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Abstract In this paper, we consider the following general nonlocal problem{−LK u = f (x, u) in Ω,

u = 0 in R
N \Ω,

where Ω ⊂ R
N is a bounded domain with Lipschitz boundary ∂Ω , s ∈ (0, 1) with 2s < N

and LK is a nonlocal integrodifferential operator of fractional Laplacian type. We obtain the
existence of infinitely many sign-changing solutions by combining critical point theory and
invariant sets of descending flow.
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1 Introduction

In the present paper, we are concerned with the following general nonlocal equation{−LK u = f (x, u), in Ω,

u = 0, in R
N \Ω,

(1.1)
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where Ω is a bounded domain in R
N with Lipschitz boundary ∂Ω . The nonlocal integrod-

ifferential operator LK is defined as follows:

LK u(x) :=
∫
RN

(u(x + y) + u(x − y) − 2u(x)) K (y)dy, x ∈ R
N , (1.2)

where K : RN \{0} → (0,+∞) is a function with the following properties:

(K1) γ K ∈ L1(RN ), where γ (x) = min{|x |2, 1},
(K2) there exists δ > 0 such that K (x) ≥ δ|x |−(N+2s), ∀x ∈ R

N \{0}, where s ∈ (0, 1)
satisfying N > 2s.

It seems that Eq. (1.1) was first studied by Servadei and Valdinoci [28]. Observe that if
the kernel K (y) = |y|−(N+2s), then LK = (−�)s , and hence (1.1) turns into a fractional
elliptic equation {

(−�)s = f (x, u), in Ω,

u = 0, in R
N \Ω,

(1.3)

where (−�)s is the so-called fractional Laplacian operator which can be equivalently repre-
sented as (see [15, Lemma 3.2])

(−�)su(x) = −C(N , s)

2

∫
RN

u(x + y) + u(x − y) − 2u(x)

|y|N+2s
dy, ∀ x ∈ R

N , (1.4)

where C(N , s) is a constant depends on N and s. Different from the operator −�, the
fractional Laplacian operator (−�)s is nonlocal.

Recently, a great attention has been focused on the study of nonlocal operators of elliptic
type. Fromaphysical point of view, nonlocal operators play a crucial rule in describing several
different physical phenomena, such as in the anomalous diffusion [1,25], in the dynamics
of the dislocation of atoms in crystals [17], in the fractional quantum mechanics [20], in the
flow in porous media [36].

To overcome the difficulties brought by the nonlocal feature of fractional Laplacian,
Caffarelli and Silvestre developed a powerful extension method in [12], which allows us
to transform the nonlocal equation (1.3) into a local problem settled on R

N+ . However, we
do not know wether the Caffarelli–Silvestre extension method can be applied to the general
integrodifferential operator LK or not. So the nonlocal feature of the integrodifferential
operator brought some difficulties to applications of variational methods to (1.1). Many of
these additional difficulties have been overcome in Refs. [28,30]. Based on the variational
settings established by Servadei and Valdinoci, the existence and multiplicity of nontrivial
solutions of (1.1) have been investigated recently in some works. See, for example, [9,29,31,
32,35]. We refer to the books [10,11,16] and the references therein for more results related
to nonlocal elliptic equations with integrodifferential operators.

From a mathematical point of view, the existence sign-changing solution is an interesting
and important aspect in the studies of PDEs. When K (y) = |y|−(N+2s) with s = 1, problem
(1.1) turns into the classical semilinear elliptic equation{−�u = f (x, u), in Ω,

u = 0, on ∂Ω.
(1.5)

It is well known that, in their celebrated paper, Ambrosetti and Rabinowitz obtained a positive
and a negative solution of (1.5). The existence of the third solution was established by Wang
[37]. In Ref. [13], Castro, Cossio and Neuberger proved that the third solution of (1.5)
obtained in [37] changes sign only once. The more information about solutions was obtained
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Infinitely many sign-changing solutions for a nonlocal problem 1431

in Bartsch andWang [6], and they showed the existence of sign-changing solution. In Ref. [8],
Bartsch,Weth andWillem showed that (1.5) possesses a least energy sign-changing solution.
For a related result, we refer to Ref. [7]. In [23], Liu and Sun developed the theory of invariant
sets of descending flow, which is powerful in studying the existence and multiplicity of sign-
changing solutions of elliptic equations (see, e.g., [4,22]).

