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Abstract
The aim of this paper is to study Sasakian immersions of compact Sasakian manifolds into
the odd-dimensional sphere equipped with the standard Sasakian structure. We obtain a
complete classification of such manifolds in the Einstein and η-Einstein cases when the codi-
mension of the immersion is 4. Moreover, we exhibit infinite families of compact Sasakian
η-Einstein manifolds which cannot admit a Sasakian immersion into any odd-dimensional
sphere. Finally,we show that, after possibly performing aD-homothetic deformation, a homo-
geneous Sasakian manifold can be Sasakian immersed into some odd-dimensional sphere if
and only if S is regular and either S is simply connected or its fundamental group is finite
cyclic.

Keywords Sasakian · Sasaki–Einstein · η-Einstein · Sasakian immersion · Kähler
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1 Introduction

Sasakian manifolds were introduced by the foundational work of Sasaki [31] in 1960. A
contact metric manifold is a contact connected manifold (S, η) admitting a Riemannian
metric g compatible with the contact structure, in the sense that, defined the (1, 1)-tensor φ

by dη(X , Y ) = 2g(X , φY ), the following conditions are fulfilled

φ2X = −X + η(X)ξ, g(φX , φY ) = g(X , Y ) − η(X)η(Y ), (1)
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where ξ denotes the Reeb vector field of the contact structure, that is, the unique vector field
on S such that

iξ η = 1, iξdη = 0.

Moreover, a contact metric manifold is said to be Sasakian if the following integrability
condition is satisfied

[φX , φY ] = −dη(X , Y )ξ, (2)

for any vector fields X and Y on S. It follows from the definition that S must be of odd
dimension, say 2n + 1. Two Sasakian manifolds (S1, η1, g1) and (S2, η2, g2) are said to be
equivalent if there exists a contactomorphism F : S1 −→ S2 between them which is also an
isometry, i.e.,

F∗η2 = η1, F∗g2 = g1. (3)

One can prove that if (3) holds, then F satisfies also

F∗x ◦ φ1 = φ2 ◦ F∗x , F∗x ξ1 = ξ2

for any x ∈ S1. An isometric contactomorphism F : S −→ S from a Sasakian manifold
(S, η, g) to itself will be called a Sasakian transformation of (S, η, g). A Sasakian manifold
is homogeneous if it is acted upon transitively by its group of Sasakian transformations.

Sasakian geometry can be considered as the odd-dimensional counterpart of Kähler geom-
etry. In fact in any contact manifold (S, η), one can consider the 1-dimensional foliation
defined by the Reeb vector field. Actually one can prove that this foliation is transversely
Kähler if and only if S is Sasakian. On the other hand, a Sasakian manifold can be also char-
acterized as a Riemannian manifold (S, g)whose metric cone (S×R

+, r2g+dr2) is Kähler.
In particular, one can prove that (S, g) is Sasaki–Einstein if and only if the corresponding
Riemannian cone is Calabi–Yau. The classical example of Sasaki–Einstein manifold is given
by the odd-dimensional sphere S2n+1 endowed with the usual Riemannian metric g0 and the
contact form induced by the form x1dy1− y1dx1+· · ·+ xn+1dyn+1− yn+1dxn+1 onR2n+2.
This is called the standard Sasakian structure of S2n+1. In all the paper, unless otherwise
stated, whenever we speak of the S2n+1 as a Sasakian manifold, we are assuming that it is
equipped with the standard Sasakian structure (η0, g0).

Sasaki–Einstein manifolds attracted the attention of several authors since it was pointed
out their relation with string theory and the so-called Maldacena conjecture (see [25]). In this
framework, Gauntlett, Martelli, Sparks andWaldram discovered the first known examples of
irregular (see section below for the definition) Sasaki–Einstein metrics on S2 × S

3 [13]. We
mention also the work of Boyer, Galicki and Kollár [8] on the existence of non-trivial Sasaki–
Einstein metrics on the spheres and to the study by Martelli, Sparks and Yau on the relations
between the critical points of Einstein–Hilbert action and Sasaki–Einstein manifolds [26].

