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Abstract This paper focuses on uniform boundary estimates in homogenization of a family
of higher-order elliptic operators Lε , with rapidly oscillating periodic coefficients. We derive
uniform boundary Cm−1,λ(0<λ<1) andWm,p estimates in C1 domains, as well as uniform
boundary Cm−1,1 estimate in C1,θ (0<θ <1) domains without the symmetry assumption on
the operator. The proof, motivated by the works “Armstrong and Smart in Ann Sci Éc Norm
Supér (4) 49(2):423–481 (2016) and Shen in Anal PDE 8(7):1565–1601 (2015),” is based
on a suboptimal convergence rate in Hm−1(�). Compared to “Kenig et al. in Arch Ration
Mech Anal 203(3):1009–1036 (2012) and Shen (2015),” the convergence rate obtained here
does not require the symmetry assumption on the operator, nor additional assumptions on
the regularity of u0 (the solution to the homogenized problem), and thus might be of some
independent interests even for second-order elliptic systems.
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1 Introduction

This paper is aimed to investigate the uniform boundary estimates in homogenization of the
following 2m-order elliptic system,{

Lεuε = f in �,

Tr(Dγ uε) = gγ on ∂� for 0 ≤ |γ | ≤ m − 1,
(1.1)

where � ⊂ R
d , d ≥ 1, is a bounded Lipschitz domain,

(Lεuε)i = (−1)m
∑

|α|=|β|=m

Dα(Aαβi j (x/ε)D
βuε j ), 1 ≤ i, j ≤ n,

uε j denotes the j th component of theRn-valued vector function uε, α, β, γ are multi-indexes
with components αk, βk, γk, k = 1, 2, . . . , d , and

|α| =
d∑

k=1

αk, Dα = Dα1
x1 D

α2
x2 · · · Dαd

xd .

The coefficients matrix A(y) = (Aαβi j (y)), 1 ≤ i, j ≤ n, is real, bounded measurable,
satisfying the strong ellipticity condition

μ|ξ |2 ≤
∑

|α|=|β|=m

Aαβi j (y)ξ
i
αξ

j
β ≤ 1

μ
|ξ |2 for a.e. y ∈ R

d , (1.2)

where μ > 0, ξ = (ξα)|α|=m, ξα = (ξ1α, . . . , ξ
n
α ) ∈ R

n , as well as the periodicity condition

A(y + z) = A(y), for any z ∈ Z
d and a.e. y ∈ R

d . (1.3)

The regularity estimate uniform in ε > 0 is one of the main concerns in quantitative
homogenization. For second-order elliptic operators, this issue has been studied extensively.
In the celebrated work of Avellaneda and Lin [5–7], by using a compactness method, the
interior and boundary Hölder estimate, W 1,p estimate and Lipschitz estimate were obtained
for second-order elliptic systems with Hölder continuous coefficients and Dirichlet condi-
tions in bounded C1,θ domains. The uniform boundary Lipschitz estimate for the Neumann
problem has been a longstanding open problem and was recently settled by Kenig et al. [23].
Interested readers may refer to [20,24,34,36] and references therein for more applications
of compactness method in quantitative homogenization. More recently, another fabulous
scheme, which is based on convergence rates, was formulated in [4] to investigate uniform
(interior) estimates in stochastic homogenization. The approach was further developed in
[3,35], where the large-scale interior or boundary Lipschitz estimates for second-order ellip-
tic operators with periodic and almost periodic coefficients were studied systematically. We
also refer readers to [2,16,17,46] for more related results.

Relatively speaking, few quantitative results were known in the homogenization of higher-
order elliptic equations previously, although results on qualitative homogenization have been
obtained for many years [9]. Very recently, the optimal O(ε) convergence rate in L2(Rd)

for higher-order elliptic equations was obtained in [25,29,30]. In [39,40], some interesting
two-parameter resolvent estimates were established in homogenization of general higher-
order elliptic systems with periodic coefficients in bounded C2m domains. Meanwhile, in
[28,45] we investigated the sharp O(ε) convergence rate in periodic and almost periodic
homogenization of higher-order elliptic systems in Lipschitz domains. Particularly, under
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Uniform boundary estimates in homogenization of higher-order… 99

the assumptions that A is symmetric and u0∈Hm+1(�), the optimal O(ε) convergence rate
was obtained inWm−1,q0(�), q0 = 2d/(d−1) in [28]. Moreover, the uniform interiorWm,p

and Cm−1,1 estimates were also established therein.
As a continuation of [28], in this paper we investigate the uniform boundary estimates in

homogenization of higher-order elliptic system (1.1). Let ψ : Rd−1 → R be a C1 function
with

ψ(0) = 0, |∇ψ | ≤ M,

sup
{
|∇ψ(x ′)− ∇ψ(y′)| : x ′, y′ ∈ R

d−1 and |x ′ − y′| ≤ t
}

≤ τ(t),
(1.4)

where τ(t) −→ 0 as t −→ 0+. Set

Dr = D(r, ψ) =
{
(x ′, xd) ∈ R

d : |x ′| < r and ψ(x ′) < xd < ψ(x ′)+ r
}
,

r = (r, ψ) =
{
(x ′, ψ(x ′)) ∈ R

d : |x ′| < r
}
.

(1.5)

The main results of this paper are stated as follows.

Theorem 1.1 Suppose that the coefficient matrix A = A(y) satisfies the conditions (1.2)–
(1.3) and uε ∈ Hm(D1;Rn) is a weak solution to{

Lεuε = F in D1,

Tr(Dγ uε) = DγG on 1 for 0 ≤ |γ | ≤ m − 1,

where G ∈ Cm−1,1(D1;Rn), F ∈ L p(D1;Rn) with p > max
{
d/(m + 1), 2d/(d + 2m −

2), 1
}
. Then, for any 0 < λ < min{m + 1 − d/p, 1} and any ε ≤ r < 1,

(  
Dr

|∇muε|2
)1/2 ≤ Crλ−1

{( 
D1

|uε|2
)1/2 +

( 
D1

|F |p
)1/p + ‖G‖Cm−1,1(D1)

}
, (1.6)

where C depends only on d, n,m, λ, μ, p and τ(t) in (1.4).

Estimate (1.6) can be viewed as the Cm−1,λ estimate uniform down to the scale ε in C1

domains for higher-order elliptic operatorsLε . In addition to the assumptions in Theorem 1.1,
if A ∈ VMO(Rd), i.e.,

sup
x∈Rd , 0<r<t

 
B(x,r)

|A(y)−
 
B(x,r)

A|dy ≤ �(t), 0 < t ≤ 1, (1.7)

for some nondecreasing continuous function �(t) on [0, 1] with �(0) = 0, then a standard
blow-up argument gives the following full-scale boundary Cm−1,λ estimate

‖uε‖Cm−1,λ(D1/4)
≤ C

{( 
D1

|uε|2
)1/2 +

( 
D1

|F |p
)1/p + ‖G‖Cm−1,1(D1)

}
. (1.8)

We also mention that the restriction p > max{d/(m + 1), 1} is made to ensure Cm−1,λ

estimate of the solution u0 to the homogenized system, which plays an essential role in
the proof of the theorem. The restriction p > 2d/(d + 2m − 2) is used to ensure that
F ∈ H−m+1(�), since our proof is based on the convergence result in Theorem 1.4 (see
Lemma 4.1 for details). Although the assumption on the regularity of F in Theorem 1.1 is
not sharp, see Corollary 5.1 for the full-scale uniform Cm−1,λ estimate of uε, it is enough for
us to derive the following uniform Wm,p estimate on uε.
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100 W. Niu, Y. Xu

Theorem 1.2 Let � be a bounded C1 domain in R
d . Suppose that the coefficient matrix

A ∈ VMO(Rd) satisfies (1.2)–(1.3) and uε ∈ Hm(�;Rn) is a weak solution to{
Lεuε = ∑

|α|≤m Dα f α in �,

Tr(Dγ uε) = gγ on ∂� for 0 ≤ |γ | ≤ m − 1,

where ġ = {gγ }|γ |≤m−1 ∈ Ḃm−1/p
p (∂�;Rn)and f α ∈ L p(�;Rn) for |α| ≤ m, 2 ≤ p < ∞.

Then,

‖uε‖Wm,p(�) ≤ Cp

{ ∑
|α|≤m

‖ f α‖L p(�) + ‖ġ‖
Ḃm−1/p
p (∂�)

}
, (1.9)

where the constant Cp depends only on p, d, n,m, μ,� and �(t) in (1.7).

We refer readers to Sect. 2 for the definition of the Whitney–Besov space Ḃs
p(∂�;Rn).

Note that although the result presented in Theorem 1.2 focuses on the case p ≥ 2, by a
standard duality argument, it still holds for 1 < p < 2. We also mention that the uniform
W 1,p estimates in the homogenization of second-order elliptic systems have been studied
largely, see e.g., [14,15,33,43,44]. Theorem 1.2 generalizes the uniform W 1,p estimates
for second-order elliptic systems to higher-order elliptic systems. It also extends, in some
sense, theWm,p estimate for higher-order elliptic equations (or systems) with non-oscillating
coefficients, see e.g., [10,12,13].

Our third result gives the uniform boundary Cm−1,1 estimate of uε in C1,θ (0 < θ < 1)
domains. Let Dr ,r be defined as in (1.5), and let the defining function ψ ∈ C1,θ (Rd−1)

with

ψ(0) = 0, ‖∇ψ‖Cθ (Rd−1) ≤ M1. (1.10)

Theorem 1.3 Assume that A satisfies (1.2)–(1.3). Let uε ∈ Hm(D1;Rn) be a weak solution
to {

Lεuε = ∑
|α|≤m−1 D

α f α in D1,

Tr(Dγ uε) = DγG on 1 for 0 ≤ |γ | ≤ m − 1,

where f α ∈ Lq(D1;Rn) with q > d, q ≥ 2, and G ∈ Cm,σ (D1;Rn) for some 0 < σ ≤ θ .
Then, for any ε ≤ r < 1, we have( 

Dr

|∇muε|2
)1/2 ≤ C

{(  
D1

|uε|2
)1/2 +

∑
|α|≤m−1

( 
D1

| f α|q
)1/q + ‖G‖Cm,σ (D1)

}
,

(1.11)

where C depends only on d, n,m, μ, q, σ, θ and M1.

Similar to (1.6), estimate (1.11) is the Cm−1,1 estimate uniform down to the scale ε for
the operatorLε, which separates the large-scale estimates due to the homogenization process
from the small-scale estimates related to the smoothness of the coefficients. If in addition, A
is Hölder continuous, i.e., there exist �0 > 0, τ0 ∈ (0, 1) such that

|A(x)− A(y)| ≤ �0|x − y|τ0 for any x, y ∈ R
d , (1.12)

we can derive the full-scale boundary Cm−1,1 estimate

‖∇muε‖L∞(D1/4) ≤ C

{( 
D1

|uε|2
)1/2 +

∑
|α|≤m−1

(  
D1

| f α|q
)1/q + ‖G‖Cm,σ (D1)

}
.

(1.13)
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Uniform boundary estimates in homogenization of higher-order… 101

This generalizes the boundary Lipschitz estimates in [5,35] for second-order elliptic systems
to higher-order elliptic systems.