However, there are fewworks on the existence andmultiplicity of sign-changing solutions
of (1.1). For the special case (1.3), Chang and wang [14] obtain the existence andmultiplicity
of sign-changing solution via applying the Caffarelli–Silvestre extension method and invari-
ant sets of descending flow. Very recently, by combining constraint variational method and
quantitative deformation Lemma (Ref. [38]), we verify that (1.1) possesses one least energy
sign-changing solution u0 in [18]. Moreover, we showed that the energy of u0 is strictly
larger than the ground state energy.

It is natural to ask how about the multiplicity of sign-changing solutions of (1.1)? As far
as we know, such a problem has not been considered before. In this paper, we are concerned
with the existence of infinitely many sign-changing solutions of (1.1). We assume f ∈
C(Ω̄ × R,R) and satisfies

( f1) f (x, t) = o(|t |) as t → 0, uniformly for x ∈ Ω̄ .
( f2) There exist c1, c2 > 0 and p ∈ (2, 2∗

s ) such that | f (x, t)| ≤ c1 + c2|t |p−1, where
2∗

s := 2N
N−2s is the fractional Sobolev critical exponent.

( f3) f (x,−u) = − f (x, u) for all (x, u) ∈ Ω̄ × R.
( f4) there exist μ > 2 and R > 0 such that

0 < μF(x, u) ≤ u f (x, u), ∀x ∈ Ω, |u| ≥ R,

where F(x, t) = ∫ t
0 f (x, r)dr .

Theorem 1.1 If the assumptions ( f1)–( f4) hold, then Eq. (1.1) has infinitely many sign-
changing solutions.

Assumption ( f4) is the well-known Ambrosetti–Rabinowitz condition (AR for short) ,
which was originally introduced by Ambrosetti and Rabinowitz [3], and they obtained the
existence andmultiplicity of nontrivial solutions of Eq. (1.5) under superlinear and subcritical
growth conditions. A lot of works concerning superlinear elliptic boundary value problem
have been researched under this usual (AR) condition (see, e.g., [38] and the references
therein). The role of (AR) condition is to guarantee the boundedness of the Palais–Smale
sequences of the energy functional associated with the problem, which is a crucial ingredient
in the applications of critical point theory.

The (AR) condition is a superlinear growth assumption on the nonlinearity f . Indeed,
( f4) implies that for some C1, C2 > 0

F(x, u) ≥ C1|u|μ − C2, ∀(x, u) ∈ (Ω̄ × R). (1.6)

However, there are many functions which are superquadratic at infinity, but do not satisfy
the (AR) condition. Obviously, the condition

( f5) lim
t→+∞

F(x,t)
|t |2 = +∞, for any (x, t) ∈ (Ω̄ × R).

is weaker than (AR) condition. Moreover, condition ( f5) characterizes the nonlinearity F to
be superquadratic at infinity. It is easy to see that the function
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1432 G. Gu et al.

f (x, t) = t log(1 + |t |) (1.7)

verifies condition ( f5) but does not satisfy (1.6), not to mention ( f4).
In order to study the superlinear problem (1.5), Jeanjean introduced the following assump-

tion on f in [19]

( f6) there exists γ ≥ 1 such that for any x ∈ Ω , for any t1, t ∈ R with 0 < t1 ≤ t ,

F(x, t1) ≤ γF(x, t),

where F(x, t) = 1
2 f (x, t)t − F(x, t).

It is easy to see that the function defined in (1.7) also satisfies condition ( f6)
Without assuming (AR) the corresponding functional may possess unbounded Palais–

Smale sequences. In recent years, condition ( f6)was often applied to consider the existence of
nontrivial solutions for the superlinear problemswithout the (AR) condition, for example, see
[2,21,26] and references therein. To overcome this difficulty,Miyagaki and Souto considered
(1.6) and adapted some monotonicity arguments used by Struwe and Tarantello [34] and
Schechter and Zou [27]. Our second main result can be stated as follows.

Theorem 1.2 If the assumptions ( f1)–( f3), ( f5) and ( f6) hold, then the problem (1.1) has
infinitely many sign-changing solutions.

According to Lemma 2.3 of [21], condition ( f6) is weaker than the following assumption:

( f7)
f (·,t)

t is increasing in t ≥ 0 and decreasing in t ≤ 0.

However, both ( f5) and ( f6) are global conditions, and therefore, they are not very satisfactory.
For this reason, we replace condition ( f6) with the following condition introduced by Liu
[21]:

( f8) there exists t0 > 0 such that f (·,t)
t is increasing in t ≥ t0 and decreasing in t ≤ −t0.

Under this kind of assumptions, we can also obtain a similar result:

Theorem 1.3 If the assumptions ( f1)–( f3), ( f5) and ( f8) hold, then the problem (1.1) has
infinitely many sign-changing solutions.