Let us consider now the foliation defined by the Reeb vector field of a Sasakian manifold
S. Using the theory of Riemannian submersions, one can show that the transverse geometry
is Kähler–Einstein if and only if the Ricci tensor of S satisfies the following equality:

Ric = λg + νη ⊗ η (4)

for some constants λ and ν. Any Sasakian manifold satisfying (4) is said to be η-Einstein.
Notice that in any η-Einstein Sasakian manifold the Einstein constants are related by
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λ + ν = 2n (5)

(see, e.g., [7]). Another useful property of η-Einstein Sasakian manifolds is that, contrary to
Sasaki–Einstein ones, they are preserved byDa-homothetic deformations, that is, the change
of structure tensors of the form

φa := φ, ξa := 1

a
ξ, ηa := aη, ga := ag + a(a − 1)η ⊗ η (6)

where a > 0. These transformations were first considered by Tanno in [33] and then used
in several contexts. One proves (see [3] and [7]) that if (φ, ξ, η, g) is a Sasakian η-Einstein
structure on S with Einstein constants (λ, ν), then, for any a > 0, the deformed structure
(φa, ξa, ηa, ga) is still a Sasakian η-Einstein structure with Einstein constants given by

λa = λ + 2 − 2a

a
, νa = 2n − λ + 2 − 2a

a
. (7)

Combining (4) and (7) one sees that the Da-homothetic deformation with a = λ+2
2(1+n)

takes an η-Einstein Sasakian structure with λ > −2 into a Sasaki–Einstein one.
Examples of η-Einstein Sasakian manifolds with λ > −2 are provided by the tangent

sphere bundle T1Sm of any sphere Sm (see [36]). Thus, a suitableDa-homothetic deformation
gives T1Sm the structure of a homogeneous Sasaki–Einstein manifold. In particular, the
standard homogeneous Sasaki–Einstein structure on S2 × S

3 � T1S2 can be obtained in this
way.

In this paper, we study the Sasakian immersions of Sasakian manifolds into the odd-
dimensional sphere. By a Sasakian immersion of a Sasakian manifold (S1, η1, g1) into a
Sasakian manifold (S2, η2, g2), we mean an isometric immersion ϕ : (S1, g1) −→ (S2, g2)
that preserves the Sasakian structures, i.e., such that

ϕ∗g2 = g1, ϕ∗η2 = η1, (8)

ϕ∗ξ1 = ξ2, ϕ∗ ◦ φ1 = φ2 ◦ ϕ∗. (9)

This definition was first considered in the early seventies, under different names, by Okumura
[30], Harada [15–17], Kon [23,24], who mainly studied some geometric conditions ensuring
the immersed manifold to be totally geodesic. However, despite the theory of Kähler immer-
sions, which has widely developed in the last decades due to the fundamental work of Calabi
(see [19] for an updated review of this topic), there are very few results about Sasakian
immersions. Relapsing some conditions in (8)–(9), we can mention a recent, remarkable
result of Ornea and Verbitsky [29]. Namely, they proved that a compact Sasakian manifold
admits a CR-embedding (i.e., an embedding, non-necessarily isometric, satisfying (9)) into a
Sasakian manifold diffeomorphic to a sphere. On the other hand, Takahashi [32] and Tanno
[34] studied codimension one isometric immersions of a Sasakian manifold S in Rieman-
nian manifolds of constant curvature, proving that, under some assumptions, S is of constant
curvature 1.

As far as the knowledge of the authors, no general results concerning Sasakian immersions
into the sphere are known. One of the aims of this paper is to start filling this gap. We start
by the following two classification results (Theorem 1 and Theorem 2 and the corresponding
corollaries), dealing with Sasaki–Einstein manifolds and Sasakian η-Einstein manifolds in
small codimension, respectively.

