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Abstract
We relate the operad FMan controlling the algebraic structure on the tangent sheaf of an
F-manifold (weak Frobenius manifold) defined by Hertling and Manin to the operad PreLie
of pre-Lie algebras: for the filtration of PreLie by powers of the ideal generated by the Lie
bracket, the associated graded object is FMan.
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1 Introduction

The notion of an F-manifold (weak Frobenius manifold) was introduced by Hertling and
Manin [8] as a relaxation of the notion of a Frobenius manifold. By definition, an F-manifold
is a pair (M,− ◦ −) consisting of a smooth supermanifold M and a smooth bilinear com-
mutative associative product − ◦ − on the tangent sheaf T M satisfying the condition

PX1◦X2(X3, X4) = X1 ◦ PX2(X3, X4) + (−1)|X1||X2|X2 ◦ PX1(X3, X4),

where PX1(X2, X3) = [X1, X2◦X3]−[X1, X2]◦X3−(−1)|X1||X2|X2◦[X1, X3]measures to
what extent the product−◦− and the usual Lie bracket of vector fields fail the Poisson algebra
axioms.Any Frobeniusmanifold is an F-manifold; any F-manifold forwhich the product−◦
− is semisimple can bemade into a Frobeniusmanifold [8]. A very deep operadic result on F-
manifolds was established by Merkulov [19]: any homotopy Gerstenhaber algebra gives rise
to an F-manifold (in fact to a much richer structure including higher operations). However,
a very fundamental problem of a reasonable description of the operad FMan encoding “F-
manifold algebras”, that is algebraswith an associative commutative product and aLie bracket
satisfying the Hertling–Manin condition, has never been addressed. On the one hand, it is not
surprising, since the Hertling–Manin condition is a cubic relation, and as such, the operad
FMan is completely outside the scope of applicability of traditional methods of the operad
theory like the Koszul duality theory, so there are no readily available methods to study it,
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518 V. Dotsenko

as remarked by Manin in [14, Sect. 3.3, Remark] where the question of studying the operad
FMan is emphasised. On the other hand, this algebraic structure appears as fundamental as
the one controlled by the Poisson operad, and its satisfactory algebraic description is highly
desirable.

In this paper, we give a very direct description of the operad FMan. Quite surprisingly,
this operad turns out to be intimately related to one of the most famous operads appearing in
the literature, the operad PreLie of pre-Lie algebras [4] that controls bilinear products − · −
on a graded vector space V satisfying the condition

(X1 · X2) · X3 − X1 · (X2 · X3) = (−1)|X2||X3|((X1 · X3) · X2 − X1 · (X3 · X2)
)
. (1)

This condition implies that the bracket [X1, X2] = X1 · X2 − (−1)|X1||X2|X2 · X1 satisfies
the Jacobi identity. The slogan promoted by this note is “F-manifold algebras are the same to
pre-Lie algebras as Poisson algebras to associative algebras.” (The word “algebras” is used
in that slogan four times to emphasise that we consider algebraic properties of the structure
on the tangent sheaf of an F-manifold and ignore the geometry of the arguments, the vector
fields.)

In fact, there exists a commutative diagram of operads

PreLie Ass

FMan Poisson

where the vertical arrows are isomorphisms on the level of S-modules (but not on the level of
operads). Note that in contrast to the operad FMan the defining relations of the operad PreLie
are quadratic, and the symmetrised pre-Lie product X1 ◦ X2 = X1 · X2 + (−1)|X1||X2|X2 · X1

does not satisfy any identities at all, as established in [2]. Our approach substantially relies
on shuffle operads and rewriting methods for operads. We introduce and use two new general
notions: an almost composite product and an almost distributive law.

This is a short note, and we do not intend to overload it with excessive recollections.
For relevant information on symmetric operads and Koszul duality, we refer the reader to
the monograph [12] and, for information on shuffle operads, Gröbner bases and rewriting
systems to the monograph [3].

