∇ui|pi−2(∇�xjui,∇�i) + (pi − 2)∫Ω

|∇ui|pi−4(∇ui,∇�xjui)(∇ui,∇�i)

+ ∫Ω

a�
i
(ui)|∇ui|qi�xjui �i + qi ∫Ω

ai(ui)|∇ui|qi−2(∇ui,∇�xjui)�i

− ∫Ω

m∑
k=1

�fi

�uk
(u1,… , ui,… , um)�xjuk �i,

(2.8)L(u1,…,um)

(
(�xju1,… , �xjui,… , �xjum), (�1,… ,�m)

)
= 0,

�ui (x) ∶= |∇ui(x)|pi−2, i = 1,… ,m.
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Moreover, in light of (1.1) we have

for i ≠ k . Therefore, using (2.9) and (2.10) and taking into account (2.8), it follows, for all 
j = 1,… ,N and for all i = 1,… ,m , that �xjui are nonnegative functions solving the 
inequalities

for all nonnegative test functions �i ≥ 0.
Therefore, we can apply [22, Theorem 3.1] to each �xjui separately obtaining that, for 

every s > 1 sufficiently close to 1 and some positive � sufficiently small, there exists a posi-
tive constant C such that

Then, the sets {x ∈ Ω� ∶ �xjui = 0} are both closed (by continuity) and open (via inequal-
ity (2.11)) in the domain Ω� . This yields the assertion.   ◻

Remark 2.4 We point out that Theorem 2.3 holds without any a priori assumption on the 
critical set of the solution (u1, u2,… , um) , that is, the set where the gradients ∇ui vanish. 
On the other hand, though, condition (2.7) can be removed when we work in connected 
domain Ω� such that ∇ui ≠ 0 for all x ∈ Ω� and for all i ∈ {1,… ,m} . Indeed, the statements 
(1) and (2) of Theorem 2.3 hold in the whole range pi > 1.

Note that the positivity of f (x, ⋅) , is actually needed to obtain (2.3). Furthermore, 
by (2.3) it follows that the critical set {x ∈ Ω ∶ ∇u(x) = 0} has zero Lebesgue measure.

An essential tool in the Proof of Theorem 1.1 is Proposition 2.5, i.e., a weak comparison 
principle in small domains. To prove it, we start giving the following assumptions: 

(∗)  We suppose that (u1, u2,… , um) ∈ C1(Ω1) × C1(Ω1) ×⋯ × C1(Ω1) 
is a solution to ( S ) in the smooth bounded domain Ω1 ⊂ ℝN and 
(ũ1, ũ2,… , ũm) ∈ C1(Ω2) × C1(Ω2) ×⋯ × C1(Ω2) is a solution to ( S ) in the smooth 
bounded domain Ω2 ⊂ ℝN , with 

Proposition 2.5 Assume that (∗) holds, pi > 1 , qi = max{1, pi − 1} for every 
i ∈ {1, 2,… ,m} and let Ω ⊂ Ω1 ∩ Ω2 be a connected set. Then, there exists a positive 

(2.9)
𝜕fi

𝜕ui
+ Θ ≥ 0 for all u1, u2,… , um > 0.

(2.10)
�fi

�uk
(u1,… , ui,… , um) ≥ 0

�Ω

|∇ui|pi−2(∇�xjui,∇�i) + (pi − 2)�Ω

|∇ui|pi−4(∇ui,∇�xjui)(∇ui,∇�i)

+ �Ω

a�
i
(ui)|∇ui|qi�xjui �i + qi �Ω

ai(ui)|∇ui|qi−2(∇ui,∇�xjui)�i

+ Θ�Ω

�xjui �i ≥ 0

(2.11)‖�xjui‖Ls(B(x,2�)) ≤ C1 inf
B(x,�)

�xjui.

Ω1 ∩ Ω2 ≠ �.
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number � , depending upon m, pi, qi, ai, fi, ‖ui‖L∞(Ω), ‖∇ui‖L∞(Ω), ‖∇ũi‖L∞(Ω) , i = 1, 2,… ,m , 
such that if Ω0 ⊂ Ω with

then

for every i ∈ {1,… ,m}.

