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Abstract
The principle of optimizing inequalities, or their equivalent operator theoretic formulation,
is well established in analysis. For an operator, this corresponds to extending its action to
larger domains, hopefully to the largest possible such domain (i.e., its optimal domain). Some
classical operators are already optimally defined (e.g., the Hilbert transform in L p(R), 1 <

p < ∞), and others are not (e.g., the Hausdorff–Young inequality in L p(T), 1 < p < 2, or
the Sobolev inequality in various spaces). In this paper, a detailed investigation is undertaken
of the finite Hilbert transform T acting on rearrangement invariant spaces X on (−1, 1),
an operator whose singular kernel is neither positive nor does it possess any monotonicity
properties. For a large class of such spaces X , it is shown that T is already optimally defined
on X (this is known for L p(−1, 1) for all 1 < p < ∞, except p = 2). The case p = 2
is significantly different because the range of T is a proper dense subspace of L2(−1, 1).
Nevertheless, by a completely different approach, it is established that T is also optimally
defined on L2(−1, 1). Our methods are also used to show that the solution of the airfoil
equation, which is well known for the spaces L p(−1, 1) whenever p �= 2 (due to certain
properties of T ), can also be extended to the class of r.i. spaces X considered in this paper.
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1 Introduction

For 1 ≤ p ≤ 2, the Fourier transform F maps L p(T) into �p′
(Z), with 1

p + 1
p′ = 1. The

Hausdorff–Young inequality ‖F( f )‖p′ ≤ ‖ f ‖p for f ∈ L p(T) ensures that F is continuous.
The following question was raised by Edwards [14, p. 206], 50 years ago: Given 1 ≤ p ≤ 2,
what can be said about the space Fp(T) consisting of those functions f ∈ L1(T) having
the property that F( f χA) ∈ �p′

(Z) for all sets A in the Borel σ -algebra BT on T? A
consideration of the functional

f �→ sup
A∈BT

‖F(χA f )‖p′ , (1.1)

would be expected to be relevant in this regard. For p = 2, the operator F : L2(T) → �2(Z)

is a Banach space isomorphism, which implies that F2(T) = L2(T). What about the case
1 < p < 2? It turns out that the functional (1.1) is a norm, that Fp(T) ⊆ L1(T) is a Banach
function space (briefly, B.f.s.) properly containing L p(T) and that F : Fp(T) → �p′

(Z) is
continuous. Moreover, Fp(T) is the largest such space in a certain sense. For the above facts
we refer to [25]. The point is that the Hausdorff–Young inequality for functions in L p(T),
1 < p < 2, can be extended to its genuinely larger optimal domain space Fp(T).

For many classical inequalities in analysis, or their equivalent operator theoretic formu-
lation, an investigation along the lines of the Hausdorff–Young inequality alluded to above
can be quite fruitful. One has a linear operator S defined on some B.f.s. Z ⊆ L0(μ), with
(�,�,μ) a measure space, taking values in a Banach space Y and a B.f.s. X ⊆ Z such that
S : X → Y is bounded. The above question posed by Edwards is also meaningful in this
setting: What can be said about the space X S consisting of those functions f ∈ Z satisfying
S( f χA) ∈ Y for all A ∈ �? In particular, is X S genuinely larger than X? If so, can X S

be equipped with a function norm such that X ⊆ X S continuously and S has a Y -valued,
continuous linear extension to X S? And, of course, X S should be the largest space with these
properties. A few examples will illuminate this discussion.

Let � ⊂ R
n be a bounded domain with |�| = 1. The validity of the generalized Sobolev

inequality ‖u∗‖Y ≤ C‖|∇u|∗‖X for u ∈ C1
0(�), where v∗ is the decreasing rearrangement of

a function v and X , Y are rearrangement invariant (briefly, r.i.) spaces on [0, 1], is equivalent
to the boundedness of the inclusion operator j : W 1

0 X(�) → Y (�) for a suitable Sobolev
space W 1

0 X(�). By using a generalized Poincaré inequality, Cwikel and Pustylnik [10] and
Edmunds et al. [13] showed that the boundedness of j is equivalent to the boundedness, from
X into Y , of the one-dimensional operator S associated with Sobolev inequality, namely

(S( f ))(t) :=
∫ 1

t
f (s)s(1/n)−1ds, t ∈ [0, 1],

which is generated by the kernel K (t, s) := s(1/n)−1χ[t,1] on [0, 1] × [0, 1]. Accordingly,
being able to extend the operator S is equivalent to extending the imbedding j and hence,
to refining the generalized Sobolev inequality. The optimal extension of this kernel operator
S is treated in [6,7]; whether or not the initial space becomes genuinely larger depends on
properties of X and Y . A knowledge of the optimal domain of S has implications for the
compactness of the Sobolev imbedding j [8,9].

For 0 < α < 1, the classical fractional integral operator in the spaces L p(0, 1), 1 ≤ p ≤
∞, has kernel (up to a constant) given by K (t, s) = |s − t |α−1. Its optimal extension has
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been investigated in [5]. For convolution (and more general Fourier multipliers) operators in
L p(G), 1 ≤ p < ∞, with G a compact abelian group, see [24], [27, Ch.7] and the references
therein. The optimal extension of the classical Hardy operator in L p(R), 1 < p < ∞, with
kernel K (t, s) := (1/t)χ[0,t](s) has been investigated in [11].

In this paper, we consider another classical singular integral operator. The Hilbert trans-
form H : L p(R) → L p(R), for 1 < p < ∞ (whose boundedness is due to M. Riesz),
is defined via convolution as a principal value integral; see, for example, [15, §6.7]. Since
H2 = −I , the operator H is a Banach space isomorphism on L p(R) for every 1 < p < ∞
and so there is no larger B.f.s. which contains L p(R) and such that H has an L p(R)-valued
extension to this space. A related operator is the Hilbert transform H2π of 2π-periodic func-
tions defined via the principal value integrals

(H2π ( f ))(x) = p.v.
1

2π

∫ π

−π

f (x − u) cot(u/2) du

for every measurable 2π -periodic function f and for every point x ∈ [−π, π] for which the
p.v.-integral exists. For each 1 < p < ∞, the operator H2π is linear and continuous from
L p(−π, π) into itself; denote this operator by H p

2π . It is known that H p
2π has proper closed

range, [3, Sect. 9.1]. Hence, H p
2π is surely not an isomorphism on L p(−π, π). Nevertheless,

as for H , it turns out that there is no genuinely larger B.f.s. containing L p(−π, π) such that
H p
2π has an L p(−π, π)-valued extension to this space [27, Example 4.20].
The finite Hilbert transform T ( f ) of f ∈ L1(−1, 1) is the principal value integral

(T ( f ))(t) = lim
ε→0+

1

π

(∫ t−ε

−1
+

∫ 1

t+ε

)
f (x)

x − t
dx,

which exists for a.e. t ∈ (−1, 1) and is a measurable function. It is known to have important
applications to aerodynamics, via the resolution of the so-called airfoil equation, [4], [18,
Ch.11], [28,32,33]. More recently, the finite Hilbert transform has also found applications to
problems arising in image reconstruction; see, for example, [17,29]. For each 1 < p < ∞,
the linear operator f �→ T ( f )maps L p(−1, 1) continuously into itself (denote this operator
by Tp). Except when p = 2, the operator Tp behaves similarly, in some sense, to H p

2π .
Consequently, there is no larger B.f.s. containing L p(−1, 1) such that Tp has an L p(−1, 1)-
valued extension to this space, [27, Example 4.21]. However, for p = 2 the situation is
significantly different, as already pointed out long ago in [30, p. 44]. One of the reasons is
that the range of T2 is a proper dense subspace of L2(−1, 1). The arguments used for Tp in the
cases 1 < p < 2 and 2 < p < ∞ do not apply to T2. Moreover, they fail to indicate whether
or not T2 has an L2(−1, 1)-valued extension to a B.f.s. genuinely larger than L2(−1, 1). The
atypical behavior of T when p = 2 has also been observed in [1], where T is considered to
be acting in weighted L p-spaces. Accordingly, the case p = 2 requires different arguments.

In this paper, we consider the inversion and the extension of the finite Hilbert transform T
on function spaces on (−1, 1). In Sect. 3, we extend known properties of T when it acts on
the spaces L p(−1, 1), for p �= 2, to a larger class of r.i. spaces X on (−1, 1) satisfying certain
restrictions on their Boyd indices, more precisely, that 0 < αX ≤ αX < 1/2 or 1/2 < αX ≤
αX < 1; see Theorems 3.2 and 3.3. In particular, it is established that T is a Fredholmoperator
in such r.i. spaces. This allows a refinement of the solution of the airfoil equation by extending
it to such r.i. spaces; see Corollary 3.5. In Sect. 4, we apply the results of the previous section
to prove (cf. Theorem 4.7) the impossibility of extending the finite Hilbert transform when
it acts on r.i. spaces X satisfying 0 < αX ≤ αX < 1/2 or 1/2 < αX ≤ αX < 1. The
proof relies on a deep result of Talagrand concerning L0-valued measures. In the course
of that investigation, we establish a rather unexpected characterization of when a function
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f ∈ L1(−1, 1) belongs to X in terms of the set of T -transforms {T ( f χA) : A measurable};
see Proposition 4.2. In Sect. 5, we address the case p = 2. It is established (cf. Theorem
5.3), via a completely different approach, that T : L2(−1, 1) → L2(−1, 1) does not have a
continuous L2(−1, 1)-valued extension to any larger B.f.s. The argument relies on showing
that the norm

f �→ sup
|θ |=1

‖T (θ f )‖2

(equivalent to (1.1) in the appropriate setting) is equivalent to the usual norm in L2(−1, 1).
We conclude Sect. 5 by extending the above mentioned characterization to show that f ∈
L2(−1, 1) if and only if T ( f χA) ∈ L2(−1, 1) for every measurable set A ⊆ (−1, 1); see
Corollary 5.5.

Not all r.i. spaces X which T maps into itself (i.e., satisfying 0 < αX ≤ αX < 1) are
covered. Except when X = L2(−1, 1), for those r.i. spaces X not satisfying the conditions
0 < αX ≤ αX < 1/2 or 1/2 < αX ≤ αX < 1 (e.g., the Lorentz spaces L2,q for 1 ≤ q ≤ ∞
with q �= 2) the techniques used here do not apply; see Remark 5.7.

