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Abstract
We analyze fine properties of solutions to quasilinear elliptic equations with double-phase
structure and characterize, in the terms of intrinsic Hausdorff measures, the size of the remov-
able sets for Hölder continuous solutions.

Keywords Measure data problems · Obstacle problem · Potential estimates · Removable
sets

Mathematics Subject Classification 35J60 · 35J70

1 Introduction

Nonlinear version of the classical potential theory has been developed by several authors [32,
35,38,39,42,46,47,54].Classical investigations onharmonicmappings have becomenaturally
extended to the case of so-called A-harmonic maps, i.e., continuous weak solutions to the
equation

− divA(x, Du) = 0 in �, (1.1)

where A(x, z) · z ≈ |z|p and p ∈ (1,∞). The prototypical example is given by the classical
p-Laplace equation

− div(|Du|p−2Du) = 0 in �.

An interesting and delicate issue in this framework is quantifying the size of removable
sets for solutions to (1.1), in terms of the s-dimensional Hausdorff measure for a suitable
s > n − p. Precisely, when we consider a relatively closed subset E ⊂ � with Hs(E) = 0
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620 I. Chlebicka, C. De Filippis

and a map u, being a solution to (1.1) in �\E , the problem is to find a continuous extension
ũ which is A-harmonic in the whole �. This issue has been studied in various types of
nonstandard growth settings including the variable exponent and Orlicz spaces, which we
summarize in the further parts of the introduction. We shall investigate this phenomenon for
problems posed in the so-called double-phase spaces. Throughout the paper, � is an open
bounded subset of Rn , n ≥ 2. Given the double-phase energy density

H(x, z) := |z|p + a(x)|z|q (1.2)

and the operator AH(·) defined on W 1,H(·)(�) acting as

〈AH(·)v, w〉 :=
∫

�

A(x, Dv) · Dw dx for w ∈ C∞
c (�) (1.3)

we investigate AH(·)-harmonic maps, by which we mean energy solutions to the equation

− divA(x, Du) = 0 in �. (1.4)

The growth and coercivity conditions of the involved vector field A are expressed in (2.1)
in terms of H(·) with non-negative, α-Hölder continuous weight a and p, q satisfying the
balance condition (2.2). Note that the operator is non-uniformly elliptic since the weight a
is allowed to vanish. The space where the solutions are considered is the Musielak–Orlicz
space W 1,H(·)(�) defined in Sect. 2.4. Our main result describes the volume of removable
sets for Hölder continuousAH(·)-harmonicmaps in terms of the intrinsic Hausdorff measures
defined in Sect. 3 with the use of Hσ (·) given by (2.8).

Theorem 1 Let assumptions (2.2) and (2.1) be in force, E ⊂ � be a closed subset and
u ∈ C(�) be a continuous solution to (1.4) in �\E such that, for all x1 ∈ E, x2 ∈ �,

|u(x1) − u(x2)| ≤ Cu |x1 − x2|β0 ,
for a positive, absolute constant Cu and some β0 ∈ (0, 1]. Let σ := 1 − β0

q (p − 1). If
HHσ (·)(E) = 0, then u is a solution to (1.4) in �.

This matter received lots of attention in the past decades: see [5,36,37] for the first works
on the standard or power growth case and [33,53] for problems involving also lower-order
terms.More recently the p-Laplace structure has been relaxed tomore flexible ones involving
nonstandard growth conditions of various types. The related variational functionals include
the variable-exponent integrand fundamental in modeling electrorheological fluids

w 
→ Fp(·)(w,�) :=
∫

�

|Dw|p(x) dx, (1.5)

the double-phase energy describing strongly inhomogeneous materials

w 
→ FH(·)(w,�) :=
∫

�

[|Dw|p + a(x)|Dw|q] dx, (1.6)

as well as the so-called ϕ-functional, defined by means of an N -functions ϕ cf. [10], and
involved in the modeling of non-Newtonian fluids

w 
→ Fϕ(w,�) :=
∫

�

ϕ(|Dw|) dx, (1.7)

or more generally

w 
→ Fϕ(·)(w,�) :=
∫

�

ϕ(x, |Dw|) dx, (1.8)
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Removable sets in non-uniformly elliptic problems 621

see [7,8,29] formore details. In the nonstandard growth framework, the problemof removabil-
ity of sets have been studied in the case of (1.5) in [27,40] and of (1.7) in [6].We shall provide
the related result in the inhomogeneous setting (1.6). A remarkable difference between our
work and the aforementioned papers is that the main estimates involve the intrinsic capaci-
ties and the intrinsic Hausdorff measures introduced recently in [4,18], respectively. These
novel concepts seem to be very natural in the general Musielak–Orlicz setting. The setting
of the double-phase spaces, which we employ, is of high interest recently. They appeared
originally in the context of homogenization and the Lavrentiev phenomenon [55]. Recently,
regularity theory in this setting is getting increasing attention [2,3,11,13,19,20,52], see also
[14,15,18] for themanifold-constrained case and [48] for a reasonable survey on older results.
The growth of the operator we investigate is trapped between two power-type functions fol-
lowing the ideas of [43,44]. The inhomogeneity of our setting results from the fact that the
modulating coefficient a can vanish: on {x ∈ � : a(x) = 0}, (1.2) shows p-growth, whereas
on {x ∈ � : a(x) > 0}, it is behaves like an N -function of the type ϕ(t) = t p + a0tq . See
comments around (2.6)–(2.7) below for further clarifications on this matter. It is the regular-
ity of the weight function a that dictates the ellipticity rate of the energy density indicating
the range of parameters necessary to ensure good properties of the space such as density of
smooth functions. In fact, as far as a variable exponent is expected to be log-Hölder con-
tinuous, here the exponents should be close to each other. The optimal closeness condition
in the case of a ∈ C0,α(�) is (2.2), see [13,25] and Remark 2.1. The relation between the
double-phase space and the variable exponent one is exposed in [2]. More information on
functional analysis of our setting can be found in Sect. 2.

The non-uniform ellipticity of the operator entails essential structural difficulties in the
proof of Theorem 1 in comparison with the standard growth case. Nonetheless, the main idea
is the same and it involves certain regularity properties of solutions to the obstacle problem
associated to (1.4). We stress that the tools applied in this paper have been defined for more
general structures than the one described in Sect. 2.3, i.e., for H(·) substituted by the so-called
generalized Young functions ϕ(·). Hence, we expect that analogous results to those reported
in Theorems 1–2 hold for quasilinear equations modeled upon (1.8). For more details and
further extensions, we refer the reader to [4,18,31]. Since it can be of independent interest, we
do not restrict ourselves to the regularity theory for solutions to the obstacle problem related
to (1.4) necessary for the proof of Theorem 1. In this place, besides [9], we shall mention
that there are studies carried in various types of nonstandard growth settings starting from the
variable exponent setting [22–24,30] and Orlicz [41] as well as other [50,51]. We prove that
solutions share the same features of the obstacle, that is higher integrability, boundedness,
continuity, and Hölder continuity, respectively. Let us present the obstacle problem we study.
We consider the set

Kψ,g(�) :=
{
v ∈ W 1,H(·)(�) : v ≥ ψ a.e. in � and v − g ∈ W 1,H(·)

0 (�)
}

, (1.9)

where ψ ∈ W 1,H(·)(�) is the obstacle and g ∈ W 1,H(·)(�) is the boundary datum. By
a solution to the obstacle problem we mean a function v ∈ Kψ,g(�) satisfying

∫
�

A(x, Dv) · D(w − v) dx ≥ 0 for all w ∈ Kψ,g(�). (1.10)

By a supersolutions to (1.4) we mean ṽ ∈ W 1,H(·)(�) satisfying
∫

�

A(x, Dṽ) · Dw dx ≥ 0 for all non-negative w ∈ W 1,H(·)
0 (�). (1.11)
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622 I. Chlebicka, C. De Filippis

To notice that a solution to problem (1.10) is a supersolution to (1.4), we just need to test
(1.10) against w := v + w̃, where w̃ ∈ W 1,H(·)

0 (�) is any non-negative function. Since
w̃ ∈ Kψ,g(�), the outcome is precisely the variational inequality (1.11). We provide the
following result on existence and basic regularity for the obstacle problem.

Theorem 2 Under assumptions (2.2) and (2.1), let ψ, g ∈ W 1,H(·)(�) be such that
Kψ,g(�) �= ∅. Then, there exists a unique v ∈ Kψ,g(�) being a solution to the obstacle
problem (1.10). Moreover, the following holds true.

– (Gehring’s Theory). If H(·, Dψ) ∈ L1+δ1
loc (�) for some δ1 > 0, then there exists an

integrability threshold δ0 ∈ (0, δ1) such that for any δ ∈ (0, δ0), H(·, Dv) ∈ L1+δ
loc (�)

and the following reverse-Hölder-type inequality holds for all B	 � �:

(∫
−

B	/2

H(x, Dv)1+δ dx

) 1
1+δ

≤ c

(∫
−

B	

H(x, Dψ)1+δ dx

) 1
1+δ

+ c
∫
−

B	

H(x, Dv) dx .

(1.12)

Here c = c(data, ‖Dv‖L p(�), ‖Dψ‖L p(�)) and δ0 = δ0(data, ‖Dv‖L p(�),

‖Dψ‖L p(�)).
– (De Giorgi’s Theory). If ψ ∈ W 1,H(·)(�) ∩ L∞(�), then v ∈ L∞

loc(�) and, for any open
set �̃ � �,

‖v‖L∞(�̃) ≤ c(data, ‖Dv‖L p(�), ‖H(·, v)‖L1(�), ‖ψ‖L∞(�)). (1.13)

– (Higher integrability). If ψ ∈ W 1+α,q(�) and Vp is defined in (2.4), then

Dv ∈ Lq
loc(�,Rn) and Vp(Dv) ∈ W β,2

loc (�,Rn) for all β ∈
(
0,

α

2

)
.

