
Annali di Matematica Pura ed Applicata (1923 -) (2019) 198:129–142
https://doi.org/10.1007/s10231-018-0765-5

Zeros of irreducible characters in factorised groups

M. J. Felipe1 · A. Martínez-Pastor1 · V. M. Ortiz-Sotomayor1

Received: 1 March 2018 / Accepted: 12 June 2018 / Published online: 21 June 2018
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer
Nature 2018

Abstract
An element g of a finite group G is said to be vanishing in G if there exists an irreducible
character χ of G such that χ(g) = 0; in this case, g is also called a zero of G. The aim of
this paper is to obtain structural properties of a factorised group G = AB when we impose
some conditions on prime power order elements g ∈ A∪ B which are (non-)vanishing in G.
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1 Introduction

Within finite group theory, the close relationship between character theory and the study of
conjugacy classes iswidely known.Regarding this last topic, several authors have investigated
the connection between certain conjugacy class sizes (also called indices of elements) of a
group G and its structure. Further, recent results show up that the conjugacy classes of the
elements in the factors of a factorised group exert a strong impact on the structure of the
whole group (see [3,10,15,16]).

In character theory, a celebrated Burnside’s result asserts: every row in a character table
of a finite group which corresponds to a nonlinear complex character has a zero entry [17,
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Theorem 3.15]. Nevertheless, a non-central conjugacy class column may not contain a zero.
This fact somehow violates the standard duality arising in many cases between the two
referred research lines. Therefore, in [18] the authors introduce the next concept: an element
g ∈ G is vanishing in G if there exists an irreducible character χ of G such that χ(g) = 0
(in the literature, g is also called a zero of χ). Otherwise, the element g is said to be non-
vanishing in G. As an immediate consequence of the cited Burnside’s result, we get that
a group has no vanishing elements if and only if it is abelian. It is to be said that various
questions concerning (non-)vanishing elements have been studied by numerous authors (in
particular, those appearing as references in this paper).

It is therefore natural to wonder whether results based on conjugacy class sizes remain
true if we restrict focus only to those indices that correspond to vanishing elements, i.e. if we
consider only the so-called vanishing indices. In this spirit, some researchers have recently
obtained positive results in certain cases. For instance, in 2010, Dolfi, Pacifici and Sanus
proved that if a prime p does not divide each vanishing index of a group G, then G has a
normal p-complement and abelian Sylow p-subgroups [13, Theorem A]. In 2016, Brough
showed that for a fixed prime p such that (p − 1, |G|) = 1, if all vanishing indices of G are
not divisible by p2, then G is soluble [7, Theorem A]. Moreover, if each vanishing index of
G is square free, then G is supersoluble [7, Theorem B]. The last two results turn to be the
“vanishing versions” of [11, Theorem 1] and [11, Theorem 2], respectively. Besides, Brough
and Kong have also showed in [8] that the hypotheses in the previous results can be weakened
to vanishing indices of prime power order elements.We remark that the classification of finite
simple groups (CFSG) is used in this development.

In this paper, we are interested in combining as a novelty the research on irreducible
characters with the study of products of groups. More concretely, we want to analyse which
information of a factorised group G can be obtained from its character table when we con-
sider the conjugacy classes in G of elements in the factors. In particular, inspired by the
aforementioned investigations, we deal with factorised groups having irreducible characters
which evaluate zero on some elements in the factors. It is worthwhile to note that the prod-
uct of two vanishing elements needs not to be vanishing in general. Moreover, an element
in a (normal) subgroup can be vanishing in the whole group but not in that subgroup (see
Example 3).

Focusing in products of groups, along the last decades, some relations of permutability
between the factors have been considered by many authors, as, for instance, total permutabil-
ity, mutual permutability (see [4]) and tcc-permutability (see [1,2]). These last permutability
relations are inherited by quotients, and they ensure the existence of a minimal normal sub-
group contained in one of the factors. We are principally concerned about products of groups
that satisfy both particular conditions, whichwewill name core-factorisations (seeDefinition
1).

In this framework, our purpose is to get a better understanding of how the vanishing
elements in the factors control the structure of a group with a core-factorisation. Moreover,
we will also deal with arithmetical conditions on the indices of those elements.

The paper is structured in the following way: firstly, core-factorisations are defined in
Sect. 2 and some properties of them, which will be crucial along the paper, are proved. In
Sect. 3, we analyse the case that a groupwith a core-factorisation has no vanishing p-elements
in the factors for a prime p (see Theorem 1). As a consequence, we obtain information of
a factorised group when all prime divisors of its order are considered, that is, when there
are no vanishing prime power order elements in the factors (see Corollary 3). Later on, we
obtain structural properties of groups with a core-factorisation from the vanishing indices
in the whole group of some elements in the factors. Concretely, in Sect. 4, we study the
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case when those vanishing indices are prime powers (Theorem 2 and Corollary 4). Next, we
focus in Sect. 5 on the case that the indices are not divisible by a prime p (see Theorem
3). The situation when those indices are square free is also handled in this last section (see
Theorems 4 and 7). In particular, we highlight that an affirmative answer to a question posed
by Brough in [7] is given (Corollary 6). It is significant to mention again that all the previous
results for core-factorisations will remain true when the factors are either totally, mutually
or tcc-permutable (see Example 1). We remark that in order to avoid repeating arguments
from previous papers, when some proof runs as in the one of a known result with suitable
changes, we refer to the corresponding one.

