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Abstract We prove a couple of results concerning pseudodifferential perturbations of differ-
ential operators being sums of squares of vector fields and satisfying Hörmander’s condition.
The first is on the minimal Gevrey regularity: if a sum of squares with analytic coefficients
is perturbed with a pseudodifferential operator of order strictly less than its subelliptic index
it still has the Gevrey minimal regularity. We also prove a statement concerning real analytic
hypoellipticity for the same type of pseudodifferential perturbations, provided the operator
satisfies to some extra conditions (see Theorem 1.2 below) that ensure the analytic hypoel-
lipticity.
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1 Introduction and statement of the result

Let X j (x, D), j = 1, . . . , N , N ∈ N, be real vector fields defined in an open subset of
U ⊂ R

n . We may suppose that the origin belongs to U and that the vector fields have real
analytic coefficients defined in U . Let

P(x, D) =
N∑

j=1

X j (x, D)2, (1.1)

and assume that the vector fields satisfy the Hörmander’s condition:
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(H) The Lie algebra generated by the vector fields and their commutators has dimension n,
equal to the dimension of the ambient space.

Hörmander proved in [11] that (H) is sufficient forC∞ hypoellipticity andM. Derridj proved
in [7] that Hörmander’s condition is necessary if the coefficients of the vector fields are real
analytic.

The operator P satisfies the a priori estimate

‖u‖21/r +
N∑

j=1

‖X ju‖20 ≤ C
(|〈Pu, u〉| + ‖u‖20

)
, (1.2)

which we call, for the sake of brevity, the “subelliptic estimate.” Here u ∈ C∞
0 (U ), ‖ · ‖0

denotes the norm in L2(U ) and ‖ · ‖s the Sobolev norm of order s in U . Since the vector
fields satisfy condition (H), we denoted by r the length of the iterated commutator such that
the vector fields, their commutators, their triple commutators etcetera up to the commutators
of length r generate a Lie algebra of dimension equal to that of the ambient space.

The above estimate was proved first by Hörmander [11] for a Sobolev norm of order
r−1 + ε and up to order r−1 subsequently by Rothschild and Stein ([16]) as well as in a
pseudodifferential context by Bolley et al. [4].

Basically using (1.2) Derridj and Zuily proved in [8] that any operator of the form (1.1)
is Gevrey hypoelliptic of order r , i.e., that if u is a distribution on an open set U such that
Pu ∈ Gr (U ) then u ∈ Gr (U ). In [1], a microlocal version of this has been proved and we
refer to Sect. 2.4 for more details.

We recall in passing that a smooth function u defined in an open set U ⊂ R
n is of

class Gevrey s if for every compact subset K � U there is a positive CK such that for any
multiindex α, |∂α

x u(x)| ≤ C |α|+1
K α!s for x ∈ K . If s = 1we obtain the real analytic functions.

The purpose of this note is to study the following problem: when the hypoellipticity
properties of the operator P are preserved if we are willing to perturb it with an analytic
pseudodifferential operator?

It is known (see [13], Theorems 22.4.14 as well as 22.4.15) that if we perturb a sum of
squares with an arbitrary first-order operator, we may obtain a non-hypoelliptic operator.
For instance if we consider P(x, D) = D2

1 + x21D
2
2 in two variables and perturb it with a

first-order operator, obtaining P̃(x, D) = D2
1 + x21D

2
2 + αD2, we have a non-hypoelliptic

operator if α = ±1 or if α is a function assuming those values at the point of interest in the
characteristic set.

In a sort of converse direction Stein [20], proved that if we consider Kohn’s Laplacian,
�b, which is neither hypoelliptic nor analytic hypoelliptic, and perturb it with a non zero
complex number, �b + α, α ∈ C \ {0}, we obtain an operator being both hypoelliptic and
analytic hypoelliptic.

For higher-order operators, G. Métivier gave a result of analytic hypoellipticity provided
certain conditions are satisfied on the lower-order terms (Levi conditions) in the paper [14].

For further details on (first order) differential perturbations, we refer to the papers [9]
and [15]. For a pseudodifferential perturbation, we give, in “Appendix”, a very brief account
showing that the order of the perturbation does matter lest we have to impose extra conditions
on the perturbing symbol.