Note that Theorem 1.3 does not require the symmetry assumption on the coefficient matrix
A. Therefore, it may be of some independent interests even for second-order elliptic systems
[21, p. 485]. Recall that the symmetry assumption on the coefficient matrix A is made in
[23] to establish the uniform boundary Lipschitz estimate for second-order elliptic systems
with Neumann boundary conditions. Such an assumption was removed in [3], where the
boundary Lipschitz estimate was obtained for second-order elliptic systems with almost
periodic coefficients. However, our investigations do not rely on the nontangential maximum
function estimates, which had played an essential role in [3, p. 1896]. This may allow one
to treat more general elliptic systems which arise in the homogenization theory [9], see also
[21] for some discussions on this topic.

Finally, we mention that the requirements on smoothness of coefficients and the domain
for uniform estimates in Theorems 1.1–1.3 are the same as those for second-order elliptic
systems [35]. Therefore, results in theorems above, combined with the interior estimates in
our previous paper [28], present a unified description on the uniform regularity estimates
in homogenization of 2m-order elliptic systems in the divergence form. The counterpart for
higher-order elliptic operators of non-divergence form will be studied in future.

The proofs of theorems above rely on the following convergence result.

Theorem 1.4 Suppose that� is a boundedLipschitz domain inRd , d ≥ 1, and the coefficient
matrix A satisfies (1.2)–(1.3). Let uε, u0 be the weak solutions to the Dirichlet problem (1.1)
and the homogenized problem (2.2), respectively. Then, for 0 < ε < 1 and any 0 < ν < 1,
we have

‖uε − u0‖Hm−1
0 (�)

≤ Cνε
1−ν {‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�)

}
, (1.14)

where Cν depends only on d, n,m, ν, μ and �. If in addition A is symmetric, i.e., A = A∗,
then

‖uε − u0‖Hm−1
0 (�)

≤ Cε ln(1/ε)
{‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�)

}
, (1.15)

where C depends only on d, n,m, μ and �.

The error estimates above can be viewed as a counterpart in general Lipschitz domains for
the convergence rates obtained in [25,29,30,39]. Estimate (1.14) is new even for second-
order elliptic systems. Recall that sharp convergence rate is also one of the central issues in
quantitative homogenization theory. The estimate

‖uε − u0‖L2(�) ≤ Cε‖u0‖H2(�)

has been obtained for second-order elliptic equations in divergence form in C1,1 domains
[18,37,38], aswell as inLipschitz domainswith additional assumptionsu0 ∈ H2(�) and A =
A∗ [28,35]. In [22,42], theO[ε ln(1/ε)] convergence rate like (1.15)was obtained for second-
order elliptic systems under the assumption that A = A∗. Compared with the reference
aforementioned, our estimate (1.14), although suboptimal, holds in general Lipschitz domains
and needs neither the symmetry of A, nor additional regularity assumptions of u0. Moreover,
the assumptions on the regularity of A, ġ and f are also rather general. To the best of the
authors’ knowledge, optimal or suboptimal convergence rate under such weak conditions
seems to be unknown previously even for second-order elliptic systems.
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102 W. Niu, Y. Xu

The proof of Theorem 1.4 follows the line of [22,37]. The first step is to derive an estimate
like

‖uε − u0‖Hm−1(�) ≤ Cε(1/2)
− {‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�)

}
. (1.16)

When A is symmetric, this was done with the help of the nontangential maximum function
estimate, which gives proper controls on u0 near the boundary ∂�, see [22,35,42] for the
details. Unfortunately, if A is not symmetric and the domain is just Lipschitz (or evenC1) the
nontangential maximum function estimate is not in hand. Instead, we will take advantage of
some weighted estimate of u0 (see Lemma 3.2) to achieve the goal. With the estimate (1.16)
at our disposal, we then modify the duality argument in [37] with proper weight to derive the
desired convergence rate. This idea is also partially motivated by [22,42], see Remark 3.1.

Armed with Theorem 1.4, our proof of Theorems 1.1 and 1.3 follows the scheme in
[3,4,35], which roughly speaking is a three-step argument:

(i) Establish the convergence rate in L2(�) in terms of boundary data g and the forcing term
f , i.e., the error estimate like

‖uε − u0‖L2(�) ≤ Cεσ0
{
norms of data g and f

}
for some 0 < σ0 ≤ 1;

(ii) Prove that uε satisfies the so-called flatness property, i.e., how well it could be approxi-
mated by affine functions as u0 does;

(iii) Iterate step (ii) down to the scale ε, with the help of the error estimate in the first step.

Note that (1.14) gives (i), and we can thus pass to Step (ii). We shall adapt some ideas in
[3,4,35] to verify that uε satisfies the “flatness property.” However, instead of estimating
how well uε is approximated by affine functions as in [3,4,35], we estimate how well uε
is approximated by polynomials of degree m − 1 and m, respectively. By a proper iteration
argument, we then derive the desired large-scale Cm−1,λ(0<λ< 1) and Cm−1,1 estimates.
The corresponding full-scale estimates (4.14) and (6.16) follow from a standard blow-up
argument.

Finally, the proof of Theorem 1.2 relies on the boundary Hölder estimate (1.6) and a
real-variable argument originated from [11] and further developed in [31,32]. The key idea
is to reduce the Wm,p estimate (1.9) to a reverse Hölder inequality of the corresponding
homogeneous problem, see Lemma 5.1 for the details.

2 Preliminaries

2.1 Function spaces

To begin with, let us give the definitions of some function spaces involved next. Let � be a
bounded Lipschitz domain in R

d . Let Hm(�;Rn) and Hm
0 (�;Rn) with dual H−m(�;Rn)

be the conventional Sobolev spaces ofRn-valued functions. For 0 < s < 1, 1 < p < ∞ and
any nonnegative integer k, let Bk+s

p (�) be the Besov space with norm (see e.g., [19, p. 17])

‖u‖Bk+s
p (�)

=
∑

0≤�≤k

‖∇�u‖L p(�) +
∑
|ζ |=k

{ˆ
�

ˆ
�

|Dζ f (x)− Dζ f (y)|p
|x − y|d+sp

dx dy

}1/p

.

Since� is a bounded Lipschitz domain, Bk+s
p (�) consists of the restrictions to� of functions

in Bk+s
p (Rd) [19, p. 25].
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Uniform boundary estimates in homogenization of higher-order… 103

Also, define theWhitney–Besov space Ḃm−1+s
p (∂�;Rn) as the closure of the set of arrays{

{DαU}|α|≤m−1 : U ∈ C∞
c (R

d)
}
,

under the norm

‖u̇‖Ḃm−1+s
p (∂�)

=
∑

|α|≤m−1

{
‖uα‖L p(∂�) +

( ˆ
∂�

ˆ
∂�

|uα(x)− uα(y)|p
|x − y|d−1+sp

dSxdSy
)1/p}

,

where u̇ = {uα}|α|≤m−1, see e.g., [1].
Define theWhitney–Sobolev spaceWAm,p(∂�,Rn) as the completion of the set of arrays

of Rn-valued functions {
{DαU |∂�}|α|≤m−1 : U ∈ C∞

c (R
d ;Rn)

}
,

under the norm [26]

‖ġ‖WAm,p(∂�) =
∑

|α|≤m−1

‖gα‖L p(∂�) +
∑

|α|=m−1

‖∇tangα‖L p(∂�).

2.2 Qualitative homogenization

Under the ellipticity condition (1.2), for any ġ ∈ WAm,2(∂�,Rn) and f ∈ H−m(�;Rn),
Dirichlet problem (1.1) admits a unique weak solution uε in Hm(�;Rn) such that

‖uε‖Hm (�) ≤ C
{‖ f ‖H−m (�) + ‖ġ‖WAm,2(∂�)

}
,

where C depends only on d , m, n, μ and �. It is known that (see e.g., [9,29]) under the
additional periodicity condition (1.3), the operator Lε is G-convergent to L0, where

(L0u)i =
∑

|α|=|β|=m

(−1)mDα( Āαβi j D
βu j )

is an elliptic operator of order 2m with constant coefficients,

Āαβi j =
∑

|γ |=m

1

|Q|
ˆ
Q

[
Aαβi j (y)+ Aαγi� (y)D

γ χ
β
�j (y)

]
dy.

Here, Q = [0, 1)d , χ = (χ
γ

j ) = (χ
γ

i j ) is the matrix of correctors for the operator Lε given
by {∑

|α|=|β|=m Dα
{
Aαβik (y)D

βχ
γ

k j (y)
} = −∑

|α|=m DαAαγi j (y) in R
d ,

χ
γ

j (y) is 1-periodic and
´
Q χ

γ

j (y) = 0.
(2.1)

The matrix ( Āαβi j ) is bounded and satisfies the coercivity condition (1.2). Thus, the following
homogenized problem of (1.1),{

L0u0 = f in �,

Tr(Dγ u0) = gγ on ∂� for 0 ≤ |γ | ≤ m − 1,
(2.2)

admits a unique weak solution u0 ∈ Hm(�;Rn), satisfying

‖u0‖Hm (�) ≤ C
{‖ f ‖H−m (�) + ‖ġ‖WAm,2(∂�)

}
.
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For 1 ≤ i, j ≤ n and multi-indexes α, β with |α| = |β| = m, set

Bαβi j (y) = Aαβi j (y)+
∑

|γ |=m

Aαγik (y)D
γ χ

β
k j (y)− Āαβi j . (2.3)

By the definitions of χγ (y) and Ā, for any 1 ≤ i, j ≤ n and any multi-indexes α, β with
|α| = |β| = m, Bαβi j (y) ∈ L2(Q) is 1-periodic with zero mean, and

∑
|α|=m DαBαβi j (y) = 0.

Therefore, there exists a functionBγαβ

i j such that

B
γαβ

i j = −B
αγβ

i j ,
∑

|γ |=m

DγB
γαβ

i j = Bαβi j and ‖Bγαβ

i j ‖Hm (Q) ≤ C‖Bαβi j ‖L2(Q),

where C depends only on d, n,m, see [28, Lemma 2.1].
Let L∗

ε be the adjoint operators of Lε , i.e.,

L∗
ε = (−1)m

∑
|α|=|β|=m

Dα
(
A∗αβ(x/ε)Dβ

)
, A∗ = (A∗αβ

i j ) = (Aβαj i ). (2.4)

Parallel to (2.1), we introduce the matrix of correctors χ∗ = (χ
∗γ
j ) = (χ

∗γ
i j ) for L∗

ε ,{∑
|α|=|β|=m Dα

{
A∗αβ
ik (y)Dβχ

∗γ
k j (y)

} = −∑
|α|=m DαA∗αγ

i j (y) in R
d ,

χ
∗γ
j (y) is 1-periodic and

´
Q χ

∗γ
j (y) = 0.

(2.5)

We also introduce the dual correctors B∗γαβ(y) of L∗
ε . It is not difficult to see that χ∗γ and

B∗γαβ satisfy the same properties as χγ and Bγαβ , since A∗ satisfies the same conditions
as A.

2.3 Smoothing operators and auxiliary estimates

For any fixed ϕ ∈ C∞
c (B(0,

1
2 )) such that ϕ > 0 and

´
Rd ϕ(x)dx = 1, set ϕε = 1

εd
ϕ( x

ε
) and

define

Sε( f )(x) =
ˆ
Rd
ϕε(x − y) f (y) dy, and S2ε = Sε ◦ Sε.

Denote δ(x) = dist (x, ∂�), �ε = {x ∈ � : δ(x) > ε} and �ε = {x ∈ � : δ(x) < ε}.