Throughout this paper, every group is assumed to be finite. The terminology here is as
follows: for a group G and an element x ∈ G, we call iG(x) the index of x in G, that is,
iG(x) = |G : CG(x)| is the size of the conjugacy class xG . The set of prime divisors of the
order of G is denoted by π(G). If p is a prime, then x ∈ G is a p-regular element if its order
is not divisible by p. As customary, the set of all Sylow p-subgroups of G is denoted by
Sylp (G), whilst Hallπ (G) is the set of all Hall π -subgroups of G for a set of primes π . We
write Irr(G) for the set of all irreducible complex characters of G. Given a group G = AB
which is the product of the subgroups A and B, a subgroup S is called prefactorised (with
respect to this factorisation) if S = (S ∩ A)(S ∩ B) (see [4]). We recall that a subgroup U
covers a section V /W of a group G if W (U ∩ V ) = V . The remaining notation is standard,
and it is taken mainly from [12]. In particular, a normal subgroup N of a group G such that
N �= G is denoted symbolically by N � G. We also refer to [12] for details about classes of
groups.

2 Core-factorisations: definition and properties

We analyse in this section the kind of factorisations we manage along the paper.

Definition 1 Let 1 �= G = AB be the product of the subgroups A and B. We say that
G = AB is a core-factorisation if for every proper normal subgroup K of G it holds that
there exists a normal subgroup 1 �= M/K of G/K such that either M/K � AK/K or
M/K � BK/K (i.e. either A or B covers M/K ).

Note that if we adopt the bar convention for the quotients over K , the above condition
means that AG BG �= 1, where HX denotes the core in a group X of a subgroup H . This
illustrates the given name for such factorisations.

Remark 1 Let us state some immediate facts:

1. If either 1 �= G = A or 1 �= G = B, then G = AB is always a core-factorisation.
2. If G = AB is a core-factorisation of a simple group G, then either G = A or G = B.
3. If we take K = 1 in the above definition, then there exists a (minimal) normal subgroup

of G = AB contained in either A or B.

We present now some non-trivial examples.

Example 1 Let 1 �= G = AB be the product of the subgroups A and B, and let assume that
A and B satisfy one of the following permutability properties:

(i) A and B are mutually permutable, that is, A permutes with every subgroup of B and B
permutes with every subgroup of A.

(ii) A and B are tcc-permutable, that is, if for every subgroup X of A and every subgroup Y
of B, there exists g ∈ 〈X , Y 〉 such that X permutes with Y g .
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(iii) A and B are totally permutable, that is, every subgroup of A permuteswith every subgroup
of B. (In particular, if this property holds, then A and B satisfy both (i) and (ii).)

Applying [4, Theorem 4.3.11] in (i) and [2, Lemma 2.5] in (ii), it can be seen that AGBG �= 1.
Also, the above permutability properties are clearly inherited by quotients. Thus, G = AB
is a core-factorisation in all cases. We shall see later in Example 2 a group with a core-
factorisation whose factors are neither mutually permutable nor tcc-permutable.

Now we prove that the quotients of core-factorisations inherit the property.

Lemma 1 Let G = AB be a core-factorisation, and let M be a proper normal subgroup of
G. Then, G/M = (AM/M)(BM/M) is also a core-factorisation.

Proof We use the bar convention to denote the quotients over M . We take a normal subgroup
K �G, andwe claim that there exists a normal subgroup 1 �= N/K ofG/K covered by either
A or B. As G = AB is a core-factorisation, then G/K has a normal subgroup 1 �= N/K
such that either N/K is covered by either A or B. It follows

1 �= N

K
= N/M

K/M
� AK/M

K/M
= (AM/M)(K/M)

K/M
= AK

K
,

or analogously the same is valid for B instead of A. �	
The lemma below is a characterisation of core-factorisations via normal series.

Lemma 2 Let 1 �= G = AB be the product of the subgroups A and B. The following
statements are pairwise equivalent:

(i) G = AB is a core-factorisation.
(ii) There exists a normal series 1 = N0 � N1 � · · · � Nn−1 � Nn = G such that either

Ni/Ni−1 � ANi−1/Ni−1 or Ni/Ni−1 � BNi−1/Ni−1, for each 1 ≤ i ≤ n (i.e. Ni/Ni−1

is covered by either A or B).
(iii) There exists a chief series 1 = N0 � N1 � · · · � Nn−1 � Nn = G such that either

Ni/Ni−1 � ANi−1/Ni−1 or Ni/Ni−1 � BNi−1/Ni−1, for each 1 ≤ i ≤ n (i.e.
Ni/Ni−1 is covered by either A or B).

Further, each term Ni of such (chief) normal series is prefactorisedand Ni = (Ni∩A)(Ni∩B)

is also a core-factorisation.

Proof (i) implies (ii): Let 1 �= N1 �G such that either N1 � A or N1 � B, so 1� N1 �G.
Next, takeG/N1 = (AN1/N1)(BN1/N1). IfG/N1 = 1, then we have the desired series.
If 1 �= G/N1, then it is again a core-factorisation by the previous lemma. Therefore, there
exists 1 �= N2/N1 � G/N1 such that either N2/N1 � AN1/N1 or N2/N1 � BN1/N1.
So we get the series 1 � N1 � N2 � G. Repeating this process until we reach a trivial
quotient G/N j , we get the desired series.

(ii) implies (iii): If we refine the series in (ii) to a chief series, then we get for each factor
that there exist Ni = T0 � T1 � T2 � · · · � Tk = Ni+1 such that each Tj/Tj−1 is a
minimal normal subgroup of G/Tj−1. Let us see that either Tj/Tj−1 � ATj−1/Tj−1

or Tj/Tj−1 � BTj−1/Tj−1. We may assume for instance Ni+1 � ANi . Thus, Tj =
Tj ∩ Ni+1 � Ni (Tj ∩ A) � Tj−1A, and so Tj/Tj−1 � ATj−1/Tj−1.