Here, we only provide the proof of Theorem 1.3 since the proof of Theorem 1.1 and
Theorem 1.2 is similar with that of Theorem 1.3.

The paper is organized as follows. In Sect. 2, we collect some necessary preliminary
observation. In Sect. 3, we will be devoted to the proof of main theorem. Through the paper,
we make use of following notations: C, C0, C1, . . . for positive constants (possibly different
from line to line) , | · |p for the norm in L p(Ω), ‖ · ‖ for the norm in E , “→” for the strong
convergence and “⇀” for the weak convergence. We use BR that denotes the open ball in E ,
that is BR = {u ∈ E |‖u‖ < R}.

2 Preliminaries

To prove our theorems, we recall the variational setting corresponding to the problem (1.1)
(see [28,30]). Set

X : =
{

u : RN → R| u is Lebesgue measurable, u|Ω ∈ L2(Ω)

and
∫

Q
|u(x) − u(y)|2K (x − y)dxdy < ∞

}
,
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Infinitely many sign-changing solutions for a nonlocal problem 1433

where Q = R
2N \(CΩ × CΩ), CΩ := R

N \Ω . The space X is endowed with the norm
defined as

‖u‖X = |u|2 +
(∫

Q
|u(x) − u(y)|2K (x − y)dxdy

)1/2

,

where

[u]X =
(∫

Q
|u(x) − u(y)|2K (x − y)dxdy

)1/2

.

It is easy to check that ‖ · ‖X is a norm on X . Then, we define

E :=
{

u ∈ X : u = 0 a.e. in R
N \Ω

}
.

Also we have the Poincare type inequality: There exists a constant C > 0 such that

|u|2 ≤ C[u]X

for all u ∈ E (see [28,30]). Therefore, the norm

‖u‖ := [u]X =
(∫

Q
|u(x) − u(y)|2K (x − y)dxdy

)1/2

=
(∫

R2N
|u(x) − u(y)|2K (x − y)dxdy

)1/2

is an equivalent norm on E and (E, ‖ · ‖) is a Hilbert space(see [28, Lemma 7]) with scalar
product

(u, v) =
∫
R2N

(u(x) − u(y)) (v(x) − v(y)) K (x − y)dxdy.

Note that C∞
0 (Ω) is dense in E and the norm ‖ · ‖ involves the interaction between Ω and

R
N \Ω . For reader’s convenience, we recall some propositions which will be key ingredients

in the proof.

Proposition 2.1 ([10]) The embedding E ↪→ Lr (RN ) is continuous for r ∈ [1, 2∗
s ] and

compact for r ∈ [1, 2∗
s ).

Define the best fractional critical Sobolev constant in the embedding E ↪→ L2∗
s (RN ) as

S0 := inf
u∈E,|u|

L2
∗
s (Ω)

�=0

‖u‖2
|u|22∗

s

. (2.1)

We observe that problem (1.1) has a variational structure, and as a matter of fact, its solutions
can be searched as critical points of the energy functional I : E → R defined as follows:

I (u) = 1

2

∫
R2N

|u(x) − u(y)|2K (x − y)dxdy −
∫

Ω

F(x, u(x))dx .

We would also note that I ∈ C1(E,R), and for u ∈ E and φ ∈ E , there holds

〈I ′(u), φ〉 =
∫
R2N

(u(x) − u(y)) (φ(x) − φ(y)) K (x − y)dxdy −
∫

Ω

f (x, u(x))φ(x)dx .

(2.2)
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Now, consider the following eigenvalue problem
{−LK u = λu, in Ω,

u = 0, in R
N \Ω.

(2.3)

Proposition 2.2 (see [30]) Let s ∈ (0, 1), N > 2s, Ω be an open, bounded subset of RN ,
and let K : R

N \{0} → (0,+∞) be a function satisfying assumptions (K1) and (K2). Then

(1) Equation (2.3) admits an eigenvalue λ1 that is positive, simple and that can be charac-
terized as follows:

λ1 = min
u∈E, |u|L2(Ω)=1

∫
RN ×RN

|u(x) − u(y)|2K (x − y)dxdy (2.4)

or, equivalently,

λ1 = min
u∈E\{0}

∫
RN ×RN |u(x) − u(y)|2K (x − y)dxdy∫

Ω
u2(x)dx

.

(2) There exists a nonnegative function e1 ∈ E that is an eigenfunction corresponding to
λ1, attaining the minimum in (2.4); that is, |e1|L2(Ω) = 1 and

λ1 =
∫
RN ×RN

|e1(x) − e1(y)|2K (x − y)dxdy.