Lemma 2.1 Assume that f ∈ L p(Rd) for some 1 ≤ p < ∞ and g ∈ L p
loc(R

d) is 1-periodic.
Let h ∈ L∞(Rd) with compact support �3ε . Then,

‖g(x/ε)Sε( f )(x)h(x)‖L p(�3ε; δ) ≤ C‖h‖L∞‖g‖L p(Q)‖ f ‖L p(�2ε; δ), (2.6)

‖g(x/ε)Sε( f )(x)h(x)‖L p(�3ε; δ−1) ≤ C‖h‖L∞‖g‖L p(Q)‖ f ‖L p(�2ε; δ−1), (2.7)

where ‖u‖L p(�; δ) (similar for ‖u‖L p(�; δ−1) ) denotes the weighted norm

‖u‖L p(�; δ) =
(ˆ

�

|u(x)|pδ(x) dx
)1/p

.
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Uniform boundary estimates in homogenization of higher-order… 105

Proof Observe thatˆ
Rd

∣∣g(x/ε)h(x)ˆ
Rd
ϕε(x − y) f (y) dy

∣∣pδ(x) dx
≤ C

ˆ
�3ε

|g(x/ε)|p
ˆ
�2ε

ϕε(x − y)| f (y)|pδ(y)

× dy
{ ˆ

�2ε
ϕε(x − y)δ(y)−q/pdy

}p/q
δ(x) dx

≤ C
ˆ
�2ε

ˆ
�3ε

|g(x/ε)|pϕε(x − y)dx | f (y)|pδ(y) dy

≤ C
ˆ
Q

|g(z)|pdz
ˆ
�2ε

| f (y)|pδ(y) dy, (2.8)

where we have used Fubini’s theorem and the observationˆ
�2ε

ϕε(x − y)[δ(y)]−q/p dy ≤ C[δ(x)]−q/p

for the second inequality. This gives (2.6). The proof of (2.7) is the same. �
Lemma 2.2 Let �̃ε = {x ∈ R

d : δ(x) < ε}, f ∈ H �(Rd), � ≥ 0. Then, for any multi-index
α, |α| = �,

‖Sε(Dα f )‖L p(�ε) ≤ Cε−�‖ f ‖L p(�̃2ε)
, (2.9)

‖Sε(Dα f )‖L p(�3ε; δ) ≤ Cε−�‖ f ‖L p(�ε; δ). (2.10)

Proof Inequality (2.9) was proved in [28, Lemma 2.3], and the proof of (2.10) is quite similar.
We provide it just for completeness.

‖Sε(Dα f )‖p
L p(�3ε; δ) =

ˆ
�3ε

∣∣∣ˆ
Rd

Dαϕε(x − y) f (y) dy
∣∣∣pδ(x) dx

≤
ˆ
�3ε

ˆ
�2ε

|Dαϕε(x − y)| | f (y)|pδ(y)

× dy
{ˆ

�2ε
|Dαϕε(x − y)| [δ(y)]−q/p dy

}p/q
δ(x) dx

≤ C

ε p�

ˆ
�2ε

| f (y)|pδ(y) dy,

where, for the last step, we have used Fubini’s theorem and the observationˆ
�2ε

|Dαϕε(x − y)| [δ(y)]−q/p dy ≤ C
ˆ
�2ε

|Dαϕε(x − y)| [δ(x)]−q/p dy

≤ Cε−�[δ(x)]−q/p

for x ∈ �3ε. �
Lemma 2.3 Suppose that f ∈ W 1,q(Rd) for some 1 < q < ∞. Let ∇s f = (Dα f )|α|=s .

Then,

‖Sε( f )− f ‖Lq (�2ε; δ) ≤ Cε‖∇ f ‖Lq (�ε; δ). (2.11)

Proof See [42, Lemma 3.3] and also [35, Lemma 2.2] for the case q = 2. �
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Lemma 2.4 Assume that A satisfies (1.2)–(1.3), and uε ∈ Hm(B(x0, R) ∩ �;Rn) is a
solution toLεu = ∑

|α|≤m Dα f α in B(x0, R)∩�with Tr(Dγ uε) = DγG on B(x0, R)∩∂�
for some G ∈ Hm(B(x0, R) ∩�;Rn) where x0 ∈ ∂�. Let f α ∈ L2(B(x0, R) ∩�;Rn) for
|α| ≤ m. Then, for 0 ≤ j ≤ m and 0 < r < R, we have

ˆ
B(x0,r)∩�

|∇ j (uε − G)|2

≤ C

(R − r)2 j

ˆ
B(x0,R)∩�

(|uε|2 + |G|2)+ CR2m−2 j
ˆ
B(x0,R)∩�

|∇mG|2

+ C
∑

|α|≤m

R4m−2 j−2|α|
ˆ
B(x0,R)∩�

| f α|2, (2.12)

where C depends only on d, n,m, μ and �.

Proof It is obvious that vε = uε − G is a solution to

Lεvε =
∑

|α|≤m

Dα f α +
∑

|α|=|β|=m

Dα{Aαβ(x/ε)DβG} in B(x0, R) ∩�,

Tr(Dγ vε) = 0 on B(x0, R) ∩ ∂� for 0 ≤ |γ | ≤ m − 1.

Let φ ∈ C∞
c (B(x0, R)) with φ = 1 in B(x0, r) and |∇kφ| ≤ C(R − r)−k . Multiplying vεφ2

and using integration by parts, we obtain that
ˆ
B(x0,R)∩�

|∇mvε|2φ2 ≤
∑

|α|≤m

{
C(ε0)R

2m−2|α|
ˆ
B(x0,R)∩�

| f α|2

+ ε0

R2m−2|α|

ˆ
B(x0,R)∩�

|Dα(vεφ
2)|2

}

+ C(ε0)
∑

|α|=m

ˆ
B(x0,R)∩�

|DαG|2 + ε0

ˆ
B(x0,R)∩�

|∇mvε|2φ2

+
m−1∑
j=0

Cε0 + C

(R − r)2m−2 j

ˆ
(B(x0,R)\B(x0,r))∩�

|∇ jvε|2. (2.13)

Note that vεφ2 ∈ Hm
0 (B(x0, R) ∩ �). Using Poincaré’s inequality and setting ε0 small

enough, we may obtain from (2.13) that

ˆ
B(x0,r)∩�

|∇m(uε − G)|2 ≤
m−1∑
j=0

C

(R − r)2m−2 j

ˆ
(B(x0,R)\B(x0,r))∩�

|∇ j (uε − G)|2

+ C
{ ∑

|α|≤m

R2m−2|α|
ˆ
B(x0,R)∩�

| f α|2

+
∑

|α|=m

ˆ
B(x0,R)∩�

|DαG|2
}
, (2.14)

where C depends only on d, n,m and μ, but never on ε, R. The estimate (2.12) follows from
(2.14) in the same way as Corollary 23 in [8] through an induction argument. �
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Remark 2.1 It is possible to replace the L2 norm of f α in (2.12) by the L p norm for some
1 < p < 2 when |α| < m. For example, assuming that f α = 0 for 1 ≤ |α| ≤ m, we may
prove that ˆ

B(x0,r)∩�
|∇ j (uε − G)|2 ≤ C

(R − r)2 j

ˆ
B(x0,R)∩�

(|uε|2 + |G|2)
+ CR2m−2 j

ˆ
B(x0,R)∩�

|∇mG|2

+ CR4m−2 j+d− 2d
p

(ˆ
B(x0,R)∩�

| f 0|p
) 2

p
,

for p > max{1, 2d/(d + 2m)}.

3 Convergence rates in Lipschitz domains

Let 0 ≤ ρε ≤ 1 be a function in C∞
c (�) with supp(ρε) ⊂ �3ε, ρε = 1 on �4ε and

|∇mρε| ≤ Cε−m .

Lemma 3.1 Suppose that� is a bounded Lipschitz domain inRd , and A satisfies (1.2)–(1.3).
Let uε, u0 be the weak solutions to Dirichlet problems (1.1) and (2.2), respectively. Define

wε = uε − u0 − εm
∑

|γ |=m

χγ (x/ε)S2ε (D
γ u0)ρε. (3.1)

Then, for any φ ∈ Hm
0 (�;Rn), we have∣∣∣ ∑

|α|=|β|=m

ˆ
�

Dαφi A
αβ
i j (x/ε)D

βwε j

∣∣∣
≤ C‖∇mφ‖L2(�4ε)

‖∇mu0‖L2(�4ε)

+ C‖∇mφ‖L2(�4ε)

∑
0≤k≤m−1,

εk‖Sε(∇m+ku0)‖L2(�5ε\�2ε)

+ C‖∇mφ‖L2(�2ε;ϑ−1)‖∇mu0 − Sε(∇mu0)‖L2(�2ε;ϑ)
+ C‖∇mφ‖L2(�2ε;ϑ−1)

∑
0≤k≤m−1

εm−k‖Sε(∇2m−ku0)‖L2(�2ε;ϑ), (3.2)

where ϑ(x) = δ(x) or 1, C depends only on d, n,m, μ and �.

Proof See [28, Lemma 3.1] for ϑ ≡ 1. The proof for the case ϑ(x) = δ(x) is almost the
same with the help of Lemmas 2.1, 2.2 and 2.3. �
Lemma 3.2 Let � be a bounded Lipschitz domain in R

d . Let A satisfy (1.2)–(1.3) and
let u0 be the weak solution to homogenized problem (2.2) with ġ ∈ WAm,2(∂�;Rn), f ∈
H−m+1(�;Rn). Then, for any 0 < ν < 1/2,

‖∇mu0‖L2(�2ε)
≤ Cνε

1/2−ν {‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�)

}
, (3.3)

‖∇m+1u0‖L2(�2ε) ≤ Cνε
−1/2−ν {‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�)

}
, (3.4)

‖∇mu0‖L2(�2ε; δ−1) ≤ Cνε
−ν {‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�)

}
, (3.5)

‖∇m+1u0‖L2(�2ε; δ) ≤ Cνε
−ν {‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�)

}
, (3.6)
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where Cν depends only on d, n,m, ν, μ and �.

Proof Recall that f ∈ H−m+1(�) can be written as

f =
∑

|ζ |≤m−1

Dζ f ζ with ‖ f ‖H−m+1(�) ≈
∑

|ζ |≤m−1

‖ f ζ ‖L2(�).