In particular, if B	 ⊂ Br � � are concentric balls there holds that

‖Dv‖Lq (B	) ≤ c

(r − 	)θ

[
1 +

∫
Br

[
H(x, Dv) + |Dψ |q] dx

]γ

, (1.14)

where c = c(n, ν, L, p, q, α, ‖ψ‖W 1+α,q (�)), θ = θ(n, p, q, α) and γ = γ (n, p, q, α).
– (Continuity and AH(·)-harmonicity). If ψ ∈ W 1,H(·)(�) ∩ C(�), then v is continuous

and solves (1.4) in the open set {x ∈ � : v(x) > ψ(x)}.
– (Hölder regularity). If ψ ∈ W 1,H(·)(�) ∩ C0,β0(�) for some β0 ∈ (0, 1], then v ∈

C0,β0
loc (�) and, for all open sets �̃ � �, there holds

[v]0,β0;�̃ ≤ c(data, ‖H(·, Dv)‖L1(�), ‖ψ‖L∞(�), [ψ]0,β0). (1.15)

Let us sum up the organization of the paper. Section 2 introduces main assumptions and
the functional setting. In Sect. 3 we present the concept of intrinsic capacities and intrinsic
Hausdorff-type measures both related to the energy density H(·). Section 4 is devoted to the
study on the obstacle problem,while Sect. 5 to the proof of themain result on the removability
of singularities.
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Removable sets in non-uniformly elliptic problems 623

2 Preliminaries

2.1 Assumptions

Throughout the paper � ⊂ R
n , n ≥ 2, is an open, bounded set. Let A ∈ C(� × R

n,Rn) be
a monotone vector field such that z 
→ A(·, z) ∈ C1(Rn\{0},Rn) and the following growth
and coercivity assumptions hold true:

⎧⎪⎨
⎪⎩

|A(x, z)| + |∂ A(x, z)||z| ≤ L
(|z|p−1 + a(x)|z|q−1

)
,

ν
(|z|p−2 + a(x)|z|q−2

) |ξ |2 ≤ ∂ A(x, z)ξ · ξ,

|A(x1, z) − A(x2, z)| ≤ L|a(x1) − a(x2)||z|q−1,

(2.1)

whenever x1, x2 ∈ �, z ∈ R
n\{0}, x ∈ � and ξ ∈ R

n . Here, ∂ denotes the partial derivative
with respect to the gradient variable z, while the modulating coefficient a : � → [0,∞) is
a non-negative and α-Hölder continuous function for some α ∈ (0, 1]. We assume that the
exponents p, q appearing in (1.2) and the Hölder continuity exponent α mentioned above
satisfy the relations

q

p
≤ 1 + α

n
and 1 < p < q ≤ n. (2.2)

For brevity we collect the main parameters of the problem in the quantities

⎧⎪⎨
⎪⎩

data := (n, ν, L, p, q, [a]0,α),

dataψ := (n, ν, L, p, q, [a]0,α, ‖H(·, Dψ)‖L1(�), ‖ψ‖L∞(�)),

datau := (n, ν, L, p, q, [a]0,α, ‖H(·, Du)‖L1(�), ‖u‖L∞(�)).

2.2 Notation

We collect here basic remarks on the notation we use throughout the paper. Following a
usual custom, we denote by c a general constant larger than one. Different occurrences from
line to line will be still denoted by c, while special occurrences will be denoted by c̃, c̄ or
similarly. Relevant dependencies on parameters will be emphasized using parentheses, e.g.,
c = c(n, p, q) means that c depends on n, p, q . If t ∈ {p, q}, by t ′ we mean the Hölder
conjugate of t , i.e., t ′ := t/(t − 1), whereas by t∗ its Sobolev conjugate, i.e.,

t∗ :=
{

nt
n−t if t < n

any number larger than t if t = n,

(recall (2.2)2). We denote by B	(x0) := {x ∈ R
n : |x − x0| < 	} the open ball with center x0

and radius 	 > 0. When it is not important, or clear from the context, we shall omit denoting
the center as follows: B	(x0) ≡ B	. Very often, when it is not otherwise stated, different balls
will share the same center. When the ball B is given, we occasionally denote its radius as
	(B). With U ⊂ R

n being a measurable set with finite and positive n-dimensional Lebesgue
measure |U | > 0, and with f : U → R

k , k ≥ 1 being a measurable map, by

( f )U :=
∫
−

U
f (x) dx = 1

|U |
∫

U
f (x) dx
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624 I. Chlebicka, C. De Filippis

we mean the integral average of f over U . With h : � → R, U ⊂ �, and γ ∈ (0, 1] being
a given number, we shall denote

[h]0,γ ;U := sup
x,y∈U ,

x �=y

|h(x) − h(y)|
|x − y|γ , [h]0,γ ≡ [h]0,γ ;�.

Recall that in (1.9) we defined Kψ,g(�) with an obstacle ψ and the boundary datum g ∈
W 1,H(·)(�). By Kψ(�) we denote Kψ,g(�) with ψ ≡ g.

2.3 Double-phase energy

Let us present the main properties of energy density H(·) given by (1.2) under assumption
(2.2). With abuse of notation, we shall keep on denoting H(x, t) = t p + a(x)tq for t ≥ 0,
that is, when in (1.2), z is a non-negative number. For our purposes, it is enough to recall
that, as a generalized Young function, x 
→ H(x, ·) is α-Hölder continuous, t 
→ H(·, t) is
strictly convex and belongs to C1([0,∞)) ∩ C2((0,∞)). By the Fenchel–Young conjugate
of H , we mean the function H∗(x, t) := sups≥0 {st − H(x, s)}. Direct consequences of the
definition of H∗ are the following equivalence

H∗ (x, H(x, t)/t) ∼ H(x, t) for all (x, t) ∈ � × R
n, (2.3)

holding up to constants depending only on p and q , and the Young inequalities{
st ≤ εH∗(x, t) + ε1−q H(x, s),

st ≤ εH(x, s) + ε
− 1

p−1 H∗(x, t),

holding for all x ∈ �, s, t ∈ [0,∞), and ε ∈ (0, 1), see [3,18]. We shall often deal with the
vector field

Vt (z) := |z| t−2
2 z, t ∈ {p, q}, (2.4)

which is of a common use to formulate the monotonicity properties of operators of the
p-Laplacean type and related integral functionals. In this respect, we record the following
pointwise property

0 ≤ |Vt (z1) − Vt (z2)|2 ≤ c(n, t)〈|z1|t−2z1 − |z2|t−2z2, z1 − z2〉, t ∈ {p, q},
for all z1, z2 ∈ R

n . This, combined with (2.1)2, renders that

0 ≤ V(z1, z2) := |Vp(z1) − Vp(z2)|2 + a(x)|Vq(z1) − Vq(z2)|2
≤ c 〈A(x, z1) − A(x, z2), z1 − z2〉, (2.5)

with some c = c(n, ν, p, q) > 0 for all x ∈ � and any z1, z2 ∈ R
n . Now, let us recall some

common terminology in the framework of double-phase functionals. For B	 ⊂ �, we define

ai (B	) := inf
x∈B	

a(x) and as(B	) := sup
x∈B	

a(x).

We will say that a(·) degenerates on B	 if there holds

ai (B	) ≤ 4[a]0,α	α. (2.6)

The complementary condition reads as

ai (B	) > 4[a]0,α	α. (2.7)
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Removable sets in non-uniformly elliptic problems 625

Those two conditions in some sense quantify the closeness of a(·) to the set of its zero points.
Since in regime (2.6), as(B	) ≤ 6[a]0,α	α , it follows that (2.6) is stable when 	 increases.
On the other hand under (2.7) we have as(B	) ≤ 2ai (B	), so (2.7) is stable for shrinking
balls. In accordance with this terminology, we also mention the auxiliary Young’s functions

H−
B	

(z) := |z|p + ai (B	)|z|q and H+
B	

(z) := |z|p + as(B	)|z|q ,

which turn out to be useful in dealing with the regularity theory for double-/multi-phase
functionals, see [3,11,13,18,19]. In the following, we will also consider the double-phase
integrand

Hσ (x, z) := |z|pσ + a(x)σ |z|qσ ,
1

p
< σ ≤ 1. (2.8)

Clearly Hσ (x, z) ∼ (H(x, z))σ for all (x, z) ∈ � × R
n , in fact

Hσ (x, z) ≤ Hσ (x, z) ≤ 2Hσ (x, z) for all (x, z) ∈ � × R
n . (2.9)

2.4 Functional setting

There are various approaches how to describe general Musielak–Orlicz spaces, cf. [7,8,29].
We shall specialize them from the very beginning to those related to energy density H(·)
given by (1.2). We define Musielak–Orlicz space

L H(·)(�) :=
{
w ∈ L1

loc(�) :
∫

�

H(x, w) dx < ∞
}

,

equipped with the Luxemburg norm

‖w‖L H(·)(�) := inf

{
λ > 0 :

∫
�

H
(
x, 1

λ
w
)
dx ≤ 1

}
.

When we denote the modular ρH(·)(w) := ∫
�

H (x, w) dx, the structure of H(·) ensures
that

min

{(
ρH(·)(w)

) 1
p ,
(
ρH(·)(w)

) 1
q

}
≤ ‖w‖L H(·)(�) ≤ max

{(
ρH(·)(w)

) 1
p ,
(
ρH(·)(w)

) 1
q

}

(2.10)

and

min
{(

ρH∗(·)(w)
) q

q+1 ,
(
ρH∗(·)(w)

) p
p+1
}

≤ ‖w‖L H∗(·)(�)

≤max
{(

ρH∗(·)(w)
) q

q+1 ,
(
ρH∗(·)(w)

) p
p+1
}

(2.11)

see, e.g., [29,45]. In particular, if v ∈ L H(·)(�) and w ∈ L H∗(·)(�), we have the Hölder
inequality

∣∣∣∣
∫
�

vw dx

∣∣∣∣ ≤ 2‖v‖L H(·)(�)
‖w‖L H∗(·)(�)

≤ 2max

{(
ρH(·)(v)

) 1
p ,
(
ρH(·)(v)

) 1
q

}
max

{(
ρH∗(·)(w)

) q
q+1 ,

(
ρH∗(·)(w)

) p
p+1

}
,
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where in the last inequality (2.10) and (2.11) are employed. Since the nonlinear tensor A(·)
satisfies (2.1), problem (1.4) is naturally set in the Musielak–Orlicz–Sobolev space

W 1,H(·)(�) :=
{
w ∈ W 1,1(�) : w, |Dw| ∈ L H(·)(�)

}
,

equipped with the norm ‖w‖W 1,H(·)(�) := ‖w‖L H(·)(�) + ‖Dw‖L H(·)(�). Upon such a defi-
nition W 1,H(·)(�) is a Banach space, which, due to the properties of H(·), is separable and
reflexive. The dual space can be characterized by the means of the Fenchel-Young conjugate
of H(·), namely we have (W 1,H(·)(�))∗ ∼ W 1,H∗(·)(�). Space W 1,H(·)

loc (�) is defined in the

standard way. We shall also define zero-trace space W 1,H(·)
0 (�) as a closure in W 1,H(·)(�)

of C∞
c (�)-functions. Justification of this choice of definition requires some comments, since

it is known that in inhomogeneous spaces smooth functions may not be dense [25,26,55].

Remark 2.1 In general, to get density of regular functions (smooth/Lipschitz) in norm in
Musielak–Orlicz–Sobolev spaces, besides the (doubling) type of growth of H(·), its speed
of growth has to be balanced with the regularity in the spacial variable, see the general study
in [1]. In turn, the assumption ensuring that this definition of W 1,H(·)

0 (�) makes sense, is
closeness condition (2.2) imposed on the powers. In fact, the natural topology for Musielak–
Orlicz–Sobolev spaces is the modular one, i.e., the one coming from the notion of modular
convergence [1,8,29].We say that a sequence (w j ) j∈N ⊂ L H(·)(�) converges towmodularly
in L H(·)(�) if

lim
j→∞ w j (x) = w(x) for a.e. x ∈ � and lim

j→∞

∫
�

H(x, w j − w) dx = 0.

Consequently, w j → w modularly in W 1,H(·)(�) if both w j → w and Dw j → Dw

modularly in L H(·)(�). Since the growth of H is doubling, the modular convergence is
equivalent to the norm convergence [8,29]. Condition (2.2) was introduced and proven to
be sharp for modular density in W 1,H(·)

0 (�) in [25]. It plays the role of the assumption on
log–Hölder continuity of the variable exponent, cf. [2].

Let us state a density lemma in the form useful in our investigations.