Theorem 1 Let S be a (2n+1)-dimensional compact Sasaki–Einstein manifold. Assume that
there exists a Sasakian immersion of S into S

2N+1 for some nonnegative integer N. Then S
is Sasaki equivalent to S

2n+1.
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A contact metric manifold is said to be K-contact if the Reeb vector field is Killing. In
dimension greater than 3, this condition is weaker than the Sasakian condition. However, as
proved by Boyer andGalicki [5] and in alternative way byApostolov, Draghici andMoroianu
[1], if the manifold is compact and Einstein, these two notions coincide. Using this fact and
Theorem 1, we then obtain the following:

Corollary 1 Let K be a (2n+1)-dimensional compact Einstein K -contact manifold. Assume
that there exists a contact metric immersion of K into S

2N+1 for some nonnegative integer
N. Then K is Sasaki equivalent to S2n+1.

In order to state Theorem 2, we recall the Boothby–Wang construction (see [4] and Sect.
2). To any regular and compact Sasakian manifold (S, η, g), we can associate a compact
Hodge manifold M , namely a compact Kähler manifold with integral Kähler form ω (so M
is projective algebraic by Kodaira’s theorem) and a principal S1-bundle π : S → M with
connection η such that π∗ω = adη, for a constant a �= 0. The manifold M will be called
the Kähler manifold corresponding to S through the Boothby–Wang construction. Notice
that if (S, ηa, ga), a > 0, is obtained by a regular Sasakian manifold (S, η, g) through
a Da-homothetic deformation, then (S, ηa, ga) is still regular and its corresponding Kähler
manifold through theBoothby–Wang construction is the same as that of (S, η, g). Conversely,
to any compact Hodge manifold M one can associate a regular compact Sasakian manifold
(S, η, g) which is the total space of a principal S1-bundle over M and such that π∗ω = dη.
Also in this case the manifold S will be called the Sasakian manifold corresponding to M
through the Boothby–Wang construction. If M is assumed to be simply connected, then S is
unique up to Sasakian transformations and will be denoted by S = BW(M) and called the
Boothby–Wang manifold corresponding to M (see Proposition 2 for a proof).

Theorem 2 Let S be a (2n+1)-dimensional compact η-Einstein Sasakian manifold. Assume
that there exists a Sasakian immersion of S into S

2N+1. If N = n + 2, then S is Sasaki
equivalent to S

2n+1 or to BW(Qn), where Qn ⊂ CPn+1 is the complex quadric equipped
with the restriction of the Fubini-Study form of CPn+1.

Theorem 2 should be compared with part i) of the main theorem by Kenmotsu in [21],
where the same conclusion is proved for N = n + 1 and when S is assumed to be complete
and not necessarily compact. For general codimension, due to the corresponding conjecture
in the Kähler case (see [19, Ch. 4]), we believe the validity of the following:

Conjecture If a compact η-Einstein Sasakian manifold can be Sasakian immersed into a
sphere, then S is Sasakian equivalent to BW(M) where M is a simply connected compact
homogeneous Hodge manifold.

The paper contains two further results (Theorem 3 and Theorem 4). In Theorem 3 (and
its Corollary 2) we exhibit infinite families of examples of η-Einstein Sasakian structures
on compact manifolds which cannot be induced by the Sasakian structure of the sphere. In
Theorem 4 we prove that the sphere S2N+1 is, for a suitable N , the Sasakian manifold where
all regular compact homogeneous Sasakian manifolds of the form BW(M) can be Sasakian
immersed.

Theorem 3 Let S be a compact regular Sasakian η-Einstein manifold of dimension 2n + 1
with Einstein constant λ < 2n, according to the notation in (4). Then S cannot be Sasakian
immersed into any sphere.
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Remark 1 It is worth pointing out that when λ ≤ −2, by (7), a Da-homothetic deformation
gives rise to an η-Einstein structure on S with Einstein constant λa ≤ −2. Thus, by Theorem
3, any Da-homothetic deformation of an η-Einstein Sasakian manifold with λ ≤ −2 cannot
admit a Sasakian immersion into any sphere. On the other hand, a suitable Da-homothetic
deformation of an η-Einstein Sasakian manifold with −2 < λ < 2n gives rise to an η-
Einstein Sasakian manifold with λa ≥ 2n (and vice versa). Notice also that the case λ = 2n
corresponds to the Einstein case, treated in Theorem 1.