Let f̃ ζ be the extension of f ζ , being zero in R
d \ �. Let �̂ be a smooth bounded domain

such that � ⊂ �̂. Let v0 be the solution to

L0v0 =
∑

|ζ |≤m−1

Dζ f̃ ζ in �̂, Tr(Dγ v0) = 0 on ∂�̂ for 0 ≤ |γ | ≤ m − 1. (3.7)

Standard regularity estimates for higher-order elliptic systems imply that∑
1≤�≤m+1

‖∇�v0‖L2(�̂) ≤ C‖ f ‖H−m+1(�). (3.8)

Denote �t = {x ∈ � : dist (x,�) = t}, 0 ≤ t ≤ c0. Similar to [28, Theorem 3.1] (see
(3.23) and (3.24) therein), by trace theorem, we may prove that∑

1≤�≤m

‖∇�v0‖L2(�t )
≤ C‖ f ‖H−m+1(�), (3.9)

∑
1≤�≤m

‖∇�v0‖L2(�ε)
≤ Cε1/2‖ f ‖H−m+1(�). (3.10)

On the other hand, setting u0(x) = v0(x)+ v(x), we have

L0v = 0 in �, Tr(Dγ v) = gγ − Dγ v0 on ∂� for 0 ≤ |γ | ≤ m − 1. (3.11)

Thanks to Theorem 3′ and Theorem 5′ in [1], we have v ∈ Bm−1/2+s
2 (�) for any 1/2<s<1,

and,

‖v‖
Bm−1/2+s
2 (�)

≤ Cs
{‖ġ‖WAm,2(∂�) + ‖v̇0‖WAm,2(∂�)

}
≤ Cs

{‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�)

}
, (3.12)

where v̇0 = {
Dγ v0|∂�

}
|γ |≤m−1, and (3.9) has been used for the last step. Therefore, we have

Dαv ∈ Bs−1/2
2 (�) for |α| = m. Thanks to Theorems 1.4.2.4 and 1.4.4.4 in [19],ˆ

�

|∇mv(x)|2δ(x)1−2sdx ≤ Cs‖v‖2
Bm−1/2+s
2 (�)

≤ Cs
{‖ġ‖2WAm,2(∂�)

+ ‖ f ‖2H−m+1(�)

}
.

(3.13)

This implies thatˆ
�2ε

|∇mv(x)|2 dx =
ˆ
�2ε

|∇mv(x)|2δ(x)1−2sδ(x)2s−1 dx

≤ Csε
2s−1{‖ġ‖2WAm,2(∂�)

+ ‖ f ‖2H−m+1(�)

}
(3.14)

for any 1/2<s<1. By combining (3.10) with (3.14), we derive (3.3) by setting ν = 1 − s.
In view of (3.11) and interior estimates for higher-order elliptic systems with constant

coefficients, we have

|∇m+1v(x)| ≤ C

δ(x)

( 
B(x, δ(x)8 )

|∇mv|2
)1/2

.
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Thus, by using (3.13) we deduce that

‖∇m+1v‖2L2(�2ε)
≤ C

ˆ
�2ε

1

δ(x)3−2s

 
B(x, δ(x)8 )

|∇mv(y)|2δ(y)1−2sdy dx

≤ Cε2s−3‖∇mv‖2L2(�; δ1−2s )

≤ Csε
2s−3

{
‖ġ‖2WAm,2(∂�)

+ ‖ f ‖2H−m+1(�)

}
, (3.15)

which, together with (3.8), gives (3.4).
For (3.5), it is easy to conclude from (3.12) and (3.13) thatˆ

�2ε
|∇mv(x)|2δ(x)−1 dx =

ˆ
�2ε

|∇mv(x)|2δ(x)1−2sδ(x)2s−2 dx

≤ Csε
2s−2{‖ġ‖2WAm,2(∂�)

+ ‖ f ‖2H−m+1(�)

}
. (3.16)

On the other hand, by the co-area formula and (3.9) we deduce thatˆ
�2ε

|∇mv0(x)|2δ(x)−1 dx =
ˆ
�2ε\�c0

|∇mv0(x)|2δ(x)−1 dx +
ˆ
�c0

|∇mv0(x)|2δ(x)−1 dx

≤ C
ˆ c0

2ε

ˆ
�t

|∇mv0(x)|2 1
t
dSdt + C

ˆ
�c0

|∇mv0(x)|2 dx

≤ C ln(1/ε)
{‖ġ‖2WAm,2(∂�)

+ ‖ f ‖2H−m+1(�)

}
(3.17)

for 0 < ε < 1/2. This, combined with (3.16), gives (3.5). The proof for (3.6) is almost the
same as (3.4), and thus we omit the details. �
Lemma 3.3 Suppose that the assumptions of Lemma 3.2 are satisfied, and A is symmetric,
i.e., A = A∗. Then, we have

‖∇mu0‖L2(�2ε)
≤ Cε1/2

{‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�)

}
, (3.18)

‖∇mu0‖L2(�2ε; δ−1) ≤ C [ln(1/ε)]1/2{‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�)

}
, (3.19)

‖∇m+1u0‖L2(�2ε; δ) ≤ C [ln(1/ε)]1/2{‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�)

}
, (3.20)

where C depends only on d, n,m, μ and �.

Proof The proof is the same as that of Lemma 3.2 except for three places. Firstly, since A
is symmetric, in place of (3.13) we have the nontangential maximum function estimate, see
e.g., [41, Theorem 6.1],

‖M(∇mv)‖L2(∂�) ≤ C‖v̇‖WAm,2(∂�) ≤ C
{‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�)

}
, (3.21)

where M(∇mv) denotes the nontangential maximal function of ∇mv. Therefore, instead of
(3.14) we have ˆ

�2ε

|∇mv(x)|2 dx ≤ Cε
{
‖ġ‖2WAm,2(∂�)

+ ‖ f ‖2H−m+1(�)

}
,

which, combined with (3.10), implies (3.18).
Secondly, in substitution for (3.16) we use the nontangential estimate (3.21) and the co-

area formula to deduce thatˆ
�2ε

|∇mv(x)|2δ(x)−1 dx ≤ C
ˆ c0

2ε

ˆ
�t

1

t
|∇mv(x)|2dSdt + C

ˆ
�c0

|∇mv(x)|2 dx

≤ C ln(1/ε)
{
‖ġ‖2WAm,2(∂�)

+ ‖ f ‖2H−m+1(�)

}
,
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which, combined with (3.17), gives (3.19).
Finally, instead of (3.15), we have

‖∇m+1v‖2L2(�ε; δ) ≤ C
ˆ
�ε\�c0

1

δ(x)

 
B(x, δ(x)8 )

|∇mv(y)|2dy dx

+ C
ˆ
�c0

 
B(x, δ(x)8 )

|∇mv(y)|2dy dx

≤ C
ˆ c0

ε

ˆ
�t

1

t
|M(∇mv)|2dS dt + C

{
‖ġ‖2WAm,2(∂�)

+ ‖ f ‖2H−m+1(�)

}
≤ C ln(1/ε)

{
‖ġ‖2WAm,2(∂�)

+ ‖ f ‖2H−m+1(�)

}
.

This, together with (3.8), gives (3.20). The proof is thus completed. �
Lemma 3.4 Assume that� is a bounded Lipschitz domain inRd and A satisfies (1.2)–(1.3).
Let uε, u0 be the weak solutions to Dirichlet problems (1.1) and (2.2), respectively, with
ġ ∈ WAm,2(∂�;Rn), f ∈ H−m+1(�;Rn). Let wε be defined as in (3.1). Then, for any
0 < ν < 1/2, we have

‖wε‖Hm
0 (�)

≤ Cνε
1/2−ν {‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�)

}
, (3.22)

where Cν depends only on d, n,m, ν, μ and �. If in addition A is symmetric, i.e., A = A∗,
then

‖wε‖Hm
0 (�)

≤ Cε1/2
{‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�)

}
, (3.23)

where C depends only on d, n,m, μ and �.

Proof The estimate (3.23) has been proved in [28, Theorem 3.1], we only need to consider
(3.22) here. Using Lemmas 2.2 and 2.3, we deduce from (3.2) that∣∣∣ ∑

|α|=|β|=m

ˆ
�

Dαφi A
αβ
i j (x/ε)D

βwε j

∣∣∣
≤ C

{
‖∇mφ‖L2(�4ε)

‖∇mu0‖L2(�5ε)
+ ε‖∇m+1u0‖L2(�2ε;ϑ)‖∇mφ‖L2(�2ε;ϑ−1)

}
. (3.24)

Taking ϑ = 1, φ = wε and using the ellipticity condition (1.2), we obtain that

‖∇mwε‖Hm
0 (�)

≤ C
{
‖∇mu0‖L2(�5ε)

+ ε‖∇m+1u0‖L2(�2ε)

}
,

from which and (3.3), (3.4), we obtain (3.22) immediately. �
We are now prepared to prove Theorem 1.4.

Proof of Theorem 1.4 We only provide the details for (1.14), as the proof of (1.15) is similar.
By scaling, we may assume that

‖ġ‖WAm,2(∂�) + ‖ f ‖H−m+1(�) = 1.

For any fixed F ∈ H−m+1(�;Rn), letψε ∈ Hm
0 (�;Rn) be theweak solution to theDirichlet

problem {
L∗
εψε = F in �,

Tr(Dγ ψε) = 0 on ∂� for 0 ≤ |γ | ≤ m − 1,
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and let ψ0 ∈ Hm
0 (�;Rn) be the weak solution to the homogenized problem{

L∗
0ψ0 = F in �,

Tr(Dγ ψ0) = 0 on ∂� for 0 ≤ |γ | ≤ m − 1.

Here, L∗
ε and L∗

0 are the adjoint operators of Lε and L0, respectively. Let 0 ≤ ρ̃ε ≤ 1 be a
function in C∞

c (�) with supp(ρ̃ε) ⊂ �6ε, ρ̃ε = 1 on �8ε and |∇m ρ̃ε| ≤ Cε−m . Set

�ε = ψε − ψ0 − εm
∑

|γ |=m

χ∗γ (x/ε)S2ε (Dγ ψ0)ρ̃ε.

It satisfies the same properties as wε, since A∗ satisfies the same properties as A. Note that
wε ∈ Hm

0 (�;Rn), and we deduce that

〈F, wε〉H−m+1(�)×Hm−1
0 (�)

=
∑

|α|=|β|=m

ˆ
�

Aβα(x/ε)DαwεD
β�ε

+
∑

|α|=|β|=m

ˆ
�

Aβα(x/ε)DαwεD
βψ0

+
∑

|α|=|β|=m

ˆ
�

Aβα(x/ε)DαwεD
β

×
{ ∑

|γ |=m

εmχ∗γ (x/ε)S2ε (Dγ ψ0)ρ̃ε

}
.= J1 + J2 + J3. (3.25)

By (3.22), we obtain that

|J1| ≤ C‖wε‖Hm
0 (�)

‖�ε‖Hm
0 (�)

≤ Cνε
1−2ν‖F‖H−m+1(�).

Using (3.24) and taking ϑ(x) = δ(x), we have

|J2| ≤Cε‖∇mψ0‖L2(�2ε; δ−1)‖∇m+1u0‖L2(�2ε; δ)
+ C‖∇mu0‖L2(�5ε)

‖∇mψ0‖L2(�4ε)
. (3.26)

By (3.3) (note that ψ0 also satisfies (3.3)), we get

‖∇mu0‖L2(�5ε)
‖∇mψ0‖L2(�4ε)

≤ Cνε
1−2ν‖F‖H−m+1(�).

Furthermore, taking (3.5) and (3.6) into consideration, we conclude from (3.26) that

|J2| ≤ Cνε
1−2ν‖F‖H−m+1(�).

