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Abstract For a compact complex manifold, we introduce holomorphic foliations associated
with certain abelian subgroups of the automorphism group. If there exists a transverse Kähler
structure on such a foliation, then we obtain a nice differential graded algebra which is
quasi-isomorphic to the de Rham complex and a nice differential bi-graded algebra which is
quasi-isomorphic to the Dolbeault complex like the formality of compact Kähler manifolds.
Moreover, under certain additional condition, we can develop Morgan’s theory of mixed
Hodge structures as similar to the study on smooth algebraic varieties.
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1 Introduction

When a connected Lie group H acts on a smooth manifold M local freely, we have a smooth
foliation F whose leaves are H -orbits. In addition, if M is a complex manifold, H is a
complex Lie group and the H -action is holomorphic, then the foliation F is holomorphic.
We are interested in transverse complex geometry on a foliated manifold (M,F). Denote
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62 H. Ishida, H. Kasuya

by �∗(M) the space of the differential forms on M . We say that ω ∈ �∗(M) is basic if
iXvω = 0 and L Xvω = 0 for any v ∈ h, where Xv denotes the fundamental vector field
generated by v ∈ h, and iXv and L Xv are the interior product and the Lie derivation with
Xv , respectively. For a holomorphic foliation F on a complex manifold M with the complex
structure J , a transverse Kähler structure on F is a closed real basic (1, 1)-form ω such that
ωp(v, Jv) ≥ 0 for any v ∈ Tp M and p ∈ M , and the equality holds if and only if v sits in
the subspace TpF that consists of all vectors tangent to the leaf through p.

In this paper, we introduce an intrinsically defined holomorphic foliation for arbitrary
compact complex manifold, that we call canonical foliation. Let M be a compact complex
manifold. Let G M be the identity component of the group of all biholomorphisms on M .
Let T be a maximal compact torus of G M and t the Lie algebra of T . Let J be the complex
structure on the Lie algebra of G M . Put

hM := t ∩ J t

and denote by HM the corresponding Lie subgroup of G M . Then HM acts on M local freely
(see [13]). Moreover, HM is a central subgroup in G M and HM does not depend on the choice
of T (see Lemma 2.1). By the local freeness, for any connected subgroup H ⊂ HM , we have
the holomorphic foliationFH . We callFH a central foliation associated with H andFHM the
canonical foliation. If H is a compact complex torus, then the central foliationFH associated
with H gives a holomorphic principal Seifert bundle structure on a complex manifold M
over the complex orbifold M/H (see [22]). Moreover, if the action of H is free, then such
Seifert bundle is a holomorphic principal torus bundle over a complex manifold. Conversely,
holomorphic principal torus bundle structure gives a holomorphic free complex torus action.
Thus, a central foliation is a generalization of a holomorphic principal torus bundle.

The purpose of this paper is to study (non-Kähler) complex manifolds admitting a trans-
verse Kähler structure on a central foliation FH . In particular, we study the de Rham
and Dolbeault complexes of such complex manifolds. Typical examples are holomorphic
principal torus bundles over compact Kähler manifolds. A Calabi–Eckmann manifold is a
holomorphic principal torus bundle over CPm × CPn , and its underlying smooth manifold
is diffeomorphic to S2m+1 × S2n+1. Extending Calabi–Eckmann’s construction, Meersse-
man constructed a large class of non-Kähler compact complex manifolds. Such complex
manifolds are called LVM manifolds (see [18,19]). Every LVMmanifold admits a transverse
Kähler structure (see [18]). Among LVM manifolds with the canonical foliations, some are
principal Seifert bundles. At that time the leaf space M/FHM is a projective toric variety
[19]. However, there are many LVM manifolds with the canonical foliations which are not
principal Seifert bundles.

We notice that our object appears in a certain non-Käher Hermitian manifold. A Vais-
man manifold is a non-Käher locally conformal Kähler manifold with the nonzero parallel
Lee form. There are many important non-Kähler manifolds which are Vaisman (e.g., Hopf
manifolds, Kodaira-Thurston manifolds). On any Vaisman manifold, there exists a complex
one-dimensional central foliation with a transverse Kähler structure which is canonically
determined by its Vaisman structure.

For a complexmanifold M with a holomorphic foliationF , we consider the basic de Rham
complex �∗

B(M), basic Dolbeault complex �
∗,∗
B (M), basic de Rham cohomology H∗

B(M)

and basic Dolbeault cohomology H∗,∗
B (M) for F . If there exists a transverse Kähler form

with respect to F and F is homologically oriented, then there is the Hodge decomposition

Hr
B(M,C) =

⊕

p+q=r

H p,q
B (M),
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Transverse Kähler structures on central foliations… 63

H p,q
B (M) = Hq,p

B (M)

(see [8]).

Definition 1.1 • For a manifold M , a (de Rham) model of M is a differential graded
algebra (shortly DGA) A∗ such that A∗ is quasi-isomorphic to the de Rham complex
�∗(M), i.e., there exists a sequence of DGA homomorphisms

A∗ ← C∗
1 → C∗

2 ← · · · ← C∗
n → �∗(M)

such that all the morphisms are quasi-isomorphisms (i.e., inducing cohomology isomor-
phisms).

• For a complex manifold M , a Dolbeault model of M is a differential bi-graded alge-
bra (shortly DBA) B∗,∗ such that B∗,∗ is quasi-isomorphic to the Dolbeault complex
�∗,∗(M), i.e., there exists a sequence of DBA homomorphisms

B∗,∗ ← C∗,∗
1 → C∗,∗

2 ← · · · ← C∗,∗
n → �∗,∗(M)

such that all the morphisms are quasi-isomorphisms.

On a compact Kähler manifold M , the de Rham cohomology H∗(M) with the trivial
differential is a model of M (Formality [7]) and the Dolbeault cohomology H∗,∗(M) with
the trivial differential is a Dolbeault model of M (Dolbeault Formality [21]). In this paper
we prove:

Theorem 1.2 (See also Theorem 4.13) Let M be a compact complex manifold. We assume
that M admits a transverse Kähler structure on a complex k-dimensional central foliation
FH . Then there exists a model A∗ of M with a differential d and a Dolbeault model B∗,∗ of
M with a differential ∂̄ satisfying the followings:

(1) Let W be a real 2k-dimensional vector space with a direct sum decomposition W ⊗C =
W 1,0 ⊕ W 0,1 satisfying W 1,0 = W 0,1. As graded algebras, A∗ = H∗

B(M) ⊗ ∧
W . As

bi-graded algebras, B∗,∗ = H∗,∗
B (M)⊗∧

(W 1,0⊕W 0,1). Here, the degree of an element
in W is 1 and bi-degree of an element in W 1,0 (respectively, W 0,1) is (1, 0) (respectively,
(0, 1)).

(2) The differentials d and ∂̄ are trivial on H∗
B(M)and H∗,∗

B (M) respectively. dW ⊂ H2
B(M),

∂̄W 1,0 ⊂ H1,1
B (M) and ∂̄W 0,1 ⊂ H0,2

B (M).

In [25], Tanré constructed a Dolbeault model for a holomorphic principal torus bundle over
a compact Kähler manifold. The theorem above slightly generalizes the result of Tanré.