All operads in this paper are defined over a field k of characteristic zero. We assume all
operads reduced (P(0) = 0) and connected (P(1) = k). The (co)augmentation (co)ideal of
an (co)operadP is denotedP . The Koszul dual of a quadratic operadP is denotedP !. When
writing down elements of operads, we use arguments a1, …, an as placeholders and capital
Latin letters X1, . . . , Xn as arguments (belonging to actual graded vector spaces on which
operads act). Thus, the pre-Lie identity in the operadic form is

(a1 · a2) · a3 − a1 · (a2 · a3) = (a1 · a3) · a2 − a1 · (a3 · a2), (2)

and the signs in (1) arise from applying this to a decomposable tensor X1 ⊗ X2 ⊗ X3 and
using the standard Koszul sign rule.

2 The Lie filtration and F-manifold algebras

We begin with making the statements from Introduction completely clear. Let us begin with
a precise operadic definition of the protagonist of this paper.
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Algebraic structures of F-manifolds via pre-Lie algebras 519

Definition 1 The operad FMan of F-manifold algebras is generated by a symmetric binary
operation − ◦ − and a skew-symmetric binary operation [−,−] satisfying the associativity
relation and the Jacobi identity

(a1 ◦ a2) ◦ a3 = a1 ◦ (a2 ◦ a3),

[[a1, a2], a3] + [[a2, a3], a1] + [[a3, a1], a2] = 0,

and related to each other by the Hertling–Manin relation

[a1 ◦ a2, a3 ◦ a4] = [a1 ◦ a2, a3] ◦ a4 + [a1 ◦ a2, a4] ◦ a3 + a1 ◦ [a2, a3 ◦ a4]
+ a2 ◦ [a1, a3 ◦ a4] − (a1 ◦ a3) ◦ [a2, a4] − (a2 ◦ a3) ◦ [a1, a4]
− (a2 ◦ a4) ◦ [a1, a3] − (a1 ◦ a4) ◦ [a2, a3].

Our next step is to define the filtration of the pre-Lie operad which we shall need.

Definition 2 The Lie filtration F•PreLie of the operad of pre-Lie algebras is defined as the
filtration by powers of the ideal generated by the Lie bracket [−,−]. In otherwords, FkPreLie
is the span of tree tensors in which at least k vertices are labelled with [−,−].

Now everything is prepared for our main result to be stated.

Theorem 1 The operad FMan is the associated graded object for the Lie filtration: we have
an operad isomorphism

grF PreLie ∼= FMan.

In particular,

dim FMan(n) = nn−1,

and the Sn-module FMan(n) is isomorphic to the module of rooted trees on {1, . . . , n}.
Note that the same filtration can be defined for the operad Ass of associative algebras. In

that case, it is well known [11,17] that grF Ass ∼= Poisson. To prove it, one may first note that
a direct computation demonstrates that relations of Poisson hold in grF Ass, which leads to a
surjective map between these operads. Establishing that this map is an isomorphism can then
be done by proving that this operads are of the same size, which requires some extra work.
It turns out that a similar strategy, albeit more involved in the “extra work” part, is available
in our case. We shall make the first step and establish a lower bound on the operad FMan
(a posteriori, this bound will turn out to be sharp) and then develop a general formalism of
almost composite products and almost distributive laws needed to complete the proof (note
that in the case of the Poisson operad, we are dealing with actual composite products and
distributive laws, so the parallelism of proofs is very apparent).

Lemma 1 We have a surjection of operads

FMan � grF PreLie.

Proof Recall that the symmetrised pre-Lie product−◦− and the bracket [−,−] in the operad
PreLie satisfy the following relation:

(a1 ◦ a2) ◦ a3 − a1 ◦ (a2 ◦ a3) − a1 ◦ [a2, a3] − [a1, a2] ◦ a3 − 2[a1, a3] ◦ a2

+ [a1, a2 ◦ a3] + [a1 ◦ a2, a3] + [[a1, a3], a2] = 0,
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(see [3, Example 5.6.4.1]). Considering it as a relation in a shuffle operad and computing its
S-polynomial with itself, one arrives at a relation

− [a1 ◦ a2, a3] ◦ a4 − [a1 ◦ a2, a4] ◦ a3 + [a1, a4] ◦ (a2 ◦ a3) + [a1, a3] ◦ (a2 ◦ a4)