(3) The set of the eigenvalues of Eq. (2.3) consists of a sequence {λk}k∈N with

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ λk+1 ≤ · · ·
and

λk → +∞ as k → +∞.

Moreover, for any k ∈ N, the eigenvalues can be characterized as follows:

λk+1 = min
u∈X⊥

k , |u|L2(Ω)=1

∫
RN ×RN

|u(x) − u(y)|2K (x − y)dxdy

λk+1 = min
u∈X⊥

k \{0}

∫
RN ×RN |u(x) − u(y)|2K (x − y)dxdy∫

Ω
u2(x)dx

, (2.5)

where Xk := span{e1, e2, . . . ek}.
(4) For any k ∈ N, there exists a function ek+1 ∈ X⊥

k that is an eigenfunction corresponding
to λk+1, attaining the minimum in (2.5); that is, |ek+1|L2(Ω) = 1 and

λk+1 =
∫
RN ×RN

|ek+1(x) − ek+1(y)|2K (x − y)dxdy.

(5) The sequence {ek}k∈N of eigenfunctions corresponding to λk is an orthonormal basis of
L2(Ω) and an orthogonal basis of E.

Lemma 2.1 Suppose conditions ( f1) − −( f3), ( f5) and ( f8) hold. Then, I satisfies (PS)
condition at any level c > 0.
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Infinitely many sign-changing solutions for a nonlocal problem 1435

Proof Let {un} ⊂ E be a (P S)c sequence of I , that is I (un) → c and I ′(un) → 0. We claim
that {un} is bounded in E . Assume by contradiction that {un} is unbounded in E . Setting
wn = un‖un‖ , up to a subsequence, we may assume that there exist w ∈ E such that

wn ⇀ w in E, wn → w in L p(Ω), p ∈ [1, 2∗
s ), wn(x) → w(x) a.e. x ∈ Ω.

In the sequel, we will consider the following two cases separately.

Case 1: w = 0.
In this case, let tn ∈ [0, 1] such that

I (tnun) = max
t∈[0,1] I (tun).

On the one hand, the unboundedness of {un} implies that, for any given M > 0, there exists
N > 0 such that

M

‖un‖ ∈ (0, 1) , n ≥ N .

Denote w̄n = (4M)
1
2 wn , by the Lebesgue dominated convergence theorem,

lim
n→∞

∫
Ω

F(x, w̄n)dx = 0.

Then for n large enough, we have

I (tnun) ≥ I (w̄n) = 1

2
‖w̄n‖2 −

∫
Ω

F(x, w̄n)dx ≥ M.

This implies

lim
n→∞ I (tnun) = +∞.

On the other hand, from condition ( f8), we know that F(x, t) is increasing in t ≥
t0 and decreasing in t ≤ −t0. Noting that 0 < 1 + sup(x,t)∈Ω×[−t0,t0] F(x, t) −
inf(x,t)∈Ω×[−t0,t0] F(x, t) := C1 < +∞, we have

F(x, t1) ≤ F(x, t) + C1 , ∀x ∈ Ω, |t1| ≤ |t |.
Moreover, since I (0) = 0, we have tn ∈ (0, 1), thus d

dt
I (tun)|t=tn = 0. Then

I (tnun) = I (tnun) − 1

2
〈I ′(tnun), tnun〉

= 1

2

∫
Ω

f (x, tnun)tnundx −
∫

Ω

F(x, tnun)dx

=
∫

Ω

F(x, tnun)dx

≤
∫

Ω

(F(x, un) + C1) dx

= I (un) − 1

2
〈I ′(un), un〉 + C1|Ω|

≤ C,

contradicts with the fact that lim
n→∞ I (tnun) = +∞.
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Case 2: w �= 0.
Set Ω ′ = {x ∈ Ω|w(x) �= 0}. From the definition of wn , we know |un(x)| → +∞ a.e.

x ∈ Ω ′. By the unboundedness of {‖un‖} and I (un) ≤ C , we know I (un)

‖un‖2 → 0, that is

1

2
−

∫
Ω ′

F(x, un)

‖un‖2 dx −
∫

Ω\Ω ′
F(x, un)

‖un‖2 dx = on(1). (2.6)

Condition ( f5) and the Fatou lemma imply that

lim
n→∞

∫
Ω ′

F(x, un)

‖un‖2 dx = lim
n→∞

∫
Ω ′

F(x, un)

|un |2 · |wn |2dx → +∞. (2.7)

Additionally, by ( f5) and F(x, 0) = 0, there exist t2 > 0 and C1 > 0 such that

F(x, t) > C1 , ∀x ∈ Ω̄ , |t | > t2.