These facts suggest that, if no other conditions are to be imposed on the perturbing operator,
its order has to be strictly less than the subelliptic index of the sum of squares.

Before stating our result, we need some notation.
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Write {Xi , X j } for the Poisson bracket of the symbols of the vector fields Xi , X j :

{Xi , X j }(x, ξ) =
n∑

�=1

(
∂Xi

∂ξ�

∂X j

∂x�

− ∂X j

∂ξ�

∂Xi

∂x�

)
(x, ξ).

Definition 1.1 Fix a point (x0, ξ0) ∈ Char(P).1 Consider all the iterated Poisson brackets
{Xi , X j }, {{Xi , X j }, Xk} etcetera.

We define ν(x0, ξ0) as the length of the shortest iterated Poisson bracket of the symbols
of the vector fields which is nonzero at (x0, ξ0).

Now we have

Theorem 1.1 Let P be as in (1.1) and denote by Q(x, D) an analytic pseudodifferential
operator defined in a conical neighborhood of the point (x0, ξ0) ∈ Char(P). If

ord(Q) < 2/ν(x0, ξ0)

then P + Q is Gν(x0,ξ0) hypoelliptic at (x0, ξ0).

A few remarks are in order.

(a) Definition 1.1 as well as the regularity obtained in Theorem 1.1 microlocal. We say that
an operator Q is Gs hypoelliptic at (x0, ξ0) if (x0, ξ0) /∈ WFs(u) provided (x0, ξ0) /∈
WFs(Qu). Here WFs(u) denotes the Gevrey s wave front set of the distribution u, i.e.,
the set of points in T ∗

R
n \ {0} where the distribution u is not (microlocally) Gevrey s.

(b) We stated Theorem 1.1 in the case of analytic coefficients, for the sake of simplicity.
Actually onemight assume someGevrey regularity like we do in the following corollary.

Corollary 1.1 Let V denote a neighborhood of the point x0 and

r = sup
x∈V,|ξ |=1

ν(x, ξ).

Let moreover P be as above with Gr coefficients defined in V and Q ∈ OPSmr (V ) be a Gr

pseudodifferential operator of order m < 2/r . Then P + Q is Gr hypoelliptic at x0.

A perturbation result for the analytic case can also be proved using the same ideas as for
Theorem 1.1.

We make the following assumptions on the operator P in (1.1):

(1) Let U × � be a conic neighborhood of (x0, ξ0). There exists a real analytic function,
h(x, ξ), h : U × � → [0,+∞[ such that h(x0, ξ0) = 0 and h(x, ξ) > 0 in U × � \
{(x0, ξ0)}.

(2) There exist real analytic functions α jk(x, ξ) defined in U × �, such that

{h(x, ξ), X j (x, ξ)} =
N∑

�=1

α j�(x, ξ)X�(x, ξ), (1.3)

for j = 1, . . . , N .

In [2] it was proved that if P , defined as in (1.1), satisfies (1), (2) then P is analytic hypoelliptic
at (x0, ξ0).

1 Char(P) denotes the characteristic variety of P , i.e., Char(P) = {(x, ξ) ∈ T ∗
R
n \ {0} | X j (x, ξ) = 0, j =

1, . . . , N }. Here X j (x, ξ) is the symbol of the vector field X j .
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Theorem 1.2 Let P be as in (1.1) and assume that (1) and (2) above are satisfied. Let Q be
a real analytic pseudodifferential operator of order strictly less than 2/ν(x0, ξ0), then P+Q
is analytic hypoelliptic at (x0, ξ0).

We point out that the ideal statement of the above theoremwould be one deducing analytic
hypoellipticity of the perturbation from the analytic hypoellipticity of the operator, without
any assumption but the order of the perturbation. Unfortunately this seems a much more
difficult result to prove and it has been proved in the global case, for some classes of operators,
by Chinni and Cordaro [6], and by Braun Rodrigues et al. [5].

Finallywe say a fewwords about themethod of proof. It consists in using the FBI transform
and the subelliptic inequality on the FBI side obtained in [1]. To do that, we use a deformation
technique of the Lagrangian manifold associated with the FBI transform, proposed by Grigis
and Sjöstrand in [10].