More precisely, a vector space W as in the theorem is a 2k-dimensional subspace of
�1(M)H such that the bilinear map h × W � (v,w) �→ iXvw ∈ R is non-degenerate,
where h is the Lie algebra of H and �1(M)H is the H -invariant subspace of �1(M). We
can choose W to be closed under the complex structure of �1(M). Then W 1,0 and W 0,1 are
defined as (1, 0)-part and (0, 1)-part of W ⊗C, respectively. The differential W → H2

B(M)

is given by w �→ [dw]B , where [dw]B denotes the basic cohomology class represented
by dw ∈ �2

B(M). Similarly, the differentials W 1,0 → H1,1
B (M) and W 0,1 → H0,2

B (M)

are given by w → [∂̄w]B , where [∂̄w]B denotes the basic Dolbeault cohomology class
represented by ∂̄w ∈ �2

B(M) ⊗ C.
By these results, we can construct explicit de Rham and Dolbeault models of Vaisman

manifolds (see Sect. 6.3). Recently, similar de Rham models are also constructed in [5].

Definition 1.3 A central foliation FH is fundamental if for any w ∈ W , [dw]B ∈ H2
B(M)

is represented by a closed basic (1, 1)-form.
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We prove:

Theorem 1.4 (See also Theorem 5.6) Let M be a compact complex manifold. We assume
that M admits a transverse Kähler structure on a fundamental central foliation FH . Then
the de Rham cohomology of M admits an R-mixed Hodge structure so that:

(1) H1(M,C) = H1
1,0 ⊕ H1

0,1 ⊕ H1
1,1

(2) H2(M,C) = H2
2,0 ⊕ H2

1,1 ⊕ H2
0,2 ⊕ H2

2,1 ⊕ H2
1,2 ⊕ H2

2,2

and Sullivan’s minimal model of the complex valued de Rham complex admits the Morgan’s
bigrading [20].

As a consequence of this result, we can say that not every finitely generated group can be the
fundamental group of a compact complex manifold admitting a transverse Kähler structure
on a fundamental central foliation.

2 Central foliations

Let M be a compact complex manifold. In this section we define the canonical foliation and
central foliations on M . Let G M be the identity component of the group of all biholomor-
phisms on M . G M is a complex Lie group (see [3]). Denote by gM the Lie algebra of G M

and by J the complex structure on gM . Let T be a maximal compact torus of G M and t the
Lie algebra of T . Put

hM := t ∩ J t

and denote by HM the corresponding Lie subgroup of G M . Then HM acts on M local freely
(see [13, Proposition 3.3]).

Lemma 2.1 The following holds:

(1) Elements in hM centralize gM .
(2) hM does not depend on the choice of T .

Proof Since T is compact, gM is a unitary representation of T . In particular, gM is a unitary
representation of HM . However, HM is a holomorphic subgroup of G M and hence gM is a
holomorphic representation of HM . Therefore, gM is a trivial representation of HM , showing
Part (1).

Let T ′ be another maximal compact torus of G M . Then, there exists g ∈ G M such that
gT g−1 = T ′ (see [12, Chapter XV, Section 3] for detail). Put

h′ := t′ ∩ J t′.

Then, it follows from gT g−1 = T ′ that Adg(hM ) = h′. On the other hand, by (1), we have
that Adg is the identity on hM . Therefore, hM does not depend on the choice of T , proving
(2). ��

We remark that any C-subspace h of hM defines a holomorphic foliation FH on M . We
call FH a central foliation on M and FHM the canonical foliation on M . It follows from
Lemma 2.1 that the canonical foliation does not depend on the choice of T , that is, the
canonical foliation is intrinsic to compact complex manifolds.
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3 Hirsch extensions and minimal models

In this section, DGAs are defined over K = Q,R or C, if we do not specify. Let (A∗, dA)

be a DGA. Let k be an integer. For a linear map β : V → Ak+1 with dA ◦ β = 0, we define
a Hirsch extension (B, dB) of A∗ in degree k such that B∗ = A∗ ⊗ ∧

V with deg(v) = k
for any v ∈ V , dB = dA on A∗ and dB = β on V . Defining the filtration on B∗ by
F p(B∗) = A∗≥p ⊗∧

V , we have the spectral sequence E∗,∗ with E p,q
2 = H p(A)⊗∧q V .

Consider the composition q ◦ β : V → Hk+1(A∗) where q : ker dA → H∗(A∗) is the
quotient map. The DGA structure of B∗ is determined by the map q ◦ β (independent of a
choice of β) [10, 10.2].

Lemma 3.1 Let (A∗
1, dA1) and (A∗

2, dA2) be DGAs and f : A∗
1 → A∗

2 a quasi-isomorphism.
Then for a Hirsch extension A∗

1 ⊗ V (resp. A∗
2 ⊗ V ), we have a Hirsch extension A∗

2 ⊗ V
(resp. A∗

1 ⊗ V ) and quasi-isomorphism

A∗
1 ⊗ V → A∗

2 ⊗ V .

Proof In case A∗
1 ⊗ V (β1 : V → Ak+1

1 ) is given. Consider the Hirsch extension A∗
2 ⊗ V

given by β2 = f ◦ β1 : V → A∗
2 and the homomorphism f ⊗ id : A∗

1 ⊗ V → A∗
2 ⊗ V .

Then we can easily show that f ⊗ id induces an isomorphism on the E2-term of the spectral
sequence. Hence f ⊗ id is a quasi-isomorphism.

In case A∗
2 ⊗ V (β2 : V → Ak+1

2 ) is given. Since f is a quasi-isomorphism, we can
take a linear map β1 : V → A∗

1 so that d ◦ β1 = 0 and q ◦ f ◦ β1 = q ◦ β2. By the same
argument as above, the Hirsch extension of A∗

2 given by β2 : V → Ak+1
1 is identified with

the one given by f ◦ β1 : V → Ak+1
1 . Under this identification, we have the homomorphism

f ⊗ id : A∗
1 ⊗ V → A∗

2 ⊗ V , and as in the first case, we can show that this homomorphism
is a quasi-isomorphism. ��
Definition 3.2 A DGA M∗ is minimal if:

• M0 = K.
• M∗ = ⋃M∗

i for a sequence of sub-DGAs

K = M∗
0 ⊂ M∗

1 ⊂ . . .

such that M∗
i+1 is a Hirsch extension of M∗

i .
• dM∗ ⊂ M+ · M+ where M+ = ⊕

j>0 M j .

We say that a DGA M∗ is k-minimal if M∗ is minimal and
⊕

j>k M j ⊂ M+ · M+.
Equivalently, each extension in a sequence for M∗ has degree at most k.

Definition 3.3 Let A∗ be a DGA with H0(A∗) = K.

• Aminimal DGAM∗ is aminimal model of A∗ if there is a quasi-isomorphismM → A∗.
• A k-quasi-isomorphism M∗ → A∗ is a homomorphism of DGAs that induces an iso-

morphism H j (M∗) ∼= H j (A∗) for j ≤ k and an injection Hk+1(M∗) ↪→ Hk+1(A∗).
A k-minimal DGA M∗ is the k-minimal model of A∗ if there is a k-quasi-isomorphism
M∗ → A∗.

Theorem 3.4 [24] For a DGA A∗ with H0(A∗) = K, a minimal model and a k-minimal
model exist, and each of them is unique up to DGA isomorphism.