2 Preliminaries

In this paper, the relevant measure space is (−1, 1) equipped with its Borel σ -algebra B
and Lebesgue measure | · | (restricted to B). We denote by sim B the vector space of all
C-valued, B-simple functions and by L0(−1, 1) = L0 the space (of equivalence classes) of
all C-valued measurable functions, endowed with the topology of convergence in measure.
The space L p(−1, 1) is denoted simply by L p , for 1 ≤ p ≤ ∞.

A Banach function space (B.f.s.) X on (−1, 1) is a Banach space X ⊆ L0 satisfying
the ideal property, that is, g ∈ X and ‖g‖X ≤ ‖ f ‖X whenever f ∈ X and |g| ≤ | f | a.e.
The associate space X ′ of X consists of all functions g satisfying

∫ 1
−1 | f g| < ∞, for every

f ∈ X , equipped with the norm ‖g‖X ′ := sup{| ∫ 1
−1 f g| : ‖ f ‖X ≤ 1}. The space X ′ is a

closed subspace of the Banach space dual X∗ of X . The second associate space X ′′ of X is
defined as X ′′ = (X ′)′. The norm in X is absolutely continuous if, for every f ∈ X , we have
‖ f χA‖X → 0 whenever |A| → 0. The space X satisfies the Fatou property if, whenever
{ fn}∞n=1 ⊆ X satisfies 0 ≤ fn ≤ fn+1 ↑ f a.e. with supn ‖ fn‖X < ∞, then f ∈ X and
‖ fn‖X → ‖ f ‖X .

A rearrangement invariant (r.i.) space X on (−1, 1) is a B.f.s. such that if g∗ ≤ f ∗
with f ∈ X , then g ∈ X and ‖g‖X ≤ ‖ f ‖X . Here, f ∗ : [0, 2] → [0,∞] is the decreasing
rearrangement of f , that is, the right continuous inverse of its distribution function: λ �→
|{t ∈ (−1, 1) : | f (t)| > λ}|. The associate space X ′ of a r.i. space X is again a r.i. space.
Every r.i. space on (−1, 1) satisfies L∞ ⊆ X ⊆ L1, [2, Corollary II.6.7]. Moreover, if f ∈ X
and g ∈ X ′, then f g ∈ L1 and ‖ f g‖L1 ≤ ‖ f ‖X‖g‖X ′ , i.e., Hölder’s inequality is available.
The fundamental function of X is defined by ϕX (t) := ‖χA‖X for A ∈ B with |A| = t , for
t ∈ [0, 2].

In this paper, all B.f.s.’ X (hence, all r.i. spaces) are on (−1, 1) relative to Lebesgue
measure and, as in [2], satisfy the Fatou property. In this case, X ′′ = X and hence, f ∈ X if
and only if

∫ 1
−1 | f g| < ∞, for every g ∈ X ′. Moreover, X ′ is a norm-fundamental subspace

of X∗, that is, ‖ f ‖X = sup‖g‖X ′≤1 | ∫ 1
−1 f g| for f ∈ X , [2, pp.12-13]. If X is separable, then

X ′ = X∗.
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The family of r.i. spaces includes many classical spaces appearing in analysis, such as the
Lorentz L p,q spaces, [2, Definition IV.4.1], Orlicz Lϕ spaces [2, §4.8], Marcinkiewicz Mϕ

spaces, [2, Definition II.5.7], Lorentz ϕ spaces, [2, Definition II.5.12], and the Zygmund
L p(log L)α spaces, [2, Definition IV.6.11]. In particular, L p = L p,p , for 1 ≤ p ≤ ∞.
The space weak-L1, denoted by L1,∞(−1, 1) = L1,∞, will play an important role; it is not
a Banach space, [2, Definition IV.4.1]. It satisfies L1 ⊆ L1,∞ ⊆ L0, with all inclusions
continuous.

The dilation operator Et for t > 0 is defined, for each f ∈ X , by Et ( f )(s) := f (st)
for −1 ≤ st ≤ 1 and zero in other cases. The operator Et : X → X is bounded with
‖Et‖X→X ≤ max{t, 1}. The lower and upper Boyd indices of X are defined, respectively,
by

αX := sup
0<t<1

log ‖E1/t‖X→X

log t
and αX := inf

1<t<∞
log ‖E1/t‖X→X

log t
,

[2, Definition III.5.12]. They satisfy 0 ≤ αX ≤ αX ≤ 1. Note that αL p = αL p = 1/p.
We recall a technical fact from the theory of r.i. spaces that will be often used; see, for

example [21, Proposition 2.b.3].

Lemma 2.1 Let X be a r.i. space such that 0 < α < αX ≤ αX < β < 1. Then, there exist
p, q satisfying 1/β < p < q < 1/α such that Lq ⊆ X ⊆ L p with continuous inclusions.

An important role will be played by the Marcinkiewicz space L2,∞(−1, 1) = L2,∞, also
known as weak-L2, [2, Definition IV.4.1]. It consists of those f ∈ L0 satisfying

f ∗(t) ≤ M

t1/2
, 0 < t ≤ 2, (2.1)

for some constant M > 0. Consider the function 1/
√
1 − x2 on (−1, 1). Since its decreasing

rearrangement (1/
√
1 − x2)∗ is the function t �→ 2/t1/2, it follows that 1/

√
1 − x2 belongs

to L2,∞. Actually, for any r.i. space X it is the case that 1/
√
1 − x2 ∈ X if and only if

L2,∞ ⊆ X . Consequently, L2,∞ is the smallest r.i. space which contains 1/
√
1 − x2. Note

that αL2,∞ = αL2,∞ = 1/2.
For all of the above and further facts on r.i. spaces, see [2,21], for example.

3 Inversion of the finite Hilbert transform on r.i. spaces

In [18, Ch. 11], [26], [33, §4.3], a detailed study of the inversion of the finite Hilbert transform
was undertaken for T acting on the spaces L p whenever 1 < p < 2 and 2 < p < ∞. We
study here the extension of those results to a larger class of spaces, namely the r.i. spaces.
The restrictions on p indicated above for the L p spaces can be formulated for r.i. spaces in
terms of their Boyd indices, namely 0 < αX ≤ αX < 1/2 and 1/2 < αX ≤ αX < 1.

A result of Boyd [2, Theorem III.5.18] allows the extension of Riesz’s classical theorem
on the boundedness of the Hilbert transform H on the spaces L p(R), for 1 < p < ∞, to a
certain class of r.i. spaces. Indeed, since T f = χ(−1,1) H( f χ(−1,1)), it follows for a r.i. space
X with non-trivial lower and upper Boyd indices, that is, 0 < αX ≤ αX < 1, that T : X → X
boundedly; this is indicated by simplywriting TX . Since αX ′ = 1−αX and αX ′ = 1−αX , the
condition 0 < αX ≤ αX < 1 implies that 0 < αX ′ ≤ αX ′ < 1. Hence, TX ′ : X ′ → X ′ is also
bounded. The operator T is not continuous on L1. However, due to a result of Kolmogorov
[2, Theorem III.4.9(b)], T : L1 → L1,∞ is continuous. It follows from the Parseval formula
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in Proposition 3.1(b) that the restriction of the dual operator T ∗
X : X∗ → X∗ of TX to the

closed subspace X ′ of X∗ is precisely −TX ′ : X ′ → X ′.
In the study of the operator T , an important role is played by the particular function

1/
√
1 − x2, which belongs to each L p , 1 ≤ p < 2. The reason is that

T
( 1√

1 − x2

)
(t) = p.v.

1

π

∫ 1

−1

1√
1 − x2(x − t)

dx = 0, −1 < t < 1, (3.1)

and, moreover, that if T ( f )(t) = 0 for a.e. t ∈ (−1, 1) with f a function belonging to some
space L p , 1 < p < ∞, then necessarily f (x) = C/

√
1 − x2 for some constant C ∈ C,

[33, §4.3 (14)]. Combining this observation with Lemma 2.1, it follows for every r.i. space
X satisfying 0 < αX ≤ αX < 1, that TX is either injective or dim(Ker(TX )) = 1. Recall that
L2,∞ is the smallest r.i. space containing the function 1/

√
1 − x2, that is, 1/

√
1 − x2 ∈ X

if and only if L2,∞ ⊆ X .
The Parseval and Poincaré-Bertrand formulae are important tools for studying the finite

Hilbert transform in the spaces L p , 1 < p < ∞ [33, §4.3]. It should be noted that a result
of Love is essential in order to have a sharp version of the Poincaré–Bertrand formula [22].
The validity of both of these formulae can be extended to the setting of r.i. spaces.

Proposition 3.1 Let X be a r.i. space satisfying 0 < αX ≤ αX < 1.

(a) Let f ∈ L1 satisfy f TX ′(g) ∈ L1 for all g ∈ X ′. Then, for every g ∈ X ′, the function
gT ( f ) ∈ L1 and

∫ 1

−1
f TX ′(g) = −

∫ 1

−1
gT ( f ).

(b) The Parseval formula holds for the pair X and X ′, that is,
∫ 1

−1
f TX ′(g) = −

∫ 1

−1
gTX ( f ), f ∈ X , g ∈ X ′.

(c) The Poincaré–Bertrand formula holds for the pair X and X ′; that is, for all f ∈ X and
g ∈ X ′, we have

T (gTX ( f ) + f TX ′(g)) = (TX ( f ))(TX ′(g)) − f g, a.e.

Proof (a) Assume first that f ∈ L∞. By Lemma 2.1, there exists 1 < q < ∞ satisfying
Lq ⊆ X , so that X ′ ⊆ Lq ′

. Then,
∫ 1

−1
f TX ′(g) = −

∫ 1

−1
gTX ( f ) = −

∫ 1

−1
gT ( f ), g ∈ X ′,

via the Parseval formula for the pair Lq and Lq ′
[18, Sect. 11.10.8], [33, Sect. 4.2, 4.3],

because f ∈ L∞ ⊆ Lq and g ∈ X ′ ⊆ Lq ′
.