By continuity of F ,

F(x, t) ≥ min
(x,t)∈Ω̄×[−t2,t2]

F(x, t) , ∀(x, t) ∈ Ω × [−t2, t2].

Then, it follows that F(x, t) ≥ −C ′, ∀(x, t) ∈ Ω̄ × R. Thus, it is easy to see that

lim
n→∞

∫
Ω\Ω ′

F(x, un)

‖un‖2 dx ≥ − lim
n→∞

C ′

‖un‖2 |Ω\Ω ′| = 0.

This together with (2.7) contradicts with (2.6). Thus, we have proved that {un} is bounded
in E , up to a subsequence, and we can assume that there exists u ∈ E such that

un ⇀ u in E, un → u in L p(Ω), p ∈ [1, 2∗
s ), un(x) → u(x) a.e. x ∈ Ω.

Since

‖un − u‖2

= 〈I ′(un) − I ′(u), un − u〉 +
∫

Ω

( f (x, un) − f (x, u)) (un − u)dx

and the Lebesgue dominant convergence theorem shows that∣∣∣∣
∫

Ω

( f (x, un) − f (x, u)) (un − u)dx

∣∣∣∣

≤
(∫

Ω

|un − u|2∗
s

) 1
2∗s

(∫
Ω

| f (x, un) − f (x, u)|
2∗s

2∗s −1

) 2∗s −1
2∗s

→ 0,

we can easily verify that un → u in E , that is I satisfies (P S)c condition. ��

3 Proof of the main result

3.1 Proof of the Theorem 1.1

Define an operator A : E → E as follows

Au := (−LK u)−1 ◦ h(u), ∀u ∈ E,
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where h(u) := f (x, u). For u ∈ E fixed, we consider the functional

J (v) = 1

2

∫
R2N

|v(x) − v(y)|2K (x − y)dxdy −
∫

Ω

F(x, u)dx, ∀v ∈ E .

It is easy to prove that J ∈ C1(E,R), coercive, bounded below, weakly lower semicontinu-
ous, and strictly convex in E . Therefore, by [24, Theorem 1.1], J (v) admits a unique global
minimizer v = Au, and v = Au is the unique solution to the problem

−LK v = f (x, u), ∀u ∈ E .

That is to say,∫
R2N

(v(x) − v(y)) (ϕ(x) − ϕ(y)) K (x − y)dxdy =
∫

Ω

f (x, u)ϕdx, ∀ϕ ∈ E . (3.1)

Lemma 3.1 (1) A is continuous and maps bounded sets into bounded sets.
(2) 〈I ′(u), u − Au〉 = ‖u − Au‖2
(3) ‖I ′(u)‖ ≤ ‖u − Au‖
Proof (1) Let {un} ⊂ E such that un → u in E . Denote vn = Aun and v = Au. By (3.1), it
follows that∫
R2N

(vn(x) − vn(y)) (w(x) − w(y)) K (x − y)dxdy =
∫

Ω

f (x, un(x))w(x)dx, ∀w ∈ E .

(3.2)∫
R2N

(v(x) − v(y)) (w(x) − w(y)) K (x − y)dxdy =
∫

Ω

f (x, u(x))w(x)dx, ∀w ∈ E .

(3.3)

By ( f1) − −( f2), (3.2) and (3.3), we obtain

‖vn − v‖2 =
∫
R2N

(vn(x) − vn(y) − v(x) + v(y))2 K (x − y)dxdy

=
∫

Ω

( f (x, un(x)) − f (x, u(x))) (vn − v)dx

≤
(∫

Ω

|vn − v|2∗
s dx

) 1
2∗s

(∫
Ω

| f (x, un) − f (x, u)|
2∗s

2∗s −1 dx

) 2∗s −1
2∗s

≤ C‖vn − v‖
(∫

Ω

| f (x, un) − f (x, u)|
2∗s

2∗s −1 dx

) 2∗s −1
2∗s

.

Hence,

‖vn − v‖ ≤ C

(∫
Ω

| f (x, un) − f (x, u)|
2∗s

2∗s −1 dx

) 2∗s −1
2∗s

.

By Lebesgue dominated convergence theorem, we get that

‖vn − v‖ → 0, as n → +∞,

which implies that A is continuous on E .
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1438 G. Gu et al.

By taking w = Au ∈ E in (3.2), Proposition 2.1, we obtain

‖A(u)‖2 =
∫
R2N

(Au(x) − Au(y))2 K (x − y)dxdy =
∫

Ω

f (x, u)Audx

≤ C

( ∫
Ω

|Au||u|dx +
∫

Ω

|u|p−1|Au|dx

)

≤ C‖Au‖ (‖u‖ + ‖u‖p−1) .