The minimal models give the following “de Rham homotopy theory”. We shall state it but
omit the details. See [7,10,20,24] for the details.
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Theorem 3.5 Let M be a compact smooth manifold. Consider the de Rham complex �∗(M)

as a DGA. Then

• The 1-minimal model of �∗(M) is the dual to the Lie algebra of the nilpotent completion
of π1(M).

• If M is simply connected, then the minimal model of �∗(M) determines the real homotopy
type of M.

4 Models for transverse Kähler torus actions

In this section, we give a model and Dolbeault model of a complex manifold equipped with
a central foliation.

4.1 Models for compact Lie group actions

The following result is well-known (see [9] for example).

Proposition 4.1 Let M be a compact manifold and K a compact connected Lie group.
Assume that K acts on M. Then the inclusion

�∗(M)K ⊂ �(M)

induces a cohomology isomorphism.

Let M be a complex manifold. Let (�∗,∗(M), ∂̄) be the Dolbeault complex of M . Suppose
that a group K acts on M as biholomorphisms. Then the space �∗,∗(M)K of K -invariant
differential forms is a subcomplex of �∗,∗(M).

Proposition 4.2 Let M be a compact complex manifold and K a connected compact Lie
group. Assume that K acts on M as biholomorphisms and the induced action on the Dolbeault
cohomology is trivial. Then the inclusion

�∗,∗(M)K ⊂ �∗,∗(M)

induces an isomorphism on Dolbeault cohomology.

Proof Let dμ be the normalized Haar measure of K . Define the linear map

I : �∗,∗(M) � ω �→
∫

g∈K
g∗ωdμ ∈ �∗,∗(M)K .

Then I commutes with Dolbeault operator ∂̄ , that is, I induces a bi-gradedmodule homomor-
phism H∗,∗(M) → H(�∗,∗(M)K ). Since I is the identity on �∗,∗(M)K , the composition

H(�∗,∗(M)K ) → H∗,∗(M) → H
(
�∗,∗(M)K

)

of the homomorphisms induced by the inclusion and I is the identity. Therefore, the homo-
morphism H(�∗,∗(M)K ) → H∗,∗(M) induced by the inclusion �∗,∗(M)K ⊂ �∗,∗(M) is
injective.

Since the induced action on the Dolbeault cohomology is trivial, for a ∂̄-closed form
ω ∈ �∗,∗(M) and any g ∈ K , there exists θg ∈ �∗,∗(M) such that

ω − g∗ω = ∂̄θg.
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Transverse Kähler structures on central foliations… 67

By using Green operator, we can take θg smoothly on K . Integrating by dμ, we have

ω − Iω = ∂̄

∫

g∈K
θgdμ.

Hence the inclusion

�∗,∗(M)K ⊂ �∗,∗(M)

induces a surjection on Dolbeault cohomology. ��
Corollary 4.3 Let M be a compact complex manifold and K a connected compact Lie
group acting on M as biholomorphisms. Let H be a dense Lie subgroup of K such that H
is a complex Lie group and the restricted action of K to H on M is holomorphic. Then, the
inclusion �∗,∗(M)K ⊂ �(M) induces an isomorphism on Dolbeault cohomology.

Proof By Proposition 4.2, we only need to know that the representation of K on H∗,∗(M) is
trivial under the assumptions of this proposition. Since K acts on M as biholomorphisms, the
representation of K on H∗,∗(M) is C-linear. Since K is compact, there exists a Hermitian
inner product on H∗,∗(M) that is invariant under K .

Consider the restricted representation H → GL(H∗,∗(M)). Since H is a complex Lie
group and the restricted action of K to H on M is holomorphic, this representation is holo-
morphic [16]. On the other hand, by the same argument as above, this representation is
unitary. Therefore, the representation of H on H∗,∗(M) is trivial. Since H is dense in K , the
representation of K on H∗,∗(M) is also trivial. The proposition is proved. ��
4.2 Models for torus actions

Let T be a compact torus and H a connected Lie subgroup (not necessary to be closed in T ).
Let M be a paracompact smooth manifold equipped with an action of T . In this section, we
suppose that the restricted action of T to H on M is local free. Denote by t and h the Lie
algebras of T and H respectively.

Lemma 4.4 There exists a h-valued 1-form ω on M such that

(1) iXvω = v for all v ∈ h,
(2) ω is T -invariant.

Proof Since T is compact and M is paracompact, it follows from the slice theorem that
there exists a locally finite open covering U = {Uλ}λ such that each Uλ is T -equivariantly
diffeomorphic toT ×Tλ Vλ viaϕλ,whereTλ is a closed subgroupofT andVλ is a representation
space of Tλ. Letπ : T ×Tλ Vλ → T/Tλ be themap inducedby thefirst projection T ×Vλ → T .
Since the action of H on M is local free, we have that h ∩ tλ = 0. Therefore, there exists
a h-valued 1-form ωλ on T/Tλ that satisfies the conditions (1) and (2). Since π and ϕλ are
T -invariant, the pull-back (π ◦ ϕλ)

∗ωλ that is a h-valued 1-form on Uλ also satisfies the
conditions (1) and (2).

Let {ρλ} be a partition of unity subordinate to the open covering U . Averaging ρλ with
the normalized Haar measure on T , we may assume that every ρλ is T -invariant. Then the
1-form

ω :=
∑

λ

ρλ(π ◦ ϕλ)
∗ωλ

on M satisfies the condition (1) and (2), as required. ��
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Since the H -action is local free, the H -action induces the foliation F whose leaves are
H -orbits of M . Denote by T ′ the closure of H .

Lemma 4.5 �∗(M)T ′ = �∗(M)H .

Proof Since H ⊂ T ′, we have the inclusion �∗(M)T ′ ⊂ �∗(M)H . For g ∈ T ′, take a
sequence {gi }i=1,... of elements in H so that limi→∞ gi = g. Then we have

g∗ω = lim
i→∞ g∗

i ω = ω

for any ω ∈ �∗(M)H , showing the opposite inclusion �∗(M)T ′ ⊃ �∗(M)H . The lemma is
proved. ��

Consider the basic forms

�∗
B(M) = {

ω ∈ �∗(M) | iXvω = L Xvω = 0, ∀v ∈ h
}
.

We want to construct a finite-dimensional subspace W ⊂ �1(M)H such that

• dW ⊂ �2
B(M),

• the bilinear map h × W � (v,w) �→ iXvw ∈ R is non-degenerate.

To do this, take a h-valued 1-form ω as in Lemma 4.4. For a basis v1, . . . , vk of h, we may
write ω = ∑k

i=1 wi ⊗ vi with 1-forms w1, . . . , wk . We claim that dwi ∈ �2
B(M). Since wi

is T -invariant, by Cartan formula we have

0 = L Xvwi = diXvwi + iXv dwi = iXv dwi

for v ∈ h because iXvwi is constant on M . By Cartan formula again,

L Xv dwi = diXv dwi + iXv ddwi = diXv dwi .

This together with iXv dwi = 0 yields that dwi ∈ �∗
B(M). Then W = 〈w1, . . . , wk〉 is a

desired space.

Proposition 4.6 We have the decomposition

�∗(M)H = �∗
B(M) ⊗

∧
W.

Proof For ω ∈ �∗
B(M), the condition L Xvω = 0 for all v ∈ h implies that ω ∈ �∗(M)H .