Lemma 2.1 [25] Under assumption (2.2), for any given w ∈ W 1,H(·)(�) ∩ W 1,1
0 (�) there

exists a sequence (w j ) j∈N ⊂ C∞
c (�) so that (w j ) j∈N converges to w almost everywhere

and in W 1,p(�), whereas |Dw j − Dw| → 0 modularly in L H(·)(�).

We recall the intrinsic Sobolev–Poincaré inequalities.

Lemma 2.2 Suppose � ⊂ R
n is a bounded, open set, B	 � �, 	 ≤ 1, and (2.2) is in force.

Then there exist d1 = d1(n, p, q) ∈ (0, 1), d2 = d2(n, p, q) > 1 and a positive constant
c = c(n, p, q, [a]0,α, α, ‖Dw‖L p(�)), such that for every w ∈ W 1,H(·)(�) the following
inequalities hold

∫
−

B	

H

(
x,

w − (w)	

	

)
dx ≤ c

(∫
−

B	

H(x, Dw)d1 dx

) 1
d1

(2.12)

and
(∫

−
B	

H

(
x,

w − (w)	

	

)d2
dx

) 1
d2

≤ c
∫
−

B	

H(x, Dw) dx . (2.13)
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Removable sets in non-uniformly elliptic problems 627

The estimates analogous to (2.12) and (2.13) hold if instead of w − (w)	 we consider any

w ∈ W 1,H(·)(�) ∩ W 1,H(·)
0 (B	). Furthermore, if w ∈ W 1,H(·)

0 (�),

∫
�

H(x, w) dx ≤ c
∫

�

H(x, Dw) dx, (2.14)

for c = c(n, p, q, [a]0,α, α, ‖Dw‖L p(�), diam(�)).

Proof Inequality (2.12) can be found in [52, Theorem 2.13]. We shall concentrate now

on (2.13). Fix any d2 ∈
(
1, np

q(n−p)

]
and notice that, by (2.2), this position makes sense

and qd2 ≤ p∗ < q∗. Let B	 � � be any ball as in the assumptions and consider the
degenerate scenario (2.6). Then, from the standard Sobolev–Poincaré inequality and (2.2)
we have

∫
−

B	

H

(
x,

w − (w)	

	

)d2
dx ≤ c

∫
−

B	

[∣∣∣∣w − (w)	

	

∣∣∣∣
pd2

+ a(x)d2

∣∣∣∣w − (w)	

	

∣∣∣∣
qd2
]

dx

≤ c

(∫
−

B	

∣∣∣∣w − (w)	

	

∣∣∣∣
p∗

dx

) pd2
p∗

+ c	αd2

(∫
−

B	

∣∣∣∣w − (w)	

	

∣∣∣∣
p∗

dx

) qd2
p∗

≤ c	αd2

(∫
−

B	

|Dw|p dx

) d2(q−p)

p
(∫

−
B	

|Dw|p dx

)d2

+ c

(∫
−

B	

|Dw|p dx

)d2

≤ c

(∫
−

B	

|Dw|p dx

)d2

,

with c = c(n, p, q, [a]0,α, α, ‖Dw‖L p(�)) and (2.13) follows. Now consider the opposite
condition, i.e., (2.7). In this case, it is easy to see that as(B	) ≤ 3

2ai (B	), therefore

∫
−

B	

H

(
x,

w − (w)	

	

)d2
dx ≤ c

∫
−

B	

⎡
⎢⎣
∣∣∣∣w − (w)	

	

∣∣∣∣
pd2

+
∣∣∣∣∣∣
ai (B	)

1
q (w − (w)	)

	

∣∣∣∣∣∣
qd2
⎤
⎥⎦ dx

≤ c

(∫
−

B	

|Dw|p dx

)d2

+
⎛
⎜⎝
∫
−

B	

∣∣∣∣∣∣
ai (B	)

1
q (w − (w)	)

	

∣∣∣∣∣∣
q∗

dx

⎞
⎟⎠

qd2
q∗

≤ c

(∫
−

B	

|Dw|p dx

)d2

+ c

(∫
−

B	

ai (B	)|Dw|q dx

)d2

≤ c

(∫
−

B	

H(x, Dw) dx

)d2

,

for c = c(n, p, q) and (2.13) follows also in this case.
Finally, for (2.14), we recall that � is bounded; therefore, we can find a ball BR ⊂ R

n

with R := 10 diam(�) such that � � BR . Now, if w ∈ W 1,H(·)
0 (�) we can define w̃ as an
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628 I. Chlebicka, C. De Filippis

extension of w by zero outside �. Applying (2.12) on BR , (with w − (w)R replaced by w̃,
of course), and Hölder’s inequality we have∫

�

H(x, w) dx ≤ max{1, 10 diam(�)}q |BR |
∫
−

BR

H(x, w̃/R) dx

≤ c|BR |
∫
−

BR

H(x, w̃/R) dx

≤ c|BR |
(∫
−

BR

H(x, Dw̃)d1 dx

) 1
d1

≤ c
∫

BR

H(x, Dw̃) dx = c
∫

�

H(x, Dw) dx,

with c = c(n, p, q, [a]0,α, α, ‖Dw‖L p(�), diam(�)). ��

3 Intrinsic capacities and intrinsic Hausdorffmeasures

We define the intrinsic H(·)-capacity and recall its main features exactly in the form we
need. For more details and generalizations, we refer the reader to [4]. Given a compact set
K ⊂ �, we denote its relative H(·)-capacity as

capH(·)(K ,�) := inf
f ∈RH(·)(K )

∫
�

H(x, D f ) dx,

where the set of test functions is

RH(·)(K ) :=
{

f ∈ W 1,H(·)(�) ∩ C0(�) : f ≥ 1 in K
}

.

As usual, for open subsets U ⊂ � and general E ⊂ � we have

capH(·)(U ,�) := sup
K⊂U ,

K compact

capH(·)(K ,�)

and then

capH(·)(E,�) := inf
E⊂U⊂�,
U open

capH(·)(U ,�).

The structure of H(·) and the range of considered p, q given by (2.2) guarantees that capH(·)
enjoys the standard properties of Sobolev capacities. In particular, capH(·) is Choquet, which
means that

capH(·)(E) = sup
{
capH(·)(K ) : K ⊂ E is a compact set

}
. (3.1)

Moreover, again from (2.2) and the convexity of z 
→ H(·, z), we see that the relative capacity
capH(·) is equivalent to the capacity CH(·) defined in [4, Section 3], see [4, Theorem 7.3 and
Proposition 7.5].

Remark 3.1 Given a compact K � �, when working with any function f ∈ RH(·)(K ), there
is no loss of generality in assuming 0 ≤ f ≤ 1 on �. Since f ∈ C0(�), f ≥ 1 on K and
the map t 
→ min{t, 1} is Lipschitz, it follows that f̃ := min{ f , 1} ∈ RH(·)(K ). Moreover,∫

�

H(x, D f̃ ) dx =
∫

{x∈� : f (x)<1}
H(x, D f ) dx ≤

∫
�

H(x, D f ) dx,
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Removable sets in non-uniformly elliptic problems 629

so our claim follows from the definition of capH(·)(K ). Moreover, Lemma 2.1 guarantees

the density of smooth and compactly supported functions in W 1,H(·)
0 (�); thus, when dealing

with functions f ∈ RH(·)(K ), there is no loss of generality in assuming f ∈ C∞
c (�).

Naturally associated to those capacities is the concept of intrinsic Hausdorff measures,
introduced in [18], see also [49,54]. For any n-dimensional open ball B ⊂ � of radius
	(B) ∈ (0,∞), we define

h H(·)(B) :=
∫

B
H
(

x, 1
	(B)

)
dx .

Note that there is no difference in the following in taking closed balls in this respect. Applying
the standard Carathéodory’s construction we obtain an outer measure, in fact, let E ⊂ � be
any subset. We define the δ-approximating Hausdorff measure of E ,HH(·),δ(E) with δ ≤ 1,
by

HH(·),δ(E) = inf
Cδ

E

∑
j

h H(·)(B j ),

where

Cδ
E ={{B j } j∈N is a countable collection of balls Bi ⊂� covering E, of radius 	(B j )≤δ

}
.

As 0 < δ1 < δ2 < ∞ implies Cδ1
E ⊂ Cδ2

E , we have thatHH(·),δ1(E) ≥ HH(·),δ2(E) and there
exists the limit

HH(·)(E) := lim
δ→0

HH(·),δ(E) = sup
δ>0

HH(·),δ(E) .

By standard arguments, HH(·) is a Borel regular measure. The intrinsic Hausdorff measure
related to Hσ (·) given by (2.8) is denoted of course asHHσ (·). Notice that, for σ ∈ (1/p, 1],
function Hσ (·) is a generalized Young function with the same structure of H(·). Therefore,
HHσ (·) has the same properties as HH(·). Moreover, due to (2.9) HHσ (·) ∼ HHσ (·). Let us
recall a result which relates intrinsic Hausdorff measures with the corresponding intrinsic
capacity.

Proposition 3.1 [18] For H(·) given by (1.2) under assumption (2.2), if E ⊂ R
n is such that

HH(·)(E) < ∞, then capH(·)(E) = 0.

We conclude this section with the proof of a first result on removable sets for solutions of
(1.4). Following [32, Chapter 2] and taking into account Remark 2.1, for E ⊂ � relatively
closed, we say that

W 1,H(·)
0 (�) = W 1,H(·)

0 (�\E)

if for any given w ∈ W 1,H(·)
0 (�) there exists a sequence (w j ) j∈N ⊂ C∞

c (�\E) such that

w j → w modularly in W 1,H(·)
0 (�). Now we are ready to state our first two results, which

clarify when a set is negligible in W 1,H(·)(�). The already classical version of this fact stated
in the Sobolev space W 1,p can be found in [32, Section 2.42].

Lemma 3.1 Suppose that E is a relatively closed subset of �. Then

W 1,H(·)
0 (�) = W 1,H(·)

0 (�\E) if and only if capH(·)(E) = 0.
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630 I. Chlebicka, C. De Filippis

Proof According to Remark 2.1, we can work with the modular convergence. Assume first
that capH(·)(E) = 0. The inclusion W 1,H(·)

0 (�\E) ⊂ W 1,H(·)
0 (�) is trivial, so we only

need to show that W 1,H(·)
0 (�) ⊂ W 1,H(·)

0 (�\E). Let ϕ ∈ C∞
c (�). Since capH(·)(E) = 0,

according to Remark 3.1, there exists a sequence ( f j ) j∈N ⊂ (RH(·)(E) ∩ C∞
c (�)

)
such that

0 ≤ f j ≤ 1 and lim
j→∞

∫
�

H(x, D f j ) dx = 0 (3.2)

and, for any j ∈ N, themapψ j := (1− f j )ϕ has support contained in�\E . Then (ψ j ) j∈N ⊂
C∞

c (�\E). Moreover, (3.2) and the dominated convergence theorem allow concluding that
∫

�\E
H(x, Dψ j − Dϕ) dx = 0,

therefore ϕ ∈ W 1,H(·)
0 (�\E). Since by Lemma 2.1 and the dominated convergence theorem

we can approximate any w ∈ W 1,H(·)
0 (�\E) in the modular topology via the sequence of

truncations (wk)k∈N := (max{−k,min{w, k}})k∈N we have

W 1,H(·)
0 (�) ⊂ W 1,H(·)

0 (�\E),

and the ‘if’ part of the lemma is done. For the ‘only if’ part, let K ⊂ E be arbitrary compact set.
By (3.1), it is sufficient to show that capH(·)(K ) = 0. Let us fix an arbitrary f ∈ RH(·)(K ).