Corollary 2 Let M be either a K3 surface with the Calabi–Yau Kähler form, or the flat
complex torus or a compact Riemann surface with the hyperbolic form1, and let S be a
regular Sasakian manifold corresponding to M through the Boothby–Wang construction.
Then S which cannot be Sasakian immersed into any sphere.

Theorem 4 Let S be a compact homogeneous Sasakian manifold. Then after possibly per-
forming a Da-homothetic deformation, S admits a Sasakian immersion into S

2N+1 if and
only S is regular and either S is simply connected or its fundamental group is finite cyclic.

The proof of Theorem 1 follows essentially by considering the induced Kähler immersion
from the Calabi–Yau Kähler cone C(S) of the Sasakian manifold S and the Kähler cone of
S
2N+1, namely CN+1 \ {0} and using a result of Umehara [38] which forces C(S) to be flat.

The proofs of Theorem2 andTheorem3, forλ ≤ −2, are obtained by considering the induced
Kähler immersions into the complex projective space obtained through the Boothby–Wang
construction (see Proposition 1) and using some known results on Kähler immersions due
to D. Hulin [18] and K. Tsukada [37], respectively. The case −2 < λ < 2n in Theorem 3
is treated by the Gauss–Codazzi equations once one considers the induced map between the
corresponding Kähler cones.

Finally, Theorem 4 is based on a lifting property (Proposition 3) and on the classification
of Kähler immersions of compact homogeneous Kähler spaces due to the second author, Di
Scala and Hishi [10].

The paper consists in two more sections. In Sect. 2 we prove Proposition 1, Proposition 2
and Proposition 3, while Sect. 3 is dedicated to the proofs of the main results, Theorems 1-4.

The authors would like to thank Gianluca Bande e Giovanni Placini for a careful reading
of the paper.

2 Boothby–Wang fibrations and Sasakian immersions

The following result, due to Harada [17], will be one of the key ingredients in the proof of
our main results.

Proposition 1 Let ϕ : S → S′ be a Sasakian immersion between two Sasakian manifolds S
and S′. Assume that S and S′ are compact, and S′ is regular. Then, S is regular and there
exists a Kähler immersion i(ϕ) : M → M ′ such that i(ϕ) ◦ π = π ′ ◦ ϕ, where π : S → M
and π ′ : S′ → M ′ are the Riemannian submersions given by Boothby–Wang construction.

We also need to see if we can reverse the construction in Proposition 1 by lifting a Kähler
immersion to a Sasakian one (see Proposition 3). So assume that M is a compact Hodge

1 Let 
g be a compact Riemann surface of genus g ≥ 2. One can realize 
g as the quotient D/� of the

unit disk D ⊂ C where � is a Fuchsian subgroup � ⊂ SU (1, 1). The Kähler form ωhyp = i
2π

dz∧dz̄
(1−|z|2)2 is

invariant by � so it defines an integral Kähler form on 
g , denoted by the same symbol ωhyp and called the
hyperbolic form.
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manifold. As we have already pointed out in the introduction, there exists a compact regular
Sasakian manifold (S, η, g) which has over it a S