Since W ⊂ �1(M)H and h × W � (v,w) �→ iXvw ∈ R is non-degenerate, we have the
inclusion

�∗
B(M) ⊗

∧
W ⊂ �∗(M)H .

We will show that �∗(M)H ⊂ �∗
B(M)⊗∧

W . We say that ω ∈ �∗(M)H is of q-type if for
any v1, . . . , vq ∈ h we have

iXv1
. . . iXvq

ω = 0.

If ω ∈ �∗(M)H is of 1-type, ω ∈ �∗
B(M). Suppose that ω ∈ �∗(M)H is of q-type for some

q ≥ 2. Then for any v, v1, . . . , vq−1 ∈ h, we have that

iXv iXv1
. . . iXvq−1

ω = 0

and

L Xv iXv1
. . . iXvq−1

ω = iXv1
. . . iXvq−1

L Xvω = 0.
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Transverse Kähler structures on central foliations… 69

Therefore, we have that

iXv1
. . . iXvq−1

ω ∈ �∗
B(M).

Take a basis v1, . . . vk of h and the dual basis w1, . . . , wk of W given by W ⊂ �1(M)H and
h × W � (v,w) �→ iXvw ∈ R. Then for ω ∈ �∗(M)H of q-type, we can see that the form

ω′ = ω −
∑

i1<i2<···<iq−1

(iXvi1
. . . iXviq−1

ω) ∧ wi1 ∧ · · · ∧ wiq−1 .

is of (q − 1)-type. It turns out that ω −ω′ ∈ �∗
B(M)⊗∧q−1 W . Since ω′ is of (q − 1)-type,

applying the same argument eventually, we have that

ω ∈
⊕

0≤ j≤q−1

�∗
B(M) ⊗

j∧
W,

showing the inclusion �∗(M)H ⊂ �∗
B(M) ⊗ ∧

W . The proposition is proved. ��

By Propositions 4.1, 4.6 and Lemma 4.5, we have the following result.

Corollary 4.7 The inclusion

�∗
B(M) ⊗

∧
W → �∗(M)

induces a cohomology isomorphism.

Proposition 4.8 Suppose that dim M = n + k. Then, Hn+k(M) ∼= Hn
B(M). In particular,

F is homologically oriented if M is compact and oriented.

Proof By Proposition 4.1 and Lemma 4.5, we can choose a representative α of an element in
Hn+k(M) so that α sits in�n+k(M)H . By Proposition 4.6, there uniquely exists β ∈ �n

B(M)

such that α = β ∧ w1 ∧ · · · ∧ wk . Conversely, for β ∈ �n
B(M), α := β ∧ w1 ∧ · · · ∧ wk ∈

�n(M)H . Thanks to the degrees, α and β both are automatically closed. Therefore, it suffices
to show that α is exact if and only if β is exact (in the sense of basic).

Let α′ ∈ �n+k−1(M)H such that dα′ = α. By Proposition 4.6, we can write

α′ = β ′ ∧ w1 ∧ · · · ∧ wk +
k∑

i=1

βi ∧ w1 ∧ · · · ∧ ŵi ∧ · · · ∧ wk

with β ′ ∈ �n−1
B (M) and βi ∈ �n

B(M) for i = 1, . . . , k. Then, it follows from dw j ∈ �2
B(M)

that α = dα′ = dβ ′ ∧ w1 ∧ · · · ∧ wk . In particular, β = dβ ′.
To see the converse, let β ′ ∈ �n−1

B (M) such that dβ ′ = β. Then

d(β ′ ∧ w1 ∧ · · · ∧ wk) = β ∧ w1 ∧ · · · ∧ wk + (−1)n−1β ′ ∧ d(w1 ∧ · · · ∧ wk).

Since β ′ ∧ dw j = 0 by the degree, we have that

α = d(β ′ ∧ w1 ∧ · · · ∧ wk),

showing the equivalence of exactness between α and β. The proposition is proved. ��
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4.3 Models for transverse Kähler torus actions

Let M be a compact complex manifold and T a compact torus acting on M as biholomor-
phisms. Let H be a dense Lie subgroup of T such that H is a complex Lie group and the
restricted action of T to H on M is holomorphic and local free. Then we have a holomorphic
central foliation F on M whose leaves are H -orbits. As before, let �∗

B(M) denote the space
of basic differential formswith respect toF . Since M is a complexmanifold and the H -action
is holomorphic, �1(M)H and �1

B(M) both are complex vector spaces.

Proposition 4.9 There exists a C-subspace W of �1(M)H such that

• dW ⊂ �2
B(M) and

• h × W � (v,w) �→ iXvw ∈ R is non-degenerate.

Proof By Lemma 4.4, there exists a h-valued 1-form w ∈ �1(M) ⊗ h on M such that
iXvw = v for all v ∈ h and H -invariant. Let v1, . . . , vk be a C-basis of h and Jh the
complex structure on h. Then v1, . . . , vk, Jhv1, . . . , Jhvk form a R-basis of h. There exist
w1, . . . , wk, wk+1, . . . , w2k ∈ �1(M)H such that

w =
k∑

i=1

wi ⊗ vi +
k∑

j=1

wk+ j ⊗ Jhv j .

For i = 1, . . . , k, we define w′
i ∈ �1(M)H to be w′

i = −wi ◦ J , where J denotes the
complex structure on M . We define an H -invariant h-valued 1-form

w′ =
k∑

i=1

wi ⊗ vi +
k∑

j=1

w′
j ⊗ Jhv j .

It follows that iXvw
′ = v for all v ∈ h by definition of w′ immediately. The subspace

W = 〈w1, . . . , wk, w
′
1, . . . , w

′
k〉 of �1(M)H is closed under J . It follows from the Cartan

formula that dW ⊂ �2
B(M) immediately. Therefore, W is a desired space, proving the

proposition. ��
Let W be a C-subspace of �1

B(M) as in Proposition 4.9. Then W ⊗ C is decomposed
into (1, 0)-part W 1,0 and (0, 1)-part W 0,1. By tensoring C with �∗(M)⊗∧

W , we have the
DBA

�
∗,∗
B (M) ⊗

∧
(W 1,0 ⊕ W 0,1)

with the Dolbeault operator ∂̄ .
By Propositions 4.2, 4.6 and Lemma 4.5, we have the following result.

Corollary 4.10 We have an injection

�
∗,∗
B (M) ⊗

∧
(W 1,0 ⊕ W 0,1) → �∗,∗(M)

which induces a cohomology isomorphism.

We consider the bi-graded bi-differential algebra (BBA) (�
∗,∗
B (M), ∂B , ∂̄B). Put dc =√−1(∂̄B − ∂B). Then dc is a differential on �∗

B(M). We say that the ∂B ∂̄B-lemma holds if

ker ∂B ∩ ker ∂̄B ∩ im d = im ∂B ∂̄B .
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If the ∂B ∂̄B-lemma holds, then we have the quasi-isomorphisms

(ker dc, d) → (�∗
B(M), d),

(ker dc, d) → (H∗
B(M), 0),

(ker ∂B , ∂̄B) → (�
∗,∗
B (M), ∂̄B)

and

(ker ∂B , ∂̄B) → (H∗,∗
B (M), 0)

(see [7]).