Proof Let us set

We will prove the result by showing that

for every i ∈ {1, 2,… ,m} . Since ui ≤ ũi on �Ω0 , then the functions (ui − ũi)
+ belong to 

W
1,pi
0

(Ω0) . Therefore, since ui, ũi are both weak solutions to ( S ) in Ω , for all � ∈ C∞
c
(Ω) we 

have

for i = 1, 2,… ,m . By a density argument, we can put, respectively, 𝜑 = (ui − ũi)
+ in 

Eqs. (2.12) and (2.13). Subtracting, we get for any i

The second term on the left-hand side of (2.14) can be estimated as follows

L(Ω0) ≤ 𝛿 and ui ≤ ũi on 𝜕Ω0 for every i ∈ {1,… ,m},

ui ≤ ũi in Ω0,

Ui = (ui − ũi)
+.

(ui − ũi)
+ ≡ 0,

(2.12)∫Ω

|∇ui|pi−2(∇ui,∇�)dx + ∫Ω

ai(ui)|∇ui|qi�dx = ∫Ω

fi(u1, u2,… , um)�dx

(2.13)
and

∫Ω

|∇ũi|pi−2(∇ũi,∇𝜑)dx + ∫Ω

ai(ũi)|∇ũi|qi𝜑dx = ∫Ω

fi(ũ1, ũ2,… , ũm)𝜑dx,

(2.14)

∫Ω0

(|∇ui|pi−2∇ui − |∇ũi|pi−2∇ũi,∇(ui − ũi)
+
)
dx

+ ∫Ω0

(
ai(ui)|∇ui|qi − ai(ũi)|∇ũi|qi

)
(ui − ũi)

+ dx

= ∫Ω0

[fi(u1, u2,… , um) − fi(ũ1, ũ2,… , ũm)](ui − ũi)
+ dx.
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Since ai is a locally Lipschitz continuous function (see (hp∗) ), it follows that there exists a 
positive constant Kai

= Kai
(‖ui‖L∞(Ω)) such that for every ui ∈ [0, ‖ui‖L∞(Ω)]

Moreover, denoting by Lai = Lai (‖ui‖L∞(Ω)) the Lipschitz constant of ai , we obtain

By the mean value’s theorem and taking into account that qi ≥ 1 , it follows that

The last term (recall that qi ≥ max{1, pi − 1} ) can be written as follows,

|||||�Ω0

(
ai(ui)|∇ui|qi − ai(ũi)|∇ũi|qi

)
(ui − ũi)

+ dx
|||||

=
|||||�Ω0

(
ai(ui)|∇ui|qi − ai(ui)|∇ũi|qi + ai(ui)|∇ũi|qi − ai(ũi)|∇ũi|qi

)
(ui − ũi)

+ dx
|||||

≤ �Ω0

|ai(ui)||||∇ui|qi − |∇ũi|qi ||(ui − ũi)
+ dx

+ �Ω0

|∇ũi|qi (ai(ui) − ai(ũi))(ui − ũi)
+ dx.

|ai(ui)| ≤ Kai
.

(2.15)

������Ω0

�
ai(ui)�∇ui�qi − ai(ũi)�∇ũi�qi

�
(ui − ũi)

+ dx
�����

≤ Kai �Ω0

���∇ui�qi − �∇ũi�qi ��(ui − ũi)
+ dx

+ C(qi, Lai , ‖∇ũi‖L∞(Ω))�Ω0

[(ui − ũi)
+]2 dx.

Kai �Ω0

|||∇ui|qi − |∇ũi|qi ||(ui − ũi)
+ dx

≤ C(qi,Kai
)�Ω0

(|∇ui| + |∇ũi|)qi−1|∇(ui − ũi)
+|(ui − ũi)

+ dx.