Now let f ∈ L1 be a general function satisfying the assumption of (a). Define An :=
| f |−1([0, n]) and fn := f χAn ∈ L∞ for n ∈ N. Then, limn fn = f in L1. It follows from
Kolmogorov’s theorem that limn T ( fn) = T ( f ) in L1,∞. Since the inclusion L1,∞ ⊆ L0 is
continuous, we can conclude that limn T ( fn) = T ( f ) in measure. Accordingly, by passing
to a subsequence if necessary, we may assume that limn TX ( fn) = limn T ( fn) = T ( f )

pointwise a.e.
Fix g ∈ X ′. Given any A ∈ B, the dominated convergence theorem ensures that

lim
n

fnTX ′(gχA) = f TX ′(gχA), in L1, (3.2)
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as | fnTX ′(gχA)| ≤ | f TX ′(gχA)| pointwise for n ∈ N and because f TX ′(gχA) ∈ L1 by
assumption. For each n ∈ N, the first part of this proof applied to fn ∈ L∞ ⊆ X yields∫ 1
−1 fnTX ′(gχA) = − ∫ 1

−1(gχA)TX ( fn). It follows from (3.2) that

lim
n

∫
A

gTX ( fn) = lim
n

∫ 1

−1
(gχA)TX ( fn)

= − lim
n

∫ 1

−1
fnTX ′(gχA) = −

∫ 1

−1
f TX ′(gχA).

Since this holds for all sets A ∈ B and since limn gTX ( fn) = gT ( f ) pointwise a.e., we can
conclude that both gT ( f ) ∈ L1 and

lim
n

gTX ( fn) = gT ( f ), in L1; (3.3)

see, for example, [20, Lemma 2.3]. This and (3.2) with A := (−1, 1) ensure that∫ 1
−1 f TX ′(g) = − ∫ 1

−1 gT ( f ). So, (a) is established.

(b) Given any f ∈ X and g ∈ X ′, Hölder’s inequality ensures that f TX ′(g) ∈ L1. So,
part (b) follows from (a).

(c) Fix f ∈ X and g ∈ X ′. The proof of part (a) shows that there exists a sequence

{ fn}∞n=1 ⊆ L∞ ⊆ X satisfying the conditions:

(i) limn fn = f and limn TX ( fn) = TX ( f ) pointwise a.e., as well as
(ii) limn fnTX ′(g) = f TX ′(g) in L1 and limn gTX ( fn) = gTX ( f ) in L1;

see (3.2) with A := (−1, 1) and (3.3), respectively. Condition (ii) implies that

lim
n

T (gTX ( fn) + fnTX ′(g)) = T (gTX ( f ) + f TX ′(g)) (3.4)

in L1,∞ (via Kolmogorov’s theorem) and hence, in L0. On the other hand, condition (i)
implies that

lim
n

(
(TX ( fn))(TX ′(g)) − fng

) = (TX ( f ))(TX ′(g)) − f g (3.5)

pointwise a.e. As in the proof of part (a), select 1 < q < ∞ such that Lq ⊆ X . Since
fn ∈ L∞ ⊆ Lq for n ∈ N and g ∈ X ′ ⊆ Lq ′

, the Poincaré–Bertrand formula for the pair Lq

and Lq ′
gives, for each n ∈ N, that

T (gTX ( fn) + fnTX ′(g)) = (TX ( fn))(TX ′(g)) − fng, a.e., (3.6)

with the identities holding outside a null set which is independent of n ∈ N. In view of
(3.4) and (3.5), take the limit of both sides of (3.6) in L0 to obtain the identity T (gTX ( f ) +
f TX ′(g)) = (TX ( f ))(TX ′(g)) − f g in L0. This is precisely the Poincaré–Bertrand formula
for f ∈ X and g ∈ X ′. ��

We can now extend certain results obtained in [26], [33, §4.3] for the spaces L p with
1 < p < 2 to the larger family of r.i. spaces satisfying 1/2 < αX ≤ αX < 1.

For each f ∈ X , define pointwise the measurable function

(T̂X ( f ))(x) := −1√
1 − x2

TX (
√
1 − t2 f (t))(x), a.e. x ∈ (−1, 1). (3.7)

Theorem 3.2 Let X be a r.i. space satisfying 1/2 < αX ≤ αX < 1.
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(a) Ker(TX ) is the one-dimensional subspace of X spanned by the function 1/
√
1 − x2.

(b) The linear operator T̂X defined by (3.7) maps X boundedly into X and satisfies TX T̂X =
IX (the identity operator on X). Moreover,

∫ 1

−1
(T̂X ( f ))(x) dx = 0, f ∈ X . (3.8)

(c) The operator TX : X → X is surjective.
(d) The identity T̂X TX = IX − PX holds, with PX the bounded projection given by

f �→ PX ( f ) :=
(
1

π

∫ 1

−1
f (t) dt

)
1√

1 − x2
, f ∈ X . (3.9)

(e) The operator T̂X is an isomorphism onto its range R(T̂X ). Moreover,

R(T̂X ) =
{

f ∈ X :
∫ 1

−1
f (x)dx = 0

}
. (3.10)

(f) The following decomposition of X holds (with 〈·〉 denoting linear span):

X =
{

f ∈ X :
∫ 1

−1
f (x)dx = 0

}
⊕

〈
1√

1 − x2

〉
= R(T̂X ) ⊕

〈
1√

1 − x2

〉
. (3.11)

Proof (a) Since 1/2 < αX we have L2,∞ ⊆ X and so 1/
√
1 − x2 ∈ X . Accordingly,

〈 1√
1−x2

〉 ⊆ Ker(TX ). Conversely, let f ∈ Ker(TX ). By Lemma 2.1, there is 1 < p < 2 such

that f ∈ L p . As noted prior to Proposition 3.1, this implies that f (x) = c/
√
1 − x2 for

some c ∈ C.
(b) Via Lemma 2.1, there exist 1 < p < q < 2 such that 1/q < αX ≤ αX < 1/p and

Lq ⊆ X ⊆ L p . Consider the weight function ρ(x) := 1/
√
1 − x2 on (−1, 1). Appealing to

results on boundedness of the Hilbert transform on weighted L p spaces, T is bounded from
the weighted space L p((−1, 1), ρ) into itself and from the weighted space Lq((−1, 1), ρ)

into itself, [16, Ch. 1, Theorem 4.1]. This is equivalent to the fact that

f �→ T̂ ( f ) := −1√
1 − x2

TX
(√

1 − x2 f (x)
)
,

is well defined on L p and bounded as an operator from L p into L p and from Lq into Lq . The
condition on the indices 1/q < αX ≤ αX < 1/p allows us to apply Boyd’s interpolation
theorem [21, Theorem 2.b.11], to conclude that T̂ maps X boundedly into X . According to
(3.7), note that T̂X is the operator T̂ : X → X .

To establish TX T̂X = IX , choose 1 < p < 2 such that X ⊆ L p . It follows from (2.7) on
p. 46 of [26] that TL p T̂L p = IL p . Let f ∈ X ⊆ L p . Since all three operators TX , T̂X and IX

map X into X , it follows that TX (T̂X ( f )) = f = IX ( f ).
To establish (3.8), let f ∈ X ⊆ L p , with 1 < p < 2 as above. Then, (3.8) follows from

the validity of (3.8) in L p; see (2.6) on p. 46 of [26].
(c) Follows immediately from TX T̂X = IX .
(d) Since (1/π)

∫ 1
−1 dx/

√
1 − x2 = 1, it follows that PX as given in (3.9) is indeed a linear

projection from X onto the one-dimensional subspace 〈 1√
1−x2

〉 ⊆ X . The boundedness of

PX is a consequence of Hölder’s inequality (applied to f = 1 · f with 1 ∈ X ′ and f ∈ X
fixed), namely
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‖PX ( f )‖X ≤ 1

π

∥∥∥∥ 1√
1 − x2

∥∥∥∥
X

‖1‖X ′ ‖ f ‖X .

To verify that PX = IX − T̂X TX , fix f ∈ X . Then, TX T̂X = IX implies the identity
TX (IX − T̂X TX )( f ) = 0, that is,

(IX − T̂X TX )( f ) ∈ Ker(TX ).

According to part (a), there exists c ∈ C such that

(IX − T̂X TX )( f ) = c√
1 − x2

. (3.12)

But,
∫ 1
−1 T̂X (TX ( f ))(x) dx = 0 (by (3.8)) and so (3.12) implies that

∫ 1

−1
f (x) dx = c

∫ 1

−1
dx/

√
1 − x2 = cπ,

that is, c = (1/π)
∫ 1
−1 f (x) dx . So, again by (3.12), we have established that (IX −

T̂X TX )( f ) = PX ( f ). Since f ∈ X is arbitrary, it follows that IX − T̂X TX = PX .
(e) The identity TX T̂X = IX implies that T̂X is injective. So, T̂X : X → R(T̂ ) is a linear

bijection.
To verify (3.10), suppose f ∈ X satisfies

∫ 1
−1 f (x) dx = 0, i.e., PX ( f ) = 0. Then, the

identity T̂X TX = IX − PX shows that f = T̂X (h) with h := TX ( f ) ∈ X , i.e., f ∈ R(T̂X ).
Conversely, suppose that f = T̂X (g) ∈ R(T̂X ) for some g ∈ X . Then, g = TX ( f ) as
TX T̂X = IX . Accordingly,

f = T̂X (g) = T̂X TX ( f ) = IX ( f ) − PX ( f ) = f − PX ( f )

and so PX ( f ) = 0. It is then clear from (3.9) that
∫ 1
−1 f (x) dx = 0, i.e., f belongs to the

right-side of (3.10). This establishes (3.10).
Since the linear functional f �→ ϕ1( f ) := ∫ 1

−1 f (x) dx , for f ∈ X , belongs to X∗, as
1 ∈ X ′ ⊆ X∗, it follows via (3.10) that R(T̂X ) = Ker(ϕ1) and hence, R(T̂X ) is a closed
subspace of X . Accordingly, T̂X : X → R(T̂X ) is a Banach space isomorphism.

(f) The identity T̂X TX + PX = IX shows that each f ∈ X has the form f = T̂X (TX ( f ))+
PX ( f ) with T̂X (TX ( f )) ∈ R(T̂X ) and, via (3.9), PX ( f ) ∈ 〈1/√1 − x2〉. So, it remains
to show that the decomposition in (3.11) is a direct sum. To this effect, let h ∈ R(T̂X ) ∩
〈1/√1 − x2〉, in which case h = T̂X ( f ) for some f ∈ X and h = c/

√
1 − x2 for some

c ∈ C, that is, T̂X ( f ) = c/
√
1 − x2. Integrating both sides of this identity over (−1, 1) and

appealing to (3.8) show that c = 0. Hence, h = 0. ��
Next, we extend certain results obtained in [26], [33, §4.3], for the spaces L p with 2 <

p < ∞, to the larger family of r.i. spaces X satisfying 0 < αX ≤ αX < 1/2. Then,
1/2 < αX ′ ≤ αX ′ < 1 and so 1/

√
1 − x2 ∈ X ′. Hence, for every f ∈ X , the function

f (x)/
√
1 − x2 ∈ L1. Accordingly, we can define pointwise the measurable function

(ŤX ( f ))(x) := −
√
1 − x2 T

( f (t)√
1 − t2

)
(x), a.e. x ∈ (−1, 1). (3.13)

Theorem 3.3 Let X be a r.i. space satisfying 0 < αX ≤ αX < 1/2.