Proposition 4.11 Suppose that the ∂B ∂̄B-lemma holds. Then there exist quasi-isomorphisms

(ker dc ⊗
∧

W, d) → (�∗
B(M) ⊗

∧
W, d),

(ker dc ⊗
∧

W, d) → (H∗
B(M) ⊗

∧
W, d),

(ker ∂B ⊗
∧

(W 1,0 ⊕ W 0,1), ∂̄ ′) → (�
∗,∗
B (M) ⊗

∧
(W 1,0 ⊕ W 0,1), ∂̄)

and

(ker ∂B ⊗
∧

(W 1,0 ⊕ W 0,1), ∂̄ ′) → (H∗,∗
B (M) ⊗

∧
(W 1,0 ⊕ W 0,1), ∂̄).

Here, ∂̄ ′ is a differential such that (∂̄ ′ − ∂̄)w is ∂B-exact for any w ∈ W 1,0 ⊕ W 0,1 and
∂̄ ′α = ∂̄α for any α ∈ ker ∂B.

Proof This follows from Lemma 3.1 immediately. ��
Theorem 4.12 (see [7,8]) Let M be a compact manifold with a homologically oriented (that
is, H codimF

B (M) �= 0 ) transversely Kähler foliationF . Then for the BBA (�
∗,∗
B (M), ∂B , ∂̄B),

the ∂B ∂̄B-lemma holds.

This together with Propositions 4.8 and 4.11 implies the following result.

Theorem 4.13 Assume that the central foliation F admits a transversely Kähler structure.
Then the DGAs �∗(M) and H∗

B(M)⊗∧
W (resp. DBAs �∗,∗(M) and H∗,∗

B (M)⊗∧
(W 1,0⊕

W 0,1)) are quasi-isomorphic.

5 Mixed Hodge structures

The purpose of this section is to show that the cohomology and minimal model of a complex
manifold equipped with a special transverse Kähler structure on a central foliation admits a
certain bigrading. We begin with basic notions and facts.

5.1 Mixed Hodge structures

Let V be an R-vector space. An R-Hodge structure of weight n on an R-vector space V is a
finite decreasing filtration F∗ on VC = V ⊗ C such that

F p(VC) ⊕ Fn+1−p(VC) = VC
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for each p. Equivalently, there exists a finite bigrading

VC =
⊕

p+q=n

Vp,q

such that

Vp,q = Vq,p.

An R-mixed Hodge structure on V is a pair (W∗, F∗) such that:

(1) W∗ is an increasing filtration which is bounded below,
(2) F∗ is a decreasing filtration on VC such that the filtration on Gr W

n VC induced by F∗ is
an R-Hodge structure of weight n.

We call W∗ the weight filtration and F∗ the Hodge filtration. If there exists a finite bigrading

VC =
⊕

Vp,q

satisfying

Vp,q = Vq,p,

Wn(VC) = ⊕
p+q≤n Vp,q and Fr (VC) = ⊕

p≥r Vp,q for any n, p, q, r , then we say that an
R-mixed Hodge structure (W∗, F∗) is R-split.

Even if an R-mixed Hodge structure (W∗, F∗) is not R-split, we can obtain a canonical
bigrading of (W∗, F∗).

Proposition 5.1 [20, Proposition 1.9] Let (W∗, F∗) be anR-mixed Hodge structure on anR-
vector space V . Define Vp,q = Rp,q ∩ L p,q where Rp,q = Wp+q(VC)∩ F p(VC) and L p,q =
Wp+q(VC) ∩ Fq(VC) + ∑

i≥2 Wp+q−i (VC) ∩ Fq−i+1(VC). Then we have the bigrading

VC = ⊕
Vp,q such that Vp,q = Vq,p modulo

⊕
r+s<p+q Vr,s , Wn(VC) = ⊕

p+q≤n Vp,q

and Fr (VC) = ⊕
p≥r Vp,q .

We say that the bigrading in this proposition is the canonical bigrading of anR-mixed Hodge
structure (W∗, F∗).

We notice that this bigrading gives an equivalence of the category of R-mixed Hodge
structures on V and bigradings VC = ⊕

Vp,q such that (
⊕

p+q≤i Vp,q)∩V is a real structure

of
⊕

p+q≤i Vp,q and Vp,q = Vq,p modulo
⊕

r+s<p+q Vr,s (see [20, Proposition 1.11]).

5.2 Morgan’s mixed Hodge diagrams

In [6], Deligne proves that the real cohomology of a smooth algebraic variety over C admits
a canonicalR-mixed Hodge structure. The following is Morgan’s reformulation of Deligne’s
technique for studying the mixed Hodge theory on Sullivan’s minimal models.

Definition 5.2 [20, Definition 3.5] An R-mixed Hodge diagram is a pair of filtered R-DGA
(A∗, W∗) and bifiltered C-DGA (E∗, W∗, F∗) and filtered DGA map φ : (A∗

C
, W∗) →

(E∗, W∗) such that:
(1) φ induces an isomorphism φ∗ : W E∗,∗

1 (A∗
C
) → W E∗,∗

1 (E∗) where W E∗,∗∗ (·) is the
spectral sequence for the decreasing filtration W ∗ = W−∗.

(2) The differential d0 on W E∗,∗
0 (E∗) is strictly compatible with the filtration induced by F .

(3) The filtration on W E p,q
1 (E∗) induced by F is an R-Hodge structure of weight q on

φ∗( W E∗,∗
1 (A∗)).
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Now, Deligne’s R-mixed Hodge structure is described by the following way.

Theorem 5.3 [20, Theorem4.3]Let {(A∗, W∗), (E∗, W∗, F∗), φ} be anR-mixed Hodge dia-
gram. Define the filtration W ′∗ on Hr (A∗) (resp. Hr (E∗)) as W ′

i Hr (A∗) = Wi−r (Hr (A∗))
(resp. W ′

i Hr (E∗) = Wi−r (Hr (E∗))). Then the filtrations W ′∗ and F∗ on Hr (E∗) give an
R-mixed Hodge on φ∗(Hr (A∗)).

Example 5.4 Let H∗ be a graded commutativeR-algebra. We suppose that for any p, q , H p

admits an R-Hodge structure H p ⊗ C = ⊕
s+t=p Hs,t of weight p and the multiplication

H p × Hq → H p+q is a morphism of Hodge structures. Let V be an R-vector space with
a linear map β : V → H2. We suppose that V admits an R-Hodge structure V ⊗ C =⊕

s+t=2 V s,t of weight 2 and β : V → H2 is a morphism of Hodge structure. (e.g., β(V ) ⊂
H1,1.)

Under these assumptions, regarding H∗ as a DGA with trivial differential, we consider
the Hirsch extension A∗ = H∗ ⊗ ∧

V . Define the increasing filtration W∗ A∗ as

Wk Aq =
⊕

l≤k

Hq−l ⊗
l∧

V

and decreasing filtration F∗ A∗
C
as the Hodge filtration for the Hodge structure on (H p ⊗

C) ⊗ ∧q
(V ⊗ C). Then for any p, q , we have:

• W E−p,q
0 (A∗

C
) = (Hq−2p ⊗ C) ⊗ ∧p

(V ⊗ C) and d0 is trivial.

• W E−p,q
1 (A∗

C
) = (Hq−2p ⊗C)⊗∧p

(V ⊗C) and clearly F induces the Hodge structure
of weight q .

Thus {(A∗, W∗), (A∗
C
, W∗, F∗), id : A∗

C
→ A∗

C
} is an R-mixed Hodge diagram.