(2.16)

C �Ω0

(|∇ui| + |∇ũi|)qi−1|∇(ui − ũi)
+|(ui − ũi)

+ dx

= C �Ω0

(|∇ui| + |∇ũi|)qi−1
(|∇ui| + |∇ũi|)

pi−2

2

(|∇ui| + |∇ũi|)
pi−2

2 |∇(ui − ũi)
+|(ui − ũi)

+ dx

≤ C �Ω0

(|∇ui| + |∇ũi|)
pi−2

2 |∇(ui − ũi)
+|(ui − ũi)

+ dx,
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with C = C(pi, qi,Kai
, ‖∇ui‖L∞(Ω), ‖∇ũi‖L∞(Ω)) is a positive constant. Exploiting Young’s 

inequality in the right-hand side of (2.16) we finally obtain

Therefore, collecting the previous estimates, from (2.15), we obtain

Finally, using (2.1) and fixing � sufficiently small, from (2.14) we get

where C = C(pi, qi,Kai
, Lai , ‖∇ui‖L∞(Ω), ‖∇ũi‖L∞(Ω)) is a positive constant.

The first term on the right-hand side of (2.17) can be arranged as follows

C ∫Ω0

(|∇ui| + |∇ũi|)qi−1|∇(ui − ũi)
+||(ui − ũi)

+| dx

⩽ 𝜀C ∫Ω0

(|∇ui| + |∇ũi|)pi−2|∇(ui − ũi)
+|2 dx

+
C

𝜀 ∫Ω0

[(ui − ũi)
+]2 dx.

|||||∫Ω0

(
ai(ui)|∇ui|qi − ai(ũi)|∇ũi|qi

)
(ui − ũi)

+ dx
|||||

⩽ 𝜀C ∫Ω0

(|∇ui| + |∇ũi|)pi−2|∇(ui − ũi)
+|2 dx

+
C

𝜀 ∫Ω0

[(ui − ũi)
+]2 dx.

(2.17)

�Ω0

(|∇ui| + |∇ũi|)pi−2|∇(ui − ũi)
+|2 dx

≤ �Ω0

(|∇ui|pi−2∇ui − |∇ũi|pi−2∇ũi,∇(ui − ũi)
+
)
dx

≤ C �Ω0

[fi(u1, u2,… , um) − fi(ũ1, ũ2,… , ũm)](ui − ũi)
+ dx

+ C �Ω0

[(ui − ũi)
+]2 dx,
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Using the fact that fi are C1
loc

 functions satisfying (1.1), see (hp∗) , by (2.18) we have

where Lfi is the Lipschitz constant of fi that depends on the max
1≤j≤m{‖uj‖L∞(Ω)} . Exploiting 

Young’s inequality on the right-hand side of (2.19), we get

where C = C
(
m, Lfi

)
 is a positive constant. Finally, from (2.17) and (2.20) we infer for 

i = 1,… ,m

(2.18)

∫Ω0

[fi(u1, u2,… , um) − fi(ũ1, ũ2,… , ũm)](ui − ũi)
+ dx

= ∫Ω0

[fi(u1, u2,… , um) − fi(ũ1, u2,… , um) + fi(ũ1, u2,… , um)

− fi(ũ1, ũ2,… , ũm)](ui − ũi)
+ dx

= ∫Ω0

[fi(u1, u2,… , um) − fi(ũ1, u2,… , um)

+ fi(ũ1, u2,… , um) − fi(ũ1, ũ2,… , um)

+… + fi(ũ1, ũ2,… , ui,… , um) − fi(ũ1, ũ2,… , ũi,… , um)

+ fi(ũ1, ũ2,… , ũi,… , um)

⋮

…+ fi(ũ1, ũ2,… , um) − fi(ũ1, ũ2,… , ũm)](ui − ũi)
+ dx.

(2.19)

�Ω0

[fi(u1, u2,… , um) − fi(ũ1, ũ2,… , ũm)](ui − ũi)
+ dx

≤ �Ω0

fi(u1, u2,… , um) − fi(ũ1, u2,… , um)

(u1 − ũ1)
+

(u1 − ũ1)
+(ui − ũi)

+ dx

+ �Ω0

fi(ũ1, u2,… , um) − fi(ũ1, ũ2,… , um)

(u2 − ũ2)
+

(u2 − ũ2)
+(ui − ũi)

+ dx

⋮

+ �Ω0

fi(ũ1, ũ2,… , ui,… , um) − fi(ũ1, ũ2,… , ũi,… , um)

(ui − ũi)
[(ui − ũi)

+]2 dx

⋮

+ �Ω0

fi(ũ1, ũ2, ũ3 … , um) − fi(ũ1, ũ2,… , ũm)