We now turn to J3. By (3.24), we obtain that

|J3| ≤Cε
∑

|γ |=m

‖∇m+1u0‖L2(�2ε; δ)εm‖∇m{
χ∗γ (x/ε)S2ε (Dγ ψ0)ρ̃ε

}‖L2(�2ε; δ−1)

+ C
∑

|γ |=m

εm‖∇mu0‖L2(�5ε)
‖∇m{

χ∗γ (x/ε)S2ε (Dγ ψ0)ρ̃ε
}‖L2(�4ε)

, (3.27)
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where the last term is zero by the definition of ρ̃ε. To estimate the first term, we note that

εm‖Dβ
{
χ∗γ (x/ε)S2ε (Dγ ψ0)ρ̃ε

}‖L2(�2ε; δ−1)

≤ C‖(Dβχ∗γ )(x/ε)S2ε (Dγ ψ0)ρ̃ε‖L2(�2ε; δ−1)

+ Cεm‖χ∗γ (x/ε)S2ε (Dβ+γ ψ0)ρ̃ε‖L2(�2ε; δ−1)

+ Cεm‖χ∗γ (x/ε)S2ε (Dγ ψ0)D
β ρ̃ε‖L2(�2ε; δ−1)

+ C
∑

|ζ+η+ξ |=m
1≤|ζ |,|η|,|ξ |

ε|η|+|ξ |‖(Dζ χ∗γ )(x/ε)S2ε (Dγ+ηψ0)D
ξ ρ̃ε‖L2(�2ε; δ−1)

.= J31 + J32 + J33 + J34,

for all multi-indexes β, γ with length m. By Lemmas 2.1 and 3.2, we obtain that

J31 ≤ C‖Sε(∇mψ0)‖L2(�6ε; δ−1) ≤ C‖∇mψ0‖L2(�5ε; δ−1) ≤ Cνε
−ν‖F‖H−m+1(�),

J33 ≤ C‖Sε(∇mψ0)‖L2(�9ε\�4ε; δ−1) ≤ Cνε
−ν‖F‖H−m+1(�).

Furthermore, by Lemmas 2.1, 2.2 and 3.2, we see that

J32 ≤ Cεm‖Sε(∇2mψ0)‖L2(�4ε; δ−1) ≤ Cνε
−ν‖F‖H−m+1(�),

J34 = C
∑

k1+k2+k3=m
1≤ki ,i=1,2,3

εk2+k3‖(∇k1χ∗)(x/ε)S2ε (∇k2+mψ0)∇k3 ρ̃ε‖L2(�8ε\�6ε; δ−1)

≤ C
∑

1≤k2≤m−2

εk2‖Sε(∇k2+mψ0)‖L2(�9ε\�5ε; δ−1)

≤ Cνε
−ν‖F‖H−m+1(�).

Taking the estimates on J31, J32, J33, J34 into (3.27), and using (3.6), we obtain that

|J3| ≤ Cνε
1−2ν‖F‖H−m+1(�).

In view of the estimates on J1, J2, J3 and (3.25), we have proved that∣∣∣〈F, wε〉H−m+1(�)×Hm−1
0 (�)

∣∣ ≤ Cνε
1−2ν‖F‖H−m+1(�),

which, combined with the following estimate

‖εm
∑

|γ |=m

χγ (x/ε)S2ε (D
γ u0)ρε‖Hm−1

0 (�)
≤ Cε,

gives (1.14). The proof is complete. �

Remark 3.1 Part of our motivation for the proof of (1.14) is the finding that u0 satisfying
certain weighted estimates such as (3.3)–(3.6), which give a proper control on the solution
u0 in �ε and �ε . This also inspires us to modify the duality method with weight δ(x). We
mention that weight functions have been used previously in [22,42] to derive the suboptimal
O(ε ln(1/ε)) convergence rate for second-order elliptic systems with symmetric coefficients.
Our consideration on the suboptimal convergence rate is also in debt to these works.
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4 Uniform Cm−1,λ estimates

In this section, we consider the uniform boundary Cm−1,λ, 0 < λ < 1, estimate of uε in C1

domains. Throughout the section, we always assume that A satisfies (1.2) and (1.3). Recall
that locally the boundary of a C1 domain is the graph of a C1 function; we thus restrict our
considerations to equations on (Dr ,r ) defined in (1.5) with the defining function satisfying
(1.4). Let

Pk =
{
(P1

k , P
2
k , . . . , P

n
k ) | Pi

k , 1 ≤ i ≤ n, are polynomials of degree k
}
.

Let uε ∈ Hm(D2r ;Rn) be a weak solution to

Lεuε = F in D2r , Tr(Dγ uε) = DγG on 2r for 0 ≤ |γ | ≤ m − 1, (4.1)

whereG ∈ Cm−1,1(D2r ;Rn), F ∈ L p(D2r ;Rn)with p > max{1, 2d/(d+2m−2)}. Define

�λ(r, uε) = 1

rm−1+λ inf
Pm−1∈Pm−1

{(  
Dr

|uε − Pm−1|2
)1/2 + r2m

( 
Dr

|F |p
)1/p

+
m∑
j=0

r j‖∇ j (G − Pm−1)‖L∞(Dr )

}
, 0 < λ < 1. (4.2)

Lemma 4.1 Let 0 < ε ≤ r ≤ 1 and �λ(r, uε) be defined as above. There exists u0 ∈
Hm(Dr ;Rn) such that L0u0 = F in Dr , Tr(Dγ u0) = DγG on r for 0 ≤ |γ | ≤ m − 1,
and ( 

Dr

|uε − u0|2
)1/2 ≤ Crm−1+λ(ε

r

)1/4
�λ(2r, uε), (4.3)

where C depends only on d, n,m, p, μ and M in (1.4).

Proof Let us first assume that r = 1. By Caccioppoli’s inequality (see Remark 2.1), we have

‖uε‖Hm (D3/2) ≤ C
{
‖uε‖L2(D2)

+ ‖F‖L p(D2) +
m∑
j=0

‖∇ j G‖L2(D2)

}
, (4.4)

for p > max{1, 2d/(d + 2m)}. By the co-area formula, there exists t ∈ [5/4, 3/2] such that

‖uε‖Hm (∂Dt\2) ≤ C
{
‖uε‖L2(D2)

+ ‖F‖L p(D2) +
m∑
j=0

‖∇ j G‖L2(D2)

}
, (4.5)

where C depends only on d, n,m, μ. Now let u0 be the weak solution to

L0u0 = F in Dt , Tr(Dγ u0) = Tr(Dγ uε) on ∂Dt .

Note that F ∈ L p ↪→ H−m+1 when p > max{2d/(d + 2m − 2), 1}. As a consequence of
(1.14) in Theorem 1.4, we have

‖uε − u0‖L2(Dt )
≤ Cε1/4

{
‖uε‖Hm (∂Dt ) + ‖F‖L p(D2)

}
,

where C depends only on d, n,m, μ and M in (1.4). This, together with (4.5), yields

‖uε − u0‖L2(D1)
≤ ‖uε − u0‖L2(Dt )

≤ Cε1/4
{
‖uε‖L2(D2)

+ ‖F‖L p(D2) + ‖G‖Cm−1,1(D2)

}
,

(4.6)
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for p > max{1, 2d/(d + 2m − 2)}.
We now perform scaling for general ε ≤ r < 1. Set

vε(x) = uε(r x), G̃(x) = G(r x), F̃(x) = r2mF(r x).

By (4.1), we know that L ε
r
vε = F̃(x) in D̃2, and Tr(Dγ vε) = Dγ G̃(x) on ̃2 for 0 ≤ |γ | ≤

m − 1, where

D̃2 = {
(x ′, xd) ∈ R

d : |x ′| < 2 and ψr (x
′) < xd < ψr (x

′)+ 2
}
,

̃2 = {
(x ′, ψr (x

′)) ∈ R
d : |x ′| < 2

}
, with ψr (x

′) = r−1ψ(r x ′).

Thanks to (4.6), there exists v0 with L0v0 = F̃(x) in D̃1, Tr(Dγ v0) = Tr(Dγ vε) on ∂ D̃1

for 0 ≤ |γ | ≤ m − 1, such that

‖vε − v0‖L2(D̃1)
≤ C

(ε
r

)1/4{‖vε‖L2(D̃2)
+ ‖F̃(x)‖L p(D̃2)

+ ‖G̃‖Cm−1,1(D̃2)

}
.

Setting u0(x) = v0(x/r), we then obtain by the change of variables,

( 
Dr

|uε − u0|2
)1/2 ≤C

(ε
r

)1/4{( 
D2r

|uε|2
)1/2 + r2m

(  
D2r

|F |p
)1/p

+
m∑
j=0

r j‖∇ j G‖L∞(D2r )

}
.

Note that the above inequality still hold if we subtract a polynomial Pm−1 ∈ Pm−1 from
uε, u0 and G simultaneously. This gives (4.3) by taking the infimum with respect to Pm−1. �

Lemma 4.2 For 0 < ε ≤ r ≤ 1, let u0 ∈ Hm(D2;Rn) be a weak solution to

L0u0 = F in D2, Tr(Dγ u0) = DγG on 2 for 0 ≤ |γ | ≤ m − 1,

where G ∈ Cm−1,1(D2;Rn), F ∈ L p(D2;Rn) with p > max{d/(m + 1), 2d/(d + 2m −
2), 1}. Then, for any 0 < λ < min{m + 1 − d/p, 1}, there exist λ0 < min{m + 1 − d/p, 1}
and a constant C depending only on d, n,m, p, μ,M and τ(t) in (1.4), such that

�λ(δr; u0) ≤ Cδλ0−λ�λ(r; u0) for 0 < δ < 1/4. (4.7)

Proof By rescaling, we assume that r = 1. For 0 < λ < min{m + 1 − d/p, 1}, fix λ0 such
that λ < λ0 < min{m + 1 − d/p, 1}. Set Pm−1 in (4.2) as

Pm−1(x) =
m−1∑
|α|=0

1

α!D
αu0(0)x

α =
m−1∑
|α|=0

1

α!D
αG(0)xα.

It is not difficult to find that

�λ(δ, u0) ≤Cδλ0−λ‖u0‖Cm−1,λ0 (Dδ)

+ δm+1−λ−d/p
( 

D1

|F |p
)1/p + δ1−λ

m∑
j=0

‖∇ j G‖L∞(D1) (4.8)
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for any 0 < δ < 1/4. Observe that when p > max{d/(m + 1), 1}, L p(D2;Rn) ↪→
W−m,q(D2;Rn) for some q > d. Combining the Cm−1,λ0 estimate for higher-order ellip-
tic systems with constant coefficients in C1 domains (see e.g., [10,12]) and a localization
argument (see e.g., the proof of Corollary 5.1), we have

‖u0‖Cm−1,λ0 (Dδ) ≤ C‖u0‖Cm−1,λ0 (D1/4)

≤ C

{( 
D1

|u0|2
)1/2 +

( 
D1

|F |p
)1/p +

m∑
j=0

‖∇ j G‖L∞(D1)

}
. (4.9)

Taking (4.9) into (4.8), we derive that

�λ(δ, u0) ≤ Cδλ0−λ
{( 

D1

|u0|2
)1/2 +

( 
D1

|F |p
)1/p +

m∑
j=0

‖∇ j G‖L∞(D1)

}
.

Substituting u0,G by u0 − Pm−1 and G − Pm−1, respectively, and taking the infimum with
respect to Pm−1 ∈ Pm−1, we obtain (4.7) immediately. �
Lemma 4.3 For 0 < ε ≤ r ≤ 1/2, let �λ(r, uε) be defined as in (4.2). Then, there exists
δ ∈ (0, 1/4) depending only on d, n,m, p, λ, μ,M and τ(t) in (1.4), such that

�λ(δr; uε) ≤ 1

2
�λ(2r; uε)+ C

(ε
r

)1/4
�λ(2r; uε), (4.10)

where C depends only on d, n,m, p, λ, μ,M and τ(t) in (1.4).