We can easily check that for the canonical bigrading Hr (A∗
C
) = ⊕

Hr
p,q of the R-mixed

Hodge structure as in Theorem 5.3, we have

(1) H1(A∗
C
) = H1

1,0 ⊕ H1
0,1 ⊕ H1

1,1.

(2) H2(A∗
C
) = H2

2,0 ⊕ H2
1,1 ⊕ H2

0,2 ⊕ H2
2,1 ⊕ H2

1,2 ⊕ H2
2,2.

Morgan’s result on Sullivan’s minimal models of R-mixed Hodge diagrams is the follow-
ing.

Theorem 5.5 [20, Sections 6, 8] Let {(A∗, W∗), (E∗, W∗, F∗), φ} be an R-mixed Hodge
diagram. Then the minimal model (resp. 1-minimal model) M∗ of the DGA E∗ with a quasi-
isomorphism (resp. 1-quasi-isomorphism) φ : M∗ → E∗ satisfies the following conditions:

• M∗ admits a bigrading

M∗ =
⊕

p,q≥0

M∗
p,q

such that M∗
0,0 = M0 = C and the product and the differential are of type (0, 0).

• For some real structure of M∗, the bigrading
⊕

p,q≥0 M∗
p,q induces an R-mixed Hodge

structure.
• Consider the canonical bigrading Hr (E∗) = ⊕

Vp,q for the R-mixed Hodge structure
as in Theorem 5.3. Then φ∗ : Hr (M∗) → Hr (E∗) sends Hr (M∗

p,q) to Vp,q .
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5.3 Mixed Hodge diagrams for transverse Kähler structures on central foliations

Let M be a compact complex manifold. We assume that M admits a transverse Kähler
structure on a central foliation FH . Let (�

∗,∗
B (M), ∂B , ∂̄B) be the BBA of basic differential

forms associated with FH . The basic Bott-Chern cohomology H∗,∗
B,BC (M) is defined to be

H∗,∗
B,BC (M) = Ker ∂B ∩ Ker ∂̄B

Im ∂B ∂̄B
.

Then we have H p,q
B,BC (M) = Hq,p

B,BC (M) and the natural algebra homomorphisms

Tot∗ H∗,∗
B,BC (M) → H∗

B(M,C)

and

H∗,∗
B,BC (M) → H∗,∗

B (M).

By ∂B ∂̄B-Lemma, these maps are isomorphisms (see [7, Remark 5.16]). Thus, we have the
Hodge decomposition

Hr
B(M,C) =

⊕

p+q=r

H p,q
B (M)

and

H p,q
B (M) = Hq,p

B (M).

We remark that this decomposition does not depend on the choice of a transverse Kähler
structure.

Under the assumptions as in Theorem 4.13, we consider the modelA∗ = H∗
B(M)⊗∧

W
as in Theorem 4.13. We suppose that FH is fundamental as in Definition 1.3. we can obtain
the mixed Hodge diagram {(A∗, W∗), (A∗

C
, W∗, F∗), id : A∗

C
→ A∗

C
} as in Example 5.4.

Finally we obtain the following statement.

Theorem 5.6 Let M be a compact complex manifold. We assume that M admits a transverse
Kähler structure on a fundamental central foliation FH . Consider the minimal model M
(resp. 1-minimal model) of A∗

C
(M) with a quasi-isomorphism (resp. 1-quasi-isomorphism)

φ : M → A∗
C
(M). Then we have:

(1) For each r, the real de Rham cohomology Hr (M,R) admits anR-mixed Hodge structure
such that

• H1(M,C) = H1
1,0 ⊕ H1

0,1 ⊕ H1
1,1

• H2(M,C) = H2
2,0 ⊕ H2

1,1 ⊕ H2
0,2 ⊕ H2

2,1 ⊕ H2
1,2 ⊕ H2

2,2

where Hr (M,C) = ⊕
Hr

p,q is the canonical bigrading.
(2) M∗ admits a bigrading

M∗ =
⊕

p,q≥0

M∗
p,q

such that M∗
0,0 = M0 = C and the product and the differential are of type (0, 0).

(3) For some real structure of M∗, the bigrading
⊕

p,q≥0 M∗
p,q induces an R-mixed Hodge

structure.
(4) The induced map φ∗ : Hr (M∗) → Hr (M,C) sends Hr (M∗

p,q) to Hr
p,q .
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In this theorem, for the 1-minimal modelMwith a 1-quasi-isomorphism φ : M → A∗
C
(M),

we have:

• H1(M∗) = H1(M∗
1,0) ⊕ H1(M∗

0,1) ⊕ H1(M∗
1,1)

• H2(M∗) = H2(M∗
2,0) ⊕ H2(M∗

1,1) ⊕ H2(M∗
0,2) ⊕ H2(M∗

2,1) ⊕ H2(M∗
1,2) ⊕

H2(M∗
2,2).

By Theorem 3.5, we can translate this condition to certain condition on the Lie algebra of
the nilpotent completion of the fundamental group π1(M) as [20, Theorem 9.4] . We obtain:

Theorem 5.7 Let M be a compact complex manifold. We assume that M admits a transverse
Kähler structure on a fundamental central foliation FH . Then the Lie algebra of the nilpotent
completion of the fundamental group π1(M) is isomorphic to F(H)/I such that

• H is a C-vector space with a bigrading H = H−1,0 ⊕ H0,−1 ⊕ H−1,−1

• I is a Homogeneous ideal of the free bi-graded Lie algebra generated by H such that I
has generators of types (− 1,− 1), (− 1,− 2), (− 2,− 1) and (− 2,− 2) only.

As a consequence, the Lie algebra of the nilpotent completion of the fundamental group
π1(M) is determined by π1(M)/�5 where �5 is the fifth term of the lower central series of
π1(M) [20, Corollary 9.5]. Thus, we can say that not every finitely generated group can be
the fundamental group of a compact complex manifold with transverse Kähler structure on
a fundamental central foliation.

6 Examples and applications

6.1 Simple examples

Example 6.1 Consider the product S1,2n−1 = S1 × S2n−1 of a circle and a (2n − 1)-
dimensional sphere equipped with a complex structure so that there exists a special
transverse Kähler structure on a one-dimensional central foliation FH . Then, by our
results, �∗(S1,2n−1) is quasi-isomorphic to the DGA A∗ = H∗

B(S1,2n−1) ⊗ ∧
W . By

dim H1(S1,2n−1) = 1 and H1(S1,2n−1,C) = H1,0
B (S1,2n−1)⊕ H0,1

B (S1,2n−1)⊕ker d|W , we

have H1,0
B (S1,2n−1) ⊕ H0,1

B (S1,2n−1) = 0 and dim ker d|W = 1. By dim H2(S1,2n−1) = 0,
the differential d : W → H2

B(S1,2n−1) is surjective and hence dim H2
B(S1,2n−1) = 1. Take

W = 〈x, y〉 so that dx �= 0 in H2
B(S1,2n−1) and dy = 0.We have H2

B(S1,2n−1) = 〈dx〉. Since
dx ∈ H2

B(S1,2n−1)must contain transverseKähler form,we have (dx)i �= 0 for any i ≤ n−1.
Inductively we can easily compute H2i

B (S1,2n−1) = 〈(dx)i 〉 and H2i−1
B (S1,2n−1) = 0 for

2 ≤ i ≤ n − 1.
Consider the Hodge decomposition

Hr
B(S1,2n−1,C) =

⊕

p+q=r

H p,q
B (S1,2n−1).