(um − ũm)
+

](um − ũm)
+(ui − ũi)

+ dx

≤ Lfi

m∑
j=1

�Ω0

(uj − ũj)
+(ui − ũi)

+ dx,

(2.20)
�Ω0

[fi(u1, u2,… , um) − fi(ũ1, ũ2,… , ũm)](ui − ũi)
+ dx

≤ C

m∑
j=1

�Ω0

[(uj − ũj)
+]2 dx,
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where Ci = Ci(m, pi, qi,Kai
, Lai , Lfi , ‖∇ui‖L∞(Ω), ‖∇ũi‖L∞(Ω)) is a positive constant.

In the case pj ≥ 2 , a weighted Poincaré inequality holds true on the right-hand side of 
(2.21), see Theorem 2.2. Indeed, Eq. (2.6) yields

where the Poincaré constant CP,j(Ω0) → 0 , when the Lebesgue measure L(Ω0) → 0 . Actu-
ally, we used the fact that, since pj ≥ 2,

In the case pj < 2 , we use the standard Poincaré inequality on the right-hand side of (2.21), 
namely

and CP,j(Ω0) → 0 if L(Ω0) → 0 . Moreover, in the case pj < 2 since uj, ũj ∈ C1(Ω) , we 
deduce also

Using (2.23), up to redefine the Poincaré constant in this case, we obtain

and CP,j(Ω0) → 0 if L(Ω0) → 0 . Let us set now

Furthermore, by combining (2.21) with (2.22), (2.24) and (2.25), we obtain for i = 1,… ,m

Let us define Ĉ = m ⋅ max
1≤i≤m{Ci} . By adding Eq. (2.26) and setting

(2.21)�Ω0

(|∇ui| + |∇ũi|)pi−2|∇(ui − ũi)
+|2dx ≤ Ci

m∑
j=1

�Ω0

[(uj − ũj)
+]2 dx,

(2.22)
�Ω0

[(uj − ũj)
+]2dx ≤ CP,j(Ω0)�Ω0

(|∇uj| + |∇ũj|)pj−2|∇(uj − ũj)
+|2dx, if pj ≥ 2,

|∇uj|pj−2 ≤ (|∇uj| + |∇ũj|)pj−2.

�Ω0

[(uj − ũj)
+]2 dx ≤ CP,j(Ω0)�Ω0

|∇(uj − ũj)
+|2 dx, if pj < 2,

(2.23)
�Ω0

�∇(uj − ũj)
+�2dx

≤ C(pj, ‖∇uj‖L∞(Ω), ‖∇ũj‖L∞(Ω))�Ω0

(�∇uj� + �∇ũj�)pj−2�∇(uj − ũj)
+�2dx.

(2.24)
�Ω0

[(uj − ũj)
+]2 dx ≤ CP,j(Ω0)�Ω0

(|∇uj| + |∇ũj|)pj−2|∇(uj − ũj)
+|2 dx, if pj < 2,

(2.25)CP(Ω0) = max
1≤j≤m{CP,j(Ω0)}.

(2.26)
�Ω0

(|∇ui| + |∇ũi|)pi−2|∇(ui − ũi)
+|2dx

≤ CiCP(Ω0)

m∑
j=1

�Ω0

(|∇uj| + |∇ũj|)pj−2|∇(uj − ũj)
+|2dx.
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we obtain

Now, we choose 𝛿 > 0 sufficiently small such that the condition L(Ω0) ≤ � implies

Therefore, from (2.27) we get the desired contradiction, namely

for all i = 1,… ,m.   ◻

3  Symmetry results for solutions to ( S ): Proof of Theorem 1.1

In this section, we prove our main result. As we said in the introduction, without loss of 
generality and for the sake of simplicity, since the problem is invariant with respect to 
translations, reflections and rotations, we suppose that Ω is a bounded smooth domain 
which is convex in the x1-direction and symmetric with respect to {x1 = 0} . Let us now 
recall the main ingredients of the moving plane method. We set

Given x ∈ ℝN and 𝜆 < 0 , we define

and the reflected functions

We also set

and (if Λ ≠ �)

Finally, for i = 1,… ,m , we define the critical sets

I(Ω0) =

m∑
i=1

∫Ω0

(|∇ui| + |∇ũi|)pi−2|∇(ui − ũi)
+|2dx,

(2.27)I(Ω0) ≤ ĈCP(Ω0)I(Ω0).