(a) The operator TX : X → X is injective.
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(b) The linear operator ŤX defined by (3.13) is bounded from X into X and satisfies ŤX TX =
IX .

(c) The identity TX ŤX = IX − Q X holds, with Q X the bounded projection given by

f ∈ X �→ Q X ( f ) :=
(
1

π

∫ 1

−1

f (x)√
1 − x2

dx

)
1. (3.14)

(d) The range of TX is the closed subspace of X given by

R(TX ) =
{

f ∈ X :
∫ 1

−1

f (x)√
1 − x2

dx = 0

}
= Ker(Q X ). (3.15)

Moreover, ŤX is an isomorphism from R(TX ) onto X.
(e) The following decomposition of X holds:

X =
{

f ∈ X :
∫ 1

−1

f (x)√
1 − x2

dx = 0

}
⊕ 〈1〉 = R(TX ) ⊕ 〈1〉 . (3.16)

Proof (a) Since αX < 1/2, we have that X � L2,∞ and so 1/
√
1 − x2 /∈ X . Hence, TX is

injective; see the discussion after (3.1).
(b) Via Lemma 2.1 there exist 2 < p < q < ∞ such that 1/q < αX ≤ αX < 1/p and

Lq ⊆ X ⊆ L p . Consider the weight function ρ(x) := √
1 − x2 on (−1, 1). Appealing again

to results on boundedness of the Hilbert transform onweighted L p spaces, T is bounded from
the weighted space L p((−1, 1), ρ) into itself and from the weighted space Lq((−1, 1), ρ)

into itself, [16, Ch. 1 Theorem 4.1]. This is equivalent to the fact that

f �→ Ť ( f ) := −
√
1 − x2 T

( f (x)√
1 − x2

)
,

is well defined on L p and bounded as an operator from L p into L p and from Lq into Lq . The
condition on the indices 1/q < αX ≤ αX < 1/p allows us to apply Boyd’s interpolation
theorem [21, Theorem 2.b.11], to deduce that Ť maps X boundedly into X . According to
(3.13), note that ŤX is the operator Ť : X → X .

To establish ŤX TX = IX , recall that X ⊆ L p . It follows from (2.10) on p. 48 of [26] that
ŤL p TL p = IL p . Let f ∈ X ⊆ L p . Since all three operators TX , ŤX and IX map X into X , it
follows that ŤX (TX ( f )) = f = IX ( f ).

(c) It is routine to check that Q X is a linear projection onto the one-dimensional space 〈1〉.
Since g(x) = 1/

√
1 − x2 ∈ X ′, the boundedness of Q X follows from (3.14) via Hölder’s

inequality, namely

‖Q X ( f )‖X ≤ 1

π
‖g‖X ′ ‖1‖X‖ f ‖X , f ∈ X .

To establish the identity TX ŤX = IX − Q X , choose 2 < p < ∞ such that X ⊆ L p . It
follows from (2.11) on p. 48 of [26] that TL p ŤL p = IL p − QL p . Let f ∈ X ⊆ L p . Since all
four operators TX , ŤX , Q X and IX map X into X , it follows that TX (ŤX ( f )) = f − Q X ( f ) =
(IX − Q X )( f ).

(d) Using the identities ŤX TX = IX and TX ŤX = IX − Q X , one can argue as on p.
48 of [26] to verify the identity (3.15). In particular, since Q X is bounded, it follows that
R(TX ) = Ker(Q X ) is a closed subspace of X . It is clear from ŤX TX = IX that ŤX maps
R(TX ) onto X and also that ŤX restricted to R(TX ) is injective, i.e., ŤX : R(TX ) → X is a
linear bijection and bounded. By the open mapping theorem, ŤX : R(TX ) → X is actually a
Banach space isomorphism.
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(e) As Q X is a bounded projection, we have X = Ker(Q X ) ⊕ R(Q X ). But, Ker(Q X ) =
R(TX ) by part (d) and R(Q X ) = 〈1〉 by part (c). The direct sum decomposition (3.16) is then
immediate. ��
Remark 3.4 Let X be a r.i. space satisfying 0 < αX ≤ αX < 1/2 or 1/2 < αX ≤ αX < 1.
Then, TX : X → X is a Fredholm operator, that is, dim(Ker(TX )) < ∞, the range R(TX ) is
a closed subspace of X and dim(X/R(TX )) < ∞. This holds when 1/2 < αX ≤ αX < 1
because dim(Ker(TX )) = 1 and TX is surjective; see Theorem 3.2(a), (c). The operator TX

is also Fredholm when 0 < αX ≤ αX < 1/2 because it is injective, R(TX ) is closed in X
and dim(X/R(TX )) = 1; see (a), (d), (e) of Theorem 3.3.

A consequence of Theorems 3.2 and 3.3 is the possibility to extend the results in [18, Ch.
11], [26], [33, §4.3], concerning the inversion of the airfoil equation

(T ( f ))(t) = p.v.
1

π

∫ 1

−1

f (x)

x − t
dx = g(t), a.e. t ∈ (−1, 1), (3.17)

within the class of L p-spaces for 1 < p < ∞, p �= 2 (with g ∈ L p given), to the significantly
larger class of r.i. spaces X whose Boyd indices satisfy 0 < αX ≤ αX < 1/2 or 1/2 < αX ≤
αX < 1.

Corollary 3.5 Let X be a r.i. space.

(a) Suppose that 1/2 < αX ≤ αX < 1 and g ∈ X is fixed. Then, all solutions f ∈ X of the
airfoil equation (3.17) are given by

f (x) = −1√
1 − x2

TX

(√
1 − t2g(t)

)
(x) + λ√

1 − x2
, a.e. x ∈ (−1, 1), (3.18)

with λ ∈ C arbitrary.
(b) Suppose that 0 < αX ≤ αX < 1/2 and g ∈ X satisfies

∫ 1
−1

g(x)√
1−x2

dx = 0. Then, there

is a unique solution f ∈ X of the airfoil equation (3.17), namely

f (x) := −
√
1 − x2 TX

(
g(t)√
1 − t2

)
(x), a.e. x ∈ (−1, 1).

Proof (a) In this case, 1/
√
1 − x2 ∈ X . Given any λ ∈ C define the function

f (x) := −1√
1 − x2

TX

(√
1 − t2g(t)

)
(x) + λ√

1 − x2
= T̂X (g)(x) + λ√

1 − x2
.

Then, the identities TX T̂X (g) = g and TX (λ/
√
1 − x2) = 0 (see Theorem 3.2) imply that

TX ( f ) = g.
Conversely, suppose that f ∈ X satisfies TX ( f ) = g. It follows from T̂X TX = IX − PX

that f − PX ( f ) = T̂X (g). By (3.9), there exists λ ∈ C such that PX ( f ) = λ/
√
1 − x2 and

hence, f = T̂X (g) + λ√
1−x2

. So, all solutions of the airfoil equation are indeed given by
(3.18).

(b) Define f (x) := −√
1 − x2 T (g(t)/

√
1 − t2)(x) = ŤX (g). By Theorem 3.3(c), we

have

TX ( f ) = TX ŤX (g) = g − Q X (g).

But, the hypothesis on g ∈ X implies, via (3.15), that g ∈ Ker(Q X ) and so TX ( f ) = g. The
uniqueness of the solution f is immediate as TX is injective by Theorem 3.3(a). ��
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Remark 3.6 The conditions 0 < αX ≤ αX < 1/2 or 1/2 < αX ≤ αX < 1 are not always
satisfied, e.g., if X = L2,q with 1 ≤ q ≤ ∞. There also exist r.i. spaces X such that
αX < 1/2 < αX ; see [2, pp. 177–178].

4 Extension of the finite Hilbert transform on r.i. spaces

The finite Hilbert transform T : L1 → L1,∞ has the property that T (L1) � L1. Hence,
for any r.i. space X we necessarily have T (L1) � X . On the other hand, if X satisfies
0 < αX ≤ αX < 1, then T (X) ⊆ X continuously. Do there exist any other B.f.s.’ Z ⊆ L1

such that X � Z and T (Z) ⊆ X? As a consequence of Theorems 3.2 and 3.3, for those r.i.
spaces X satisfying 1/2 < αX ≤ αX < 1 or 0 < αX ≤ αX < 1/2, the answer is shown to
be negative; see Theorem 4.7.

The proof of the following result uses important facts from the theory of vector measures,
namely a theorem of Talagrand concerning L0-valued measures and the Dieudonné–
Grothendieck theorem for bounded vector measures.

Proposition 4.1 Let X be a r.i. space satisfying 0 < αX ≤ αX < 1. Let f ∈ L1. The
following conditions are equivalent.

(a) T ( f χA) ∈ X for every A ∈ B.
(b) sup

A∈B
‖T ( f χA)‖X < ∞.

(c) T (h) ∈ X for every h ∈ L0 with |h| ≤ | f | a.e.
(d) sup

|h|≤| f |
‖T (h)‖X < ∞.

(e) T (θ f ) ∈ X for every θ ∈ L∞ with |θ | = 1 a.e.
(f) sup

|θ |=1
‖T (θ f )‖X < ∞.

(g) f TX ′(g) ∈ L1 for every g ∈ X ′.

Moreover, if any one of (a)–(g) is satisfied, then

sup
A∈B

∥∥T (χA f )
∥∥

X ≤ sup
|θ |=1

∥∥T (θ f )
∥∥

X ≤ sup
|h|≤| f |

∥∥T (h)
∥∥

X ≤ 4 sup
A∈B

∥∥T (χA f )
∥∥

X . (4.1)

Proof (a)⇒(b). Consider the X -valued, finitely additive measure

ν : A �→ T ( f χA), A ∈ B. (4.2)

Let JX : X → L0 denote the natural continuous linear embedding. Then, the composition
JX ◦ ν : B → L0 is σ -additive. To establish this, let An ↓ ∅ in B. Then, limn f χAn = 0
in L1 and hence, limn T ( f χAn ) = 0 in L1,∞ by Kolmogorov’s theorem. Since L1,∞ ⊆ L0

continuously, we also have limn T ( f χAn ) = 0 in L0. Consequently, limn(JX ◦ ν)(An) = 0
in L0, which verifies the σ -additivity of JX ◦ ν.