(iii) implies (i): We have to show that for each K � G, there exists a non-trivial normal
subgroup of G/K covered by either A or B. Let 1 ≤ r ≤ n be the minimum number
such that Nr � K . Then, 1 �= Nr K/K is normal in G/K . We suppose for instance
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that Nr/Nr−1 � ANr−1/Nr−1, so Nr � ANr−1. By the minimality of r , it follows
Nr K/K � AK/K .
Now we claim that each Ni in such (chief) normal series is prefactorised, and we work by

induction on i . The case i = 1 is clear since either N1 � A or N1 � B. Now we assume that
Ni−1 = (Ni−1 ∩ A)(Ni−1 ∩ B) and we want to show that Ni is also prefactorised. We may
consider Ni � ANi−1, and then Ni = (Ni ∩ A)Ni−1 = (Ni ∩ A)(Ni−1 ∩ A)(Ni−1 ∩ B) ⊆
(Ni ∩ A)(Ni ∩ B) ⊆ Ni .

Fix a prefactorised Ni = (Ni ∩A)(Ni ∩B) of a (chief) normal series ofG like in (ii) or (iii),
for some i ∈ {1, . . . , n}. We are showing that Ni = (Ni ∩ A)(Ni ∩ B) is a core-factorisation.
Consider the following portion of such (chief) normal series 1 = N0�N1�· · ·�Ni . Letm ∈
{1, . . . , i}. We claim that Nm satisfies either Nm � (Ni ∩ A)Nm−1 or Nm � (Ni ∩B)Nm−1 in
order to apply the equivalence between (ii) and (i). We have by assumption that for instance
Nm � Nm−1A, so Nm � Nm−1A ∩ Ni = Nm−1(A ∩ Ni ). The lemma is now established. �	

We point out that if N is an arbitrary prefactorised normal subgroup of a core-factorisation
G = AB, then N = (N ∩ A)(N ∩ B) might not be a core-factorisation, as the next example
shows.

Example 2 Consider G = Sym(4) × 〈x〉, where Sym(4) denotes the symmetric group
of four letters and o(x) = 2. If A = 〈((1, 2), x), ((3, 4), x), ((1, 3)(2, 4), x)〉 and
B = 〈((2, 3, 4), 1), ((3, 4), 1), (1, x)〉, then G = AB is a core-factorisation, and N =
Sym(4) = (N ∩ A)(N ∩ B) is not a core-factorisation, since there is no minimal normal
subgroup of N neither in N ∩ A nor in N ∩ B. Moreover, it can be seen that A and B are not
neither mutually nor tcc-permutable.

3 On vanishing elements

The main objective of this section is to prove Theorem 1 and Corollary 3. Let us state first
some key ingredients for locating vanishing elements in a given group.

Lemma 3 [14, Lemma 2.9] Let N � M � G, with N and M normal in G and
(|N | , |M/N |) = 1. If N is minimal normal in G, CM (N ) � N and M/N is abelian,
then every element in M � N is vanishing in G.

In 2017, Bianchi, Brough, Camina and Pacifici obtained the subsequent result.

Lemma 4 [5, Corollary 4.4] Let G be a group, and K an abelian minimal normal subgroup
of G. Let M/N be a chief factor of G such that (|K | , |M/N |) = 1, and N = CM (K ). Then,
every element of M � N is a vanishing element of G.

Let p be a prime, and χ ∈ Irr(G). Recall that χ is of p-defect zero if p does not divide
|G|
χ(1) . A well-known result of Brauer [17, Theorem 8.17] highlights the significance that this
property has for vanishing elements: if χ is an irreducible character of p-defect zero of G,
then, for every g ∈ G such that p divides the order of g, it holds χ(g) = 0. The following
lemma yields elements of normal subgroups that vanish in the whole group.

Lemma 5 [7, Lemma 2.2] Let N be a normal subgroup of a group G. If N has an irreducible
character of p-defect zero, then every element of N of order divisible by p is a vanishing
element in G.

We now focus on vanishing elements in simple groups. The combination of some results
in [14], which use the classification, gives the following.
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Proposition 1 Let S be a non-abelian simple group, and let p ∈ π(S). Then, either there
exists χ ∈ Irr(S) such that χ is of p-defect zero, or there exists a p-element x ∈ S and
χ ∈ Irr(S) such that χ extends to Aut(S) and χ vanishes on x.

Proof If either S is a group of Lie type or p ≥ 5, then [14, Proposition 2.1] applies and
S has an irreducible character of p-defect zero (note that this case includes the groups
A5 ∼= PSL(2, 5) and A6 ∼= PSL(2, 9)). Hence, it remains to consider sporadic simple
groups and alternating groups, and p ∈ {2, 3}. Firstly, in virtue of [14, Lemma 2.3], for
a sporadic simple group S, there exists always an irreducible character which extends to
Aut(S) and it vanishes on a p-element. For alternating groups An with n ≥ 7, it is known
by [14, Proposition 2.4] that An has two irreducible characters χ2, χ3 such that χ2 vanishes
on a 2-element and χ3 vanishes on an element of order 3. Further, both χ2 and χ3 extend to
Aut(An). �	

An argument included within the proof of [14, Theorem A] provides the following propo-
sition, which turns to be essential in the remainder of the section.