ĈCP(Ω0) < 1.

Ui = (ui − ũi)
+ ≡ 0,

T� ∶= {x ∈ ℝ
N ∶ x1 = �}.

x� = R�(x) ∶= (2� − x1, x2,… , xN)

ui,�(x) ∶= ui(x�), i = 1, 2,… ,m.

(3.1)
Ω𝜆 ∶= {x ∈ Ω ∶ x1 < 𝜆},

a ∶= inf
x∈Ω

x1,

(3.2)
Λ ∶=

{
a < 𝜆 < 0 ∶ ui ≤ ui,t in Ωt, for all t ∈ (a, 𝜆] and for all i = 1, 2,… ,m

}

�̄� = supΛ.

Zui ∶= {x ∈ Ω ∶ ∇ui(x) = 0}.
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Proof of Theorem 1.1 For a < 𝜆 < 0 [see (3.1)] and � sufficiently close to a, we assume that 
L(Ω�) is as small as we need. In particular, we may assume that Proposition 2.5 works with 
Ω1 = Ω, Ω2 = R�(Ω), Ω0 = Ω� and ũi = ui,𝜆 . Therefore, we set

and we observe that, by construction, we have

By Proposition 2.5, it follows that

Hence, the set Λ [see (3.2)] is not empty and �̄� ∈ (a, 0] . Note that, by continuity, it follows 
ui ≤ ui,�̄� . We have to show that, actually �̄� = 0 . Hence, we assume by contradiction that 
�̄� < 0 and we argue as follows.

First of all, we point out that L(Zui ) = 0 for all i. Indeed, if we apply Theorem 2.1, for ui 
with f (x, ui) = fi(u1, u2,… , ui,… , um) , from (2.3) the conclusion follows. Hence, let A be 
an open set such that for i = 1,… ,m

with the Lebesgue measure L(A) small as we like. Notice now that, since fi are locally C1 
functions and ‖ui‖L∞(Ω) ≤ C for any i ∈ {1,… ,m} , there exists a positive constant Θ such 
that

Furthermore, using (1.1) we obtain

for any a < 𝜆 ≤ �̄� . In light of (3.4) we have

Then, by (3.5) and the strong comparison principle, see statement (1) of Theorem 2.3, for 
any i = 1, 2,… ,m such that pi ≥ 2 , we have

in Ω�̄�.
In the case 1 < pi < 2 , we prove first the following

Claim: The case ui ≡ ui,�̄� in some connected component C of Ω�̄�⧵Zui , such that 
C ⊂ Ω , is not possible.

We proceed by contradiction. Let us assume that such component exists, namely

Wi,� ∶= ui − ui,�, i = 1, 2,… ,m

Wi,� ≤ 0 on �Ω�, i = 1, 2,… ,m.

Wi,� ≤ 0 in Ω�, i = 1, 2,… ,m.

Zui ∩ Ω�̄� ⊂ A ⊂ Ω�̄�,

(3.3)
𝜕fi

𝜕ui
+ Θ ≥ 0 for all u1, u2,… , um > 0.

(3.4)
− Δpi

ui + ai(ui)|∇ui|qi + Θui = fi(u1, u2,… , um) + Θui

≤ fi(u1,�, u2,�,… , um,�) + Θui,� = −Δpi
ui,� + ai(ui,�)|∇ui,�|qi + Θui,�

(3.5)
{

−Δpi
ui + ai(ui)|∇ui|qi + Θui ≤ −Δpi

ui,� + ai(ui,�)|∇ui,�|qi + Θui,� in Ω�,

ui ≤ ui,� in Ω�.

ui < ui,�̄� or ui ≡ ui,�̄�,

C ⊂ Ω such that 𝜕C ⊂ Zui .
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For all 𝜀 > 0 , let us define G� ∶ ℝ
+
0
→ ℝ by setting