Since W 1,H(·)
0 (�) = W 1,H(·)

0 (�\E), there exists a sequence (ϕ j ) j∈N ⊂ C∞
c (�\E) such that

ϕ j → f a.e. in � and lim j→∞
∫
�

H(x, Dϕ j − D f ) dx = 0, thus the map g j := f − ϕ j ∈
RH(·)(K ) for all j ∈ N. As a consequence of the definition of capH(·), we have

capH(·)(K ) ≤ lim
j→∞

∫
�

H(x, Dg j ) dx = 0,

and the lemma follows. ��
As a direct consequence of Lemma 3.1, we show that sets of zero HH(·)-measure are

removable for AH(·)-harmonic maps.

Corollary 3.1 Let E ⊂ � be a relatively closed subset of � such that HH(·)(E) < ∞ and
u ∈ W 1,H(·)(�) satisfying

∫
�\E

A(x, Du) · Dw dx = 0 (3.3)

for all w ∈ W 1,H(·)
0 (�\E). Then, u is a solution to (1.4) on the whole �.

Proof Since HH(·)(E) < ∞, by Proposition 3.1 we have that capH(·)(E) = 0; thus, by

Lemma 3.1 we can conclude that W 1,H(·)
0 (�\E) = W 1,H(·)

0 (�), so (3.3) actually holds for

all w ∈ W 1,H(·)
0 (�). ��

4 The obstacle problem for the double-phase energy

This section is devoted to the study on the existence andmain regularity properties of solutions
to the obstacle problem defined by means of a differential operator with structure (2.1).
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Removable sets in non-uniformly elliptic problems 631

4.1 Existence and uniqueness of solutions to the obstacle problem

In this section we infer existence and uniqueness of solutions to the obstacle problem as a
consequence of classical results on solvability in reflexive Banach spaces and comparison
principles.We assumeKψ,g(�) �= ∅, see (1.9). Notice that whenψ ≡ g, we haveKψ,g(�) �=
∅ since ψ ∈ Kψ,g(�). Our result reads as follows.

Proposition 4.1 Suppose that assumptions (2.1) and (2.2) are satisfied and ψ, g ∈
W 1,H(·)(�) are such that Kψ,g(�) �= ∅. Then there exists a unique weak solution v ∈
Kψ,g(�) to problem (1.10).

We recall some elementary facts about monotone operators defined on a reflexive Banach
space, which finally will be applied to the operator AH(·), defined in (1.3).

Definition 1 Let X be a reflexive Banach space with dual X∗ and 〈·, ·〉 denote a pairing
between X∗ and X . If K ⊂ X is any closed, convex subset, then a map T : K → X∗ is called
monotone if it satisfies 〈T w − T v,w − v〉 ≥ 0 for all w, v ∈ K . Moreover, we say that T
is coercive if there exists a w0 ∈ K such that

lim‖w‖X →∞
〈T w,w − w0〉

‖w‖X
= ∞ for all w ∈ K .

The following proposition guarantees the existence of solution to variational inequalities
associated to monotone operators.

Proposition 4.2 [34] Let K ⊂ X be a nonempty, closed, convex subset and T : K → X∗ be
monotone, weakly continuous and coercive on K . Then there exists an element v ∈ K such
that 〈T v,w − v〉 ≥ 0 for all w ∈ K .

Proof of Proposition 4.1 We verify all the assumptions of Proposition 4.2 step by step.
Step 1: the space setting Let us start by noticing that AH(·) is defined on X =
W 1,H(·)(�), which is a reflexive Banach space due to the structure of H(·). Notice that
AH(·)(W 1,H(·)(�)) ⊂ (W 1,H(·)(�))∗. Indeed, when v ∈ W 1,H(·)(�) and w ∈ C∞

0 (�) from
Young’s inequality, (2.3), and Lemma 2.2 we get

|〈AH(·)v, w〉| ≤ L
∫

�

H(x, Dv)

|Dv| |Dw| dx ≤ c

∥∥∥∥H(·, Dv)

|Dv|
∥∥∥∥

L H∗(·)(�)

‖Dw‖L H(·)(�)

≤ cmax

{(∫
�

H(x, Dv) dx

) q
q+1

,

(∫
�

H(x, Dv) dx

) p
p+1
}

‖Dw‖L H(·)(�)

≤ c‖w‖W 1,H(·)(�) (4.1)

with c = c(L, p, q, ‖H(·, Dv)‖L1(�)), thus AH(·)v ∈ (W 1,H(·)(�))∗.
Step 2: the set Kψ,g(�) ⊂ W 1,H(·)(�) is closed and convex In fact, for λ ∈ [0, 1] and
w1, w2 ∈ Kψ,g(�), define wλ := λw1 + (1 − λ)w2. Then wλ ∈ W 1,H(·)(�), wλ − g ∈
W 1,H(·)

0 (�) and wλ ≥ ψ a.e. in �. Moreover, if w ∈ W 1,H(·)(�) and (w j ) j∈N ⊂ Kψ,g(�)

is any sequence such that lim j→∞
∫
�

H(x, Dw j − Dw) dx = 0, then by the continuity of

the trace operator,w−g ∈ W 1,H(·)
0 (�) and, by Lebesgue’s dominated convergence theorem,

w ≥ ψ a.e. in �.
Step 3: weak continuity Let v, (v j ) j∈N ⊂ W 1,H(·)(�) be such that v j → v in W 1,H(·)(�).
Then it follows that there exists M = M(‖v‖W 1,H(·)(�)) such that sup j∈N‖v j‖W 1,H(·)(�) ≤ M .
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632 I. Chlebicka, C. De Filippis

Moreover, up to a subsequence, lim j→∞ v j (x) = v(x) and lim j→∞ Dv j (x) = Dv(x) for
a.e. x ∈ �. Since z 
→ A(·, z) is continuous we have, for any w ∈ W 1,H(·)(�),

lim
j→∞ A(x, Dv j (x)) · Dw(x) = A(x, Dv(x)) · Dw(x) for a.e. x ∈ �. (4.2)

Moreover, if E ⊂ � is any measurable subset, then as in (4.1) we have
∣∣∣∣
∫

E
A(x, Dv j ) · Dw dx

∣∣∣∣ ≤
∫

E
|A(x, Dv j ) · Dw| dx

≤L
∫

E

H(x, Dv j )

|Dv j | |Dw| dx ≤ c‖Dw‖L H(·)(E), (4.3)

for c = c(L, p, q, ‖v‖W 1,H(·)(�)), by recalling the dependency of M . By (4.2) and (4.3), we
can apply Vitali’s convergence theorem getting

lim
j→∞〈AH(·)v j , w〉 = lim

j→∞

∫
�

A(x, Dv j ) · Dw dx

=
∫

�

A(x, Dv) · Dw dx = 〈AH(·)v, w〉,

therefore AH(·) is weakly continuous on W 1,H(·)(�).
Step 4: monotonicity and coercivity of AH(·). Monotonicity results directly from (2.5) As
for coercivity, we fix w,w0 ∈ Kψ,g(�) and, using (2.1)2 and the weighted Hölder’s and
Young’s inequalities we obtain

〈AH(·)w,w − w0〉 =
∫

�

A(x, Dw) · (Dw − Dw0) dx

≥ν

∫
�

H(x, Dw) dx − c

(∫
�

|Dw|p dx

) p−1
p
(∫

�

|Dw0|p dx

) 1
p

− c

(∫
�

a(x)|Dw|q dx

) q−1
q
(∫

�

a(x)|Dw0|q dx

) 1
q

≥ν

2

∫
�

H(x, Dw) dx − c̃,

with c̃ = c̃(ν, L, p, q, ‖H(·, Dw0)‖L1(�)). From (2.10) we have

∫
�

H(x, Dw) dx ≥ min
{
‖Dw‖p

L H(·)(�)
, ‖Dw‖q

L H(·)(�)

}
,

therefore, merging the content of the two previous displays we obtain

〈AH(·)w,w − w0〉
‖Dw‖L H(·)(�)

≥ν

2
min

{
‖Dw‖p−1

L H(·)(�)
, ‖Dw‖q−1

L H(·)(�)

}
− c̃

‖Dw‖L H(·)(�)

→ ∞
(4.4)

as ‖Dw‖L H(·)(�) → ∞. This is enough for the coercivity condition, see Remark 4.1.
Step 5: Comparison principle We show that if v ∈ W 1,H(·)(�) is a solution to problem
(1.10), ṽ ∈ W 1,H(·)(�) is a supersolution to (1.4) and w := min{v, ṽ} ∈ Kψ,g(�), then
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Removable sets in non-uniformly elliptic problems 633

ṽ(x) ≥ v(x) for a.e. x ∈ �. Being ṽ a supersolution to (1.4), the map w̃ := v −min{ṽ, v} is
an admissible test in (1.11) and, being v a solution to (1.10) and w ∈ Kψ,g(�) we have

{∫
�∩{x : ṽ(x)<v(x)} A(x, Dṽ) · (Dv − Dṽ) dx ≥ 0,∫
�∩{x : ṽ(x)<v(x)} A(x, Dv) · (Dṽ − Dv) dx ≥ 0.

Adding the two inequalities in the above display and using (2.5), we obtain

0 ≤
∫

�∩{x : ṽ(x)<v(x)}
(A(x, Dṽ) − A(x, Dv)) · (Dv − Dṽ) dx ≤ 0,

thus either |� ∩ {x : ṽ(x) < v(x)}| = 0 or Dṽ = Dv a.e. on � ∩ {x : ṽ(x) < v(x)}. This
second alternative is excluded by the fact that w ∈ Kψ,g(�), so v − ṽ ∈ W 1,H(·)

0 (� ∩
{x : ṽ(x) < v(x)}). Therefore |� ∩ {x : ṽ(x) < v(x)}| = 0 and ṽ ≥ v a.e. in �.
Step 6: Conclusion By Steps 1–4 and Remark 4.1 we see that Kψ,g(�) and AH(·) satisfy
the assumptions of Proposition 4.2; therefore, there exists a solution to problem (1.10). Let
us prove that it is unique. If there were two solutions v1, v2 ∈ Kψ,g(�), then by recalling
that each of those two solutions is an admissible competitor for the other and using (2.5) we
obtain

0 ≤
∫

�

(A(x, Dv1) − A(x, Dv2)) · (Dv2 − Dv1) dx ≤ 0.