Proposition 2 Let N be a non-abelian minimal normal subgroup of a finite group G, and let
p ∈ π(N ). Then, there exists a p-element in N which is vanishing in G.

Proof We have that N = S1 × · · · × Sk , where each Si is isomorphic to a non-abelian
simple group S with p dividing its order. If S has a character θ of p-defect zero, then
χ := θ × · · · × θ ∈ Irr(N ) and it is clear that χ is also of p-defect zero. Let 1 �= xi ∈ Si be
a p-element. Then, 1 �= x := x1 · · · xk ∈ N is a p-element and Lemma 5 provides that x is
vanishing in G.

Let i ∈ {1, . . . , k} and suppose that Si does not have a character of p-defect zero. By
Proposition 1, there exist θ ∈ Irr(Si ) and a p-element yi ∈ Si such that θ(yi ) = 0 (so
1 �= yi ) and θ extends to Aut(Si ). Thus, 1 �= y := y1 · · · yk ∈ N is a p-element, and by
[14, Proposition 2.2] it follows that χ := θ × · · · × θ ∈ Irr(N ) extends to G. Moreover,
χ(y) = 0, and the result is now established. �	

From now on, we deal with (non-)vanishing elements in factorised groups. The next
example gives insight into occurring phenomena.

Example 3 Let G = Sym(4) × 〈x〉 = AB be the factorised group as in Example 2. Note
that although ((3, 4), x) is vanishing in A and ((3, 4), 1) is vanishing in B, the product
((3, 4), x)((3, 4), 1) = (1, x) ∈ Z(G) and so it is non-vanishing in G. On the other hand,
((2, 3, 4), 1) is a non-vanishing element in B which is vanishing in G.

Remark 2 We claim that the hypotheses regarding vanishing elements of the results stated
from now on are inherited by every non-trivial quotient of a group G, where G = AB is
a core-factorisation. Indeed, let N be a proper normal subgroup of G. Note that G/N =
(AN/N )(BN/N ) is also a core-factorisation by Lemma 1. Since there exists a bijection
between Irr(G) and the set of all characters in Irr(G/N ) containing N in their kernel, if
xN ∈ AN/N ∪ BN/N is a vanishing (prime power order) element of G/N , then we can
assume x ∈ A ∪ B, and that x is also a vanishing (prime power order) element of G. This
fact will be used in the sequel, sometimes with no reference.

Our first significant result analyses core-factorisations with no vanishing p-elements in
the factors. We remark that the CFSG is needed.

Theorem 1 Let G = AB be a core-factorisation, and let p be a prime. If every p-element in
A ∪ B is non-vanishing in G, then G has a normal Sylow p-subgroup.
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Zeros of irreducible characters in factorised groups 135

Proof Let G be a counterexample of minimal order to the result, and take P ∈ Sylp (G).
Clearly, we can assume that Op(G) is proper in G. Hence, by Remark 2 and the minimality
of G, we may suppose Op(G) = 1. Since G = AB is a core-factorisation, we can consider
a minimal normal subgroup N of G such that N � A, for instance. Let us suppose that p
divides its order. Then, N is non-abelian, and by Proposition 2 there is a p-element x ∈ N
which is vanishing in G, a contradiction. So p does not divide the order of N . In particular,
we may assume that N is proper in G. By minimality and Remark 2, we obtain that PN/N
is normal in G/N , and then G is p-separable.

We can choose by Lemma 2 a chief series 1 = N0�N1 = N� · · ·�Nn−1�Nn = G such
that each chief factor Ni/Ni−1 is covered by either A or B. Let j ∈ {2, . . . , n} be theminimum
number such that p divides

∣
∣N j/N j−1

∣
∣. Then, N j/N j−1 is a minimal normal subgroup of

G/N j−1 and it is p-elementary abelian. It follows that N j/N = N j−1/N × P0/N , where
1 �= P0/N = PN/N ∩ N j/N is the unique Sylow p-subgroup (and elementary abelian) of
N j/N . We claim that every element of P0 � N is vanishing in G. Note that P0/N is abelian
and normal in G/N . It also holds (|N | , |P0/N |) = 1. In addition, since N = Op′(P0) and
Op(P0) � Op(G) = 1, then CP0(N ) � N . Lemma 3 yields that every element in P0 � N is
vanishing in G. Therefore, it remains to find a p-element in P0 � N lying in either A or B
in order to get the final contradiction.

Since N j = (N j ∩ A)(N j ∩ B) by Lemma 2, applying [16, Lemma 2], we can affirm
that the unique Sylow p-subgroup P0/N of N j/N is also prefactorised, that is, P0/N =
(P0/N ∩ (N j ∩ A)/N )(P0/N ∩ (N j ∩ B)N/N ). Let X ∈ {A, B} such that 1 �= P0/N ∩
(N j ∩ X)N/N = (P0 ∩ N j ∩ X)N/N . If we pick a p-element 1 �= x ∈ (P0 ∩ N j ∩ X) � N ,
then x is vanishing in G. Hence, the result is established. �	

As an immediate consequence, when we take the trivial factorisation G = A = B in the
above theorem, we obtain [14, Theorem A]. In their proof, the authors apply Lemma 3 to
the centre of a Sylow subgroup in order to get the final contradiction. We highlight that the
centre subgroup may not be prefactorised (see [4, Example 4.1.43]) and so our reasonings
differ.

Another consequence of Theorem 1 is the following.

Corollary 1 Let G = AB be a core-factorisation, and let σ be a set of primes. If every σ -
element of prime power order in A∪ B is non-vanishing in G, then G has a nilpotent normal
Hall σ -subgroup.