1-bundle π : S → M with connection
η such that dη = π∗ω. On the other hand, the integrality of ω implies the existence of a
holomorphic (ample) line bundle p : L → M whose first Chern class is represented by the
De Rham cohomology class of the integral Kähler form ω, namely c1(L) = [ω]DR . Now,
by a result of Ornea and Verbitsky [28] there exists a Hermitian metric h∗ on the dual line
bundle p∗ : L∗ → M such that the bundle π : S → M is the restriction of p∗ : L∗ → M to
the subbundle consisting of unitary vectors of L∗, i.e., S = {v ∈ L∗ | h∗(v, v) = 1}. The key
point of their proof is that the cone C(S) of S, viewed as a complex manifold, is equal to the
set of nonzero vectors of L∗. Hence, the CR-structure on (S, η, g) and its (1, 1)-tensor φ is
uniquely determined by the complex structure of L . Actually one can prove (see, e.g., [40,
Section 2]) that h∗ is the dual of the Hermitian metric h on L satisfying Ric(h) = ω, where
Ric(h) is the 2-form on M whose local expression is given by

Ric(h) = − i

2π
∂∂̄ log h(σ (x), σ (x)) = ω

for a trivializing holomorphic section σ : U → L \{0} (here ∂ and ∂̄ are the standard complex
operator associated with the holomorphic structure of L). Moreover, the contact form η can
be written in terms of h∗ as follows (see, e.g., the first line of formula (8) p. 322 in [40]):

η = −i∂h∗|S (10)

Using these facts, we can prove the following uniqueness result.

Proposition 2 Let M be a simply connected compact Hodge manifold with integral Kähler
form ω. Let (S j , η j , g j ), j = 1, 2, be two Sasakian manifolds and assume there exist two
principal S1-bundles π j : Si → M with connection η j such that dη j = π∗

j ω, j = 1, 2.
Then, (S1, η1, g1) and (S2, η2, g2) are Sasakian equivalent.

Proof Let p j : L j → M , j = 1, 2, be two holomorphic line bundles such that c1(L j ) =
[ω]DR . Since M is simply connected, these line bundles are holomorphically equivalent and
so there exists a holomorphic diffeomorphism F̂ : L∗

1 → L∗
2 such that p2 ◦ F̂ = p1. Let h j∗,

j = 1, 2, be the Hermitian metric on L∗
j such that S j = {v ∈ L∗

j | h j∗(v, v) = 1}. Since
the dual Hermitian metric h j on L j , j = 1, 2, satisfies Ric(h j ) = ω and M is compact, one
easily gets F̂∗(h2∗) = λh1∗ for a positive constant λ. By denoting by F the restriction of
F̂ to S1, one then gets a diffeomorphism F : S1 → S2 such that π2 ◦ F = π1 and, by the
above-mentioned result of Ornea–Verbitsky, it preserves the tensors φ j of S j , namely

F∗x ◦ φ1 = φ2 ◦ F∗x ,

for all x ∈ S1. Moreover, by (10), one gets

F∗η2 = F∗(−i∂h2∗|S) = −i∂ F̂∗h2∗|S = −i∂λh1∗|S = −i∂h1∗|S = η1,

where we are denoting by the same symbol the ∂-operator of L j∗, j = 1, 2. The last two
equations imply F∗g2 = g1 and we are done. ��

When M is a simply connected compact Hodge manifold, we will denote by BW(M)

the Sasakian manifold, which we call the Boothby–Wang manifold (unique up to Sasakian
transformations by Proposition 2) such that there exists a principal S1-bundleπ : BW(M) →
M whose connection form η satisfies π∗ω = dη.
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Example 5 When M = CPn is the n-dimensional complex projective space and ω = ωFS is
the Fubini-Study Kähler form2, then BW(CPn) = S

2n+1 and the Boothby–Wang fibration
S
2n+1 → CPn is the Hopf fibration. Notice that in this case the line bundle L∗ is the

tautological line bundle over CPn .