− [a1, a3 ◦ a4] ◦ a2 + [a1 ◦ a2, a3 ◦ a4] + a1 ◦ ([a2, a3] ◦ a4) + a1 ◦ ([a2, a4] ◦ a3)

− a1 ◦ [a2, a3 ◦ a4] + [[a1, a3], a2] ◦ a4 + [[a1, a4], a2] ◦ a3 + 2[[a1, a4], a3] ◦ a2

+ [a1, [a2, a3]] ◦ a4 + [a1, [a2, a4]] ◦ a3 + [a1, a4] ◦ [a2, a3] + [a1, a3] ◦ [a2, a4]
+ [a1, [a3, a4]] ◦ a2 − [[a1, a4], a2 ◦ a3] − [[a1, a3], a2 ◦ a4] − [a1, [a2, a3] ◦ a4]
− [a1, [a2a4] ◦ a3] − 2[[[a1, a4], a3], a2] − [[a1, a4], [a2, a3]] − [[a1, a3], [a2, a4]]
− [[a1, [a3, a4]], a2] = 0.

Let us consider the images of both of these relations in grF PreLie. The first one is a combi-
nation of terms where the bracket is used 0, 1, and 2 times. In the associated graded object,
this relation becomes the associativity of the product−◦−. The second one is a combination
of terms where the bracket is used 1, 2, and 3 times. In the associated graded object, this
relation becomes

− [a1 ◦ a2, a3] ◦ a4 − [a1 ◦ a2, a4] ◦ a3 + [a1, a4] ◦ (a2 ◦ a3)

+ [a1, a3] ◦ (a2 ◦ a4) − [a1, a3 ◦ a4] ◦ a2

+ [a1 ◦ a2, a3 ◦ a4] + a1 ◦ ([a2, a3] ◦ a4) + a1 ◦ ([a2, a4] ◦ a3)

− a1 ◦ [a2, a3 ◦ a4] = 0,

which, modulo associativity, is equivalent to the Hertling–Manin condition. It remains to
notice that by a standard polarisation argument [17], the operations−◦− and [−,−] generate
the operad PreLie, so the operad grF PreLie is generated by their cosets, and hence, it is a
homomorphic image of the operad FMan. ��

3 Almost composite products and almost distributive laws

In the case of the operad of Poisson algebras, the relation between − ◦ − and [−,−] is a
rewriting rule allowing to get rid of all occurrences of products inside brackets, showing that
there is a surjective map onto the Poisson operad from the composite product Com ◦ Lie. In
the case of F-manifold algebras, one can mimic this approach. For that, we introduce and
study a new general operadic construction.

Definition 3 Suppose thatP = T (X )/(R) andQ = T (Y)/(S) are twooperads. Thealmost
composite product of P and Q, denoted P�0Q, is defined as

P�0Q := P
∨

Q/(α(β1, . . . , βk) : α ∈ Y, βi ∈ X ).

Remark 1 The usual composite product P ◦ Q of the underlying S-modules of P and Q is
the underlying S-module of the operad

P ∨0 Q := P
∨

Q/(α(β, id, . . . , id) : α ∈ Y, β ∈ X ),

whose relations are known as the trivial distributive law between P and Q (see [12,
Sect. 8.6.4]) which explains our terminology. Note that unlike the trivial distributive laws,
almost composite products are not defined by quadratic relations, unless Q is generated by
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unary operations. This takes these operads outside the scope of commonly used methods of
operad theory.

We shall now establish two general results about almost composite products, which are
analogous to corresponding results about trivial distributive laws. First, we shall show that
the almost composite product of two operads P and Q is an upper bound on a certain class
of quotients of P ∨Q, in the same way as the trivial distributive law is an upper bound for
general rewriting rules used to define distributive laws between operads [12,16].

Proposition 1 Let P = T (X )/(R) and Q = T (Y)/(S) be two operads, and let O be an
operad of the form

O := P
∨

Q/(α(β1, . . . , βk) − f (α(β1, . . . , βk)) : α ∈ Y, βi ∈ X ),

where f : Y ◦ X → P ∨Q is a linear map whose image is contained in the right ideal
generated by X . Then for each n ≥ 1, there is a surjection of vector spaces

(P�0Q)(n) � O(n).