2 Background on FBI and sums of squares

We are going to use a pseudodifferential and FIO (Fourier Integral Operators) calculus intro-
duced by Grigis and Sjöstrand in the paper [10]. We recall below the main definitions and
properties to make this paper self-consistent and readable. For further details, we refer to the
paper [10], to the lecture notes [19], as well as to [12] and [17].

2.1 The FBI transform

We define the FBI transform of a temperate distribution u as

Tu(x, λ) =
∫

Rn
eiλϕ(x,y)u(y)dy,

where λ ≥ 1 is a large parameter, ϕ is a holomorphic function such that det ∂x∂yϕ �= 0,
Im ∂2yϕ > 0.

Here ∂x denotes the complex derivative with respect to the complex variable x .

Example 1 A typical phase function may be ϕ(x, y) = i
2 (x − y)2.

To the phase ϕ, there corresponds a weight function �(x), defined as

�(x) = sup
y∈Rn

− Im ϕ(x, y), x ∈ C
n .

We may take a slightly different perspective. Let us consider (x0, ξ0) ∈ C
2n and a real-

valued real analytic function �(x) defined near x0, such that � is strictly plurisubharmonic
and

2

i
∂x�(x0) = ξ0.

Denote by ψ(x, y) the holomorphic function defined near (x0, x̄0) by

ψ(x, x̄) = �(x). (2.1)

Because of the plurisubharmonicity of �, we have

det ∂x∂yψ �= 0 (2.2)
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and

Reψ(x, ȳ) − 1

2
[�(x) + �(y)] ∼ −|x − y|2. (2.3)

To end this section, we recall the definition of s—Gevrey wave front set of a distribution.

Definition 2.1 Let (x0, ξ0) ∈ U ⊂ T ∗
R
n \ 0. We say that (x0, ξ0) /∈ WFs(u) if there exist

a neighborhood  of x0 − iξ0 ∈ C
n and positive constants C1, C2 such that

|e−λ�0(x)Tu(x, λ)| ≤ C1e
−λ1/s/C2 ,

for every x ∈ . Here T denotes the classical FBI transform, i.e., that using the phase function
of Example 1.

2.2 Pseudodifferential operators

Let λ ≥ 1 be a large positive parameter. We write

D̃ = 1

λ
D, D = 1

i
∂.

Denote by q(x, ξ, λ) an analytic classical symbol and by Q(x, D̃, λ) the formal classical
pseudodifferential operator associated with q .

Using “Kuranishi’s trick” one may represent Q(x, D̃, λ) as

Qu(x, λ) =
(

λ

2iπ

)n ∫
e2λ(ψ(x,θ)−ψ(y,θ))q̃(x, θ, λ)u(y)dydθ. (2.4)

Here q̃ denotes the symbol of Q in the actual representation.
To realize the above operator, we need a prescription for the integration path.
This is accomplished by transforming the classical integration path via the Kuranishi

change of variables and eventually applying Stokes theorem:

Qu(x, λ) =
(

λ

π

)n ∫



e2λψ(x,ȳ)q̃(x, ȳ, λ)u(y)e−2λ�(y)L(dy), (2.5)

where L(dy) = (2i)−ndy ∧ d ȳ, the integration path is θ = ȳ and  is a small neighborhood
of (x0, x̄0). We remark that Qu(x) is an holomorphic function of x .

Definition 2.2 Let  be an open subset of Cn . We denote by H�() the space of all holo-
morphic functions u(x, λ) such that for every ε > 0 and for every compact K ⊂⊂ , there
exists a constant C > 0 such that

|u(x, λ)| ≤ Ceλ(�(x)+ε),

for x ∈ K and λ ≥ 1.

Remark 2.1 If q̃ is a classical symbol of order zero, Q is uniformly bounded as λ → +∞,
from H�() into itself.

Remark 2.2 If the principal symbol is real, Q is formally self adjoint in L2(, e−2λ�).

Remark 2.3 Definition (2.4) of (the realization of) a pseudodifferential operator on an open
subset ofCn is not the classical one. Via theKuranishi trick it can be reduced to the classical
definition. On the other hand, using the function ψ allows us to use a weight function not
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explicitly related to an FBI phase. This is useful since in the proof we deform the Lagrangian
��0 , corresponding, e.g., to the classical FBI phase, and obtain a deformed weight function
which is useful in the a priori estimate.