Then we have Hi,i
B (S1,2n−1) = 〈(dx)i 〉 for any i ≤ n −1 and H p,q

B (S1,2n−1) = 0 for p �= q .
Take the decomposition W ⊗C = W 1,0⊕W 0,1 with W 1,0 = 〈z〉. Thenwe have dz = cdx for
some c ∈ C. Thus we have ∂̄z = cdx and ∂̄ z̄ = 0. Hence �∗,∗(S1,2n−1) is quasi-isomorphic
to the DBA

B∗,∗ = 〈1, dx, . . . , (dx)n−1〉 ⊗
∧

〈z, z̄〉.
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Thus every complex structure on S1,2n−1 with a transverse Kähler structure on a one-
dimensional fundamental central foliation FH has same basic Betti, basic Hodge and Hodge
numbers. There are many such complex structures; see Example 6.9.

Example 6.2 Consider the product S3,3 = S3 × S3 of two three-dimensional spheres
equipped with a complex structure so that there exists a transverse Kähler structure on a
one-dimensional central foliation FH . Then, by our results, �∗(S3,3) is quasi-isomorphic
to the DGA A∗ = H∗

B(S3,3) ⊗ ∧
W . By H1(S3,3) = 0 and H2(S3,3) = 0, we have

H1
B(S3,3) = 0 and the differential d : W → H2

B(S3,3) is bijective. Take W = 〈x, y〉. Then
H2

B(S3,3) = 〈dx, dy〉. By dim H3(S3,3) = 2, just two of the elements

d(x ∧ dx) = dx ∧ dx, d(y ∧ dy) = dy ∧ dy, d(x ∧ dy) = −d(y ∧ dx) = dx ∧ dy

are equal to 0. Take x, y so that dx ∧ dx = dy ∧ dy = 0 and dx ∧ dy �= 0. Since the
codimension of FH is 4, we have dim H4

B(S3,3) = 1 and thus H4
B(S3,3) = 〈dx ∧ dy〉. Thus

we have

H∗
B(S3,3) =

∧
〈dx, dy〉 = 〈1, dx, dy, dx ∧ dy〉.

Consider the Hodge decomposition

Hr
B(S3,3,C) =

⊕

p+q=r

H p,q
B (S3,3).

Then, by H1,1
B (S3,3) �= 0 anddim H2

B(S3,3) = 2,wehave that H2,0
B (S3,3) = H0,2

B (S3,3) = 0.

Thus H1,1
B (S3,3) = C〈dx, dy〉. Take the decomposition W ⊗ C = W 1,0 ⊕ W 0,1 with

W 1,0 = 〈α + √−1β〉. Now we have

∂̄(α + √−1β) = dα + √−1dβ.

and

∂̄(α − √−1β) = 0.

By 〈x, y〉 = 〈α, β〉, we have
dα ∧ dβ �= 0 ∈ H4

B(S3,3,C) = H2,2
B (S3,3).

Hence �∗,∗(S3,3) is quasi-isomorphic to the DBA

B∗,∗ = 〈1, dα, dβ, dα ∧ dβ〉 ⊗
∧

〈α + √−1β, α − √−1β〉.
We compute

H1,0(S3,3) = H2,0(S3,3) = H3,0(S3,3) = H0,2(S3,3) = H0,3(S3,3) = 0

and

dim H0,1(S3,3) = dim H2,1(S3,3) = dim H1,2(S3,3) = 1.

Thus every complex structure on S3,3 with a transverseKähler structure on a one-dimensional
central foliation FH has same basic Betti, basic Hodge and Hodge numbers. Such complex
manifolds are constructed as LVMmanifolds associated with complex numbers (λ1, . . . , λ5)

with certain conditions (see [19, Section 5]).
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Example 6.3 Consider the product S1,3 = S1 × S3 (resp. S3,3 = S3 × S3) equipped with
a complex structure so that there exists a transverse Kähler structure on a one-dimensional
central foliation FH1 (resp. FH2 ). Then the product S1,3 × S1,3 has the natural complex
structure so that there exists a special transverse Kähler structure on a two-dimensional
central foliation FH1×H1 . The Künneth formula allows us to compute the basic Betti, basic
Hodge and Hodge numbers. By Künneth formula we have

dim Hi
B(S1,3 × S1,3) =

⎧
⎪⎨

⎪⎩

1 i = 0, 4,

2 i = 2,

0 otherwise,

dim H p,q
B (S1,3 × S1,3) =

⎧
⎪⎨

⎪⎩

1 p = q = 0, 2,

2 p = q = 1,

0 otherwise

and

dim H p,q(S1,3 × S1,3) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 (p, q) = (0, 0), (4, 4), (0, 2), (4, 2),

2 (p, q) = (0, 1), (4, 3), (1, 2), (3, 2),

4 (p, q) = (2, 2),

0 otherwise.

Nowwe consider the complex one-dimensional torus S1,1 = S1×S1 and the central foliation
FS1,1 on S1,1. Then the product S1,1 × S3,3 has the natural complex structure so that there
exists a transverse Kähler structure on a two-dimensional central foliation FS1,1×H2

. By
Künneth formula we have

dim Hi
B(S1,1 × S3,3) =

⎧
⎪⎨

⎪⎩

1 i = 0, 4,

2 i = 2,

0 otherwise

= dim Hi
B(S1,3 × S1,3),

dim H p,q
B (S1,1 × S3,3) =

⎧
⎪⎨

⎪⎩

1 p = q = 0, 2,

2 p = q = 1,

0 otherwise

= dim H p,q
B (S1,3 × S1,3)

but

dim H p,q(S1,1 × S3,3) �= dim H p,q(S1,3 × S1,3)

for some p, q . Indeed, dim H1,0(S1,1 × S3,3) = 1 but dim H1,0(S1,3 × S1,3) = 0. Thus, in
general, the Hodge numbers depend on a complex structure.

6.2 Nilmanifolds

Let N be a simply connected nilpotent Lie group. We suppose that N admits a lattice �, i.e.,
cocompact discrete subgroup. A compact homogeneous space �\N is called a nilmanifold.
It is known that a nilmanifold admits a Kähler structure if and only if it is a torus (see [2,11]).
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Denote by n the Lie algebra of N . Let J be an endomorphism of n satisfying J ◦ J = − id
and [J A, J B] = [A, B] for any A, B ∈ n. Then J induces a complex structure on �\N .
Such complex structure is called abelian. We assume that n is non-abelian and 2-step, i.e.,
[n, [n, n]] = 0. Let C be the center of N and ψ : N → N/C the quotient map. Then we
have the holomorphic principal torus bundle

T ↪→ �\N → M

where T and M are complex tori � ∩ C\C and M = ψ(�)\ψ(N ) respectively. Let c be
the sub-algebra of n corresponding to C . Consider the complex

∧
n∗ of left-N -invariant

differential forms. Take W ⊂ ∧1 n∗ which is dual to c. Then we have dW ⊂ �1,1(�\N ).
Thus, in this case, �\N admits a transverse Kähler structure on the fundamental central
foliation FC .

We study the properties of nilmanifolds admitting special transverse Kähler structures on
fundamental central foliations.