It follows from a result of Talagrand, [31, Theorem B], that there exist a non-negative
function �0 ∈ L0 and a σ -additive vector measure μ0 : B → L2 such that

(JX ◦ ν)(A) = �0 · μ0(A), A ∈ B,

where �0 · μ0(A) is the pointwise product of two functions in L0. Define B0 := �−1
0 ({0}).

Then, � := �0 + χB0 ∈ L0 is strictly positive. Consider the L2-valued vector measure

μ : A �→ χ(−1,1)\B0 · μ0(A), A ∈ B.
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For every A ∈ B, we claim that (JX ◦ ν)(A) = � · μ(A). This follows from

� · μ(A) = (�0 + χB0) · χ(−1,1)\B0 · μ0(A)

= χ(−1,1)\B0 · �0 · μ0(A)

= χ(−1,1)\B0 · (JX ◦ ν)(A) + χB0 · (JX ◦ ν)(A)

= (JX ◦ ν)(A),

where we have used χB0 · (JX ◦ ν)(A) = χB0 · �0 · μ(A) = 0.
Set Bn := {x ∈ (−1, 1) : (n − 1) < 1/�(x) ≤ n}, for n ∈ N. Then, the subset

{
χBn∩B/� : n ∈ N, B ∈ B}

(4.3)

of L∞ ⊆ X ′ ⊆ X∗ is total for X . To verify this, let g ∈ X satisfy

∫ 1

−1
g(x)χBn∩B(x)/�(x) dx = 0, n ∈ N, B ∈ B.

Then, for every n ∈ N, the function (gχBn /�) ∈ X ⊆ L1 is 0 a.e. Since 1/� is strictly
positive on (−1, 1) = ∪∞

n=1Bn , we have g = 0 a.e. This implies that the subset (4.3) of X∗
is total for X .

Fix n ∈ N and B ∈ B. Then, the scalar-valued set function A �→ 〈ν(A), χBn∩B/�〉, for
A ∈ B, is σ -additive. Indeed, as ν(A) ∈ X and (χBn∩B/�) ∈ L∞ ⊆ X ′, we have, for each
A ∈ B, that

〈ν(A), χBn∩B/�〉 =
∫ 1

−1
ν(A)(x)χBn∩B(x)/�(x) dx

=
∫ 1

−1
μ(A)(x)χBn∩B(x) dx = 〈μ(A), χBn∩B〉,

which implies the desiredσ -additivity becauseμ isσ -additive as an L2-valuedvectormeasure
and χBn∩B ∈ L2. Consequently, eachC-valued, σ -additive measure A �→ 〈ν(A), χBn∩B/�〉
on B, for n ∈ N, has bounded range. Recalling that the subset (4.3) of X∗ is total for X , the
Dieudonné–Grothendieck theorem [12, Corollary I.3.3] implies that ν has bounded range in
X . Hence, (b) is established.

(b)⇒(c). The semivariation ‖ν‖(·) of the bounded, finitely additive, X -valued measure ν

defined in (4.2) satisfies both

‖ν‖(A) = sup
{‖T (χA f s)‖X : s ∈ sim B, |s| ≤ 1

}
, A ∈ B,

and

sup
B∈B,B⊆A

‖ν(B)‖X ≤ ‖ν‖(A) ≤ 4 sup
B∈B,B⊆A

‖ν(B)‖X , A ∈ B,

[12, p. 2 and Proposition I.1.11]. Thus, for s ∈ sim B with s �= 0,

‖T ( f s)‖X ≤
(
4 sup

A∈B
‖T ( f χA)‖X

)
· sup
|x |<1

|s(x)| < ∞ (4.4)

because |s| ≤ sup|x |<1 |s(x)| pointwise on (−1, 1), [12, p. 6]. To obtain (c) from (4.4), take
any h ∈ L0 with |h| ≤ | f | a.e. Then, h = f ϕ for some ϕ ∈ L0 with |ϕ| ≤ 1 a.e. Select
a sequence {sn}∞n=1 ⊆ sim B such that |sn | ≤ |ϕ| on (−1, 1) for all n ∈ N and sn → ϕ
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uniformly on (−1, 1) as n → ∞. Then, the sequence {T ( f sn)}∞n=1 is Cauchy in X as (4.4)
yields

‖T ( f s j ) − T ( f sk)‖X ≤
(
4 sup

A∈B
‖T ( f χA)‖X

)
· sup
|x |<1

|s j (x) − sk(x)|

for all j, k ∈ N. Accordingly, {T ( f sn)}∞n=1 has a limit in X , say g. Since the natural inclusion
X ⊆ L1,∞ is continuous, we have limn T ( f sn) = g in L1,∞. On the other hand, since
limn f sn = f ϕ in L1, Kolmogorov’s theorem gives limn T ( f sn) = T ( f ϕ) in L1,∞. Thus,
T (h) = T ( f ϕ) = g as elements of L0. In particular, T (h) ∈ X as g ∈ X . So, (c) is
established.

(c)⇒(d). Clearly, (c)⇒(a) and we already know that (a)⇒(b). Thus, the previous argu-
ments also imply the inequality

sup
|h|≤| f |

‖T (h)‖X ≤ 4 sup
A∈B

‖T ( f χA)‖X . (4.5)

To see this, consider any h ∈ L0 with |h| ≤ | f | a.e. Select ϕ and {sn}∞n=1 ⊆ sim B as in the
previous paragraph. Then, (4.4) yields

‖T (h)‖X = lim
n

‖T ( f sn)‖X

≤
(
4 sup

A∈B
‖T ( f χA)‖X

)
sup
n∈N

sup
|x |<1

|sn(x)|

=
(
4 sup

A∈B
‖T ( f χA)‖X

)
sup
|x |<1

|ϕ(x)|

≤ 4 sup
A∈B

‖T ( f χA)‖X .

(d)⇒(f)⇒(e) Clear.
(e)⇒(a) Fix A ∈ B. Since |χA ± χ(−1,1)\A| = 1, it follows from (e) that both

T ( f χA) + T ( f χ(−1,1)\A) = T ( f (χA + χ(−1,1)\A)) ∈ X

and

T ( f χA) − T ( f χ(−1,1)\A) = T ( f (χA − χ(−1,1)\A)) ∈ X .

These two identities imply that T ( f χA) ∈ X .
(d)⇒(g). Fix g ∈ X ′. Given n ∈ N define An := | f |−1([0, n]) and set fn := f χAn ∈

L∞ ⊆ X . Since | fn | ↑ | f | pointwise on (−1, 1), the monotone convergence theorem yields

∫ 1

−1
| f (x)| · |(TX ′(g))(x)| dx = lim

n

∫ 1

−1
| fn(x)| · |(TX ′(g))(x)| dx . (4.6)

Select θ1, θ2 ∈ L∞ with |θ1| = 1 and |θ2| = 1 pointwise such that | f | = θ1 f and |TX ′(g)| =
θ2TX ′(g)pointwise. In particular, | fn | = θ1 fn pointwise for alln ∈ N. Then, Parseval formula
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(cf. Proposition 3.1(b)), Hölder’s inequality and condition (d) ensure, for every n ∈ N, that
∫ 1

−1
| fn(x)| · |(TX ′(g))(x)| dx =

∫ 1

−1
θ1(x)θ2(x) fn(x)(TX ′(g))(x) dx

= −
∫ 1

−1
(TX (θ1θ2 fn))(x)g(x) dx

≤ ‖TX (θ1θ2 fn)‖X‖g‖X ′

≤ sup
|h|≤| f |

‖T (h)‖X‖g‖X ′ < ∞.

This inequality and (4.6) imply that (g) holds.
(g)⇒(a). Fix any A ∈ B. Then, ( f χA)TX ′(g) ∈ L1 for every g ∈ X ′ by assumption.

Apply Proposition 3.1(a) to f χA in place of f to obtain that gT ( f χA) ∈ L1 for all g ∈ X ′.
Accordingly, T ( f χA) ∈ X ′′ = X , which establishes (a).

The equivalences (a)–(g) are thereby established.
Suppose now that any one of (a)–(g) is satisfied. The second inequality of (4.1) is clear.

For the left-hand inequality, fix A ∈ B. Then, T ( f χA) = (1/2)(T (θ1 f ) + T (θ2 f )), where
θ1 = 1 and θ2 = χA − χ(−1,1)\A satisfy |θ1| = 1 and |θ2| = 1. Accordingly,

‖T ( f χA)‖X ≤ (1/2)(‖T (θ1 f )‖X + ‖T (θ2 f )‖X ) ≤ sup
|θ |=1

‖T (θ f )‖X .

Finally, the last inequality in (4.1) is precisely (4.5). ��
Another consequence of Theorems 3.2 and 3.3 is that membership of a given r.i. space X

is completely determined by the finite Hilbert transform in X .

Proposition 4.2 Let X be a r.i. space satisfying either 1/2 < αX ≤ αX < 1 or 0 < αX ≤
αX < 1/2. Let f ∈ L1. The following conditions are equivalent.

(a) f ∈ X.
(b) T ( f χA) ∈ X for every A ∈ B.
(c) T ( f θ) ∈ X for every θ ∈ L∞ with |θ | = 1 a.e.
(d) T (h) ∈ X for every h ∈ L0 with |h| ≤ | f | a.e.

Proof The three conditions (b), (c) and (d) are equivalent by Proposition 4.1.
(a)⇒(b). Clear as T : X → X is bounded.
(b)⇒(a). By Proposition 4.1, we have f TX ′(g) ∈ L1 for every g ∈ X ′, which we shall

use to obtain (a).
Assume that 1/2 < αX ≤ αX < 1, in which case 0 < αX ′ ≤ αX ′ < 1/2. This enables

us to apply Theorem 3.3(c), with X ′ in place of X , to the operator TX ′ . So, for any ψ ∈ X ′,
it follows that ψ = TX ′(ŤX ′(ψ)) + c1 with c := (1/π)

∫ 1
−1(ψ(x)/

√
1 − x2) dx . Define

g := ŤX ′(ψ) ∈ X ′. Then, f TX ′(ŤX ′(ψ)) ∈ L1 and hence, f ψ − c f = f TX ′(ŤX ′(ψ))

belongs to L1. But, c f ∈ L1 as f ∈ L1 by assumption. So, f ψ ∈ L1, from which it follows
that f ∈ X ′′ = X as ψ ∈ X ′ is arbitrary. Thus, (a) holds.