Remark 2 When (M, ω) is a compact but non-simply connected Kähler manifold, one could
find an infinite family of non-equivalent regular Sasakian manifolds (S, η) → M which are
the total space of a S1-bundle over M and satisfying π∗ω = dη. This happens, for example,
by taking M = 
g a compact Riemann surface of genus g ≥ 2 with the hyperbolic form
ωhyp . Indeed, there exists an infinite family of non-equivalent holomorphic line bundles over
M whose first Chern class can be represented by ωhyp (see, e.g., [14]), and thus, by Ornea–
Verbitsky one gets an infinite family of non-equivalent regular Sasakian manifolds S which
correspond to M through the Boothby–Wang construction. Notice that, by Corollary 2, none
of these Sasakian manifolds can be Sasakian immersed into some sphere.

The following lifting result is the key ingredient in the proof of Theorem 4.

Proposition 3 Let M and M ′ be simply connected compact Hodge manifolds, and let
(BW(M), η, g) (resp. (BW(M ′), η′, g′) be the corresponding Boothby–Wang manifolds.
Given a Kähler immersion i : M → M ′, then there exists a Sasakian immersion
ϕ : BW(M) → BW(M ′) such that i ◦ π = π ′ ◦ ϕ.

Proof Consider the pull-back S
1-bundle B̂

π̂→ M induced by i , and let ψ : B̂ → BW(M ′)
be the bundle map (such that π ′ ◦ ψ = i ◦ π̂ ). Since i is a Kähler immersion, it follows
that (ψ∗η′, ψ∗g′) is a Sasakian structure on B̂ such that π̂∗ω = d(ψ∗η′). As M is simply
connected, it follows by Proposition 2 that there exists a diffeomorphism F : BW(M) → B̂
such that F∗ψ∗η′ = η and F∗ψ∗g′ = g. Hence, ϕ := ψ ◦ F is the desired lifting. ��
Example 6 It is interesting to construct explicit Sasakian immersions obtained as a lift of
Kähler immersions. For example, if one considers the Segre embedding (which is a Kähler
embedding)

i : CP1 × CP1 → CP3 : ([z0, z1], [w0.w1]) �→ [z0w0, z0w1, z1w0, z1w1],
then the map

ϕ : T1S3 ∼= S
2 × S

3 → S
7 : ([z0, z1], ξ0, ξ1) �→ (ξ0z0, ξ0z1, ξ1z0, ξ1z1)√|z0|2 + |z1|2

,

(S3 = {(ξ0, ξ1) ∈ C
2 | ξ20 +ξ21 = 1} and S2 = CP1), is a Sasakian immersion, where T1S3 ∼=

S
2 × S

3 is equipped with an η-Einstein Sasakian structure which can be also obtained as a
Da-deformation of the standard homogeneous Sasaki–Einstein structure on T1S3 ∼= S

2 × S
3

described in introduction (cf. [27] and Remark 3).

3 Proof of themain results

Proof of Theorem 1 Let ϕ : S −→ S
2N+1 be a Sasakian immersion. Then, ϕ induces a Kähler

immersion � = ϕ × IdR+ : C(S) −→ C
N+1 \ {0} between the corresponding Kähler cones.

2 In homogeneous coordinates, the Fubini-Study form reads as ωFS = i
2π ∂∂̄ log(|Z0|2 + · · · + |Zn |2).
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As already pointed out in introduction, it is well known (cf. [6]) that the Kähler cone C(S)

of a Sasaki–Einstein manifold is Calabi–Yau, i.e., the Kähler metric on C(S) is Ricci flat.
By a result of Umehara [38], a Ricci flat metric on a Kähler manifold which admits a Kähler
immersion intoCN (equippedwith the flatmetric) is forced to be flat. Notice that the curvature
tensors R and R̄ of the Riemannian manifolds S and C(S), respectively, are related by

R̄ (X , Y ) Z = R (X , Y ) Z + g(X , Z)Y − g(Y , Z)X

for any X , Y ∈ �(T S) (see, for instance, [1]). Thus, being C(S) flat, S becomes a manifold
of constant curvature 1. By a result of Tanno [35], locally the Sasakian structure of S is
isomorphic to the standard Sasakian structure of the (2n+1)-sphere. More precisely, being a
complete Riemannian manifold of constant curvature 1, S is isometric to a quotient S2n+1/�

of a Euclidean sphere under a finite group of isometries [39]. We claim that � is the identity
group, and so S is Sasakian equivalent to S