For future reference, we also recall that the identity operator can be realized as

Iu(x, λ) =
(

λ

π

)n ∫



e2λψ(x,ȳ)i(x, ȳ, λ)e−2λ�(y)u(y, λ)L(dy), (2.6)

for a suitable analytic classical symbol i(x, ξ, λ). Moreover, we have the following estimate
(see [10] and [18])

‖Iu − u‖�−d2/C ≤ C ′‖u‖�+d2/C , (2.7)

for suitable positive constants C and C ′. Here we denoted by

d(x) = dist(x, �), (2.8)

the distance of x to the boundary of , and by

‖u‖2� =
∫



e−2λ�(x)|u(x)|2L(dx). (2.9)

2.3 Some pseudodifferential calculus

We start with a proposition on the composition of two pseudodifferential operators.

Proposition 2.1 ([10]) Let Q1 and Q2 be of order zero. Then they can be composed and

Q
1 ◦ Q

2 = (Q1 ◦ Q2)
 + R,

where R is an error term, i.e., an operator whose norm is O(1) as an operator from
H�+(1/C)d2 to H�−(1/C)d2

We shall need also a lower bound for an elliptic operator of order zero.

Proposition 2.2 ([1]) Let Q a zero-order pseudodifferential operator defined on as above.
Assume further that its principal symbol q0(x, ξ, λ) satisfies

|q0|
��∩π−1()

| ≥ c0 > 0.

Here π denotes the projection onto the first factor in Cn
x × C

n
ξ . Then

‖u‖�̃ + ‖Qu‖� ≥ C‖u‖�, (2.10)

where

�̃(x) = �(x) + 1

C
d2(x), (2.11)

and d has been defined in (2.8).

Proof We have

Qu(x, λ) − q0|��
(x, λ)Iu(x, λ)

=
(

λ

π

)n ∫



e2λψ(x,ȳ)
[
q(x, ȳ, λ) − q0|��

(x, λ)i(x, ȳ, λ)
]

·e−2λ�(y)u(y)L(dy).
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The absolute value of the term in square brackets may be estimated by C(|x − y| + λ−1).
Then

‖Qu − q0|��
Iu‖2� ≤ Cλ−2‖u‖2�

+C
∫



∣∣∣∣

(
λ

π

)n ∫



e−λ�(x)+2λψ(x,ȳ)−λ�(y)|x − y|e−λ�(y)u(y)L(dy)

∣∣∣∣
2

L(dx)

≤ C

(
λ

π

)2n ∫



(∫



e−λ/C |x−y|2 |x − y|L(dy)

)

·
(∫



e−λ/C |x−y|2 |x − y|e−2λ�(y)|u(y)|2L(dy)

)
L(dx) + Cλ−2‖u‖2�

≤ Cλ−1‖u‖2�.

Using (2.7), we may conclude that

‖Qu‖� ≥ ‖q0|��
Iu‖� − Cλ−1/2‖u‖�

≥ ‖q0|��
u‖� − ‖q0|��

(I − 1)u‖� − Cλ−1/2‖u‖�

≥ c0‖u‖� − C‖u‖�̃ − Cλ−1/2‖u‖�.

This proves the assertion. ��
2.4 An a priori estimate for sums of squares

Consider now the vector fields X j defined in Sect. 1. Following [1], we state the FBI version
of the estimate (1.2).

Theorem 2.1 Let P be the-realization of P (see Eq. (2.5)). Note that, arguing as in [10]
we have that

P =
N∑

j=1

(X
j )2 + O(λ2), (2.12)

where O(λ2) is continuous from H�̃ to H�−(1/C)d2 with norm bounded by C ′λ2, �̃ given by
(2.11).

Let 1 ⊂⊂ . Then

λ
2
r ‖u‖2� +

N∑

j=1

‖X
j u‖2� ≤ C

(
〈Pu, u〉� + λα‖u‖2�,\1

)
, (2.13)

where α is a positive integer, u ∈ L2(, e−2�L(dx)) and r = ν((x0, ξ0)).

3 Proof of Theorem 1.1

In order to prove Theorem 1.1, we construct a deformation of ��0 following the ideas in
[10] (see also [1].)

Let us consider the “sum of squares of vector fields” operator P defined in 1.1. Let (x0, ξ0)
be a characteristic point of P and let r = ν(x0, ξ0).