Consider the remaining case when 0 < αX ≤ αX < 1/2. Then, 1/2 < αX ′ ≤ αX ′ < 1.
We apply Theorem 3.2(c) with X ′ in place of X , to conclude that TX ′ : X ′ → X ′ is surjective.
So, given anyψ ∈ X ′, there exists g ∈ X ′ withψ = TX ′(g). It follows that f ψ = f TX ′(g) ∈
L1. Since ψ ∈ X ′ is arbitrary, we may conclude that f ∈ X ′′ = X . Hence, (a) again holds. ��

Even though TX is not an isomorphism, Theorems 3.2 and 3.3 imply the impossibility of
extending (continuously) the finite Hilbert transform TX : X → X to any genuinely larger
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domain space within L1 while still maintaining its values in X ; see Theorem 4.7. This is
in contrast to the situation for the Fourier transform operator acting in the spaces L p(T),
1 < p < 2; see Introduction.

We first require an important technical construction. Define

[T , X ] := {
f ∈ L1 : T (h) ∈ X , ∀|h| ≤ | f |}.

If f ∈ [T , X ], then f ∈ L1 and T (h) ∈ X for every h ∈ L0 with |h| ≤ | f |. Hence,
Proposition 4.1 implies that

‖ f ‖[T ,X ] := sup
|h|≤| f |

‖T (h)‖X < ∞, f ∈ [T , X ]. (4.7)

The properties of [T , X ] are established via a series of steps, with the aim of showing that it
is a B.f.s.

First, the functional f �→ ‖ f ‖[T ,X ] is compatiblewith the lattice structure in the following
sense: if f1, f2 ∈ [T , X ] satisfy | f1| ≤ | f2|, then ‖ f1‖[T ,X ] ≤ ‖ f2‖[T ,X ]. This is because
{h : |h| ≤ | f1|} ⊆ {h : |h| ≤ | f2|}. The same argument shows that [T , X ] is an ideal in L1.
In particular, X ⊆ [T , X ].

It is routine to verify that if α ∈ C and f ∈ [T , X ], then α f ∈ [T , X ] and ‖α f ‖[T ,X ] =
|α| · ‖ f ‖[T ,X ].

To verify the subadditivity of ‖ · ‖[T ,X ] we use the following Freudenthal-type decompo-
sition: If h, f1, f2 ∈ L1 with |h| ≤ | f1 + f2|, then there exist h1, h2 such that h = h1 + h2

and |h1| ≤ | f1|, |h2| ≤ | f2|; this follows from [34, Theorem 91.3] applied in L1. Using this
fact, given f1, f2 ∈ [T , X ], it follows that f1 + f2 ∈ [T , X ] and
‖ f1 + f2‖[T ,X ] = sup

{
‖T (h)‖X : |h| ≤ | f1 + f2|

}

= sup
{
‖T (h1) + T (h2)‖X : |h| ≤ | f1 + f2|, h = h1 + h2, |hi | ≤ | fi |

}

≤ sup
{
‖T (h1)‖X : |h1| ≤ | f1|

}
+ sup

{
‖T (h2)‖X : |h2| ≤ | f2|

}

= ‖ f1‖[T ,X ] + ‖ f2‖[T ,X ].

So, [T , X ] is a vector space and ‖ · ‖[T ,X ] is a lattice seminorm on [T , X ].
Let ‖ f ‖[T ,X ] = 0. Then, T (h) = 0 in X for every h ∈ L0 with |h| ≤ | f |. Suppose that

f �= 0. Then, there exists A ∈ B with |A| > 0 such that f χA ∈ L∞ and f (x)χA(x) �= 0 for
every x ∈ A. Choose two disjoint sets A1, A2 ∈ B ∩ A with |A j | > 0, j = 1, 2, and define
h j := f χA j , j = 1, 2. Then, h j ∈ L∞ ⊆ X satisfies |h j | ≤ | f | and so TX (h j ) = T (h j ) = 0
for j = 1, 2. That is, h1, h2 ∈ Ker(TX ). Since h1, h2 are linearly independent elements in
X , it follows that dim(Ker(TX )) ≥ 2. But, this contradicts the fact that TX is either injective
or its kernel is one-dimensional; see the discussion after (3.1). Hence, f = 0. So, we have
shown that [T , X ] is a normed function space.

The following result is a Parseval-type formula that will be needed in the sequel.

Lemma 4.3 Let X be a r.i. space satisfying 0 < αX ≤ αX < 1. Then
∫ 1

−1
f TX ′(g) = −

∫ 1

−1
gT ( f ), f ∈ [T , X ], g ∈ X ′.

Proof Given f ∈ [T , X ] ⊆ L1, it follows from the definition of [T , X ] and Proposition 4.1
that f TX ′(g) ∈ L1 for every g ∈ X ′. The desired formula is then immediate from Proposition
3.1(a). ��
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Lemma 4.4 Let X be a r.i. space satisfying 0 < αX ≤ αX < 1. Then, the normed function
space [T , X ] is complete.

Proof Let fn ∈ [T , X ], for n ∈ N, satisfy

∞∑
n=1

‖ fn‖[T ,X ] < ∞.

This implies, for every choice of hn with |hn | ≤ | fn |, that
∞∑

n=1

‖T (hn)‖X < ∞. (4.8)

(A) Let h ∈ [T , X ] ⊆ L1. As |h|χ(−1,0) ≤ |h|, we have that T (|h|χ(−1,0)) ∈ X . If
0 < t < 1, then

∣∣T (|h|χ(−1,0)
)
(t)

∣∣ = 1

π

∫ 0

−1

|h(x)|
|x − t |dx ≥ 1

2π

∫ 0

−1
|h(x)| dx,

since for −1 < x < 0 and 0 < t < 1 we have |x − t | ≤ 2. Consequently,

‖T
(|h|χ(−1,0)

) ‖X ≥ ‖T
(|h|χ(−1,0)

)
χ(0,1)‖X ≥

(
1

2π

∫ 0

−1
|h(x)| dx

)
‖χ(0,1)‖X .

In a similar way, as |h|χ(0,1) ≤ |h|, we have that T (|h|χ(0,1)) ∈ X . If −1 < t < 0, then

T
(|h|χ(0,1)

)
(t) = 1

π

∫ 1

0

|h(x)|
x − t

dx ≥ 1

2π

∫ 1

0
|h(x)| dx,

since for −1 < t < 0 and 0 < x < 1 we have 0 ≤ x − t ≤ 2. Consequently,

‖T
(|h|χ(0,1)

) ‖X ≥ ‖T
(|h|χ(0,1)

)
χ(−1,0)‖X ≥

(
1

2π

∫ 1

0
|h(x)| dx

)
‖χ(−1,0)‖X .

Applying (4.8) with hn := | fn |χ(−1,0) and hn := | fn |χ(0,1), it follows, from the previous
bounds for h = fn , that

∞∑
n=1

‖ fn‖L1 =
∞∑

n=1

(∫ 0

−1
| fn(x)| dx +

∫ 1

0
| fn(x)| dx

)

≤
∞∑

n=1

C
(‖T

(| fn |χ(−1,0)
) ‖X + ‖T

(| fn |χ(0,1)
) ‖X

)

≤ 2C
∞∑

n=1

‖ fn‖[T ,X ] < ∞,

with C := (2π)/ϕX (1), since ‖χ(0,1)‖X = ‖χ(−1,0)‖X = ϕX (1). Hence, we have

∞∑
n=1

fn =: f ∈ L1 (4.9)

with absolute convergence in L1 and hence, also pointwise a.e.
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(B) We now show that f ∈ [T , X ]. Select h ∈ L0 satisfying |h| ≤ | f |. We need to prove
that T (h) ∈ X . To this end, let ϕ ∈ L0 satisfy |ϕ| ≤ 1 and h = ϕ f . Then,

h = ϕ f =
∞∑

n=1

ϕ fn, a.e.

The functions hn := ϕ fn ∈ [T , X ], for n ∈ N, satisfy

∞∑
n=1

‖hn‖[T ,X ] ≤
∞∑

n=1

‖ fn‖[T ,X ] < ∞

due to the ideal property of [T , X ]. We can apply the arguments in (A) to deduce that the
series

∑∞
n=1 hn converges (absolutely) in L1 to h. Kolmogorov’s theorem yields that the

series
∑∞

n=1 T (hn) converges to T (h) in L1,∞.
On the other hand, since the series

∑∞
n=1 T (hn) converges absolutely in X (see (4.8)), it

is convergent, say to g = ∑∞
n=1 T (hn) in X and hence, also in L1,∞. Accordingly, T (h) = g

and so T (h) ∈ X . This establishes that f ∈ [T , X ].
(C) It remains to show that

∑∞
n=1 fn converges to f in the topology of [T , X ], that is,

‖ f − ∑N
n=1 fn‖[T ,X ] → 0 as N → ∞. Fix N ∈ N. Let h ∈ L0 satisfy

|h| ≤
∣∣∣∣∣ f −

N∑
n=1

fn

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=N+1

fn

∣∣∣∣∣ ≤
∞∑

n=N+1

| fn |.

We can reproduce the argument used in (B) to deduce that

h =
∞∑

n=N+1

hn, |hn | ≤ | fn |, n ≥ N + 1.

Then,

‖T (h)‖X ≤
∞∑

n=N+1

‖T (hn)‖X ≤
∞∑

n=N+1

‖ fn‖[T ,X ].