Hence Dv1(x) = Dv2(x) for a.e. x ∈ � and since v1 − v2 ∈ W 1,H(·)
0 (�), we can conclude

that v1 = v2 almost everywhere. ��

Remark 4.1 In the proof of Proposition 4.1, Step 4 deserves some clarification. As to show
coercivity, we cannot follow the usual path involving Poincaré’s inequality, see, e.g., [6,27],
given that the constant in (2.14) depends in an increasing way on the L p-norm of the gradient.
This can be an obstruction for small values of p. Even though Definition 1 prescribes that

lim‖w‖W1,H(·)(�)
→∞

〈AH(·)w,w − w0〉
‖w‖W 1,H(·)(�)

= ∞ for all w ∈ Kψ,g(�),

while we only have (4.4), we still can prove existence. In fact, for � ≥ 0, set

K�
ψ,g(�) := Kψ,g(�) ∩

{
w ∈ W 1,H(·)(�) : ‖Dw‖L H(·)(�) ≤ �

}

Then, by (2.14) and (2.10) it easily follows that

K�
ψ,g(�) ⊂

{
w ∈ W 1,H(·)(�) : ‖w‖W 1,H(·)(�)≤c̄= c̄(n, p, q,�, ‖g‖W 1,H(·)(�), diam(�))

}
,

thus K�
ψ,g(�) is bounded (and, of course, closed and convex) in W 1,H(·)(�). This is enough

for our purposes, see [34, Section 1.6].

Furthermore, we have the following direct consequence of comparison principle of Step 5
above.

Remark 4.2 If u ∈ W 1,H(·)(�) is a solution to (1.4), it is a supersolution to the same equation.
Thus, whenever v ∈ Ku(�) is a solution to problem (1.10), then u(x) ≥ v(x) for a.e. x ∈ �.
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4.2 Regularity for the obstacle problem

Let us concentrate first on Gehring’s and De Giorgi’s theories.

Proposition 4.3 Suppose that assumptions (2.2) and (2.1) are satisfied, ψ, g ∈ W 1,H(·)(�)

are such that Kψ,g(�) �= ∅, and v ∈ Kψ,g(�) is a solution to the obstacle problem (1.10).
Then we have (1.12) and (1.13).

Gehring’s theory For 0 < 	 ≤ 1, let B	 � �, and take a cut-off function η ∈ C1
c (B	) such

that χB	/2 ≤ η ≤ χB	 and |Dη| ≤ 	−1. It is easy to see that the map w := v − ηq(v − ψ) ∈
Kψ,g(�), so, by (2.1)1,2, Young’s inequality and (2.12), we have

∫
−

B	/2

H(x, Dv) dx ≤ c
∫
−

B	

H

(
x,

v − ψ

	

)
dx + c

∫
−

B	

H(x, Dψ) dx

≤ c

(∫
−

B	

H(x, Dv)d1 dx

) 1
d1

+ c
∫
−

B	

H(x, Dψ) dx,

with c = c(data, ‖Dv‖L p(�), ‖Dψ‖L p(�)). Now, we are in position to apply Gehring–
Giaquinta–Modica’s Lemma, [28, Chapter 6], to conclude that there exists a δ0 ∈ (0, δ1)
such that for all δ ∈ (0, δ0) there holds

(∫
−

B	/2

H(x, Dv)1+δ dx

) 1
1+δ

≤ c

(∫
−

B	

H(x, Dψ)1+δ dx

) 1
1+δ

+ c
∫
−

B	

H(x, Dv) dx .

Here c and δ0 depend on (data, ‖Dv‖L p(�), ‖Dψ‖L p(�)). Moreover, after a standard cov-
ering argument, we can conclude that H(·, Dv)1+δ ∈ L1

loc(�) for all δ ∈ (0, δ0). ��
De Giorgi’s Theory Let v be the solution to problem (1.10) and M be a non-negative constant
to be adjusted in a few lines. For s > 0 and λ ∈ R, let us define

J±
v−M (λ, s) := Bs ∩ {x ∈ � : v(x) − M ≷ λ} .

Fix radii 0 < 	 < r ≤ 1 and a ball Br � � and pick a cut-off function η ∈ C1
c (Br ) so

that χB	 ≤ η ≤ χBr and |Dη| ≤ (r − 	)−1. For κ ≥ 0 and M ≥ supx∈Br
ψ(x), the map

w+ := v − ηq(v − M − κ)+ belongs by construction to Kψ,g(�), so testing (1.10) against
w+, using (2.1)1,2, Young’s inequality and reabsorbing terms, we obtain
∫

J+
v−M (κ,	)

H (x, D(v − M − κ)+) dx ≤ c
∫

J+
v−M (κ,r)

H

(
x,

(v − M − κ)+
r − 	

)
dx, (4.5)

with c = c(ν, L, p, q). In a similar way, this time for any κ ∈ R, we consider the map
w− := v + ηq(v − M − κ)− where η and M are as before. Again, w− ∈ Kψ,g(�), so
inserting it as a test function in (1.10) we get
∫

J−
v−M (κ,	)

H (x, D(v − M − κ)−) dx ≤ c
∫

J−
v−M (κ,r)

H

(
x,

(v − M − κ)−
r − 	

)
dx, (4.6)

where c = c(ν, L, p, q). Now using estimates (4.5)–(4.6) we are in position to prove
∫

J±
v−M (κ,	)

H

(
x,

(v − M − κ)±
r

)
dx

123



Removable sets in non-uniformly elliptic problems 635

≤ c

( |J±
v−M (κ, r)|

|Br |

)ι ∫
J±
v−M (κ,r)

H

(
x,

(v − M − κ)±
r − 	

)
dx, (4.7)

for c = c(data, ‖Dv‖L p(�)) and ι = ι(n, p, q) = d2−1
d2

with d2 > 1 from Lemma 2.2.
Further, in the “+” case of (4.7) we always take κ ≥ 0, while for the “−” occurrence
κ ≤ 0. Let 0 < 	 < r ≤ 1 and set θ := 	+r

2 . Notice that if |J±
v−M (κ, r)| ≥ 1

2 |Br | there is
nothing to prove, therefore we assume that this is not the case. Pick η ∈ C1

c (Bθ ) such that
χB	 ≤ η ≤ χBθ and |Dη| ≤ (r − 	)−1 and denote

ṽ+ := η(v − M − κ)+, κ ≥ 0, and ṽ− := η(v − M − κ)−, κ ≤ 0.

We see that |Dṽ±| ≤ |D(v− M −κ)±|+ (v− M −κ)±|Dη|. By Hölder’s inequality, (2.13),
the fact that r

2 ≤ θ ≤ r , (4.5) and (4.6), we obtain
∫

J±
v−M (κ,	)

H

(
x,

(v − M − κ)±
r

)
dx ≤

∫
J±
v−M (κ,θ)

H

(
x,

ṽ±
r

)
dx

≤ c|J±
v−M (κ, r)|

d2−1
d2 |Br |

1
d2

(∫
−

Bθ

H

(
x,

ṽ±
θ

)d2
dx

) 1
d2

≤ c

( |J±
v−M (κ, θ)|

|Br |

)ι {∫
J±
v−M (κ,θ)

H (x, D(v − M − κ)±)

+H

(
x,

(v − M − κ)±
r − 	

)
dx

}

≤ c

( |J±
v−M (κ, θ)|

|Br |

)ι ∫
J±
v−M (κ,r)

H

(
x,

(v − M − κ)±
r − 	

)
dx,

which is (4.7) with the announced dependencies of the constants. At this point, we split the
rest of the proof into three parts: in the first one we provide an upper bound to (v − M)+,
in the second one we control from above (v − M)−, while in the third one we obtain the
boundedness of v. Our main references are [21,31].
Step 1: control on the essential supremum Let BR � � be any ball with radius R ≤ 1,
M := ‖ψ‖L∞(�) + 1 and, for τ ∈ (0, 1/2], κ > 0 and all j ∈ N, define

κ j := Rκ
(
1 − 2− j

)
, 	 j := R

(
τ + (1 − τ)2− j

)
,

B j := B	 j , Y +
j :=

∫
−

B j

H

(
x,

(v − M − κ)+
R

)
dx . (4.8)

Notice that 	 j − 	 j+1 = R(1−τ)

2 j+1 , κ j+1 ≥ κ j and that 	 j/	 j+1 ≤ 2. Using (4.7)+ with
κ = κ j+1, 	 = 	 j+1 and r = 	 j , we get

Y +
j+1 ≤

∫
−

B j+1

H

(
x,

(v − M − κ j+1)+
R(τ + (1 − τ)2− j )

)
dx

≤ c

( |J+
v−M (κ j+1, 	 j )|

|B j |

)ι ∫
−

B j

H

(
x,

(v − M − κ j+1)+
R(1 − τ)2−( j+1)

)
dx

≤ c

( |J+
v−M (κ j+1, 	 j )|

|B j |

)ι ∫
−

B j

H

(
x,

(v − M − κ j )+
R(1 − τ)2−( j+1)

)
dx
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≤ c

( |J+
v−M (κ j+1, 	 j )|

|B j |

)ι

(1 − τ)−q2 jqY +
j ,

for c = c(data, ‖Dv‖L p(�)). Since on J+
v−M (κ j+1, 	 j ) there holds v − M − κ j ≥ κ j+1 −

κ j = 2−( j+1) Rκ , we can estimate

|J+
v−M (κ j+1, 	 j )|

|B j | ≤ |B j |−1
[

H−
BR

( κ

2 j+1

)]−1
∫

J+
v−M (κ j+1,	 j )

H
(

x,
κ

2 j+1

)
dx

≤
(
2 j+1

κ

)p ∫
−

B j

H

(
x,

(v − M − κ j )+
R

)
dx =

(
2 j+1

κ

)p

Y +
j ,

therefore, merging the content of the previous two displays we obtain

Y +
j+1 ≤c2 j(pι+q)κ−pι(1 − τ)−q(Y +

j )1+ι,

with c = c(data, ‖Dv‖L p(�)). By [28, Lemma7.1], we have that lim j→∞ Y +
j = 0 provided

that Y +
0 ≤ c− 1

ι κ p(1 − τ)
q
ι 2− pι+q

ι2 . If we choose

κ :=
{
1 + c

1
ι (1 − τ)−

q
ι 2

pι+q
ι2

(∫
−

BR

H

(
x,

(v − M)+
R

)
dx

)} 1
p

,

and notice that lim j→∞ κ j = Rκ and lim j→∞ 	 j = τ R, by means of Fatou’s Lemma we
can conclude that ∫

−
Bτ R

H

(
x,

(v − M − Rκ)+
R

)
dx ≤ lim inf

j→∞ Y +
j = 0,

so, after a standard covering argument, we can conclude that (v − M)+ ∈ L∞
loc(�) and if

�̃ � � is any open set, then

‖(v − M)+‖L∞(�̃) ≤ c(data, ‖Dv‖L p(�), ‖H(·, Dv)‖L1(�)). (4.9)

Step 2: control on the essential infimum As in Step 1, let BR � � be any ball with radius
R ≤ 1, τ ∈ (0, 1/2], M := ‖ψ‖L∞(�) + 1 and, for κ > 0 and j ∈ N, take 	 j , B j , κ j as in
(4.8) and set

Y −
j :=

∫
−

B j

H

(
x,

(v − M + κ j )−
R

)
dx .