Proof Apply Theorem 1 for each prime in σ . �	
Note that if σ = p′ in the above result, then it generalises [14, Corollary B]. Indeed, the

next corollary extends [14, Corollary C] for factorised groups.

Corollary 2 Let G = AB be a core-factorisation, and let {p, q} ⊆ π(G). If every element in
A ∪ B vanishing in G has order a {p, q}-number, then G is soluble.

Proof We denote by σ := {p, q}′. In virtue of Corollary 1, G has a nilpotent normal Hall
σ -subgroup N . Now, G/N is soluble because it is a {p, q}-group, so G is also soluble. �	

If we consider the case when the hypotheses in Theorem 1 hold for all primes, then it
follows clearly that those groups are nilpotent. But actually we obtain the stronger fact that
they are abelian. The next result is essential in the proof of this fact.

Proposition 3 [18, Theorem B] If G is supersoluble, then every element in G � Z(F(G)) is
vanishing in G. In particular, if G is nilpotent, then all elements in G � Z(G) are vanishing
in G.
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136 M. J. Felipe et al.

Corollary 3 Let G = AB be a core-factorisation. The following statements are pairwise
equivalent:

(1) Every element x ∈ A ∪ B is non-vanishing in G.
(2) Every prime power order element x ∈ A ∪ B is non-vanishing in G.
(3) G is abelian.

Proof There is no doubt in the implications (1) ⇒ (2) and (3) ⇒ (1), so let us prove (2) ⇒
(3). Clearly, by Theorem 1, G is nilpotent. Since we are assuming that every prime power
order element lying in A ∪ B is non-vanishing in G, then Proposition 3 provides that all
Sylow subgroups of A and B are central in G, and thus G = AB � Z(G). �	

As it has been said before, fromBurnside’s result quoted in Introduction, it is elementary to
show that a group is abelian if and only if it has no vanishing elements. Indeed, it is enough to
consider in this last characterisation only prime power order elements, as we directly deduce
by taking the trivial factorisation in the previous corollary. This claim can be also obtained
from [19, Theorem B], which asserts that a nonlinear complex character vanishes on a prime
power order element (it also uses the CFSG). In any case, both proofs emphasise the difficulty
of handling only prime power order elements. Moreover, observe that [19, Theorem B] does
not imply directly Corollary 3, since we cannot assure in a factorised group that a vanishing
prime power order element lies in one of the factors.

4 Prime power vanishing indices

In [9], Camina and Camina analysed the structure of the so-called p-Baer groups, i.e. groups
all of whose p-elements have prime power indices for a given prime p. Next, in [16], we
extended this study through products of two arbitrary groups. Thus, as stated in Introduction,
it seems natural to address the corresponding vanishing problem, i.e. vanishing indices which
are prime powers, in particular for factorised groups.

Let us enunciate first some preliminary results. The subsequent well-established one is
due to Wielandt.

Lemma 6 Let G be a finite group and p a prime. If x ∈ G is a p-element and iG(x) is a
p-number, then x ∈ Op(G).

In [9], Camina and Camina proved the next proposition, which extends both the above
lemma and the celebrated Burnside’s result about the non-simplicity of groups with a conju-
gacy class of prime power size.

Proposition 4 [9, Theorem 1] All elements of prime power index of a finite group G lie in
F2(G), the second term of the Fitting series of G.

The main result of [6] is the following one.

Proposition 5 Let G be a group which contains a non-trivial normal p-subgroup N for p a
prime. Then, each x ∈ N such that p does not divide iG(x) is non-vanishing in G.

Finally, the lemma below is elementary.

Lemma 7 Let N be a normal subgroup of a group G. We have:

(a) iN (x) divides iG(x), for any x ∈ N.
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(b) iG/N (xN ) divides iG(x), for any x ∈ G.

Remark 3 Note that, hereafter, in the results stated the arithmetical hypotheses on the indices
are inherited by non-trivial quotients of core-factorisations. Indeed, let G = AB be a core-
factorisation and suppose for an element x ∈ A∪ B that iG(x) is a prime power, square free,
or not divisible by a given prime, respectively. Since iG/N (xN ) divides iG(x) by the above
lemma, we get that iG/N (xN ) is also a prime power, square free, or not divisible by such
prime, respectively.

We are now ready to prove the following vanishing versions of [16, Theorem A (1-2)] and
[16, Theorem B (1)] for core-factorisations, respectively. We emphasise that the techniques
used in that approach are not valid when we work with zeros of irreducible characters.

Theorem 2 Let G = AB be a core-factorisation. Let p be a prime, and P ∈ Sylp (G).
Assume that every p-element x ∈ A ∪ B vanishing in G has prime power index. Then:

(1) If all the considered indices are p-numbers, then P is normal in G.
(2) G/Op′(F(G)) has a normal Sylow p-subgroup. So G is p-soluble of p-length 1.

Proof (1) If all the indices of vanishing p-elements x ∈ A ∪ B are p-numbers, then it is
enough to reproduce the proof of Theorem 1. Notice that the contradictions now will be
derived from Lemma 6.

(2) It is enough to show that G/F(G) has a normal Sylow p-subgroup, since it is isomor-
phic to (G/Op′(F(G)))/(F(G)/Op′(F(G))) and F(G)/Op′(F(G)) is a p-group. Let us
denote G := G/F(G), and let us assume G �= 1. If the statement is false, then by
Theorem 1 there exists a vanishing p-element 1 �= x = x F(G) in A ∪ B. By Remark 2,
x /∈ F(G) is a vanishing p-element in A ∪ B, and so iG(x) is a power of a prime q �= p.
It follows x ∈ F2(G) by Proposition 4, so 1 �= x ∈ Op(G). Proposition 5 implies that
p divides iG(x), and so p divides iG(x), a contradiction. Finally, the second assertion
about the p-solubility of G follows directly.