That is, for each N ∈ N, we have

‖ f −
N∑

n=1

fn‖[T ,X ] = sup
|h|≤| f −∑N

n=1 fn |
‖T (h)‖X ≤

∞∑
n=N+1

‖ fn‖[T ,X ] → 0,

which establishes the completeness of [T , X ]. ��
Wewill require an alternate description of the norm ‖·‖[T ,X ] to that given in (4.7), namely

‖ f ‖[T ,X ] = sup
‖g‖X ′≤1

‖ f TX ′(g)‖L1 , f ∈ [T , X ]. (4.10)

To verify this, fix f ∈ [T , X ]. Given ϕ ∈ L0 with |ϕ| ≤ 1, the function ϕ f ∈ [T , X ] as
|ϕ f | ≤ | f |. It follows from Lemma 4.3 (see also its proof) with ϕ f in place of f , that
ϕ f TX ′(g) ∈ L1 for all g ∈ X ′ (in particular, also f TX ′(g) ∈ L1) and

∫ 1

−1
(ϕ f )TX ′(g) = −

∫ 1

−1
gT (ϕ f ), g ∈ X ′.
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Since {ϕ f : ϕ ∈ L0, |ϕ| ≤ 1} = {h ∈ L0 : |h| ≤ | f |}, the previous formula yields (4.10)
because (4.7) implies that

‖ f ‖[T ,X ] = sup
|ϕ|≤1

‖T (ϕ f )‖X = sup
|ϕ|≤1

sup
‖g‖X ′≤1

∣∣∣
∫ 1

−1
gT (ϕ f )

∣∣∣

= sup
‖g‖X ′≤1

sup
|ϕ|≤1

∣∣∣
∫ 1

−1
(ϕ f )TX ′(g)

∣∣∣ = sup
‖g‖X ′≤1

‖ f TX ′(g)‖L1 .

Proposition 4.5 Let X be a r.i. space satisfying 0 < αX ≤ αX < 1. Then, [T , X ] is a B.f.s.

Proof In view of Lemma 4.4, it remains to establish that [T , X ] possesses the Fatou property.
Let 0 ≤ f ∈ L0 and { fn}∞n=1 ⊆ [T , X ] ⊆ L1 be a sequence such that 0 ≤ fn ≤ fn+1 ↑ f

pointwise a.e. with supn ‖ fn‖[T ,X ] < ∞. In Step A of the proof of Lemma 4.4, it was shown
that

‖h‖L1 ≤ (4π\ϕX (1))‖h‖[T ,X ], h ∈ [T , X ],
which ensures that also supn ‖ fn‖L1 < ∞. Hence, via Fatou’s lemma, f ∈ L1. Moreover,
the monotone convergence theorem together with (4.10) applied to fn ∈ [T , X ] for each
n ∈ N yields

sup
‖g‖X ′≤1

∫ 1

−1
| f TX ′(g)| = sup

‖g‖X ′≤1
sup

n

∫ 1

−1
| fnTX ′(g)|

= sup
n

sup
‖g‖X ′≤1

∫ 1

−1
| fnTX ′(g)| = sup

n
‖ fn‖[T ,X ] < ∞.

In particular, f TX ′(g) ∈ L1 for every g ∈ X ′ with f ∈ L1. According to (c)⇔(g) in
Proposition 4.1,we have f ∈ [T , X ] and, via (4.10) and the previous identity, that‖ f ‖[T ,X ] =
supn ‖ fn‖[T ,X ]. So, we have established that [T , X ] has the Fatou property. ��

The optimality property of the B.f.s. [T , X ] relative to TX can now be formulated.

Theorem 4.6 Let X be a r.i. space satisfying 0 < αX ≤ αX < 1. Then, [T , X ] is the largest
B.f.s. containing X to which TX : X → X has a continuous, linear, X-valued extension.

Proof Let Z ⊆ L1 be any B.f.s. with X ⊆ Z such that TX has a continuous, linear extension
T : Z → X . Fix f ∈ Z . Then, for each h ∈ L0 with |h| ≤ | f |, we have h ∈ Z and

‖T (h)‖X ≤ ‖T ‖op‖h‖Z ≤ ‖T ‖op‖ f ‖Z ,

where ‖T ‖op is the operator norm of T : Z → X . Then, f ∈ [T , X ] and so the space [T , X ]
contains Z continuously. Due to the boundedness of TX : X → X , we have that

‖ f ‖[T ,X ] = sup
|h|≤| f |

‖T (h)‖X ≤ ‖TX‖op‖ f ‖X , f ∈ X ,

and so X ⊆ [T , X ] continuously. By construction T : [T , X ] → X and T is continuous.
Hence, [T , X ] is the largest B.f.s. containing X to which TX : X → X has a continuous,
linear, X -valued extension. ��

We can now prove the impossibility of extending TX : X → X .
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Theorem 4.7 Let X be a r.i. space satisfying either 1/2 < αX ≤ αX < 1 or 0 < αX ≤
αX < 1/2. Then, the finite Hilbert transform TX : X → X has no X-valued, continuous
linear extension to any larger B.f.s.

Proof According to Theorem 4.6, whenever 0 < αX ≤ αX < 1, the space [T , X ] is the
largest B.f.s. to which TX : X → X can be continuously extended with X ⊆ [T , X ] con-
tinuously. So, it suffices to prove that [T , X ] = X . But, this corresponds precisely to the
equivalence in Proposition 4.2 between the condition (a), i.e., f ∈ X , and the condition (d),
i.e., T (h) ∈ X for all h ∈ L0 with |h| ≤ | f |, which is the statement that f ∈ [T , X ]. ��

Recall that TX is not an isomorphism. Nevertheless, Theorems 3.2 and 3.3 yield norms,
in terms of the finite Hilbert transform, which are equivalent to the given norm in the corre-
sponding r.i. space.

Corollary 4.8 Let X be a r.i. space satisfying either 1/2 < αX ≤ αX < 1 or 0 < αX ≤
αX < 1/2. Then, there exists a constant CX > 0 such that

CX

4
‖ f ‖X ≤ sup

A∈B
∥∥TX (χA f )

∥∥
X ≤ sup

|θ |=1

∥∥TX (θ f )
∥∥

X

≤ sup
|h|≤| f |

∥∥TX (h)
∥∥

X ≤ ‖TX‖ · ‖ f ‖X ,

for every f ∈ X.

Proof The final inequality is clear from

‖TX (h)‖X ≤ ‖TX‖ · ‖h‖X ≤ ‖TX‖ · ‖ f ‖X

for every f ∈ X and every h ∈ L0 with |h| ≤ | f |.
It was shown in the proof of Theorem 4.7 that [T , X ] = X . Hence, there exists a constant

CX > 0 such that

CX‖ f ‖X ≤ sup
|h|≤| f |

‖TX (h)‖X , f ∈ X .

The remaining inequalities now follow from (4.1) which is applicable because if f ∈ X ,
then condition (c) in Proposition 4.1 is surely satisfied. ��

Remark 4.9 The notion of the optimal domain [T , X ] is meaningful for a large family of
operators acting on function spaces, as already commented in Introduction. Among them, in
a much simpler situation, are the positive operators. For a thorough study of this topic, see,
for example, [27] and the references therein.

5 The finite Hilbert transform on L2

Theorems 3.2 and 3.3 are not applicable to X = L2. Moreover, TL2 is not Fredholm and no
inversion formula is available. Nevertheless, it turns out that no extension of TL2 is possible.
A new approach is needed to establish this. Trying to use the results and techniques obtained
for the cases p �= 2 in an attempt to study the possible extension of TL2 : L2 → L2 is futile
as shown by the following consideration. Let X = L p for 1 < p < 2 and set Tp := TL p .
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Since αX = αX = 1/p ∈ (1/2, 1), we are in the setting of Theorem 3.2. The left inverse of
Tp is the operator T̂p := T̂L p , defined by (3.7), that is,

T̂p( f )(x) := −1√
1 − x2

Tp(
√
1 − t2 f (t))(x), a.e. x ∈ (−1, 1),

which maps L p into L p and is an isomorphism onto its range. We estimate from below the
operator norm of T̂p . Since Tp(

√
1 − t2)(x) = −x , for f := 1, we obtain

‖T̂p‖ ≥ ‖x/
√
1 − x2‖L p

‖1‖L p
=

(
1

2

∫ 1

−1

|x |p

(1 − x2)p/2 dx

)1/p

which goes to ∞ as p → 2−.
We denote by T2 the finite Hilbert transform TL2 : L2 → L2. The norm ‖ ·‖L2 will simply

be denoted by ‖ · ‖2.
Lemma 5.1 For every set A ∈ B, we have

‖T2(χA)‖2 ≥
(∫ ∞

0

4λ

eπλ + 1
dλ

)1/2

|A|1/2.

Proof We rely on a consequence of the Stein–Weiss formula for the distribution function of
the Hilbert transform of a characteristic function, due to Laeng [19, Theorem 1.2]. Namely,
for A ⊆ R with |A| < ∞, we have

|{x ∈ A : |H(χA)(x))| > λ}| = 2|A|
eπλ + 1

, λ > 0.

For A ∈ B, it follows from properties of the distribution function for T2(χA) that

‖T2(χA)‖22 =
∫ ∞

0
2λ · |{x ∈ (−1, 1) : |T2(χA)(x)| > λ}| dλ

≥
∫ ∞

0
2λ · |{x ∈ A : |H(χA)(x)| > λ}| dλ

= |A|
∫ ∞

0

4λ

eπλ + 1
dλ.

��
The approach we use for proving the impossibility of extending T2 is to show that L2

coincides with the B.f.s. [T , L2]. For this, we need to compare the norm in L2 with the norm
in [T , L2].
Theorem 5.2 For each function φ ∈ sim B, we have

(∫ ∞

0

4λ

eπλ + 1
dλ

)1/2

‖φ‖2 ≤ sup
|θ |=1

∥∥T2(θφ)
∥∥
2.

Proof In order to prove the claim, fix any simple function φ = ∑N
n=1 anχAn , with

a1, . . . , aN ∈ C and pairwise disjoint sets A1, . . . , AN ∈ B with N ∈ N.
Let τ denote the product measure on  := {−1, 1}N for the uniform probability on

{−1, 1}. Thus, given σ ∈  we have σ = (σ1, . . . , σN ) with σn = ±1 for n = 1, . . . , N .
Note that the coordinate projections

Pn : σ ∈  �→ σn ∈ {−1, 1}, n = 1, . . . , N ,
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form an orthonormal set, i.e.,∫


Pj Pk dτ =
∫



σ jσk dτ(σ ) = δ j,k, j, k = 1, . . . , N . (5.1)

The function F :  → [0,∞) defined by

F(σ ) :=
∥∥∥∥∥T2

(
N∑

n=1

σnanχAn

)∥∥∥∥∥
2

, σ ∈ ,

is bounded and measurable and so satisfies

‖F‖L2(τ ) ≤ ‖F‖L∞(τ ) . (5.2)

We now compute both of the norms in (5.2) explicitly.
Given σ = (σn) ∈ , the measurable function defined on (−1, 1) by

t �→ θσ (t) := χ(−1,1)\(∪N
n=1 An)(t) +

N∑
n=1

σnχAn (t)

satisfies |θσ | = 1 and

θσ φ =
N∑

n=1

σnanχAn .