Proof Let us view the shuffle operads associated with P�0Q and O as quotients of the
free shuffle operad generated by X ⊕ Y . We fix some admissible order ≺0 of shuffle tree
monomials.

We first note that from the algorithm of computing the reduced Gröbner basis for a given
operad, it is clear that the reduced Gröbner basis for the operad P�0Q consists of linear
combinations of monomials where vertices labelled by elements of Y are “closer to the
leaves”, that is, there is no vertex labelled by an element from Y which has a child labelled
by an element of X .

Let us now examine the operad O. The situation with this operad is more complicated:
generally, there is no choice of an admissible order for which α(β1, . . . , βk) is the leading
term of α(β1, . . . , βk) − f (α(β1, . . . , βk)). For that reason, we need to invoke a rewriting
system argument. Let us define the following order on shuffle tree monomials: T ≺ T ′ if

– n(T ) > n(T ′), where n(T ) is the number of pairs of internal vertices (v, v′) of T , where
v is on the way from the root of T to v′, the label of v is from X , and the label of v′ is
from Y ;

– n(T ) = n(T ′), and T ≺0 T ′.

This order is not amonomial order. However, it is a total order, so it certainly allows to convert
relations into rewriting rules (so every set of relations gives rise to a rewriting system), and
it is a well order (so every rewriting system is terminating). Note that for the operad P�0Q
only tree monomials T with n(T ) = 0 appear in the process of Knuth–Bendix completion
of the corresponding rewriting system [9], so the direction of all relations is dictated by ≺0,
and the result of the completion is the reduced Gröbner basis.

Let us now apply the Knuth–Bendix completion procedure to relations of the operadO. It
is clear that when we consider the critical pairs coming from the mixed P–Q-relations and
theQ-relations, the computationmimics the onewe performed for the operadP�0Q, adding
some extra terms for which the parameter n(T ) is higher; thus, these terms are smaller with
respect to the order ≺. This means that whenever the Knuth–Bendix procedure produced a
new rewriting rule for P�0Q, it produces a new rewriting rule forO, and the left-hand side
of that rule is the same. (In principle, completely new rewriting rules may arise here: if a
critical pair does not produce a new rewriting rule for P�0Q, it still may produce one for
O.) By contrast, the critical pairs coming from the mixedP–Q-relations and theP-relations
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contribute nothing in the case of the operad P�0Q, but may result in new Gröbner basis
elements for O.

We observe that the left-hand sides of the rewriting rule set of normal forms for the
componentO include all the left- hand sides of the rewriting rule set of normal forms for the
component P ∨Q, so the set of normal forms for the operad O is a subset of the set of the
normal forms for (P�0Q)(n), which proves our claim. ��

The analogy with distributive laws mentioned above suggests the following definition.

Definition 4 Let P = T (X )/(R) and Q = T (Y)/(S) be two operads, and let O be an
operad of the form

O := P
∨

Q/(α(β1, . . . , βk) − f (α(β1, . . . , βk)) : α ∈ Y, βi ∈ X ),

where f : Y ◦ X → P ∨Q is a linear map whose image is contained in the right ideal
generated by X . The map f is said to be an almost distributive law between P and Q if for
each n we have an isomorphism of S-modules

(P�0Q)(n) ∼= O(n).

Let us now determine the minimal model of the almost composite product of two Koszul
operads. This result is inspired by both the computation of the minimal model of the trivial
distributive law between two Koszul operads [12, Prop. 8.6.3] and the approach to infinity
morphisms of strong homotopy algebras using “homotopy Koszul operads” [20].

Proposition 2 Let P = T (X )/(R) and Q = T (Y)/(S) be two Koszul operads. Consider
the endomorphism d of the free operad T (s−1Q! ⊕ Q! ⊕ s−1P !) defined on the generators
as follows:

– on the first group of generators, d(s−1λ) = d
Ω(Q!)(s

−1λ),

– on the second group of generators, d(λ) = s−1λ − (id⊗s)d
Ω(Q!)(s

−1λ),

– on the third group of generators, d(s−1μ) = d
Ω(P !)(s

−1μ).