�	
We remark that the vanishing analogue of [16, Theorem B (2)] is not true, that is, if the

considered vanishing indices are powers of primes distinct from p, then theSylow p-subgroup
might not be abelian:

Example 4 Let G be a Suzuki group of degree 8, and let H be the normaliser of a Sylow 2-
subgroup ofG. Then, H is a core-factorisation of its Sylow 2-subgroup and a Sylow subgroup
of order 7, and H does not have vanishing 2-elements. Nevertheless, the Sylow 2-subgroup
of H is non-abelian.

Moreover, [16, Theorem B] asserts that if all the p-elements in a factor have prime power
indices in the whole factorised group, then there is a unique prime that divides all the con-
sidered indices. However, we do not know whether the vanishing version of this fact is true.

Finally, note that if we consider the assumptions in Theorem 2 for every prime in π(G),
then the third statement tells us that G/F(G) is nilpotent. In fact, the following result shows
that G/F(G) is abelian for such a group (compare with [16, Corollary C (1)]).

Corollary 4 Let G = AB be a core-factorisation. If every prime power order element x ∈
A∪ B vanishing in G has prime power index, then G/F(G) is abelian. In particular, if these
prime powers are actually p-numbers for a prime p, then G has a normal Sylow p-subgroup
and abelian Hall p′-subgroups.
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Proof G/F(G) is nilpotent by Theorem 2 (3). Let us denote by G := G/F(G), and let us
assume that G �= 1 and that there exists 1 �= x = x F(G) a prime power order element
in A ∪ B vanishing in G. Then, x is a p-element for some prime p, and we may suppose
x ∈ (A ∪ B) � F(G) is a p-element vanishing in G. By assumption, we have that iG(x) is a
prime power. Since G is nilpotent, then by Proposition 5 it follows that iG(x) is a p-number,
and so is iG(x). It follows by Wielandt’s lemma that x ∈ Op(G), so x = 1, a contradiction.
Thus, G does not have any vanishing prime power order element in A∪ B, and by Corollary
3 we get that it is abelian.

For the second assertion, note that P is the unique Sylow p-subgroup of G by Theorem
2 (1), so we claim that H ∼= G/P is an abelian Hall p′-subgroup of G. Let us denote
G̃ := G/P , so G̃ = Ã B̃. Hence, G̃ does not have any vanishing prime power order element
in Ã∪ B̃, since otherwise those elements are central by our assumptions, a contradiction. So
it follows by Corollary 3 that G̃ = G/P ∼= H is abelian. �	

5 Square-free vanishing indices

In this last section, we focus on vanishing indices in factorised groups which are square free,
motivated by previous developments in [7,8] and [13]. Our first theorem treats the case when
the vanishing indices are not divisible by a fixed prime p. We should comment that although
some arguments in the proof of the first statement are similar to those in [8, Theorem 3.3],
we include them here for the sake of comprehensiveness.

Theorem 3 Let G = AB be a core-factorisation.

(1) Assume that p does not divide iG(x) for every p-regular element of prime power order
x ∈ A ∪ B vanishing in G. Then, G is p-nilpotent.

(2) If p does not divide iG(x) for every prime power order element x ∈ A ∪ B vanishing in
G, then G is p-nilpotent with abelian Sylow p-subgroups.

Proof (1) Assume the result is false. We argue with G a minimal counterexample to the
theorem. By minimality, we may suppose that Op′(G) = 1. Let N be a minimal normal
subgroup of G such that N � A, for instance. If N is soluble, since p divides its order,
it follows that N is a p-group. We can assume that N is proper in G since otherwise G
is a p-group, so by minimality we get that G/N is p-nilpotent. Hence, G is p-separable,
and CG(Op(G)) � Op(G). This last fact and our assumptions produce that there are no
p-regular elements of prime power order x ∈ A∪ B vanishing in G, and Corollary 1 applies
with σ = p′. Thus, N is non-soluble, and applying the same arguments as in the second
paragraph in the proof of [8, Theorem 3.3], a p-regular element of prime power order in
N � A can be obtained, which is vanishing in G and whose conjugacy class size in G is
divisible by p, the final contradiction.

(2) G is p-nilpotent by (1). Let us denote G̃ := G/H where H is the unique Hall p′-
subgroup of G, and then G̃ = Ã B̃. Then, G̃ does not have any vanishing prime power order
element in Ã ∪ B̃, because otherwise the hypotheses imply that those elements are central,
a contradiction. Now in virtue of Corollary 3, we get that G̃ is abelian. �	

Note that Theorem 3 provides a vanishing version of [3, Theorem 1.1] for products of
two groups, even relaxing the mutual permutability of the factors. We also remark that [8,
Theorem 3.3] is Theorem 3 (1) for the trivial factorisation. Indeed, (2) implies the next
corollary, which improves the main result of [13] by considering only vanishing indices of
prime power order elements:
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Corollary 5 Let G be a group, and p be a prime. If p does not divide any vanishing index of
a prime power order element, then G is p-nilpotent with abelian Sylow p-subgroups.

Regarding square-free vanishing indices, we first analyse those which are not divisible
by p2, for a fixed prime p. The next proposition is actually the vanishing version of [15,
Theorem A]. We point out that this result is valid for any arbitrary factorisation of a p-group.