Consequently,

T2
(
θσ φ

) = T2
( N∑

n=1

σnanχAn

)
,

from which it is clear that

‖F‖L∞(τ ) = sup
σ∈

∥∥∥∥T2

( N∑
n=1

σnanχAn

)∥∥∥∥
2

≤ sup
|θ |=1

∥∥T2(θφ)
∥∥
2. (5.3)

Set β := ( ∫ ∞
0

4λ
eπλ+1

dλ
)1/2. By Fubini’s theorem, (5.1) and Lemma 5.1 it follows that

‖F‖2L2(τ )
=

∫


∥∥∥∥T2

( N∑
n=1

σnanχAn

)∥∥∥∥
2

2
dτ(σ ) =

∫


∫ 1

−1

∣∣∣∣
N∑

n=1

σnanT2(χAn )(t)

∣∣∣∣
2

dt dτ(σ )

=
∫ 1

−1

∫


∣∣∣∣
N∑

n=1

σnanT2(χAn )(t)

∣∣∣∣
2

dτ(σ ) dt =
∫ 1

−1

N∑
n=1

∣∣anT2(χAn )(t)
∣∣2 dt

=
N∑

n=1

|an |2
∥∥∥T2(χAn )

∥∥∥2
2

≥ β2
N∑

n=1

|an |2|An |

= β2
∫ 1

−1

∣∣∣∣
N∑

n=1

anχAn (t)

∣∣∣∣
2

dt

= β2‖φ‖22.
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This inequality, together with (5.2) and (5.3), yields

β‖φ‖2 ≤ sup
|θ |=1

∥∥T2(θφ)
∥∥
2.

Since the simple function φ is arbitrary, this establishes the result. ��

Theorem 5.2 implies the impossibility of extending T2. Note that this does not follow from
Theorem 4.7 since L2 does not satisfy the restriction on the Boyd indices.

Theorem 5.3 The finite Hilbert transform T2 : L2 → L2 has no continuous, L2-valued exten-
sion to any genuinely larger B.f.s.

Proof We follow the approach used for proving Theorem 4.7 to show that

L2 = [T2, L2] := {
f ∈ L1 : T2(h) ∈ L2, ∀|h| ≤ | f |}.

Note first note that

β‖φ‖2 ≤ sup
|θ |=1

∥∥T2(θφ)
∥∥
2 ≤ sup

|h|≤|φ|
∥∥T2(h)

∥∥
2, φ ∈ sim B. (5.4)

The left-hand inequality is Theorem 5.2. The right-hand inequality is clear from (4.1).
Let f ∈ [T , L2]. According to (5.4), for every φ ∈ sim B satisfying |φ| ≤ | f | it follows

that

β‖φ‖2 ≤ sup
|h|≤| f |

∥∥T2(h)
∥∥
2 = ‖ f ‖[T ,L2].

Taking the supremumwith respect to all such φ yields β‖ f ‖2 ≤ ‖ f ‖[T ,L2]. This implies that
f ∈ L2. Consequently, [T , L2] = L2 with equivalent norms. ��

A further consequence of Theorem 5.2 leads to various equivalent norms, in terms of
the operator T2, to the standard norm ‖ · ‖2 in L2. As before, note that this does not follow
from Corollary 4.8 since L2 does not satisfy the restriction on the Boyd indices. Recall that
β := ( ∫ ∞

0
4λ

eπλ+1
dλ

)1/2.
Corollary 5.4 For every f ∈ L2, we have

β

4
‖ f ‖2 ≤ sup

A∈B
∥∥T2(χA f )

∥∥
2 ≤ sup

|θ |=1

∥∥T2(θ f )
∥∥
2 ≤ sup

|h|≤| f |
∥∥T2(h)

∥∥
2 ≤ ‖ f ‖2.

Proof The last inequality follows (since ‖ · ‖2 is a lattice norm and ‖T2‖ = 1, [23]) via

‖T2(h)‖2 ≤ ‖T2‖ · ‖h‖2 ≤ ‖ f ‖2, |h| ≤ | f |.
If f ∈ L2, then surely (c) of Proposition 4.1 is satisfied with X = L2. Hence, the second

and third inequalities follow from (4.1).
Finally, in order to prove the first inequality, we begin by establishing, for h, f ∈ L2

satisfying |h| ≤ | f |, that
sup
|θ |=1

∥∥T (θh)
∥∥
2 ≤ sup

|θ̃ |=1

∥∥T (θ̃ f )
∥∥
2. (5.5)
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Fix θ with |θ | = 1. Then, via Parseval formula, for some function θ̃ f ,g satisfying |θ̃ f ,g| = 1,
we have

∥∥T2(θh)
∥∥
2 = sup

‖g‖2≤1

∣∣∣∣
∫ 1

−1
T2(θh)(t) · g(t) dt

∣∣∣∣ = sup
‖g‖2≤1

∣∣∣∣
∫ 1

−1
θ(t)h(t) · T2(g)(t) dt

∣∣∣∣

≤ sup
‖g‖2≤1

∫ 1

−1
|h(t)| · |T2(g)(t)| dt ≤ sup

‖g‖2≤1

∫ 1

−1
| f (t)| · |T2(g)(t)| dt

= sup
‖g‖2≤1

∫ 1

−1
f (t)θ̃ f ,g(t)T2(g)(t) dt ≤ sup

‖g‖2≤1

∣∣∣∣
∫ 1

−1
T2( f θ̃ f ,g)(t)g(t) dt

∣∣∣∣
≤ sup

‖g‖2≤1
‖T2( f θ̃ f ,g)‖2‖g‖|2

≤ sup
|θ̃ |=1

‖T2( f θ̃ )‖2.

Accordingly, (5.5) holds.
Fix f ∈ L2. Then, Theorem 5.2, together with (4.1) and (5.5), gives, for φ ∈ sim B

satisfying |φ| ≤ | f |, that
β‖φ‖2 ≤ sup

|θ |=1

∥∥T2(θφ)
∥∥
2 ≤ sup

|θ |=1

∥∥T2(θ f )
∥∥
2 ≤ 4 sup

A∈B
∥∥T2( f χA)

∥∥
2.

Taking the supremum with respect to all such simple functions φ , we arrive at

β‖ f ‖2 ≤ 4 sup
A∈B

∥∥T2( f χA)
∥∥
2.

��
From Corollary 5.4, we can deduce conditions, in terms of the finite Hilbert transform,

for membership of L2.

Corollary 5.5 Given f ∈ L1, the following conditions are equivalent.

(a) f ∈ L2.
(b) T ( f χA) ∈ L2 for every A ∈ B.
(c) T ( f θ) ∈ L2 for every θ ∈ L∞ with |θ | = 1 a.e.
(d) T (h) ∈ L2 for every h ∈ L0 with |h| ≤ | f | a.e.

Proof (b)⇔(c)⇔(d) follow from Proposition 4.1 with X = L2.
(a)⇒(b) Clear as T2 : L2 → L2 is bounded.
(b)⇒(a) For X = L2, it follows that condition (b) of Proposition 4.1 holds, that is, γ :=

supA∈B ‖T ( f χA)‖2 < ∞. For each n ∈ N define An := | f |−1([0, n]) and fn := f χAn .
Then,

‖T ( fnχA)‖2 = ‖T ( f χA∩An )‖2 ≤ γ, A ∈ B, n ∈ N,

which implies, via Corollary 5.4, that

‖ fn‖2 ≤ 4γ

β
, n ∈ N.

Since | fn |2 ↑ | f |2 pointwise a.e. on (−1, 1), from the monotone convergence theorem it
follows that f ∈ L2. This is condition (a). ��

123



Inversion and extension of the finite Hilbert transform on (−1, 1) 1859

Remark 5.6 As commented in the Introduction the operator T2 : L2 → L2 is injective and
has proper dense range. A detailed study of its range is carried out in Sections 3 and 4 of [26].
Let us highlight a somewhat unexpected result given there. Namely, for every −1 < a < 1,
each function fa(x) := χ(a,1)(x)/

√
1 − x2, for x ∈ (−1, 1), which belongs to L1, satisfies

T ( fa) ∈ L2 and

‖T ( fa)‖2 =
∥∥∥∥T

(
χ(a,1)(x)√
1 − x2

)∥∥∥∥
2

= 1

π

(
7ζ(3)

)1/2
,

[26, Lemma 4.3 and Note 4.4]. Observe that fa /∈ L2 for every −1 < a < 1. On the other
hand, if X is a r.i. space satisfying 1/2 < αX ≤ αX < 1, then K = { fa : −1 < a <

1} ⊆ L2,∞ ⊆ X . Moreover, for every sequence an ↑ 1− the sequence { fan }∞n=1 satisfies
0 ≤ fan ↓ 0 pointwise. Assuming the absolute continuity of the norm ‖ · ‖X , it follows in
this case that limn TX ( fan ) = 0 in X .

Remark 5.7 For r.i. spaces X satisfying the conditions of Theorem 4.7, namely

0 < αX ≤ αX < 1/2 or 1/2 < αX ≤ αX < 1, (5.6)

we know that the finite Hilbert transform TX : X → X cannot be extended to a larger B.f.s.
The proof is based on arguments from Fredholm operator theory, a deep factorization result
of Talagrand on L0-valued measures and on the construction of the largest domain space
[T , X ]. For r.i. spaces X with 0 < αX ≤ αX < 1 not satisfying the conditions (5.6), it is
unknown in general when TX is Fredholm and when not (for X = L2, it is known that TX

is not Fredholm). So, the arguments used to prove Theorem 4.7 may apply to some further
cases but surely not to all. The proof given in Theorem 5.3 for X = L2 relies heavily on
properties of the L2-setting. Thus, it is difficult to extend to other spaces. The possibility of a
related proof, at least for the spaces L2,q with 1 ≤ q ≤ ∞ and q �= 2, would require carefully
looking at the “measure of level sets.” Many technical difficulties would be expected to arise
in such an attempt, and still not all cases would be covered. Nevertheless, the class of r.i.
spaces X having the property (5.6), together with X = L2, is rather large and suggests that
[T , X ] = X should hold for all r.i. spaces satisfying 0 < αX ≤ αX < 1.
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