2n+1. Indeed, let π : S2n+1 → S
2n+1/� be the

universal covering map. Consider the Sasakian immersion f = ϕ ◦π : S2n+1 → S
2N+1, and

let i : S2n+1 ↪→ S
2N+1 be the standard totally geodesic embedding. Then, F = f × IdR+

and I = i × IdR+ are two Kähler immersions from C
n+1 \ {0} into C

N+1 \ {0} (the latter
is the natural inclusion). By the celebrated Calabi’s rigidity theorem (see [9, Theorem 2]),
there exists a unitary transformation U of CN+1 such that U ◦ F = I . Therefore, F , and
hence f , is forced to be injective. Thus, π is injective and � reduces to the identity group,
proving our claim. ��
Proof of Theorem 2 It follows by Proposition 1 and Example 5 that S is regular and if M
denotes the complex n-dimensional compact Kähler manifold given by the Boothby–Wang
construction, it admits a Kähler immersion into CPN , with N = n + 2. Since S is compact
and η-Einstein, its base M is a compact Kähler–Einstein manifold (cf. [6]). By a result due
to Tsukada [37], the codimension restriction forces M to be either the complex quadric
Qn ⊂ CPn+1 or CPn which are both simply connected. Hence, the conclusion follows by
Proposition 2.

Proof of Theorem 3 Let S be an η-Einstein Sasakian manifolds with Einstein constants (λ, ν)

and assume by a contradiction that there exists a Sasakian immersion ϕ : S −→ S
2N+1. We

distinguish two cases: −2 < λ < 2n and λ ≤ −2. Let us first suppose −2 < λ < 2n. A
straightforward computation shows that the Ricci tensor of the Riemannian cone C(S) of S
is given by

RicC(S)

(
d

dr
, ·

)
= 0, RicC(S)(X , Y ) = −ν (g(X , Y ) − η(X)η(Y )) (11)

for any X , Y ∈ �(T S). Using (11), one can easily get a local basis on C(S) with respect to
which the Ricci tensor of C(S) is represented by the following matrix

diag(−ν, . . . , −ν, 0, 0) (12)

where the entry −ν is repeated 2n times. Now, our assumption that −2 < λ < 2n together
with (5) yields that 0 < ν < 2+ 2n. In particular, in view of (12), this implies that the Ricci
tensor of the Kähler cone C(S) is not negative semidefinite. On the other hand, as in the
proof of Theorem 1, ϕ induces a Kähler immersion � : C(S) −→ C

N+1 \ {0} between the
corresponding Kähler cones. Hence, by the Gauss–Codazzi equations (see, e.g., [22, Prop.
9.5, Ch. IX]) one deduces that the Ricci tensor of C(S) is negative semidefinite, yielding
the desired contradiction. Assume now that λ ≤ −2, and let M be the Kähler manifold
which corresponds to S through the Boothby–Wang construction. Using the O’Neill tensors
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of the theory of Riemannian submersions, one can easily prove that M is a compact Kähler–
Einstein manifold with scalar curvature 2n(2+ λ) ≤ 0. On the other hand, by Proposition 1
and Example 5, the existence of the Sasakian immersion ϕ : S −→ S

2N+1 would give
rise to a Kähler immersion from M into CPN . But a result of Hulin [18] asserts that the
scalar curvature of a projectively induced Kähler–Einstein metric must be strictly positive,
in contrast with the inequality just proved. ��
Proof of Theorem 4 In order to prove the theorem notice first that if S is a compact homoge-
neous Sasakianmanifold then the compactHodgemanifoldM corresponding to S through the
Boothby–Wang construction is a compact homogeneous Kähler manifold. By a well-known
result (see, e.g., [2, Theorem 8.97]), M is then the Kähler product of a flat complex torus
and a simply connected compact homogeneous Kähler manifold, and hence, in particular, its
fundamental group is either infinite or trivial.