Using (4.7)− with κ = −κ j+1, 	 = 	 j+1 and r = 	 j we have

Y −
j+1 ≤

∫
−

B j+1

H

(
x,

(v − M + κ j+1)−
R(τ + (1 − τ)2− j )

)
dx

≤ c

( |J−
v−M (−κ j+1, 	 j )|

|B j |

)ι ∫
−

B j

H

(
x,

(v − M + κ j+1)−
R(1 − τ)2−( j+1)

)
dx

≤ c

( |J−
v−M (−κ j+1, 	 j )|

|B j |

)ι ∫
−

B j

H

(
x,

(v − M + κ j )−
R(1 − τ)2−( j+1)

)
dx

≤ c

( |J−
v−M (−κ j+1, 	 j )|

|B j |

)ι

(1 − τ)−q2 jq Y −
j ,
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with c(data, ‖Dv‖L p(�)). Notice that on J−
v−M (−κ j+1, 	 j ) there holds −κ j − (v − M) ≥

−κ j + κ j+1 = 2−( j+1) Rκ , so we can bound

|J−
v−M (−κ j+1, 	 j )|

B j
≤ |B j |−1

[
H−

Br

( κ

2 j+1

)]−1
∫

J−
v−M (−κ j+1,	 j )

H
(

x,
κ

2 j+1

)
dx

≤
(
2 j+1

κ

)p ∫
−

B j

H

(
x,

(v − M + κ j )−
R

)
dx =

(
2 j+1

κ

)p

Y −
j .

Collecting the two above estimates, we then get

Y −
j+1 ≤ c2 j(pι+q)κ−pι(1 − τ)−q(Y −

j )1+ι,

for c = c(data, ‖Dv‖L p(�)). From [28, Lemma 7.1], we have that lim j→∞ Y −
j = 0 if

Y −
0 ≤ c− 1

ι κ p(1 − τ)
q
ι 2− pι+q

ι2 . Choosing

κ :=
{
1 + c

1
ι (1 − τ)−

q
ι 2

pι+q
ι2

(∫
−

BR

H

(
x,

(v − M)−
R

)
dx

)} 1
p

,

by Fatou’s lemma, we obtain
∫
−

Bτ R

H

(
x,

(v − M + Rκ)−
R

)
dx ≤ lim inf

j→∞ Y −
j = 0,

therefore, after covering, we get that (v − M)− ∈ L∞
loc(�) and for any open �̃ � � there

holds

‖(v − M)−‖L∞(�̃) ≤ c(data, ‖Dv‖L∞(�), ‖H(·, Dv)‖L1(�)). (4.10)

Step 3: conclusion Recall that, in Step 1 we fixed M := ‖ψ‖L∞(�) + 1; thus, from (4.9)–
(4.10), we can conclude that v ∈ L∞

loc(�) and for any open �̃ � � we have

‖v‖L∞(�̃) ≤ c(data, ‖Dv‖L p(�), ‖H(·, Dv)‖L1(�), ‖ψ‖L∞(�)),

which is (1.13). ��

Remark 4.3 In the second part of the proof of Proposition 4.3 we see that the constant bound-
ing the local L∞-norm of v is non-decreasing with respect to ‖Dv‖L p(�), ‖H(·, Dv)‖L1(�).
When v ∈ Kψ(�), ψ ∈ L∞(�), is a solution to (1.10), then clearly ψ ∈ Kψ(�), so it is
an admissible competitor to v in (1.10). Testing (1.10) with w := ψ , using (2.1)1,2, Young’s
inequality and reabsorbing terms we obtain

∫
�

H(x, Dv) dx ≤ c
∫

�

H(x, Dψ) dx,

with c = c(ν, L, p, q). This and the coercivity of |z| 
→ H(·, z), allow for incor-
porating any dependency on ‖Dv‖L p(�), ‖H(·, Dv)‖L1(�) into the one on (ν, L, p, q,

‖H(·, Dψ)‖L1(�)).

Now we briefly point out that assuming extra integrability and fractional differentiability
on the gradient of the obstacle results in similar properties for the gradient of solutions as
well.
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Proposition 4.4 Under assumptions (2.1) and (2.2), let Vp be the vector field defined in (2.4)
and w ∈ W 1,H(·)(�) be a solution to (1.10). Then,

ψ ∈ W 1+α,q(�) ⇒ Dv ∈ Lq
loc(�,Rn) and Vp(Dv) ∈ W β,2

loc (�,Rn) for all β ∈
(
0,

α

2

)
(4.11)

and (1.14) holds true.

Proof By Lemma 2.1 and the hypotheses ψ ∈ W 1+α,q(�), the results (4.11) and (1.14)
follow at once by applying, with minor modifications [16, Theorem 1]. See also [12,17]
for the necessary changes on the approximation, which essentially rely on some uniform
estimates of an extra fractional derivative of the gradient of a suitable family of solutions to
perturbed problems converging to the original one. ��

Proceeding further, we will use the following Harnack inequalities, valid for solutions to
the obstacle problem (1.10), which are supersolutions to (1.4).

Proposition 4.5 Let �̃ � � be an open set and B	 � �̃ be any ball with 	 ≤ 1. Suppose that
assumptions (2.2) and (2.1) are satisfied, ψ ∈ W 1,H(·)(�) ∩ L∞(�) and g ∈ W 1,H(·)(�)

are such that Kψ,g(�) �= ∅, and v ∈ Kψ,g(�) is a solution to the obstacle problem (1.10).
Assume further that M > 0 is any constant for which (4.5) can be realized. Then there holds

ess supB	/2
(v − M)+ ≤ c

(∫
−

B	

(v − M)h+ dx

) 1
h

for all h ∈ (0,∞) (4.12)

for c = c(data, h, ‖H(·, Dv)‖L1(�), ‖ψ‖L∞(�)). Moreover, if ṽ ∈ W 1,H(·)(�) is a non-
negative supersolution to (1.4), then

(∫
−

B	

ṽh− dx

) 1
h−

≤ c ess infB	/2 ṽ for some h− > 0, (4.13)

with c = c(data, ‖H(·, Dṽ)‖L1(�)) and h− = h−(data, ‖H(·, Dṽ)‖L1(�)).

Proof We start by proving (4.12). We already showed in Proposition 4.3 that v is bounded,
so, exploiting also (4.5), from the content of [31, Section 5] we directly obtain (4.12). Next,
being ṽ a supersolution to (1.4), it solves∫

�

A(x, Dṽ) · Dw dx ≥ 0 for all non-negative w ∈ W 1,H(·)(�). (4.14)

Fix radii 0 < 	 < r ≤ 1. Now, if η ∈ C1
c (Br ) is the usual cut-off function with χB	 ≤ η ≤

χBr and |Dη| ≤ (r − 	)−1, testing (4.14) against w := ηq(ṽ − κ)−, for κ ∈ R, we have∫
J−
ṽ

(	,κ)

H(x, D(ṽ − κ)−) dx ≤ c
∫

J−
ṽ

(r ,κ)

H

(
x,

(ṽ − κ)−
r − 	

)
dx, (4.15)

with c = c(ν, L, p, q). Again, [31, Section 6] applies yielding (4.13). Let us note that, due to
the structure of H(·), the additional term on the right-hand side appearing in [31] vanishes.

��
Finally, let us recall that solutions to (1.4) are Lipschitz-continuous. The proof of this

statement can be inferred from [3, Theorem 1], up to minor changes.

Proposition 4.6 [3] Let v ∈ W 1,H(·)(�) be a solution to (1.4) with (2.2) and (2.1) in force.
Then v ∈ W 1,∞

loc (�).
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4.3 Proof of Theorem 2

Now we are ready to collect the content of this section and conclude the main properties of
solutions to the obstacle problem.

Proof of Theorem 2 Existence and uniqueness are given by Proposition 4.1, Gehring’s and De
Giorgi’s assertions from Proposition 4.3. It suffices to concentrate on the remaining claims
on continuity, AH(·)-harmonicity and Hölder continuity.
Continuity and AH(·)-harmonicity For the transparency of the presentation, we split the proof
into three steps.
Step 1: lower semicontinuity By the virtue of (1.13), v is bounded. For B	(x0) ≡ B	 � �,
set

m	 := ess inf x∈B	v(x) and M	 := ess supx∈B	
v(x).

Then, since v is a solution to (1.10), then ṽ := v − m	 is a non-negative supersolution to
(1.4) on B	. Therefore inequality (4.13) applies rendering

(∫
−

B	

(v − m	)h− dx

) 1
h−

≤ c ess inf x∈B	/2(v(x) − m	),

with c = c(data, ‖H(·, Dv)‖L1(�), ‖ψ‖L∞(�)). Notice that there is no loss of generality
in assuming h− ∈ (0, 1). Then,

m	/2 − m	 ≥c

(∫
−

B	

(v − m	)h− dx

) 1
h−

≥ c(M	 − m	)
h−−1

h−

(∫
−

B	

(v − m	) dx

) 1
h−

,

(4.16)

for c = c(data, ‖H(·, Dv)‖L1(�), ‖ψ‖L∞(�)). From (4.16) we can conclude that

0 ≤
∫
−

B	

(v − m	) dx ≤ c(M	 − m	)(1−h−)(m	/2 − m	)h− −−−→
	→0

0.

Thus, by Lebesgue’s differentiation theorem we have

v(x0) = lim
	→0

∫
−

B	(x0)
v(x) dx = lim

	→0
ess inf x∈B	(x0)v(x) for a.e. x0 ∈ �. (4.17)

Set v̄(x0) := lim	→0 ess infx∈B	(x0)v(x) andnotice that v̄(x0) = lim	→0 ess infx∈B	(x0)v̄(x),

hence v̄ is lower semicontinuous. Identity (4.17) then gives that v admits a lower semicon-
tinuous representative.
Step 2: continuity From now on we will identify the lower semicontinuous representative v̄

with v. Since v ∈ Kψ,g(�) and ψ ∈ C(�), for all x0 ∈ � there holds

v(x0) = lim
	→0

ess inf y∈B	(x0)v(y) ≥ lim
	→0

ess inf y∈B	(x0)ψ(y) = ψ(x0).

Fix ε > 0 and B	(x0) such that B4	(x0) � �. Thus, from the continuity of ψ and the lower
semicontinuity of v, for 	 sufficiently small we have

sup
x∈B	(x0)

ψ(x) ≤ ε + v(x0) and inf
x∈B	(x0)

v(x) > v(x0) − ε. (4.18)

We apply (4.12) to v − M with M := v(x0) + ε, which is admissible by (4.18)1, to get

ess supx∈B	/2(x0) (v(x) − (v(x0) + ε)) ≤ ess supx∈B	/2(x0) (v(x) − (v(x0) + ε))+
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≤ c
∫
−

B	(x0)
(v(x) − (v(x0) + ε))+ dx ≤ c

∫
−

B	(x0)
(v(x) − v(x0) + ε) dx

= c

(∫
−

B	(x0)
v(x) dx − v(x0)

)
+ cε,

for c = c(data, ‖H(·, Dv)‖L1(�), ‖ψ‖L∞(�)). We also used (4.18)2 in the last inequality
above. We can rearrange the content of the previous display in a more convenient way:

ess supx∈B	/2(x0)v(x) ≤ c

(∫
−

B	(x0)
v(x) dx − v(x0)

)
+ (1 + c)ε + v(x0). (4.19)

Recall that we are considering the lower semicontinuous representant of v, so for every
x0 ∈ �,

lim
	→0

∫
−

B	(x0)
v(x) dx = v(x0),

thus we can send 	 → 0 and ε → 0 in (4.19) to conclude

lim
	→0

ess supx∈B	(x0)v(x) ≤ v(x0).