Proposition 6.4 Let �\N be a nilmanifold with a (not necessarily left-invariant) complex
structure J . We assume that M admits a transverse Kähler structure on a k-dimensional
central foliation FH . Suppose that FH is regular, i.e., H is compact and the H-action is free.
Then �\N is biholomorphic to a holomorphic principal torus bundle over a complex torus.
In particular, �\N is 2-step nilmanifold (see [23]).

Proof By the assumption, �\N admits a holomorphic principal torus H bundle structure
�\N → B so that the base space is a compact Kähler manifold. Since �\N is an aspherical
manifold with π1(�\N ) ∼= �, B is a compact aspherical manifold such that π1(B) is a
finitely generated nilpotent group. By results in [1,2,11], B is a complex torus. Thus �\N
is a holomorphic principal torus bundle over a complex torus. ��

We are interested in the non-regular case.

Proposition 6.5 Let �\N be a nilmanifold with a (not necessarily left-invariant) complex
structure J . We assume that �\N admits a transverse Kähler structure on a fundamental
central foliationFH . If H is complex one-dimensional, then �\N is diffeomorphic to a 2-step
nilmanifold.

Proof Let M be a compact complex n-dimensional manifold which admits a special trans-
verseKähler structure on a k-dimensional central foliationFH . Thenwehave an isomorphism

H2n(M,C) ∼= Hn−k,n−k
B (M) ⊗

2k∧
WC.

Hence, for themixedHodge structure as in Theorem5.6, H2n(M,C) is generated by elements
of bi-degree (n + k, n + k).

Consider nilmanifold �\N . Then the DGA
∧

n∗ is the minimal model of �∗(�\N ) (see
[11]). If �\N admits a special transverse Kähler structure on a central foliation FH , then by
Theorem 5.6, the minimal model

∧
n∗
C
of �∗(�\N ) admits a bigrading

∧
n∗
C

= ⊕M∗
p,q .

Denote M∗
w = ⊕

p+q=w M∗
p,q and mω = dimM1

w . Since dimM1 = dim n∗
C

= 2n, we

have
∑

W≥1 mW = 2n. Since we have H2n(M,C) = ∧2n n∗
C

= ∧2n ⊕
W M1

W , we have∑
w≥1 wmw = 2n + 2k. Let k = 1. Then

∑
w≥2(w − 1)mw = 2 and hence we have m2 = 2

and mi = 0 for i ≤ 3, or m2 = 0, m3 = 1 and mi = 0 for i ≤ 4. We can say dM1 = 0 and∧
n∗
C

= ∧M1
1 ⊗ ∧

V with dV ⊂ ∧2 M1
1. This implies that n is 2-step. ��
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We suggest the following problem.

Problem 6.6 For s ≥ 3 and k ≥ 2, does there exist a s-step nilmanifold admitting a special
transverse Kähler structure on a k-dimensional non-regular central foliation FH ?

6.3 Vaisman manifolds

Let (M, J ) be a compact complex manifold with a Hermitian metric g. We consider the
fundamental form ω = g(−, J−) of g. The metric g is locally conformal Kähler (LCK) if
we have a closed 1-form θ (called the Lee form) such that dω = θ ∧ ω. It is known that
if θ �= 0 and θ is non-exact, then (M, J ) does not admit a Kähler structure. Let ∇ be the
Levi–Civita connection of g. A LCK metric g is a Vaisman metric if ∇θ = 0.

If g is Vaisman, then the following holds (see [27,28]):

• Let A and B be the dual vector fields of 1-forms θ and −θ ◦ J with respect to g,
respectively. Then A = J B, L A J = 0, L B J = 0, L Ag = 0, L B g = 0 and [A, B]=0.

• The holomorphic vector field B − √−1A gives a holomorphic foliation F .
• The basic form d(θ ◦ J ) is a transverse Kähler structure.
• Wedenote byAut0(M, g) the identity component of the group of holomorphic isometries,

by h the abelian sub-algebra 〈A, B〉 of the Lie algebra of Aut0(M, g) and by H the
connected Lie subgroup of Aut0(M, g) which corresponds to h. Let T be the closure of
H in Aut0(M, g). Then T is a torus.

Thus a compact Vaisman manifold M admits a transverse Kähler structure on the one-
dimensional fundamental central foliation FH . Hence, taking W = 〈θ, θ ◦ J 〉 our results can
be applied to a compact Vaisman manifold. The cohomology of the DGA

A∗ = H∗
B(M) ⊗

∧
〈θ, θ ◦ J 〉

is isomorphic to the de Rham cohomology of M and the cohomology of DBA

B∗,∗ = H∗,∗
B (M) ⊗

∧
〈θ + √−1θ ◦ J, θ − √−1θ ◦ J 〉

is isomorphic to the Dolbeault cohomology of M . We can easily compute

H1(M,C) = H1
B(M) ⊕ 〈θ〉 = H1,0

B (M) ⊕ H0,1
B (M) ⊕ 〈θ〉.

This implies a well-known fact that the first Betti number of a compact Vaisman manifold is
odd (see [27]). We have the mixed Hodge structure

H1(M,C) = H1
1,0 ⊕ H1

0,1 ⊕ H1
1,1

with dim H1
1,1 = 1 as in Theorem 5.6. We notice that Vaisman metrics are closely related

to Sasakian structures. We can also obtain nice de Rham models of Sasakian manifolds like
the above DGA (see [26]) and we can develop Morgan’s mixed Hodge theory on Sasakian
manifolds (see [15]).

Since we have ∂̄(θ + √−1θ ◦ J ) = √−1d(θ ◦ J ) and ∂̄(θ − √−1θ ◦ J ) = 0, we can
easily obtain an isomorphism of DGA

A∗ ⊗ C ∼= Tot∗ B∗,∗.

Hence, by Theorem 4.13, we have the following (cf. [27, Theorem 3.5]).
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Corollary 6.7 Let M be a compact complex manifold. We suppose that M admits a Vaisman
metric. Then the two DGAs (�∗(M) ⊗C, d) and (�∗(M) ⊗C, ∂̄) are quasi-isomorphic. In
particular, there exists an isomorphism between the complex valued de Rham cohomology
and the Dolbeault cohomology.

Remark 6.8 On compact Kähler manifold M , by the ∂∂̄-lemma, two DGAs (�∗(M)⊗C, d)

and (�∗(M) ⊗ C, ∂̄) are quasi-isomorphic (see [21]).

Example 6.9 Let� = (λ1, . . . , λn) be complex numbers so that 0 < |λn | ≤ · · · ≤ |λ1| < 1.
A primary Hopf manifold M� is the quotient of Cn − {0} by the group generated by the
transformation (z1, . . . , zn) �→ (λ1z1, . . . , λnzn). It is known that any M� admits a Vaisman
metric (see [14]). For any�, M� is diffeomorphic to S1,2n−1 = S1×S2n−1.On the other hand,
the complex structure on M� varies. If λn = · · · = λ1, then M� is a holomorphic principal
torus bundle over CPn−1. Otherwise, any holomorphic principal torus bundle structure over
CPn−1 does not exist on M�. ByExample 6.1 and the above arguments,we can obtain explicit
representatives of de Rham, Dolbeault, basic de Rham and Basic Dolbeault cohomologies of
M� by using a Vaisman metric on M�.
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