Proof By the definition, it is easy to find that

�λ(δr; uε) ≤ �λ(δr; u0)+ 1

(δr)m−1+λ
(  

Dδr
|uε − u0|2

)1/2
≤ Cδλ0−λ�λ(r; u0)+ 1

(δr)m−1+λ
( 

Dδr
|uε − u0|2

)1/2

≤ Cδλ0−λ�λ(r; uε)+ Cδλ0−λ

rm−1+λ
( 

Dr

|uε − u0|2
)1/2

+ 1

(δr)m−1+λ
( 

Dδr
|uε − u0|2

)1/2
≤ Cδλ0−λ�λ(2r; uε)+ Cδ

rm−1+λ
( 

Dr

|uε − u0|2
)1/2

.

Taking δ small enough such thatCδλ0−λ < 1/2, and then using Lemma 4.1, we obtain (4.10)
directly. �
Proof of Theorem 1.1 We only need to consider the case ε ≤ r < 1/4, since the estimate
(1.6) is trivial when 1/4 ≤ r ≤ 1, following directly from Caccioppoli’s inequality. Thanks
to Lemma 4.3, we can take N0 large enough such that

�λ(δr; uε) ≤ 1

2
�λ(2r; uε)+ C

( 1

N0

)1/4
�λ(2r; uε) ≤ �λ(2r; uε), (4.11)

for r ≥ N0ε, where δ given by Lemma 4.3 is fixed. Hence, by iteration we have

�λ(r; uε) ≤ C�λ(1; uε) for r ∈ [N0ε, 1/2). (4.12)
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On the other hand, for ε ≤ r < N0ε, it is obvious that

�λ(r; uε) ≤ C�λ(N0ε; uε) ≤ C�λ(1; uε),
where C depends on N0. This, together with (4.12), gives

�λ(r; uε) ≤ C�λ(1; uε) for ε ≤ r ≤ 1/2. (4.13)

By Caccioppoli’s inequality, we deduce that( 
Dr

|∇m(uε − Pm−1)|2
)1/2 ≤ Cr−m inf

Pm−1∈Pm−1

{(  
D2r

|uε − Pm−1|2
)1/2

+ r2m
( 

D2r

|F |p
)1/p

+
m∑
j=0

r j
( 

D2r

|∇ j (G − Pm−1)|2
)1/2}

.

= Crλ−1�λ(2r, uε) ≤ Crλ−1�λ(1, uε)

≤ Crλ−1
{( 

D1

|uε|2
)1/2

+
( 

D1

|F |p
)1/p +

m∑
j=0

‖∇ j G‖L∞(D1)

}
,

for all ε ≤ r < 1/2 and any Pm−1 ∈ Pm−1, which is exactly (1.6). �
Corollary 4.1 In addition to the assumptions of Theorem 1.1, if A ∈ VMO(Rd), then for
any 0 < λ < min{m + 1 − d/p, 1},

‖uε‖Cm−1,λ(D1/4)
≤ C

{(  
D1

|uε|2
)1/2 +

(  
D1

|F |p
)1/p + ‖G‖Cm−1,1(D1)

}
, (4.14)

where C depends only on d, n,m, p, μ as well as M, τ (t) in (1.4) and �(t) in (1.7).

Proof It is enough to assume 0 < ε < 1/2, as the other case is trivial. Setting

vε(x) = uε(εx), F̃(x) = ε2mF(εx), G̃(x) = G(εx),

then vε satisfies

L1vε = F̃(x) in D1, Tr(Dγ vε) = Dγ G̃(x) on 1 for 0 ≤ |γ | ≤ m − 1. (4.15)

By Cm−1,λ estimates of operator L1 in C1 domains [10,12] and a localization argument, we
have for any 0 < λ < min{m + 1 − d/p, 1} and 0 < s < 1/2,

( 
Ds

|∇mvε|2
)1/2 ≤ Csλ−1

{( 
D1

|vε|2
)1/2 +

(  
D1

|F̃ |p
)1/p +

m∑
j=0

‖∇ j G̃‖L∞(D1)

}
.

(4.16)

By the change of variables, we obtain for 0 < r < ε/2,(  
Dr

|∇muε|2
)1/2 ≤C

(r
ε

)λ−1 1

εm

{( 
Dε

|uε|2
)1/2

+ ε2m
( 

Dε
|F |p

)1/p +
m∑
j=0

ε j‖∇ j G‖L∞(Dε)
}
. (4.17)
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Subtracting Pm−1 from uε and G simultaneously, and taking (4.13) in consideration, we
obtain that(  

Dr

|∇muε|2
)1/2 ≤ Crλ−1

{( 
D1

|uε|2
)1/2 +

( 
D1

|F |p
)1/p +

m∑
j=0

‖∇ j G‖L∞(D1)

}
(4.18)

for any 0 < r ≤ ε. In view of (1.6), we know that (4.18) holds for 0 ≤ r < 1/2. Combining
(4.18) with similar interior Cm−1,λ estimate in [28, Corollary 5.1], we obtain that(  

B(x,r)∩D1/4

|∇muε|2
)1/2 ≤Crλ−1

{(  
D1

|uε|2
)1/2

+
( 

D1

|F |p
)1/p +

m∑
j=0

‖∇ j G‖L∞(D1)

}

for any 0 < r < r0 (r0 is small) and x ∈ D1/4. This gives (4.14) by the Campanato
characterization of Hölder spaces. �
Remark 4.1 Under the assumptions of Corollary 4.1, if F, G ≡ 0 we may use Poincaré’s
inequality to deduce from (4.17) that(  

Dr

|∇muε|2
)1/2 ≤ C

(r
ε

)λ−1( 
Dε

|∇muε|2
)1/2

(4.19)

for any 0 < r ≤ ε. This will be used to establish the uniform Wm,p estimate in the next
section.

5 Uniform Wm, p estimates

This section is devoted to the uniformWm,p estimate for uε inC1 domains under the assump-
tion A ∈ VMO(Rd).

Lemma 5.1 Assume that � is a bounded C1 domain in R
d and the coefficient matrix A ∈

VMO(Rd) satisfies (1.2)–(1.3). Let B(x0, r), r < r0, be a ball centered at x0 ∈ ∂� with
radius r , and uε ∈ Hm(B(x0, 2r) ∩�;Rn) be a weak solution to

Lεuε = 0 in B(x0, 2r) ∩�, Tr(Dγ uε) = 0 on B(x0, 2r) ∩ ∂� for 0 ≤ |γ | ≤ m − 1.

Then, for any 2 ≤ p < ∞,(  
B(x0,r)∩�

|∇muε|p
)1/p ≤ C

( 
B(x0,2r)∩�

|∇muε|2
)1/2

, (5.1)

where C depends only on d, n,m, p, μ as well as M, τ (t) in (1.4) and �(t) in (1.7).

Proof Weonly need to consider the case ε < 1
4 . Since if else A(x/ε) satisfies (1.7) uniformly,

and (5.1) follows from the existing Wm,p estimates for higher-order elliptic systems with
VMO coefficients, see e.g., [10,12]. Also, note that the functionψr (x ′) = r−1ψ(r x ′) satisfies
condition (1.4) uniformly. We can then fix our considerations on the case r = 1 by rescaling.
By the uniform interiorWm,p estimates derived by the authors in [28, Theorem 1.3], we have( 

B(x,t)
|∇muε|p

)1/p ≤ C
( 

B(x,2t)
|∇muε|2dx

)1/2
,
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whenever uε is a weak solution to Lεuε = 0 in B(x, 2t). Therefore, in view of (1.6) and
(4.19), we have for any 0 < λ < 1 and y ∈ B(x0, 1) ∩�,( 

B(y,δ(y)/8)
|∇muε|p

)1/p ≤ C
( 

B(y,δ(y)/4)
|∇muε|2

)1/2
≤ C[δ(y)]λ−1

(ˆ
B(x0,2)∩�

|∇muε|2
)1/2

,

(5.2)

where δ(y) denotes the distance of y to ∂(B(x0, 2)∩�). Fix λ ∈ (1− 1/p, 1) and integrate
(5.2) with respect to y in B(x0, 1) ∩�. We obtain thatˆ

B(x0,1)∩�

 
B(y,δ(y)/8)

|∇muε|pdx dy ≤ C‖∇muε‖p
L2(B(x0,2)∩�). (5.3)

We then deduce from Fubini’s theorem thatˆ
B(x0,1)∩�

|∇muε(x)|p
ˆ

{y∈B(x0,1)∩�: |x−y|<δ(y)/8}
1

δ(y)d
dy dx ≤ C‖∇muε‖p

L2(B(x0,2)∩�).

(5.4)

Observe that when |x − y| < δ(y)/8, it holds that

1

2
δ(y) ≤ δ(x) ≤ 2δ(y). (5.5)

We thus conclude that

B(x0, 1) ∩� ∩ B(x, δ(x)/16) ⊂ {
y ∈ B(x0, 1) ∩� : |x − y| < δ(y)/8

}
for any x ∈ B(x0, 1) ∩�. This, together with (5.5), implies thatˆ

{y∈B(x0,1)∩�:|x−y|<δ(y)/8}
1

δ(y)d
dy ≥ C0 > 0.

Taking this into (5.4), we obtain (5.1) immediately. �
With Lemma 5.1 at our disposal, we are ready to prove Theorem 1.2. The proof is based

on a real-variable argument in the following theorem, which is formulated in [31,32].

Theorem 5.1 Let q > 2 and � be a bounded Lipschitz domain. Let F ∈ L2(�) and
f ∈ L p(�) for some 2 < p < q < ∞. Suppose that for each ball B ⊂ R

d with the property
that |B| < c0|�|, and either 4B ⊂ � or B is centered on ∂�, there exists two measurable
functions FB and RB on 2B ∩� such that

|F | ≤ |FB | + |RB | on 2B ∩�, (5.6)( 
2B∩�

|RB |q
)1/q ≤ C1

{(  
4B∩�

|F |2
)1/2 + sup

B⊂B′⊂4B0

( 
B′∩�

| f |2
)1/2}

, (5.7)

( 
2B∩�

|FB |2
)1/2 ≤ C2 sup

B⊂B′⊂4B0

( 
B′∩�

| f |2
)1/2 + δ

( ˆ
4B∩�

|F |2
)1/2

, (5.8)

where C1,C2 > 0, 0 < c0 < 1. Then, there exists δ0 > 0, depending only onC1,C2, c0, p, q
and the Lipschitz character of �, such that, for any 0 < δ < δ0, F ∈ L p(�) and(  

�

|F |p
)1/p ≤ C

(  
�

|F |2
)1/2 +

(  
�

| f |p
)1/p

, (5.9)

where C depends only on d,C1,C2, c0, p, q and the Lipschitz character of �.
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Proof of Theorem 1.2 Since the desired estimate is trivial when p = 2, it suffices to consider
the case p > 2. Thanks to the extension theorem in [26, p. 223], for any ġ = {gγ }|γ |≤m−1 ∈
Ḃm−1/p
p (∂�) there exist a G ∈ Wm,p(�) such that

Tr(DγG) = gγ for 0 ≤ |γ | ≤ m − 1, ‖G‖Wm,p(�) ≤ C‖ġ‖
Ḃm−1/p
p (∂�)

.

Therefore, we can restrict our investigations to the problem with homogeneous boundary
conditions.