Then d2 = 0. Moreover, the suboperad of T (s−1Q! ⊕ Q! ⊕ s−1P !) generated by

s−1Q! ⊕ s−1P ! ⊕ (Q! ◦ (s−1P !))

is a free operad and a d-invariant subspace, and the quasi-free operad
(
T (s−1Q! ⊕ s−1P ! ⊕ (Q! ◦ (s−1P !))), d

)

is a minimal model of the operad P�0Q.

Proof A direct inspection confirms that d2 = 0 (note that this is only needed to check on the
second group of generators, as on the two other groups it follows from the fact that the cobar
complex of a cooperad is a chain complex). It is also immediate to check that the suboperad
s−1Q! ⊕ s−1P ! ⊕ (Q! ◦ (s−1P !)) is d-invariant; once again, it is clear that for the generators
of the first and the second group, their images under d are made of elements of the same
kind, so only the generators of Q! ◦ (s−1P !) need to be inspected. Also, this suboperad is
free, since every element can be uniquely represented as a composite of generators; for that,
it is useful to note that Q! (without s−1) only appears in the third group of generators.
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Let us compute the homology of the operad
(
T (s−1Q! ⊕ s−1P ! ⊕ (Q! ◦ (s−1P !))), d

)
.

For that, we introduce a weight grading on this operad defined by assigning weight 0 to
generators from s−1P ! and weight 1 to generators from both s−1Q! andQ! ◦ (s−1P !). Note
that the contributions of d

Ω(P !) to d (those appear in the images under d of generators from

s−1P ! and Q! ◦ (s−1P !)) do not change weight, and all other contributions to d increase
weight by at least one. Thus, we are dealing with a filtered chain complex, and we may
consider the corresponding spectral sequence. The differential of the first page of that spectral
sequence kills all the higher homotopies forP ; thus, homology of that differential is identified
with the operad

T (X ⊕ s−1Q! ⊕ (Q! ◦ X ))/(R),

with the obvious differential derived from d . To compute the homology of that differential, we
introduce another filtration defined by assigning weight 0 to generators from X and weight
1 to generators from both s−1Q! and Q! ◦ X . Note that for each generator, the contribution
of the map λ �→ s−1λ does not change weight, and the contributions of d

Ω(Q!) increase the
weight by at least one. The differential of the first page of the spectral sequence of this new
filtered complex has the homology

T (X ⊕ s−1Q!)/(R ⊕ (s−1Q! ◦ X )),

with the differential (0, d
Ω(Q!)). The homology of that differential is manifestly the operad

P�0Q, and there is no room for further differentials. ��

4 Main result

Proof of Theorem 1 Let us first establish that dim(Com�0Lie)(n) = dim PreLie(n) for all
n ≥ 1, or in other words

fCom�0Lie(t) =
∑

n≥1

dim(Com�0Lie)(n)

n! tn =
∑

n≥1

dim PreLie(n)

n! tn = fPreLie(t).

It is well known that the right hand side is a solution to the functional equation

fPreLie(t) = t exp( fPreLie(t)), (3)

which follows either from the rooted trees construction of the operad PreLie as in [4], or
from the Koszul duality theory. Thus, it is sufficient to establish that the left-hand side is a
solution to the same functional equation. By Proposition 2, the minimal model of Com�0Lie
is generated by

s−1Com! ⊕ s−1Lie! ⊕ (Lie! ◦ (s−1Com!)).

The generating functions of theEuler characteristics of the corresponding operads are, respec-
tively,

f
Com!(t) = −(− log(1 + t) + t) = log(1 + t) − t,

f
Lie!(t) = −(exp(−t) − 1 + t) = 1 − t − exp(−t),
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so we have

f
s−1Lie!(t) = exp(−t) − 1 + t, f

s−1Com!(t) = − log(1 + t) + t,

and

f
Lie!◦(s−1Com!)(t) = 1 + log(1 + t) − t − exp(log(1 + t) − t)

= 1 + log(1 + t) − t − (1 + t) exp(−t),

which means that

f
s−1Com!(t) + f

s−1Lie!(t) + f
Lie!◦(s−1Com!)(t)

= − log(1 + t) + t + exp(−t) − 1 + t + 1 + log(1 + t) − t − (1 + t) exp(−t)

= exp(−t) + t − (1 + t) exp(−t) = t − t exp(−t).