Proposition 6 Let p be a prime number, and let P = AB be a p-group such that p2 does not
divide iP (x) for all x ∈ A ∪ B vanishing in P. Then, P ′ � �(P) � Z(P), P ′ is elementary
abelian and

∣
∣P ′∣∣ ≤ p2.

Proof Since the non-vanishing elements of a p-group lie in its centre because of Proposition
3, we can apply directly [15, Theorem A] in order to get the thesis. �	

The following lemma will be essential in the sequel.

Lemma 8 [3, Lemma 2.4] Let p be a prime, and Q be a p′-group acting faithfully on an
elementary abelian p-group N with |[x, N ]| = p, for all 1 �= x ∈ Q. Then, Q is cyclic.

In [7], the author posed the following question: a group such that all its vanishing indices
are not divisible by p2, for a prime satisfying (p − 1, |G|) = 1, must be p-nilpotent? The
following theorem gives a positive answer to this question, even for some factorised groups
(see Corollary 6 for the case G = A = B).

Theorem 4 Let G = AB be a core-factorisation, and let p be a prime such that (p−1, |G|) =
1. Suppose that iG(x) is not divisible by p2 for every prime power order element x ∈ A ∪ B
vanishing in G. It follows that:

(1) G is soluble.
(2) G is p-nilpotent.
(3) If P ∈ Sylp (G), then P ′ � �(P) � Z(P), P ′ is elementary abelian and

∣
∣P ′∣∣ ≤ p2.

Proof (1) Suppose that the result is false, and let G be a counterexample of minimal order.
Since every group of odd order is soluble, we may assume that p = 2 because (p−1, |G|) =
1. The class of soluble groups is a saturated formation, so we can suppose that there exists
a unique minimal normal subgroup N . Moreover, N is non-soluble. We have for instance
N � A, because G = AB is a core-factorisation. Then, it is enough to reproduce the
arguments in the proof of [8, Theorem 3.1] to obtain a prime power order element in N � A
which is vanishing in G and whose conjugacy class size is divisible by 4, a contradiction.

(2) Assume that the result is not true, and let G be a counterexample of least possible
order. By the minimality of G, we may suppose that Op′(G) = 1. Let N be a minimal
normal subgroup of G. Thus, p divides its order and since G is soluble by (1), then N is
p-elementary abelian. Moreover, the class of p-nilpotent groups is a saturated formation,
so N is the unique minimal normal subgroup of G and by [12, A - 15.6, 15.8] we get
N = Op(G) = F(G) = CG(N ). We can consider N � A, for instance. We take K/N a
minimal normal subgroup of G/N such that it is covered by either A or B. We claim that
each element in K � N is vanishing in G. Since N = Op(G), then K/N is q-elementary
abelian for some prime q �= p. Indeed, we get CK (N ) � CG(N ) = N . It follows by Lemma
3 that every element in K � N is vanishing in G.

Note that K = [N ]Q where Q ∈ Sylq (K ) is elementary abelian. If we take 1 �= xN ∈
K/N , then we can assume that x ∈ K � N is a q-element in A ∪ B by conjugation. Hence,
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p2 does not divide iG(x) = |G : CG(x)|. Note that the p-number 1 �= |N : CN (x)| divides
iG(x). On the other hand, x acts coprimely on N , which is abelian, so N = CN (x)×[N , x].
It follows |[N , x]| = p. Observe that CQ(N ) = Q ∩ CG(N ) = 1, so Q acts faithfully and
coprimely on N . Further, if 1 �= y ∈ Q, then y ∈ K � N and by the previous argument
we get |[N , y]| = p. Now Lemma 8 leads to the fact that Q is cyclic, so |K/N | = q and
K = N 〈x〉. Hence, CN (x) = CN (K ) is normal in G. Since CN (x) < N , by the minimality
of N we obtain CN (x) = 1 and so N = [N , x] has order p. Now G/N = NG(N )/CG(N )

is isomorphic to a subgroup of Aut(N ), which is isomorphic to Cp−1. It follows that |G/N |
divides both p − 1 and |G|, the final contradiction.

(3) Notice that P ∈ Sylp (G) is isomorphic to G/Op′(G) by the previous assertion.
Hence, the result follows by Proposition 6. �	
Corollary 6 Let G be a group, and let p be a prime such that (p − 1, |G|) = 1. Assume that
p2 does not divide iG(x) for each prime power order element x vanishing in G. Then, G is
a soluble p-nilpotent group. Moreover, if P ∈ Sylp (G), then P ′ � �(P) � Z(P), P ′ is
elementary abelian and

∣
∣P ′∣∣ ≤ p2.

In [15, Theorem B (c)], it is proved the following: “Let G = AB be the product of the
mutually permutable subgroups A and B. Let p be a fixed prime satisfying (p−1, |G|) = 1.
If all p-regular prime power order elements in A ∪ B have iG(x) not divisible by p2, then
G/Op(G) has elementary abelian Sylow p-subgroups”. We point out that this property does
not remain true under the hypotheses of Theorem 4, as the following example shows:

Example 5 Let G = [A]B be the semidirect product of a cyclic group B of order 4 which
acts transitively on a cyclic group A of order 5. Let the prime p = 2. Then, G = AB is
a core-factorisation, and all the vanishing elements of G (not only those lying in A ∪ B)
have index not divisible by 4. However, O2(G) = 1 and G/O2(G) does not have elementary
abelian Sylow 2-subgroups.

We highlight that the arguments used in [15, Theorem C] can be generalised in order to
obtain the following more general result for core-factorisations.