Let �A be the characteristic function of a set A . We define

where C� is the reflected set of C with respect to the hyperplane T�̄� and

where a+
i
∶= max{0, ai} ( a−i ∶= −min{0, ai} ) and Ĉi denotes some positive constant to be 

chosen later.
We point out that suppΨ𝜀 ⊂ C ∪ C

𝜆 , which implies Ψ� ∈ W
1,p

0
(C ∪ C

�) . Indeed by defini-
tion of C we have that ∇ui = 0 on �(C ∪ C

�) . Moreover, using the test function Ψ� defined in 
(3.7), we are able to integrate on the boundary �(C ∪ C

�) which could be not regular.
Hence, we obtain

It is easy to see that for every x ∈ [0,M] and for every l, q ≥ 1 and 𝜎 > 0 , there exists a 
positive constant C = C(l, q, �,M) such that

Therefore, (3.9) and (3.10) imply:

By (hp∗) − (ii) , since C ∪ C
𝜆 ⊂ Ω we have that there exists 𝛾i > 0 such that

(3.6)G�(t) =

⎧
⎪⎨⎪⎩

0 if 0 ≤ t ≤ �

2t − 2� if � ≤ t ≤ 2�

t if t ≥ 2�.

(3.7)Ψ� ∶= e−si(ui)
G�(|∇ui|)
|∇ui| �(C∪C�),

(3.8)si(t) = Ĉi ⋅ ∫
t

0

a+
i
(t�)dt�,

(3.9)
∫
C∪C�

|∇ui|pi−2(∇ui,∇Ψ�)dx + ∫
C∪C�

a+
i
(ui)|∇ui|qiΨ�dx

= ∫
C∪C�

a−
i
(ui)|∇ui|qiΨ�dx + ∫

C∪C�
fi(u1, u2,… , um)Ψ�dx.

(3.10)xq ≤ C ⋅ xl + �, x ∈ [0,M].

(3.11)

�
C∪C�

�∇ui�pi−2(∇ui,∇Ψ�)dx

+ Ci(�i, pi, qi, ‖∇ui‖L∞(Ω))�
C∪C�

a+
i
(ui)�∇ui�piΨ�dx

+ �i �
C∪C�

a+
i
(ui)Ψ�dx

≥ �
C∪C�

a−
i
(ui)�∇ui�qiΨ�dx + �

C∪C�
fi(u1, u2,… , um)Ψ�dx

≥ �
C∪C�

fi(u1, u2,… , um)Ψ�dx.

fi(u1, u2,… , um) ≥ �i.
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Hence, we can choose �i in (3.10), say �̄�i , small enough such that

so that

Choosing Ĉi in (3.8) equal to Ci(�̄�i, pi, qi, ‖∇ui‖L∞(Ω)) in (3.12) we obtain

We set h�(t) =
G�(t)

t
 , meaning that h�(t) = 0 for 0 ≤ t ≤ � . We have:

where ‖D2ui‖ denotes the Hessian norm and Ci a positive constant.
We let � → 0 . To this aim, let us first show that 

(i)  �∇ui�pi−2‖D2ui‖ ∈ L1(C ∪ C
�);

(ii)  |∇ui|h��(|∇ui|) → 0 a.e. in C ∪ C
� as � → 0 and |∇ui|h��(|∇ui|) ≤ C with C not depend-

ing on �.

 Let us prove (i). By Hölder’s inequality it follows

with 0 ≤ 𝛽i < 1 and Ci a positive constant.

𝛾i − �̄�i ‖a+i (ui)‖∞ = C̃i > 0 ,

(3.12)

�
C∪C𝜆

�∇ui�pi−2(∇ui,∇Ψ𝜀)dx

+ Ci(�̄�i, pi, qi, ‖∇ui‖L∞(Ω))�
C∪C𝜆

a+
i
(ui)�∇ui�piΨ𝜀dx

≥ C̃i �
C∪C𝜆

Ψ𝜀dx.

(3.13)
�
C∪C𝜆

e−si(ui)|∇ui|pi−2
(
∇ui,∇

G𝜀(|∇ui|)
|∇ui|

)
dx

≥ C̃i �
C∪C𝜆

e−si(ui)
G𝜀(|∇ui|)
|∇ui| dx.