Finally, it is known [18] that for a minimal model (T (E), d) of any operad P , the series
t − fE (t) is the compositional inverse of the series fP (t), so t exp(−t) is the compositional
inverse of fCom�0Lie(t), and

fCom�0Lie(t) exp(− fCom�0Lie(t)) = t,

which is the same as functional equation (3), as required.
The result we just proved, together with Propositions 1 and 1, means that we have a

diagram of finite-dimensional vector spaces

PreLie(n) ∼= (Com�0Lie)(n) � FMan(n) � grF PreLie(n),

where the first and the last term are of the same dimension and all maps are isomorphisms
and surjections; hence, all maps must be isomorphisms. In particular, the maps FMan(n) �
grF PreLie(n) arise from a map of operads, so they assemble into an operad isomorphism.
The claims about the dimension and the Sn-action follow since they are known to hold for
the operad PreLie [4], and our filtration is equivariant. ��

5 Minimal model of the operad FMan and new constructions of
F-manifold algebras

Recall that our proof of themain result implies that the operad FMan is obtained from operads
P and Q by an almost distributive law. Using a perturbation argument similar to that in [5],
one can establish the following result.

Proposition 3 Suppose that O is an operad obtained from Koszul operads P and Q by an
almost distributive law, and suppose further that O has finite-dimensional components. The
shuffle operad O admits a minimal resolution with generators

s−1Q! ⊕ s−1P ! ⊕
(
Q! ◦ (s−1P !)

)
.

Let us give a sketch of a proof. The only serious change in comparisonwith [5] is replacing
Gröbner baseswith rewriting systems, similar to howmethods ofKobayashi [10] extend those
of Anick [1].

The first step, analogous to [5, Th. 2.2], which constructs a resolution for any shuffle
operad with monomial relations, goes through unchanged. The second step, analogous to [5,
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Th. 4.1], amounts to a perturbation argument which allows one to incorporate lower terms
of relations; this argument goes through for rewriting systems without any problem, since
in fact it only requires knowing the leading term of each relations for computations and the
well-order property for termination of those computations. Since O is obtained from P and
Q by an almost distributive law, the proof of Proposition 1 (under our assumption on finite
dimensionality of components of the operad O) shows that the operads P�0Q and O may
be presented by rewriting systems with the same sets of left-hand sides and hence the same
associated monomial shuffle operad.

By examining the perturbation argument in [5, Th. 4.1] together with the proof of Propo-
sition 1, one sees that the differentials induced on the spaces of indecomposable elements of
thus obtained resolutions of the operadsP�0Q andO have the same homology. Transferring
the homotopy cooperad structure from the space of indecomposable elements to homology
[6], and recalling Proposition 2, one obtains the claimed result.

Thus, the minimal model of the operad FMan has generators

s−1Com! ⊕ s−1Lie! ⊕ (Lie! ◦ (s−1Com!)).

That result is notable in the context of Merkulov’s work [19], where the notion of an F∞-
manifold is suggested. The operad controlling F∞-manifolds in the sense of [19] is not
cofibrant, since the Jacobi identity for the Lie bracket is suppose to hold strictly, not just up
to homotopy (this is an inevitable consequence of thinking of the operation [−,−] as of the
bracket of vector fields even when some structures are relaxed up to homotopy).

Our computation confirms that a cofibrant replacement of FMan given by the minimal
model is of the “right shape”; its lowest level with respect to the hierarchy of L∞-operations
recovers the definition from [19]. This agreement of two results is particularly remarkable in
the view of the fact that, unlike Merkulov, we only consider F-manifold algebras and ignore
the underlying geometry.

As a final remark, let us explain how to construct new examples of F-manifold algebras
from algebras over operads that are a priori unrelated to geometry. Recall the following
definition [7,15].