Lεuε =
∑

|α|≤m

Dα f
α

in �, Tr(Dγ uε) = 0 on ∂� for 0 ≤ |γ | ≤ m − 1,

where uε = uε − G and

f
α = f α + (−1)m+1

∑
|β|=m

Aαβ(x/ε)DβG for |α| = m, and f
α = f α for |α| < m.

Let F = |∇muε| and f (x) = ∑
|α|≤m | f α|. We only need to construct the functions FB ,

RB and then verify the conditions (5.6), (5.7) and (5.8) to hold for balls B(x0, r) with the
property |B| < c0|�| and either 4B ⊂ � or B is centered on ∂�. The case of 4B ⊂ � has
been investigated for interior Wm,p estimates in [28]. So here we only consider the situation
that B is centered on ∂�.

Let B = B(x0, r) for some x0 ∈ ∂� and 0 < r < r0/16. Let vε ∈ Hm
0 (4B ∩�;Rn) be

the solution to Lεvε = ∑
|α|≤m Dα f

α
in 4B ∩� and set

FB = |∇mvε|, RB = |∇mwε|, wε = uε − vε.

Then, it is obvious that

|F | ≤ |FB | + |RB | on 2B ∩�,(  
2B∩�

|FB |2
)1/2 ≤ C

(  
4B∩�

|∇mvε|2
)1/2 ≤ C

( 
4B∩�

| f |2
)1/2

,

which imply the conditions (5.6) and (5.8). Furthermore, note that

Lεwε = 0 in 4B ∩�, Tr(Dγ wε) = 0 on 4B ∩ ∂� for 0 ≤ |γ | ≤ m − 1.

By Lemma 5.1, we know that for any 2 < p < ∞,( 
2B∩�

|∇mwε|p
)1/p ≤ C

( 
4B∩�

|∇mwε|2
)1/2

≤ C
( 

4B∩�
|∇muε|2

)1/2 + C
( 

4B∩�
|∇mvε|2

)1/2
≤ C

( 
4B∩�

|∇muε|2
)1/2 + C

( 
4B∩�

| f |2
)1/2

,

which implies (5.7). Noticing that all the conditions in Theorem 5.1 are verified, (1.9) follows
from (5.9) immediately. �

Note that if uε ∈ Wm,p
0 (�,Rn) is a weak solution to Lεuε = f in �, and u∗

ε ∈
Wm,p′

0 (�,Rn) is a weak solution to L∗
εu

∗
ε = f ∗ in �, where p′ = p/(p − 1). Then,

we have

〈 f, u∗
ε〉W−m,p×Wm,p′

0
=

∑
|α|=|β|=m

ˆ
�

Aαβ(x/ε)DβuεD
αu∗

ε = 〈 f ∗, uε〉W−m,p′×Wm,p
0
.
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Therefore, Theorem 1.2 also holds for 1< p<2 by a standard duality argument.
As a consequence of Theorem1.2, one can obtainCm−1,λ estimate on uε in� immediately.

However, we choose to provide a local version using the localization argument mentioned in
(4.9) and (4.16) (where we did not provide any details). The result will also provide a direct
comparison to Theorem 1.1 as well as Corollary 4.1.

Corollary 5.1 Suppose that � is a bounded C1 domain in R
d , A ∈ VMO(Rd) satisfies

(1.2)–(1.3). For any x0 ∈ ∂� and 0 < r ≤ c0, let uε ∈ Hm(� ∩ B(x0, 4r);Rn) be a weak
solution to

Lεuε =
∑

|ζ |≤m

Dζ f ζ in � ∩ B(x0, 4r), Tr(Dγ uε) = DγG on ∂� ∩ B(x0, 4r), 0

≤ |γ | ≤ m − 1,

where f ζ ∈ L p(� ∩ B(x0, 4r);Rn) for all |ζ | ≤ m, and G ∈ Wm,p(� ∩ B(x0, 4r);Rn)

with p > d and p ≥ 2. Then, for any x, y ∈ � ∩ B(x0, r),

|∇m−1uε(x)− ∇m−1uε(y)| ≤ C
|x − y|λ
rm−1+λ

{( 
�∩B(x0,4r)

|uε|2
)1/2

+ rm−d/p‖G‖Wm,p(�∩B(x0,4r))

+
∑

|ζ |≤m

r2m−|ζ |( 
�∩B(x0,4r)

| f ζ |p
)1/p}

, (5.10)

‖∇kuε‖L∞(�∩B(x0,r)) ≤ C r−k
{( 

�∩B(x0,4r)
|uε|2

)1/2 + rm−d/p‖G‖Wm,p(�∩B(x0,4r))

+
∑

|ζ |≤m

r2m−|ζ |( 
�∩B(x0,4r)

| f ζ |p
)1/p}

, (5.11)

where 0 ≤ k ≤ m − 1, λ = 1 − d/p, and C depends only on d, n,m, p, μ,� as well as
�(t) in (1.7).

Proof By rescaling and translation, we may assume that r = 1, x0 = 0. Denote B(0, r) as
Br and let D̃ be a C1 domain such that B3/2 ∩ � ⊂ D̃ ⊂ B2 ∩ �. Set vε = uε − G. It is
obvious that vε satisfies

Lεvε =
∑

|α|=m

Dα{Aαβ(x/ε)DβG} +
∑

|ζ |≤m

Dζ f ζ in � ∩ B4,

Tr(Dγ vε) = 0 on ∂� ∩ B4 for 0 < |γ | ≤ m − 1.

(5.12)

Let φ ∈ C∞
c (B3/2) with φ = 1 in B1 and |∇kφ| ≤ C2k . We have

Lε(vεφ) =
∑

|α|=|β|=m

{
Dα

{
Aαβ(x/ε)DβG

}
φ

+
∑

α′+α′′=α,|α′′|≥1

C(α′)Dα′{
Aαβ(x/ε)Dβvε

}
Dα′′

φ

+
∑

β ′+β ′′=β,|β ′′|≥1

C(β ′)Dα
{
Aαβ(x/ε)Dβ ′

vεD
β ′′
φ
}} +

∑
|ζ |≤m

Dζ f ζ φ in D̃,

Tr(Dγ (vεφ)) = 0, on ∂ D̃ for 0 < |γ | ≤ m − 1.
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Observe that for 0 ≤ � = |α′| ≤ m − 1,

Dα′{
Aαβ(x/ε)Dβvε

}
Dα′′

φ ∈ W−m,p(D̃) if ∇mvε ∈ Lq� (D̃) with q�

= dp

(m − �)p + d
(< p).

Thus, we may deduce from Theorem 1.2 that

‖vε‖Wm,p(B1∩�) ≤ C
(ˆ

D̃
|∇mG|p

)1/p + C
∑

0≤k≤m−1

( ˆ
D̃

|∇kvε|p
)1/p

+ C
∑

0≤�≤m−1

(ˆ
D̃

|∇mvε|q�
)1/q� + C

∑
|ζ |≤m

(ˆ
D̃

| f ζ |p
)1/p

≤ C
(ˆ

B2∩�
|∇mG|p

)1/p + C
∑

0≤k≤m−1

(ˆ
B2∩�

|∇kvε|p
)1/p

+ C
∑

0≤�≤m−1

(ˆ
B2∩�

|∇mvε|q�
)1/q� + C

∑
|ζ |≤m

( ˆ
B2∩�

| f ζ |p
)1/p

.

(5.13)

Let p1 = dp/(d + p). Thanks to the Poincaré inequality and Sobolev imbedding, we have

‖∇kvε‖L p(B2∩�) ≤ C‖∇mvε‖L p1 (B2∩�) for 0 ≤ k ≤ m − 1,

‖∇mvε‖Lq� (B2∩�) ≤ C‖∇mvε‖L p1 (B2∩�) for q� = dp

(m − �)p + d
, 0 ≤ � ≤ m − 1,

which, combined with (5.13), implies that

‖vε‖Wm,p(B1∩�) ≤ C‖∇mG‖L p(B2∩�) + C‖∇mvε‖L p1 (B2∩�) + C
∑

|ζ |≤m

‖ f ζ ‖L p(B2∩�).

(5.14)

If p1 > 2, we can perform a bootstrap argument for finite times to obtain that

‖vε‖Wm,p(B1∩�) ≤ C‖∇mG‖L p(B3∩�) + C‖∇mvε‖L2(B3∩�) + C
∑

|ζ |≤m

‖ f ζ ‖L p(B3∩�).

By Caccioppoli’s inequality, this implies that

‖uε‖Wm,p(B1∩�) ≤ C
{
‖∇mvε‖L2(B3∩�) + ‖G‖Wm,p(B4∩�) +

∑
|ζ |≤m

‖ f ζ ‖L p(B4∩�)
}

≤ C
{
‖uε‖L2(B4∩�) + ‖G‖Wm,p(B4∩�) +

∑
|ζ |≤m

‖ f ζ ‖L p(B4∩�)
}
,

which gives (5.10) and (5.11) by Sobolev imbedding. �

6 Uniform Cm−1,1 estimates

In this section, we consider uniform boundary Cm−1,1 estimates for uε in C1,θ (0 < θ < 1)
domains. Throughout the section, we always assume that A satisfies (1.2) and (1.3). Similar
to Sect. 4, we only need to consider equations in (Dr ,r ) defined as in (1.5) with the defining
function ψ ∈ C1,θ (Rd−1) satisfying ψ(0) = 0, ‖∇ψ‖Cθ (Rd−1) ≤ M1.

123



122 W. Niu, Y. Xu

Let uε ∈ Hm(D2;Rn) be a weak solution to

Lεuε =
∑

|α|≤m−1

Dα f α in D1, Tr(Dγ uε) = DγG on 1 for 0 ≤ |γ | ≤ m − 1,

where f α ∈ Lq(D1;Rn) with q > d, q ≥ 2, and G ∈ Cm,σ (D1;Rn) for some 0 < σ ≤ θ .
For 0 < r ≤ 1, define the following auxiliary quantities,

�(r, uε) = 1

rm
inf

Pm−1∈Pm−1

{(  
Dr

|uε − Pm−1|2
)1/2 +

∑
|α|≤m−1

r2m−|α|(  
Dr

| f α|q
)1/q

+
m∑
j=0

r j‖∇ j (G − Pm−1)‖L∞(Dr )

}
, (6.1)

H(r; uε) = 1

rm
inf

Pm∈Pm

{( 
Dr

|uε − Pm |2
)1/2 +

∑
|α|≤m−1

r2m−|α|( 
Dr

| f α|q
)1/q

+
m∑
j=0

r j‖∇ j (G − Pm)‖L∞(Dr ) + rm+σ ‖∇m(G − Pm)‖C0,σ (Dr )

}
. (6.2)

Lemma 6.1 For 0 < ε ≤ r ≤ 1, let �(r; uε) be defined as in (6.1). Then, there exists
u0 ∈ Hm(Dr ;Rn) such that L0u0 = ∑

|α|≤m−1 D
α f α in Dr , Tr(Dγ u0) = DγG on r for

0 ≤ |γ | ≤ m − 1, and

1

rm

(  
Dr

|uε − u0|2
)1/2 ≤ C

(ε
r

)1/4
�(2r; uε), (6.3)

where C depends only on d, n,m, q, σ, μ and M in (1.4).