Therefore, ‖Au‖ ≤ C(‖u‖ + ‖u‖p−1); this implies that A maps bounded sets into bounded
sets.

(2) Taking w = u − Au ∈ E into (3.3), we have∫
R2N

(Au(x) − Au(y)) (u(x) − Au(x) − u(y) + Au(y)) K (x − y)dxdy

=
∫

Ω

f (x, u)(u − Au)dx, (3.4)

thus

〈I ′(u), u − Au〉
=

∫
R2N

(u(x) − u(y)) (u(x) − Au(x) − u(y) + Au(y)) K (x − y)dxdy

−
∫

Ω

f (x, u)(u − Au)dx

=
∫
R2N

(u(x) − Au(x) − u(y) + Au(y))2 K (x − y)dxdy

= ‖u − Au‖2

(3) Using again (3.3), ∀w ∈ E , we deduce

|〈I ′(u), w〉| = |
∫
R2N

(u(x) − u(y)) (w(x) − w(y)) K (x − y)dxdy −
∫

Ω

f (x, u)wdx |

= |
∫
R2N

(u(x) − Au(x) − u(y) + Au(y)) (w(x) − w(y)) K (x − y)dxdy|
≤ ‖u − Au‖‖w‖,

which implies that ‖I ′(u)‖ ≤ ‖u − Au‖. ��
Define P+ = {u ∈ X : u ≥ 0}, P− = {u ∈ X : u ≤ 0}. For an arbitrary ε > 0, we

define

P+
ε = {u ∈ X : dist(u, P+) < ε} and P−

ε = {u ∈ X : dist(u, P−) < ε},
where dist(u, P±) = infv∈P± ‖v − u‖.
Lemma 3.2 There exists ε0 > 0 such that for ε ∈ (0, ε0), A(∂(P−

ε )) ⊂ P−
ε , A(∂(P+

ε )) ⊂
P+

ε .

Proof By ( f1) and ( f2), for each δ > 0, there exists Cδ > 0 such that

| f (x, t)| ≤ δ|t | + Cδ|t |p−1,∀t ∈ R.
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Taking w = v+ in (3.3) and using the Hölder inequality, we have

‖v+‖2 =
∫
R2N

(
v+(x) − v+(y)

)2
K (x − y)dxdy

≤
∫
R2N

(
v+(x) − v+(y)

)2
K (x − y)dxdy − 2

∫
R2N

v+(x)v−(y)K (x − y)dxdy

=
∫
R2N

(v(x) − v(y))
(
v+(x) − v+(y)

)
K (x − y)dxdy

=
∫

Ω

f (x, u)v+dx

≤
∫

Ω

f (x, u+)v+dx

≤
∫

Ω

δ
(
u+v+ + Cδ(u

+)p−1v+)
dx

≤ δ|u+|2|v+|2 + Cδ|u+|p−1
p |v+|p.

Set u ∈ E and v = Au, for any p ∈ [2, 2∗
s ], there exists C p > 0 such that

|u±|p = inf
v∈P∓ |v − u|p ≤ C p inf

v∈P∓ ‖v − u‖ = C pdist(u, P∓). (3.5)

It is clear that dist(v, P−) ≤ ‖v+‖. Consequently,
dist(v, P−)‖v+‖ ≤ ‖v+‖2

≤ δ|u+|2|v+|2 + Cδ|u+|p−1
p |v+|p

≤ C

(
δdist(u, P−) + C p(dist(u, P−))p−1

)
‖v+‖.

(3.6)

Therefore

dist(Au, P−) ≤ C

(
δdist(u, P−) + C p(dist(u, P−))p−1

)
.

So, there exists ε0 > 0 such that, for all ε ∈ (0, ε0)

dist(Au, P−) ≤ 1

2
δdist(u, P−), ∀u ∈ ∂(P−

ε ).

In particulary, we have A(∂(P−
ε )) ⊂ P−

ε . Similarly, A(∂(P+
ε )) ⊂ P+

ε . ��
Since A is merely continuous, we would first construct a locally Lipschitz continuous

operator B which inherits the properties of A. Similar with Lemma 2.1 in [5], we have the
following lemma.