(3.14)

������C∪C�
e−si(ui)�∇ui�pi−2

�
∇ui,∇

G�(�∇ui�)
�∇ui�

�
dx
�����

≤ �
C∪C�

�∇ui�pi−1�h��(�∇ui�)��∇(�∇ui�)�dx

≤ Ci �
C∪C�

�∇ui�pi−2
�
�∇ui�h��(�∇ui�)

�
‖D2ui‖dx,

(3.15)

�
C∪C�

�∇ui�pi−2‖D2ui‖dx ≤
�

L(C ∪ C
�)

�
�
C∪C�

�∇ui�2(pi−2)‖D2ui‖2dx
� 1

2

≤ Ci

�
�
C∪C�

�∇ui�pi−2−�i‖D2ui‖2�∇ui�pi−2+�i dx
� 1

2

≤ Ci‖∇ui‖(pi−2+�i)∕2L∞(Ω)

�
�
C∪C�

�∇ui�pi−2−�i‖D2ui‖2dx
� 1

2

,
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Using (2.2) of Theorem 2.1, we infer that

Then, by (3.15) we obtain

Let us prove (ii). Recalling (3.6), we obtain

and, then, |∇ui|h��(|∇ui|) tends to 0 almost everywhere in C ∪ C
� as � goes to 0 and 

|∇ui|h��(|∇ui|) ≤ 2.
Finally, by the Lebesgue’s dominate convergence theorem, passing to the limit for � → 0 

in (3.13) we obtain

This gives a contradiction, hence the Claim holds.
Then, using also Hopf’s boundary lemma (see [25, Theorem 5.5.1]) for

ui > 0 in Ω and ui = 0 on �Ω , we deduce that the set Ω�̄�⧵Zui is connected. Indeed, thanks to 
Hopf’s lemma, Zui lies far from the boundary �Ω . Moreover, we also remark that since Ω is 
convex in the x1-direction, we have that the boundary �Ω is connected. Consequently, for 
any i = 1, 2,… ,m we get

in Ω�̄�⧵Zui.
Consider now a compact set K in Ω�̄� such that L(Ω�̄�⧵K) is sufficiently small so that 

Proposition 2.5 can be applied. By what we proved before, for any i ∈ {1,… ,m} , it holds 
that ui < ui,�̄� in K⧵A , which is compact. Then, by (uniform) continuity, we find 𝜖 > 0 such 
that, �̄� + 𝜖 < 0 and for �̄� < 𝜆 < �̄� + 𝜖 we have that L(Ω�⧵(K⧵A)) is small enough as before, 
and ui,𝜆 − ui > 0 in K⧵A for any i. In particular, ui,𝜆 − ui > 0 on �(K⧵A) . Consequently, 
ui ≤ ui,� on �(Ω�⧵(K⧵A)) . By Proposition  2.5 it follows ui ≤ ui,� in Ω�⧵(K⧵A) and, con-
sequently in Ω� , which contradicts the assumption �̄� < 0 . Therefore �̄� = 0 and the thesis 
is proved. Finally, (1.2) follows by the monotonicity of the solution that is implicit in the 
moving plane method.

Finally, if Ω is a ball, repeating this argument along any direction, it follows that ui , 
i = 1,… ,m , are radially symmetric. The fact that 

𝜕ui

𝜕r
(r) < 0 for r ≠ 0 , follows by the 

Hopf’s boundary lemma which works in this case since the level sets are balls and, there-
fore, fulfill the interior sphere condition.

�
�
C∪C�

�∇ui�pi−2−�i‖D2ui‖2dx
� 1

2 ≤ C.

�
C∪C�

�∇ui�pi−2‖D2ui‖dx ≤ C.

h�
𝜀
(t) =

⎧
⎪⎨⎪⎩

0 if 0 < t ≤ 𝜀
2𝜀

t2
if 𝜀 < t < 2𝜀

0 if t ≥ 2𝜀,

0 ≥ C̃i �
C∪C𝜆

e−si(ui)dx > 0.

−Δpi
ui + ai(ui)|∇ui|qi = fi(u1, u2,… , ui,… , um) ≥ 0,

(3.16)ui < ui,�̄�
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Finally (1.3) follows by (1.2) using Theorem 2.3 (see the statement (2)) and the Dir-
ichlet boundary condition of ( S ).   ◻
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