Theorem 5 Let G = AB be a core-factorisation, and let p be a prime. Suppose that for
every prime power order p-regular element x ∈ A∪ B vanishing in G, iG(x) is not divisible
by p2. If G is p-soluble, then G is p-supersoluble.

Proof It is sufficient to follow the proof of [15, Theorem C]. Notice that, in this case, we can
use Lemma 4 with a minimal normal subgroup Z/N of G/N such that lies in either AN/N
or BN/N . Thus, we can affirm that every element in Z � N is vanishing in G, in order to
apply the assumption that iG(x) is not divisible by p2 for every prime power order p-regular
element x ∈ Z � N . �	

When we consider square-free indices for all primes, we will derive some information for
groups with a core-factorisation (Theorem 7) from the next more general result:

Theorem 6 Let G = AB be the product of the subgroups A and B, and assume that G
is supersoluble. Suppose that iG(x) is square free for every prime power order element
x ∈ A ∪ B vanishing in G. Then:

(1) G ′ is abelian.
(2) G ′ has elementary abelian Sylow subgroups.
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(3) F(G)′ has Sylow p-subgroups of order at most p2, for each prime p.

Proof We adapt the proof of [15, Theorem D] for our hypotheses regarding vanishing ele-
ments.

To prove either (1) or (2), arguing byminimal counterexample in each case we can assume
that there exists a prime p such that F(G) = Op(G) = P is a Sylow p-subgroup of G. Since
G is supersoluble, then Proposition 3 yields that every q-element (q �= p) x ∈ A ∪ B is
vanishing in G. Thus, we can apply for such an element the class size hypothesis.

We claim that P satisfies the hypotheses in Proposition 6. Note that P = (P∩A)(P∩B) in
virtue of [15, Lemma 2]. If we take a p-element x ∈ (P∩ A)∪(P∩B) vanishing in P , then it
follows that x is vanishing inG; otherwise, we get by Proposition 3 that x ∈ Z(F(G)) = Z(P)

which is impossible. Therefore, iP (x) divides iG(x) which is square free. Now Proposition
6 applies, so P ′ � �(P) � Z(P) with P ′ elementary abelian of order at most p2. By
[15, Lemma 2], we may take H = (H ∩ A)(H ∩ B) a Hall p′-subgroup of G such that
H ∩ A ∈ Hallp′ (A) and H ∩ B ∈ Hallp′ (B). Note that we can assume either H ∩ A �= 1
or H ∩ B �= 1. If x ∈ H ∩ A (or x ∈ H ∩ B) is a prime power order element, then x is
vanishing in G and so iG(x) is square free. Arguing as in the second paragraph of the proof
of [15, Theorem D (1)], we deduce that P ′ � �(P) � Z(G), and so �(P) �= 1 �= Z(G).

We can also argue as in the third paragraph of the proof of [15, Theorem D (1)] to deduce
that H ∩ A and H ∩ B are cyclic subgroups, since the class size hypotheses are applied to
q-elements in A ∪ B which are vanishing in G. Let H ∩ A = 〈α〉. Following the proof of
[15, Theorem D (1)], we can assume that for every prime q (q �= p), if αq is the q-part
of α, then N := P〈αq〉 < G, and N = (N ∩ A)(N ∩ B) is normal in G. Let us see that
N inherits the hypotheses of the theorem. First, N is clearly supersoluble. If a p-element
x ∈ (N ∩ A) ∪ (N ∩ B) is vanishing in N but not in G, then by Proposition 3 we obtain
x ∈ Z(F(G)) = Z(P), and so Proposition 5 leads to the fact that x is non-vanishing in N ,
a contradiction. Moreover, all the q-elements (q �= p) in (N ∩ A) ∪ (N ∩ B) are vanishing
in G by the first paragraph. Thus, in both cases, iN (x) divides iG(x) which is square free.
Then, we get a contradiction with the same arguments as in the proof of [15, Theorem D (1)]
to prove statement (1).

Assertion (2) can be obtained similarly as in the proof of [15, Theorem D (2)] since the
hypotheses are applied to q-elements in A ∪ B which are vanishing in G.

The proof of the statement (3) runs as the one of [15, Theorem D (3)], but applying
Proposition 6, which is the vanishing version of [15, Theorem A]. �	
Theorem 7 Let G = AB be a core-factorisation. Suppose that iG(x) is square free for every
prime power order element x ∈ A ∪ B vanishing in G. Then:

(1) G is supersoluble.
(2) G ′ is abelian.
(3) G ′ has elementary abelian Sylow subgroups.
(4) F(G)′ has Sylow p-subgroups of order at most p2, for each prime p.

Proof (1) Considering the smallest prime divisor of |G| and Theorem 4 (1), we conclude that
G is soluble. Hence, it is p-soluble for each prime p. Applying Theorem 5, we get that G is
p-supersoluble for each prime p, so it is supersoluble.

(2–4) These assertions follow from the previous theorem. �	
In [8, Theorem 3.2], the author gives a supersolubility criterion for a group such that every

vanishing index of a prime power order element is square free. We want to highlight that
the following consequence of Theorem 7 gives more information on the structure of such a
group. Moreover, our techniques differ from those used in [8, Theorem 3.2].
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Corollary 7 Let G be a group, and let assume that iG(x) is square free for each prime power
order element x vanishing in G. Then, G is supersoluble, and G ′ is abelian with elementary
abelian Sylow subgroups. Further, F(G)′ has Sylow p-subgroups of order at most p2, for
each prime p.
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