Lemma 3.3 There exists a locally Lipschitz continuous odd operator B : E\K → E such
that

(1) B(∂(P−
ε )) ⊂ P−

ε , B(∂(P+
ε )) ⊂ P+

ε ;
(2) 1

2‖u − Bu‖ ≤ ‖u − Au‖ ≤ 2‖u − Bu‖;
(3) 〈I ′(u), u − Bu〉 ≥ 1

2‖u − Au‖2;
(4) ‖I ′(u)‖ ≤ 2‖u − Bu‖;

where K = {u ∈ E |I ′(u) = 0}.
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Lemma 3.4 Suppose that N is a symmetric closed neighborhood of Kc := {u ∈ E |I ′(u) =
0 and I (u) = c}. Then, there exists ε1 > 0 such that for 0 < ε < ε′ < ε1, there exists a
continuous map σ : [0, 1] × E → E satisfying:

(1) σ (0, u) = u, ∀ u ∈ E.
(2) σ (t, u) = u, ∀ t ∈ [0, 1], I (u) /∈ [c − ε′, c + ε′].
(3) σ (t,−u) = −σ(t, u), ∀ (t, u) ∈ [0, 1] × E .

(4) σ (1, I c+ε\N ) ⊂ I c−ε.

(5) σ (t, P+
ε ) ⊂ P+

ε , σ(t, P−
ε ) ⊂ P−

ε .

In particular, if N is a symmetric closed neighborhood of Kc\W , where W = Pε ∪ −Pε,
then there exists ε1 > 0 such that for 0 < ε < ε1 there exists a continuous map η : E → E
such that

(6) η(−u) = −η(u), ∀u ∈ E.
(7) η|I c−2ε = id.
(8) η(I c+ε\(N ∪ W )) ⊂ I c−ε .

(9) η(P+
ε ) ⊂ P+

ε , η(P−
ε ) ⊂ P−

ε .

Proof For δ > 0 sufficiently small, let N (δ) = {u ∈ X |d(u,Kc) < δ} ⊂ N . Since I satisfies
the (P S) condition, there exist constants ε1, b0 > 0 such that

‖I ′(u)‖ ≥ b0,∀ u ∈ I −1([c − ε1, c + ε1])\N

(
δ

2

)
.

By Lemma 3.3, there exists b > 0 such that 〈I ′(u), u−Bu
‖u−Bu‖ 〉 ≥ b > 0 for u ∈ I −1([c −

ε1, c + ε1])\N ( δ
2 ). Assume ε1 < min{ 14bδ, ε0}.

Define two even Lipschitz continuous functions g, p : E → [0, 1] such that

g(u) =
{
0, u ∈ N ( δ

4 ),

1, u /∈ N ( δ
2 ),

p(u) =
{
0, u /∈ I −1([c − ε′, c + ε′]),
1, u ∈ I −1([c − ε, c + ε]).

Set �(u) = g(u)p(u) u−Bu
‖u−Bu‖ , then the initial value problem

{ dτ(t,u)
dt = −�(τ(t, u)),

τ (0, u) = u,

has unique a solution τ(t, u) and τ is continuous about u. Set [0, T (u)] is the maximal
interval of existence to τ . Then σ(t, u) = τ( 2εb t, u) is what we need. In fact, we can verify
(1)-(3) as usual. For (4), let u ∈ I c+ε\N . If I (τ (t, u)) > c − ε for each t ∈ [0, 2ε

b ]
, then p(τ ) = 1. And if there exists t0 ∈ [0, 2ε

b ] such that τ(t0, u) ∈ N ( δ
2 ), then

δ
2 ≤

‖τ(t0, u) − u‖ ≤ ∫ t0
0 ‖τ ′(s, u)‖ds ≤ t0 ≤ 2ε

b < δ
2 , which is a contradiction. Therefore,

I (σ (1, u)) = I (τ ( 2εb , u)) ≤ I (u)− 2ε
b

∫ 1
0 〈I ′(τ (s, u)),�(τ(s, u))〉ds ≤ c+ε− 2ε

b b ≤ c−ε.
For (5), we can immediately verify it since B(∂ P+

ε ) ⊂ P+
ε , B(∂ P−

ε ) ⊂ P−
ε .

In particular, it is normal to verify that η(u) := σ(1, u) satisfies (6)–(9). ��
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Proof of Theorem 1.3
Letλi , i = 1, 2, . . .be the i th eigenvalue of (2.3) and ei be the eigenfunction corresponding

to λi , X j = span{e1, e2, . . . , e j }. Denote

M = {u ∈ E
∣∣ 1
4
‖u‖2 >

∫
Ω

F(x, u)dx} ∪ Bρ,

where ρ > 0 such that

{u ∈ E
∣∣ 1
4
‖u‖2 =

∫
Ω

F(x, u)dx} ∩ ∂ Bρ �= φ.

Note that, ∀ε > 0, there exists Cε > 0 such that

|F(x, u)| ≤ ε|u|2 + Cε|u|p.