Definition 5 The operad of pre-Lie commutative algebras is generated by a symmetric binary
operation −◦− and a binary operation −·− without any symmetry satisfying the following
relations:

(a1 ◦ a2) ◦ a3 = a1 ◦ (a2 ◦ a3),

(a1 · a2) · a3 − a1 · (a2 · a3) = (a1 · a3) · a2 − a1 · (a3 · a2),
(a1 ◦ a2) · a3 = (a1 · a3) ◦ a2 + a1 ◦ (a2 · a3).

It turns out that every pre-Lie commutative algebra has a canonical structure of an F-
manifold algebra.

Proposition 4 In any pre-Lie commutative algebra, the product ◦ and the bracket [a1, a2] =
a1 · a2 − a2 · a1 satisfy the F-manifold algebra identities.
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Proof Associativity and the Jacobi identity are obvious, sowe just need to verify theHertling–
Manin condition. Note that in a pre-Lie commutative algebra, we have

Pa1(a2, a3) = [a1, a2 ◦ a3] − [a1, a2] ◦ a3 − [a1, a3] ◦ a2

= a1 · (a2 ◦ a3) − (a2 ◦ a3) · a1 − (a1 · a2 − a2 · a1) ◦ a3

− (a1 · a3 − a3 · a1) ◦ a2

= a1 · (a2 ◦ a3) − (a1 · a2) ◦ a3 − (a1 · a3) ◦ a2.

From this, the Hertling–Manin condition is quite easy to see:

Pa1◦a2(a3, a4) = (a1 ◦ a2) · (a3 ◦ a4) − ((a1 ◦ a2) · a3) ◦ a4 − ((a1 ◦ a2) · a4) ◦ a3

= (a1 · (a3 ◦ a4)) ◦ a2 + (a2 · (a3 ◦ a4)) ◦ a1 − ((a1 · a3) ◦ a2

+ a1 ◦ (a2 · a3)) ◦ a4 − ((a1 · a4) ◦ a2 + a1 ◦ (a2 · a4)) ◦ a3

= (a1 · (a3 ◦ a4) − (a1 · a3) ◦ a4 − (a1 · a4) ◦ a3) ◦ a2

+ (a2 · (a3 ◦ a4) − (a2 · a3) ◦ a4 − (a2 · a4) ◦ a3) ◦ a1

= Pa1(a3, a4) ◦ a2 + Pa2(a3, a4) ◦ a1,

as required. ��
We conjecture that this construction embeds the operad FMan into the operad of pre-Lie

commutative algebras, which may lead to further ways of studying it.
Let us sketch one way to create a somewhat geometric context for this construction. For

that, we shall relax the definition of pre-Lie commutative algebras as follows.

Definition 6 The operad of partially commutative pre-Lie pencils is generated by a symmetric
binary operation − ◦ − and a binary operation − · − without any symmetry satisfying the
following relations:

(a1 ◦ a2) ◦ a3 = a1 ◦ (a2 ◦ a3),

(a1 · a2) · a3 − a1 · (a2 · a3) = (a1 · a3) · a2 − a1 · (a3 · a2),
(a1 ◦ a2) · a3 − (a1 · a3) ◦ a2 − a1 ◦ (a2 · a3) = (a1 ◦ a3) · a2 − (a1 · a2) ◦ a3

− a1 ◦ (a3 · a2).
The reason for the terminology is very simple: a pre-Lie pencil is a vector space with a

symmetric binary operation − ◦ − and a binary operation − · − without any symmetry for
which the operation a1, a2 �→ a1 ◦ a2 + ta1 · a2 is a pre-Lie product for any value of t .

It turns out that for any partially commutative pre-Lie pencil, the product ◦ and the bracket
[a1, a2] = a1 ·a2 −a2 ·a1 satisfy the F-manifold algebra identities; this can be checked by a
computation very similar to the one above. A geometric structure behind this definition is that
of a flat F-manifold [13]. In a forthcoming paper,we shall discuss the connection between this
structure and genus zero cohomological field theories, providing a purely algebraic analogue
of the connection between flat F-manifolds and Frobenius manifolds.

Acknowledgements I am indebted to Yuri Ivanovich Manin for inspiring conversations about F-manifolds.
Thanks are also due to Frederic Chapoton, Sergei Merkulov, Sergey Shadrin, and Bruno Vallette for useful
discussions.
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