Proof The proof is the same as Lemma 4.1, and we therefore omit the details. �

Lemma 6.2 Let u0 ∈ Hm(Dr ;Rn) be a weak solution to L0u0 = ∑
|α|≤m−1 D

α f α in Dr

with Tr(Dγ u0) = DγG on r for 0 ≤ |γ | ≤ m − 1. Then, there exists a δ ∈ (0, 1/4),
depending only on d, n,m, q, σ, μ, θ and M1 in (1.10), such that

H(δr; u0) ≤ 1

2
H(r; u0). (6.4)

Proof The proof, parallel to that of Lemma 4.2, ismainly based onCm,σ estimates for higher-
order elliptic systems with constant coefficients in C1,θ (0 < σ ≤ θ) domains. By rescaling,
we assume that r = 1. Taking

Pm(x) =
∑

|α|≤m

1

α!D
αu0(0)x

α =
∑

|α|≤m

1

α!D
αG(0)xα,

it is not difficult to find that for any 0 < δ < 1/4 and any 0 < σ ′ < min{1 − d/q, σ },

H(δ, u0) ≤Cδσ
′ ‖u0‖Cm,σ ′

(Dδ)
+ Cδm−|α|−d/q

∑
|α|≤m−1

( 
D1

| f α|q
)1/q

+ Cδσ ‖G‖Cm,σ (D1). (6.5)
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By the localization argument and the Cm,σ estimate for higher-order elliptic systems with
constant coefficients (see e.g., [27, Corollary 2.4]), we have

‖u0‖Cm,σ ′
(Dδ)

≤ C‖u0‖Cm,σ ′
(D1/4)

≤ C
{( 

D1

|u0|2
)1/2 +

∑
|α|≤m−1

(  
D1

| f α|q
)1/q + ‖G‖Cm,σ (D1)

}
(6.6)

for 0 < σ ′ < min{1 − d/q, σ }. Taking (6.6) into (6.5) and setting δ small enough, we get

H(δ, u0) ≤ 1

2

{( 
D1

|u0|2
)1/2 +

∑
|α|≤m−1

(  
D1

| f α|q
)1/q + ‖G‖Cm,σ (D1)

}
.

For any Pm ∈ Pm , substituting u0,G by u0 − Pm and G − Pm , respectively, and taking the
infimum, we obtain (6.4) immediately. �
Lemma 6.3 Let 0 < ε < 1/2 and�(r; uε), H(r; uε) be defined as in (6.1) and (6.2). Let δ
be given by Lemma 6.2. Then, for any r ∈ [ε, 1/2],

H(δr; uε) ≤ 1

2
H(r; uε)+ C

(ε
r

)1/4
�(2r; uε), (6.7)

where C depends only on d, n,m, q, μ, σ, θ and M1 in (1.10).

Proof Similar to Lemma 4.3, the result follows from Lemmas 6.1 and 6.2. We thus omit the
details. �
Lemma 6.4 Let H(r) and h(r) be two nonnegative continuous functions on the interval
(0, 1], and let ε ∈ (0, 1/4). Assume that

max
r≤t≤2r

H(t) ≤ C0H(2r), max
r≤t,s≤2r

|h(t)− h(s)| ≤ C0H(2r), (6.8)

for any r ∈ [ε, 1/2], and also
H(δr) ≤ 1

2
H(r)+ C0ω(ε/r)

{
H(2r)+ h(2r)

}
for any r ∈ [ε, 1/2], (6.9)

where δ ∈ (0, 1/4) and ω is a nonnegative increasing function on [0, 1] such that ω(0) = 0
and

´ 1
0 ω(ς)/ς dς < ∞. Then, there exists a constant C depending only on C0, δ and ω,

such that

max
ε≤r≤1

{
H(r)+ h(r)

} ≤ C
{
H(1)+ h(1)

}
. (6.10)

Proof See Lemma 8.5 in [35]. �
Armed with lemmas above, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3 We assume that 0 < ε ≤ r < 1/4, since if else (1.11) is just a
consequence of Caccioppoli’s inequality. Let uε ∈ Hm(D1;Rn) be a weak solution to

Lεuε =
∑

|α|≤m−1

Dα f α in D1, Tr(Dγ uε) = DγG on 1 for 0 ≤ |γ | ≤ m − 1,

where f α ∈ Lq(D1;Rn) with q > d, q ≥ 2, and G ∈ Cm,σ (D1;Rn) for some 0 < σ ≤ θ .
For r ∈ (0, 1), let H(r) = H(r, uε),�(r) = �(r, uε) and ω(y) = y1/4. Define

h(r) =
∑

|α|=m

1

α! |D
αPmr (x)|,

123



124 W. Niu, Y. Xu

where Pmr ∈ Pm such that

H(r) = 1

rm

{( 
Dr

|uε − Pmr |2
)1/2 +

∑
|α|≤m−1

r2m−|α|(  
Dr

| f α|q
)1/q

+
m∑
j=0

r j‖∇ j (G − Pmr )‖L∞(Dr ) + rm+σ ‖∇m(G − Pmr )‖C0,σ (Dr )

}
. (6.11)

Next, let us check that H(r), h(r) satisfy conditions (6.8) and (6.9). From the definition, it
is obvious that

H(t) ≤ CH(2r) for any t ∈ [r, 2r ]. (6.12)

On the other hand, by the definition of h(r),

|h(t)− h(s)| ≤
∑

|α|=m

1

α! |D
α(Pmt − Pms)| =

∑
|α|=m

1

α!
( 

Dr

|Dα(Pmt − Pms)|2
)1/2

≤ C
( 

Dt

|∇m(G − Pmt )|2
)1/2 + C

( 
Ds

|∇m(G − Pms)|2
)1/2

≤ C
{
H(t)+ H(s)

} ≤ CH(2r), (6.13)

where we have used the fact r ≤ t, s ≤ 2r , the definition of Pmr and (6.12), respectively,
for the last three inequalities. Combining (6.12) with (6.13), we know that condition (6.8) is
satisfied. Finally, from the definitions of �(r), H(r) and h(r), we obtain that

�(r) ≤ 1

rm

{( 
Dr

|uε − Pmr |2
)1/2 +

∑
|α|≤m−1

r2m−|α|(  
Dr

| f α|q
)1/q

+
m∑
j=0

r j‖∇ j (G − Pmr )‖L∞(Dr )

}

+ inf
Pm−1∈Pm−1

1

rm

{( 
Dr

|Pmr − Pm−1|2
)1/2 +

m∑
j=0

r j‖∇ j (Pmr − Pm−1)‖L∞(Dr )

}

≤ H(r)+ Ch(r),

which, together with (6.7), implies (6.9). Note that all conditions of Lemma 6.4 are verified.
Therefore, for all ε ≤ r ≤ 1,

1

rm
inf

Pm−1∈Pm−1

( 
Dr

|uε − Pm−1|2
)1/2 ≤ �(r) ≤ C

{
H(r)+ h(r)

} ≤ C
{
H(1)+ h(1)

}
,

(6.14)

where C depends only on d, n,m, q, μ, σ, θ and M1 in (1.10). From the definition of H(1),
we have

h(1) ≤
∑

|α|=m

( 
D1

|Dα(G − Pm1)|2
)1/2 + C‖∇mG‖L∞(D1)

≤ C
{
H(1)+ ‖∇mG‖L∞(D1)

}
. (6.15)
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It then follows that

1

rm
inf

Pm−1∈Pm−1

( 
Dr

|uε−Pm−1|2
)1/2≤C

{( 
D1

|uε|2
)1/2 +

∑
|α|≤m−1

(  
D1

| f α|q
)1/q

+ ‖G‖Cm,σ (D1)

}
,

which gives (1.11) through Caccioppoli’s inequality. �
Corollary 6.1 In addition to the assumptions of Theorem 1.3, if A satisfies (1.12), then

‖∇muε‖L∞(D1/4) ≤ C
{(  

D1

|uε|2
)1/2 +

∑
|α|≤m−1

( 
D1

| f α|q
)1/q + ‖G‖Cm,σ (D1)

}
,

(6.16)

where C depends only on d, n,m, q, σ, μ as well as �0, τ0 in (1.12) and θ,M1 in (1.10).

Proof It is enough to consider the case 0 < ε < 1/2, since otherwise the coefficient is
uniformly Hölder continuous and the result (6.16) is known, see e.g., [27, Corollary 2.4].
Setting

vε(x) = uε(εx)− G̃(x), G̃(x) = G(εx), f̃ α(x) = ε2m−|α| f (εx),

we have{
L1vε = ∑

|α|≤m−1 D
α f̃ α(x)+ ∑

|α|=|β|=m Dα
{
AαβDβ G̃(x)

}
in D1,

Tr(Dγ vε) = 0, on 1 for 0 ≤ |γ | ≤ m − 1.
(6.17)

Let φ ∈ C∞
c (B1) with φ = 1 in B1/4 and |∇kφ| ≤ C2k , and let D̃ be a C1,θ domain such

that D1/4 ⊆ D̃ ⊆ D1/2. We have

L1(vεφ) = E(x)φ +
∑

|α|=|β|=m
ζ+η=β
|η|≥1

C(ζ )Dα
{
AαβDζ vεD

ηφ
}

+
∑

|α|=|β|=m
ζ ′+η′=α
|η′|≥1

C(ζ ′)Dζ ′{
AαβDβvε

}
Dη′

φ in D̃,

Tr(Dγ (vεφ)) = 0 on ∂ D̃ for 0 ≤ |γ | ≤ m − 1,

where

E(x) =
∑

|α|≤m−1

Dα f̃ α(x)+
∑

|α|=|β|=m

Dα
{
AαβDβ G̃(x)

}
.

Thanks to the boundary Cm,λ estimate for operator L1 in C1,θ domains [27], we know that
for any q, p > d,

‖∇mvε‖L∞(D1/2) ≤C
{( 

D1

|vε|2
)1/2 + ‖G̃‖Cm,σ (D1)

+
∑

|α|≤m−1

( 
D1

| f̃ α|q
)1/q + ‖vε‖Wm,p(D̃)

}
. (6.18)
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Thanks to the Wm,p estimate for (6.17), there exists some p > d such that

‖vε‖Wm,p(D̃) ≤ C
{( 

D1

|vε|2
)1/2 +

∑
|α|≤m−1

( 
D1

| f̃ α|q
)1/q + ‖G̃‖Cm,σ (D1)

}
,

which, combined with (6.18), implies that

‖∇mvε‖L∞(D1/2) ≤ C
{( 

D1

|vε|2
)1/2 +

∑
|α|≤m−1

( 
D1

| f̃ α|q
)1/q + ‖G̃‖Cm,σ (D1)

}
.

It then follows from the change of variables that

‖∇muε‖L∞(Dε/2) ≤ C
1

εm

{( 
Dε

|uε|2
)1/2 + ε2m−|α| ∑

|α|≤m−1

(  
Dε

| f α|q
)1/q

+
m∑
j=0

ε j‖∇ j G‖L∞(Dε) + εm+σ ‖∇mG‖C0,σ (Dε)

}
. (6.19)

Using (6.11), (6.14) and (6.15), we may conclude from (6.19) that

‖∇muε‖L∞(Dε/2) ≤ C
{
H(ε)+ h(ε)

} ≤ C
{
H(1)+ h(1)

}
≤ C

{( 
D1

|uε|2
)1/2 +

∑
|α|≤m−1

( 
D1

| f α|q
)1/q + ‖G‖Cm,σ (D1)

}
.

This, together with the interior uniformCm−1,1 estimate for uε derived in [28, Theorem 1.2],
gives (6.16). �
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