Assume now that S admits a Sasakian immersion into a sphere S2N+1, for some N . Then,
by Proposition 1 and Example 5, S is regular and M admits a Kähler immersion into the
complex projective space CPN . Thus, M is forced to be simply connected since the flat
complex torus cannot admit a Kähler immersion into CPN (see, e.g., [10, Theorem 3]).
Consider now the long exact sequence of homothopy groups associated with the Boothby–
Wang fibration π : S → M :

· · · → π1(S
1) ∼= Z

α→ π1(S)
β→ π1(M) → π0(S

1) = {0} → · · · (13)

The condition π1(M) = {0} implies that the map α : Z → π1(S) is surjective. Thus, π1(S)

is isomorphic to either {0}, Z or Zm for some integer m > 0. The possibility π1(S) = Z is
excluded by the fact that the first Betti number of a compact Sasakian manifold must be even
[12]. Then one implication of theorem follows.

Conversely, assume that S is a regular compact homogeneous Sasakian manifold whose
fundamental group is either trivial or finite cyclic. Let M be the compact homogeneous
Hodge manifold corresponding to S through the Boothby–Wang construction. By the long
exact sequence (13) and the surjectivity of the map β : π1(S) → π1(M), we deduce that
π1(M) is either trivial or finite cyclic. Therefore,M is forced to be simply connected since the
fundamental group of a torus is not finite. Now, any simply connected homogeneous compact
Hodge manifold admits a Kähler immersion into CPN , for some N (see Theorem 1 in [20]).
Thus, by Proposition 3, we can lift this Kähler immersion to a Sasakian immersion from
BW(M) into S

2N+1. Moreover, since M is simply connected, then, up to a Da-homothetic
deformation, S = BW(M), and we are done.

Remark 3 To understand the necessity of a Da-homothetic deformation in Theorem 4, con-
sider any compact simply connected homogeneous Hodge manifold M with an integral
Kähler–Einstein form, which has necessarily strictly positive scalar curvature. By Theorem
1 in [20] M admits a Kähler immersion into CPN , for some N , and then, by Proposition 3,
its Boothby–Wang Sasakian manifold BW(M) admits a Sasakian immersion into S

2N+1.
Theorem 3 forces BW(M) to be η-Einstein with λ > 2n. Then, by a suitableDa-homothetic
deformation of the Sasakian structure of BW(M) (cf. Remark 1) we get a compact and
homogeneous η-Einstein Sasakian manifold S with −2 < λa < 2n which, by Theorem 3,
does not admit a Sasakian immersion into any sphere. (Example 6 is a particular case of this
construction when M = CP1 ×CP1.)

We end this paper with an explicit example of compact homogeneous Sasakian manifold
with finite cyclic group admitting a Sasakian immersion into the sphere.
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Example 7 If m is a positive integer, then BW(CPn,mωFS) is the Sasakian manifold given
by the lens space S

2n+1 /Zm (for m = 1 one gets Example 5 while, for m = 2, one gets
SO(3) with the standard Sasakian structure). Indeed, one can show (see, e.g., [11, p. 908])
that the boundary of the disk bundle of the mth power p : L∗m → CPn of the tautological
bundle overCPn (cf. Example 5) is diffeomorphic to S2n+1 /Zm and byOrnea–Verbitsky [28]
one gets that the restriction of p to S2n+1 /Zm is indeed the Boothby–Wang fibration. Now,
since the fundamental group of S2n+1 /Zm is Zm , Theorem 4 yields a Sasakian immersion of
S
2n+1 /Zm into S

2N+1, for some N . More precisely, this immersion is the lift of the Kähler

immersion, Vm : (CPn,mωFS) → (CP

(
n + m

n

)

, ωFS) obtained by a suitable rescaling of

the Veronese embedding (see [9, Theorem 13]) (hence, in this case, N = 2

(
n + m

n

)
+ 1).
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