This and the lower semicontinuity proved in Step 1 render that v is continuous.
Step 3: AH(·)-harmonicity outside of the contact set Define

�0 := {x ∈ � : v(x) > ψ(x)} , �c := {x ∈ � : v(x) = ψ(x)} , (4.20)

and pick η ∈ C∞
c (�0). Then, using the continuity of v and ψ , for any x0 ∈ supp(η) we

obtain

v(x0) − ψ(x0) ≥ min
x∈ supp(η)

(v(x) − ψ(x)) ≥ minx∈ supp(η)(v(x) − ψ(x))

2maxx∈ supp(η)|η(x)| max
x∈ supp(η)

|η(x)|.

Fix s0 := minx∈ supp(η)(v(x)−ψ(x))

2maxx∈ supp (η)|η(x)| , and notice that, for all s ∈ (−s0, s0), v + sη ≥ ψ . Hence,
w := v + sψ is admissible in (1.10), so we get

∫
�0

A(x, Dv) · D(sη) dx ≥ 0.

Since s can be either positive or negative and η is arbitrary, we can conclude that v solves
∫

�0

A(x, Dv) · Dη dx = 0 for all η ∈ C∞
c (�0).

Hölder regularity By assumption, ψ ∈ C0,β0(�) for some β0 ∈ (0, 1]. Let B	 ≡ B	(x0) be
any ball with 0 < 	 ≤ 1 and so that B4	 � �. Notice that, by Step 2, the set �0 is open
since v is continuous. If B	 ∩ �c = ∅, by Step 3, v solves (1.4) in �0. Proposition 4.6 then
applies, so we get that v ∈ C0,β(B	) for any β ∈ (0, 1]. On the other hand, if B	 ∩ �c �= ∅,
we pick x+, x− ∈ B̄4	 so that ψ(x+) = supx∈B4	

ψ(x) and ψ(x−) = inf x∈B4	 ψ(x). Now
set

ϑ+ := osc
x∈B2	

ψ(x) + inf
x∈B2	

v(x) and ϑ− := osc
x∈B2	

ψ(x) − inf
x∈B2	

v(x),
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and let x̄ ∈ (�c ∩ B	

)
. Since

inf
x∈B2	

ψ(x) ≤ inf
x∈B2	

v(x) ≤ v(x̄) = ψ(x̄) ≤ sup
x∈B2	

ψ(x),

we have that ‖ψ‖L∞(B2	) ≤ ϑ+. Therefore, by (4.12) with M = ϑ+ we have

sup
x∈B	

(v(x) − ϑ+)+ ≤ c

(∫
−

B2	

(v(x) − ϑ+)h+ dx

) 1
h

for all h ∈ (0,∞), (4.21)

with c = c(data, ‖H(·, Dv)‖L1(�), ‖ψ‖L∞(�), h). We stress that, for all x ∈ B2	,⎧⎨
⎩

v(x) − ϑ+ ≤ v(x) + osc
x∈B2	

ψ(x) − infx∈B2	 v(x) = v(x) + ϑ−,

v(x) + ϑ− ≥ 0.
(4.22)

From (4.21) with h = h− (the exponent appearing in (4.13)) and (4.22) we immediately get

sup
x∈B	

(v(x) − ϑ+)+ ≤ c

(∫
−

B2	

(v(x) + ϑ−)h− dx

) 1
h−

, (4.23)

where c = c(data, ‖H(·, Dv)‖L1(�), ‖ψ‖L∞(�)). Moreover, by (4.22)2 we also see that
v+ϑ− is a non-negative supersolution to (1.4) in B2	, thus, using the definition of ϑ+, (4.23)
and (4.13) we have

osc
x∈B	

v(x) − osc
x∈B2	

ψ(x) ≤ sup
x∈B	

(v(x) − ϑ+)+ ≤ c inf
x∈B	

(v(x) + ϑ−)

≤ c

(
inf

x∈B	

v(x) + osc
x∈B2	

ψ(x) − inf
x∈B2	

v(x)

)

≤ c

(
v(x̄) + osc

x∈B2	
ψ(x) − inf

x∈B2	
ψ(x)

)

≤ c

(
ψ(x̄) + osc

x∈B2	
ψ(x) − inf

x∈B2	
ψ(x)

)
≤ c osc

x∈B2	
ψ(x),

for c = c(data, ‖H(·, Dv)‖L1(�), ‖ψ‖L∞(�)). The content of the above display renders

osc
x∈B	

v(x) ≤ c osc
x∈B2	

ψ(x),

i.e., [v]0,β0;B	
≤ c with c = c(data, ‖H(·, Dv)‖L1(�), ‖ψ‖L∞(�), [ψ]0,β0). After cover-

ing, we can conclude that v ∈ C0,β0
loc (�). ��

As a direct consequence of ‘Continuity and AH(·)-harmonicity’ of Theorem 2 we infer
the existence of a continuous extension of solutions to (1.4).

Corollary 4.1 If u ∈ W 1,H(·)(�) is a solution to (1.4), then there exists v ∈ C(�) such that
u = v almost everywhere.

Proof Any solution u to (1.4) can be seen as a solution to problem (1.10) in K−∞,u(�)

with obstacle constantly equal to −∞. Then the fourth part of Theorem 2 applies rendering
that u can be redefined on sets of zero n-dimensional Lebesgue measure so that it becomes
continuous. ��
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5 Removable sets

In this last section we prove our main result, i.e., Theorem 1.

5.1 Auxiliary results

To begin, we show a Caccioppoli-type inequality for non-negative supersolutions to (1.4).

Lemma 5.1 Under assumptions (2.2) and (2.1), let B	 � � be any ball, ṽ ∈ W 1,H(·)(�) a
supersolution to (1.4), non-negative in B	 and η ∈ C1

c (B	). Then for all γ ∈ (1, p) there
holds ∫

B	

ṽ−γ ηq H(x, Dṽ) dx ≤ c
∫

B	

ṽ−γ H(x, |Dη|ṽ) dx,

with c = c(ν, L, p, q, γ ).

Proof Since ṽ is a non-negative supersolution to (1.4), inequality (4.13) applies, so, either
ṽ ≡ 0 a.e. on B2	, or we can assume that ṽ is strictly positive in B	. In the first scenario there
is nothing interesting to prove, so we can look at the second one. For η as in the statement,
and any γ̃ > 0, we test (1.11) against w := ηq ṽ−γ̃ to obtain, with the help of (2.1)1,2 and
Young’s inequality,

νγ̃

∫
B	

ṽ−γ̃−1ηq H(x, Dṽ) dx ≤ Lq
∫

B	

(
H(x, Dṽ)

|Dṽ| ηq−1|Dη|ṽ
)

ṽ−γ̃−1 dx

≤ νγ̃

2

∫
B	

ṽ−γ̃−1H(x, Dṽ)ηq dx

+
(

c

νγ̃

)q−1 ∫
B	

H(x, |Dη|ṽ)ṽ−γ̃−1 dx, (5.1)

for c = c(L, p, q). Absorbing terms in (4.18) and setting γ := γ̃ + 1, we obtain the
announced inequality. ��

Now we show how to control the oscillation of a solution v ∈ Kψ(�) across the contact
set via the oscillation of the obstacle ψ .

Lemma 5.2 Under assumptions (2.2) and (2.1), let K ⊂ � be a compact set and v ∈ Kψ(�)

be a solution to problem (1.10) with obstacle ψ ∈ C(�) and such that

|ψ(x1) − ψ(x2)| ≤ Cψ |x1 − x2|β0 for all x1 ∈ K , x2 ∈ �, (5.2)

where β0 ∈ (0, 1] and Cψ is a positive, absolute constant. Let μ = − divA(x, Dv). Then,
for any 	 ∈ (0, 1

40 min {1, dist{K , ∂�}}) and all x̄ ∈ K it holds

μ(B	(x̄)) ≤ c(dataψ, Cψ, ‖a‖L∞(�))

∫
B	(x̄)

Hσ (x, 	−1) dx,

where σ := 1 − β0
q (p − 1).

Proof Since v ∈ Kψ(�) is a solution to problem (1.10) andψ ∈ C(�), by Theorem 2, fourth
part, v is continuous. Given that v is also a supersolution to (1.4), it realizes (1.11), so Riesz’s
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representation theorem renders the existence of a unique, non-negative Radon measure μ

such that for all η ∈ C∞
c (�) there holds∫

�

A(x, Dv) · Dη dx −
∫

�

η dμ = 0 in �. (5.3)

Let x̄ ∈ K and B	(x̄) ⊂ � such that B16	(x̄) � �. Keeping in mind the terminology
introduced in (4.20), if B	(x̄) does not touch the contact set, i.e., B	(x̄) ∩ �c = ∅, then, by
Theorem 2, the fourth part, the function v is AH(·)-harmonic in B	(x̄) and μ(B	(x̄)) ≡ 0.
Hence, it suffices to consider only the case when B	 ∩ �c �= ∅. Let x0 ∈ B	(x̄) ∩ �c and
notice that, by monotonicity, μ(B	(x̄)) ≤ μ(B2	(x0)). Let x+, x− ∈ B̄16	(x0) be such that
ψ(x+) = supx∈B16	(x0) ψ(x) and ψ(x−) = inf x∈B16	(x0) ψ(x). Then, by (5.2),

osc
x∈B16	(x0)

ψ(x) = (ψ(x+) − ψ(x̄)) − (ψ(x−) − ψ(x̄))

≤ Cψ

(|x+ − x̄ |β0 + |x̄ − x−|β0)
≤ Cψ

(|x+ − x0|β0 + 2|x̄ − x0|β0 + |x0 − x−|β0) ≤ c(β0, Cψ)	β0 . (5.4)

Now set

ϑ+ := osc
x∈B8	(x0)

ψ(x) + inf
x∈B8	(x0)

v(x) and ϑ− := osc
x∈B8	(x0)

ψ(x) − inf
x∈B8	(x0)

v(x),

and observe that for all x ∈ B8	(x0),⎧⎨
⎩

v(x) − ϑ+ ≤ v(x) + osc
x∈B8	(x0)

ψ(x) − inf x∈B8	(x0) v(x) = v(x) + ϑ−,

v(x) + ϑ− ≥ 0.
(5.5)

Moreover, since

inf
x∈B8	(x0)

ψ(x) ≤ inf
x∈B8	(x0)

v(x) ≤ v(x0) = ψ(x0) ≤ sup
x∈B8	(x0)

ψ(x),

we infer that ‖ψ‖L∞(B8	(x0)) ≤ ϑ+. Therefore, by (4.12) with M = ϑ+ we have

sup
x∈B4	(x0)

(v(x) − ϑ+)+ ≤ c

(∫
−

B8	

(v(x) − ϑ+)h+ dx

) 1
h

,

for c = c(dataψ, h). Combining the content of the previous display with (5.5), we get

sup
x∈B4	(x0)

(v(x) − ϑ+)+ ≤ c

(∫
−

B8	

(v(x) + ϑ−)h− dx

) 1
h−

,

where c = c(dataψ) and h− is the exponent appearing in (4.13). From (5.5)2, we see that
v + ϑ− is a non-negative supersolution to (1.4) in B8	(x0); thus, using the definition of ϑ+
we have

osc
x∈B4	(x0)

v(x) − osc
x∈B8	(x0)

ψ(x) ≤ sup
x∈B4	(x0)