From the arbitrary of ε and the definition of λi , which is defined in Proposition 2.2, for all
u ∈ ∂ M ∩ X⊥

j−1, we deduce∫
Ω

F(x, u)dx ≤ C
∫

Ω

|u|pdx

≤
(∫

Ω

|u|2dx

) pθ
2

(∫
Ω

|u|2∗
s dx

) p(1−θ)

2∗s

≤ Cλ
− pθ

2
j ‖u‖pθ‖u‖p(1−θ)

= Cλ
− pθ

2
j

(∫
Ω

F(x, u)dx

) p
2

,

(3.7)

where θ ∈ (0, 1) satisfying 1
p = θ

2 + 1−θ
2∗

s
. Hence,

∫
Ω

F(x, u)dx ≥ Cλ

pθ
p−2
j .

Therefore, for u ∈ ∂ M ∩ X⊥
j−1, there holds

I (u) = 1

2
‖u‖2 −

∫
Ω

F(x, u)dx

≥ 1

4

∫
Ω

F(x, u)dx

≥ Cλ

pθ
p−2
j .

That is,

inf
u∈∂ M∩X⊥

j−1

I (u) ≥ Cλ

pθ
p−2
j → +∞ , j → +∞.

Choose R j large enough such that I (u) < 0, for u ∈ X j\BR j . Define

c j = inf
D∈� j

sup
u∈D\W

I (u),

where

� j =
{

H(X j+1 ∩ BR j+1)
∣∣ H ∈ C(X j+1 ∩ BR j+1 , E) , H is odd, H

∣∣
X j+1∩∂ BR j+1

= id

}
.
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Now, we claim

∀D ∈ � j , j ≥ 2, (D\W ) ∩ X⊥
j−1 ∩ ∂ M �= φ.

Indeed, for D = H(X j+1 ∩ BR j+1), where H ∈ C(X j+1 ∩ BR j+1 , X), H is odd and

H |∂ BR j+1∩X j+1 = id . Let Ô= {u ∈ X j+1 ∩ BR j+1 |H(u) ∈ intM} and O be the connected

component of Ô containing 0. Then, O is a bounded symmetric neighborhood of 0 in X j+1

and O ∩ X j+1 ∩ ∂ BR j+1 = ∅. By Borsuk’s theorem,

γ (∂O) = j + 1 and H(∂O) ⊂ ∂ M,

where γ (∂O) denote the genus of ∂O , one can refer to [33] for more properties of genus.
Define h : W ∩ ∂ M → R by h(u) = ∫

Ω
F(x, u+)dx − ∫

Ω
F(x, u−)dx , then h is an

odd continuous map. If 0 ∈ h(W ∩ ∂ M), that is there exists u ∈ W ∩ ∂ M such that∫
Ω

F(x, u+)dx = ∫
Ω

F(x, u−)dx . On one hand, for u ∈ W , we have
∫
Ω

F(x, u+)dx =∫
Ω

F(x, u−)dx ≤ Cε. On the other hand, for u ∈ ∂ M , there exists C > 0 such that∫
Ω

F(x, u)dx ≥ C > 0, which is a contradiction when ε is small enough. Therefore,
γ (∂ M ∩ W ) = 1. Thus, γ ((H(∂O)\W ) ∩ ∂ M) ≥ j + 1 − 1 = j , which is contradict to
codim(X⊥

j−1) = j − 1 < j . So H(∂O)\W ∩ ∂ M ∩ X⊥
j−1 �= ∅, and H(∂O)\W ⊂ D\W ;

thus, the claim is proved. Then,

c j ≥ inf
u∈∂ M∩X⊥

j−1

I (u) ≥ Cλ

pθ
p−2
j → +∞.

Finally, we prove thatKc j \W �= φ, j ≥ 2. Otherwise, by Lemma 3.4, there exists ε > 0 and
an odd continuous map η : E → E such that

η|
I c j −2ε = id , η(I c j +ε\W ) ⊂ I c j −ε , η(P±

ε ) ⊂ P±
ε .

For the ε above, there exists D ∈ � j such that supu∈D\W I (u) < c j + ε, that is D\W ⊂
I c j +ε . On the one hand, denote U = η(D), and it is easy to verify that U ∈ � j and
c j ≤ supu∈U\W I (u). On the other hand,

U\W = η(D)\W ⊂ (η(D\W ) ∪ η(W ))\W ⊂ η(D\W )\W ⊂ η(I c j +ε\W ) ⊂ I c j −ε.

Therefore,

c j ≤ sup
u∈U\W

I ≤ c j − ε,

which is a contradiction. Thus, we have completed the proof of Theorem 1.3.
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