123



1208 A. Bove, G. Chinni

We perform an FBI transform of the form

Tu(x, λ) =
∫

Rn
eiλϕ(x,y)u(y)dy,

where u is a compactly supported distribution and ϕ(x, y) is a phase function. Even though
it does not really matter which phase function we use, the classical phase function will be
employed:

ϕ0(x, y) = i

2
(x − y)2, x ∈ C

n, y ∈ R
n . (3.1)

Let us denote by  an open neighborhood of the point πxHT (x0, ξ0) inCn . Here πx denotes
the space projection πx : Cn

x × C
n
ξ → C

n
x and HT is the complex canonical transformation

associated with T :

HT :
{(

y,−2

i

∂�

∂y

)}
→

{(
x,

2

i

∂�

∂x

)}
,

(�(x, y) = − Im ϕ(x, y)), i.e., in the classical case, once we restrict to R2n ,

H0(y, η) = (y − iη, η), (y, η) ∈ R
2n .

For the sake of simplicity, we denote by x0 ∈ C
n the point πxH0(x0, ξ0).

Let�0(x, y) = − Im ϕ0(x, y) = − 1
2 (x

′− y)2+ 1
2 x

′′2, where y ∈ R
n , x = x ′+i x ′′ ∈ C

n .
We write also

�0(x) = c.v.y∈Rn�0(x, y)

(the critical value of �0 w.r.t. y.).
For λ ≥ 1, let us consider a real analytic function defined near the point H0(x0, ξ0) =

(x0−iξ0, ξ0) ∈ ��0 , say h(x, ξ, λ). Solve, for small positive t , theHamilton-Jacobi problem
⎧
⎨

⎩
2
∂�

∂t
(t, x, λ) = h

(
x,

2

i

∂�

∂x
(t, x, λ), λ

)

�(0, x, λ) = �0(x)
. (3.2)

This is easy to solve since h is real analytic. Set

�t (x, λ) = �(t, x, λ).

We have

��t = exp (i t Hh) ��0

We choose the function h as

h(x, ξ, λ) = λ− r−1
r |x − x0|2 on ��0 . (3.3)

Keeping in mind the definition of ��0 , we have that, as a function in R2n

h(x, ξ, λ) = λ− r−1
r

[|x − x0|2 + |ξ − ξ0|2
]
. (3.4)

The function �t can be expanded as a power series in the variable t using both Eq. (3.2) and
the Faà di Bruno formula to obtain

�t (x, λ) = �0(x) + t

2
h(·, ·, λ)∣∣

��0

+ O(λ−1), (3.5)
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where h on ��0 is given by (3.4).
Our purpose is to use the estimate (2.13) where the weight function � has been replaced

by the weight �t . This is possible using the phase ψt in (2.4) and realizing the operator as
in (2.5). Here ψt is defined as the holomorphic extension of ψt (x, x̄) = �t (x).

We need to restrict the symbol of both P and P+Q to��t ; denote by Pt , Qt the symbols
of P , Q restricted to ��t .

Noting that

X2
j

(
x,

2

i
∂x�t (x, λ), λ

)
= X2

j

(
x,

2

i
∂x�0(x), λ

)

+ 2t X j

(
x,

2

i
∂x�0(x), λ

) 〈
∂ξ X j

(
x,

2

i
∂x�0(x), λ

)
,
2

i
∂x∂t�t (x, λ)∣∣

t=0

〉

+O(t2λ2/r ),

We then deduce that

Pt (x, ξ, λ) = λ2P(x, ξ) + t R(x, ξ, λ) + O(t2λ
2
r ), (3.6)

where

R(x, ξ, λ) = λ
1
r

N∑

j=1

a j (x, ξ, λ)X j (x, ξ, λ).