(v(x) − ϑ+)+

≤ c inf
x∈B4	(x0)

(v(x) + ϑ−)

≤ c

(
v(x0) + osc

x∈B8	(x0)
ψ(x) − inf

x∈B8	(x0)
ψ(x)

)
≤ c osc

x∈B8	(x0)
ψ(x),
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which due to (5.4) implies that

osc
x∈B4	(x0)

v(x) ≤ c osc
x∈B8	(x0)

ψ(x) ≤ c	β0 . (5.6)

Here c = c(dataψ, Cψ). Now, set

ṽ := v − inf
x∈B4	(x0)

v(x), (5.7)

notice that Dṽ = Dv and pick η ∈ C1
c (B4	(x0)) such that χB2	(x0) ≤ η ≤ χB4	(x0) and

|Dη| ≤ 	−1. Clearly, recalling also Theorem 2, ṽ is a bounded supersolution to (1.4) which
is non-negative in B4	(x0), thus, by (5.3), the weighted Hölder’s inequality and the fact that
(q − 1)p/(p − 1) ≥ q , we obtain

μ(B2	(x0)) ≤
∫

B4	(x0)
ηq dμ = q

∫
B4	(x0)

ηq−1A(x, Dv) · Dη dx

≤ L
∫

B4	(x0)
ηq−1

(
ṽ

(−1+1)γ p−1
p |Dv|p−1

+ṽ
(−1+1)γ q−1

q a(x)|Dv|q−1
)

|Dη| dx

≤ q L

(∫
B4	(x0)

ηq ṽ−γ |Dv|p dx

) p−1
p

(∫
B4	(x0)

ṽγ (p−1)|Dη|p dx

) 1
p

+ q L

(∫
B4	(x0)

ηq ṽ−γ a(x)|Dv|q dx

) q−1
q

(∫
B4	(x0)

ṽγ (q−1)a(x)|Dη|q dx

) 1
q

, (5.8)

where γ ∈ (1, p). The reason behind this choice will be clear in a few lines. Let us estimate
the last two terms in (5.8). First, notice that since B	(x̄) ⊂ B2	(x0), then ai (B	(x̄)) ≥
ai (B4	(x0)). Invoking also (2.2), we have
∫

B4	(x0)
H(x, 	−1) dx =

∫
B4	(x0)

H(x, 	−1) + ai (B4	(x0))	
−q − ai (B4	(x0))	

−q dx

≤ c	n H−
B4	(x0)

(	−1) ≤ c	n H−
B	(x̄)(	

−1)

≤ c
∫

B	(x̄)

H(x, 	−1) dx, (5.9)

where c = c(n, [a]0,α). We continue estimating (5.8) by means of Lemma 5.1, (5.7), (5.6)
and (5.9) getting

(∫
B4	(x0)

ηq ṽ−γ |Dv|p dx

) p−1
p
(∫

B4	(x0)
ṽγ (p−1)|Dη|p dx

) 1
p
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≤ c

(∫
B4	(x0)

ṽ−γ H(x, |Dη|ṽ) dx

) p−1
p
(∫

B4	(x0)
ṽγ (p−1)|Dη|p dx

) 1
p

≤ c

(∫
B4	(x0)

ṽ p−γ H(x, 	−1) dx

) p−1
p
(∫

B4	(x0)
ṽγ (p−1)|Dη|p dx

) 1
p

≤ c

(
osc

x∈B4	(x0)
v(x)

)p−1 ∫
B4	(x0)

H(x, 	−1) dx

≤ c

(
osc

x∈B8	(x0)
ψ(x)

)p−1 ∫
B	(x̄)

H(x, 	−1) dx

≤ c	β0(p−1)
∫

B	(x̄)

H(x, 	−1) dx (5.10)

and similarly

(∫
B4	(x0)

ηq ṽ−γ a(x)|Dv|q dx

) q−1
q
(∫

B4	(x0)
ṽγ (q−1)a(x)|Dη|q dx

) 1
q

≤ c

(∫
B4	(x0)

ṽ−γ H(x, |Dη|ṽ) dx

) q−1
q
(∫

B4	(x0)
ṽγ (q−1)a(x)|Dη|q dx

) 1
q

≤ c

(
osc

x∈B4	(x0)
v(x)

) p(q−1)
q

∫
B	(x̄)

H(x, 	−1) dx

≤ c

(
osc

x∈B8	(x0)
ψ(x)

) p(q−1)
q

∫
B	(x̄)

H(x, 	−1) dx

≤ c	β0
p(q−1)

q

∫
B	(x̄)

H(x, 	−1) dx

≤ c	β0(p−1)
∫

B	(x̄)

H(x, 	−1) dx, (5.11)

with c = c(dataψ, Cψ). Here, we also used that β0
p(q−1)

q > β0(p − 1). In fact notice that,
since q > p, we have also

{
1 > 1 − β0

q (p − 1) > 1 − β0
p (p − 1),

p
(
1 − β0

q (p − 1)
)

> 1.
(5.12)

Merging the content of displays (5.8), (5.10) and (5.11), we obtain

μ(B	(x̄)) ≤μ(B2	(x0)) ≤ c	β0(p−1)
∫

B	(x̄)

H(x, 	−1) dx, (5.13)

for c = c(dataψ, Cψ). We stress that when the modulating coefficient a degenerates in
the sense of (2.6), we find again the result in [36, Lemma 2.1]. Now we need to relate the
quantity in (5.13) with the intrinsic Hausdorff measures discussed in Sect. 3. Having (5.12)
and recalling that 	 ≤ 1, we conclude that

	β0(p−1)
∫

B	(x̄)

H(x, 	−1) dx ≤ c
∫

B	(x̄)

	
−p
(
1− β0

q (p−1)
)

123



646 I. Chlebicka, C. De Filippis

+ a(x)
1− β0

q (p−1)
	

−q
(
1− β0

q (p−1)
)
dx,

with c = c(p, q, ‖a‖L∞(�)). We set σ := 1 − β0
q (p − 1) and Hσ (x, t) = t pσ + a(x)σ tqσ ,

see (2.8). Keeping in mind (5.12)2, we see that the Hausdorff-type measures defined by
means of Hσ (·) enters among those discussed in Sect. 3, therefore, from (5.13) we obtain

μ(B	(x̄)) ≤ c
∫

B	(x̄)

Hσ (x, 	−1) dx,

for c = c(dataψ, Cψ, ‖a‖L∞(�)). Notice that the dependency of the constants from dataψ

is justified by Remark 4.3. ��

5.2 Proof of Theorem 1

Now we are in position for proving our main result on the removability of singularities for
solutions to (1.4). Fix an open setU � �withU ∩ E �= ∅ (otherwise the proof is trivial), and
let v ∈ Ku(U ) be the unique solution to problem (1.10) in U . Notice that, in the light of the
discussion at the beginning of Sect. 4, μ = − divA(x, Dv) is a non-negative Radon measure
by Riesz’s representation theorem. Let K � E ∩U be a compact set. Lemma 5.2 then assures
that for any x0 ∈ K and all 	 ∈ (

0, 1
40 min {1, dist{K , ∂(E ∩ U )}}), the following decay

holds

μ(B	(x0)) ≤ c
∫

B	(x0)
Hσ

(
x, 	−1) dx, (5.14)

with c = c(datau, Cu, ‖a‖L∞(�)). By assumption, HHσ (·)(E) = 0, consequently also
HHσ (·)(K ) = 0. Therefore, for any ε > 0 we can cover K with balls B	 j (x j ) with radii 	 j

less than 1
80 min {1, dist{K , ∂(E ∩ U )}} and (x j ) j∈N ⊂ K , so that

μ(K ) ≤
∞∑
j=1

μ(B	 j (x j ))
(5.14)≤ c

∞∑
j=1

∫
B	 j (x j )

Hσ

(
x, 	−1) dx ≤ ε.

Sending ε to zero in the previous display, we can conclude that μ(K ) = 0. Moreover,
since μ is a Radon measure, K is an arbitrary compact subset of E ∩ U , and E ∩ U is
μ-measurable, we get that μ(E ∩ U ) = 0. Now we turn our attention to the set U\E and
show that μ(U\E) = 0. Let η ∈ W 1,H(·)

0 (U\E), η(x) ≥ 0 for a.e. x ∈ U\E and, for s > 0,

set ηs := min {sη, v − u}. Notice that, ηs ∈ W 1,H(·)
0 ((U\E)∩{x : v(x) > u(x)}), therefore,

by Theorem 2, fourth part,
∫

U\E
A(x, Dv) · Dηs dx =

∫
(U\E)∩{v>u}

A(x, Dv) · Dηs dx = 0. (5.15)

On the other hand, since u solves (1.4) in U\E , then
∫

U\E
A(x, Du) · Dηs dx = 0. (5.16)

Subtracting (5.16) from (5.15) we end up with
∫

U\E
(A(x, Dv) − A(x, Du)) · Dηs dx = 0. (5.17)
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Then, recalling also (2.5), from (5.15)–(5.17) we obtain∫
(U\E)∩{sη≤v−u}

(A(x, Dv) − A(x, Du)) · Dη dx

≤ −1

s

∫
(U\E)∩{sη>v−u}

(A(x, Dv) − A(x, Du)) · (Dv − Du) dx ≤ 0.

The content of the previous display and the dominated convergence theorem allow concluding
that ∫

U\E
(A(x, Dv) − A(x, Du)) · Dη dx ≤ 0

and, since u solves (1.4), we obtain∫
U\E

A(x, Dv) · Dη dx ≤ 0

for all non-negative η ∈ W 1,H(·)
0 (U\E), thus, recalling (5.3), μ(U\E) = 0. Hence, μ(U ) =

0, which means ∫
U

A(x, Dv) · Dw dx = 0 for all w ∈ W 1,H(·)
0 (U ). (5.18)

Now, set Â(x, z) := −A(x,−z) and notice that, by very definition, the tensor Â satisfies
(2.1). Consider v̂ ∈ W 1,H(·)(U ) being a solution to the obstacle problem∫

�

Â(x, Dv̂) · (Dw − Dv̂) dx ≥ 0 for all w ∈ K−u(U ).

Proceeding as before, we conclude that v̂ satisfies∫
U

−A(x,−Dv̂) · Dw dx =
∫

U
Â(x, Dv̂) · Dw dx = 0, (5.19)

for all w ∈ W 1,H(·)
0 (U ). Therefore, it only remains to show that v = −v̂ = u. If we define

w̄ := v + v̂ ∈ W 1,H(·)(U ), therefore it is an admissible competitor in both (5.18) and (5.19).
Thus, testing them against w̄, adding (5.18) and (5.19) we obtain

0 ≤ ν

∫
U
V(Dv, Dv̂) dx ≤ c

∫
U

(
A(x, Dv) − A(x,−Dv̂)

) · (Dv + Dv̂) dx = 0,

cf. (2.5). Therefore, D(v + v̂) = 0 a.e. in U and since v + v̂ ∈ W 1,H(·)
0 (U ), we have v = −v̂

a.e. in U . Recalling that by Theorem 2, −v̂ ≤ u ≤ v a.e. in U , from (5.18) and (5.19) we
obtain that u solves (1.4) in U . Since U is arbitrary, we can conclude that u solves (1.4) in
�, thus E is removable. ��
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