The analytic extension of Pt is the symbol appearing in the -realization of Pt , Pt. We
point out that the principal symbol of Pt satisfies the assumptions of Theorem 2.1 and, using
the a priori inequality (2.13), we can deduce an estimate of the form (2.13) for Pt in the H�t

spaces.
Denote by θ the order of the pseudodifferential operator Q. We have

λ
2
r ‖u‖2�t

+
N∑

j=1

‖X
j u‖2�t

≤ C
(
|〈(Pt − t R − O(t2λ

2
r ))u, u〉�t | + λα‖u‖2�t ,\1

)

= C
(
|〈(Pt + Qt − t R − O(t2λ

2
r ) − Qt)u, u〉�t |

+ λα‖u‖2�t ,\1

)

The fourth term in the left-hand side of the scalar product above is easily absorbed on the
left provided t is small enough. The fifth term is also absorbed since, being Q of order θ ,
‖Qtu‖�t , ≤ λθC‖u‖�t ,.

Let us consider the third term in the scalar product above. By Proposition 2.1, we have

R =
N∑

j=1

a
j (x, D̃, λ)X

j (x, D̃, λ) + O(λ),

where O(λ) denotes an operator from H�t+ 1
C d2 to H�t− 1

C d2 whose norm is bounded by Cλ.
Hence

t |〈Ru, u〉�t | ≤ Ct
(
λ

2
r ‖u‖2�t

+
N∑

j=1

‖X
j u‖2�t

+ λ2‖u‖2
�̃t

)
.
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Hence we deduce that there exist a neighborhood0 of x0, a positive number δ and a positive
integer α such that, for every 1 ⊂⊂ 2 ⊂⊂  ⊂ 0, there exists a constant C > 0 such
that, for 0 < t < δ, we have

λ
2
r ‖u‖�t ,1 ≤ C

(
‖(P + Q)t

u‖�t ,2 + λα‖u‖�t ,\1

)
. (3.7)

In other words, Theorem 2.1 holds for the perturbed operator.
Using (3.7), we may finish the proof of Theorem 1.1.
By assumption ‖(P + Q)t

u‖�t ,2 ≤ Ce−λ/C , since��t is a small perturbation of��0

when t is small.
By our choice of h [see (3.3)], it is also straightforward that ‖u‖�t ,\1 ≤ Ce−λ1/r /C .

Thus, we obtain that

‖u‖�t ,1 ≤ C1e
−λ1/r /C1 .

On the other hand, �t (x, λ) = �0(x) + t
2 h(·, ·, λ)∣∣

��0

+ O(λ−1), so that, if we are close

enough to the base point on ��0 , i.e., for x ∈ 3, for a fixed small positive value of t , we
have

�t (x) − �0(x) ≤ λ−1+1/r

C2(t)
.

Therefore ‖u‖�0,3 ≤ ce−λ1/r /c, which proves Theorem 1.1.

4 Proof of Theorem 1.2

We are going to proceed in the same way as in the previous section, but using the (order zero)
function h of the assumption. First of all, we deform ��0 according to (3.2). Next we want
to deduce a priori estimates for P + Q where the weight function �0 is replaced by �t . For
the sake of simplicity, let us write (1.3) as

{h(x, ξ), X j (x, ξ)} = α(x, ξ)X (x, ξ), (4.1)

where X denotes a vector whose components are the symbols of the vector fields and α

is a N × N matrix with entries being real analytic symbols. As before we have ��t =
exp(i t Hh)��0 .

Denote by Y t
j , j = 1, . . . , N , the restriction to��t of X j . We have Y t

j = X j ◦exp(i t Hh),
so that, by our assumptions,

∂t Y
t = i{h, X} ◦ exp(i t Hh).

We deduce that
⎧
⎨

⎩
2
∂Y t

∂t
(x, ξ) = i(α ◦ exp(i t Hh))(x, ξ)Y t (x, ξ)

Y t (x, ξ)∣∣
t=0

= X (x, ξ)
.

From this relation, we deduce that there is a N × N matrix, whose entries are real analytic
symbols depending real analytically on the real parameter t , bt (x, ξ), such that

Y t (x, ξ) = bt (x, ξ)X (x, ξ), (4.2)

and that b0 = IdN . Hence bt is non-singular if t is small enough.
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Denote by Xt the holomorphic extension of Re Y t ; since X is real on ��0 , using (4.2),
we have that

Xt (x, ξ) = βt (x, ξ)X (x, ξ), (4.3)

where βt=0(x, ξ) = IdN . In particular βt is non-singular, provided t is small.
Then we have

P(x, D̃) =
N∑

i, j=1

Xt
i (x, D̃)ati j (x, D̃; λ)Xt

j (x, D̃)

+ λ−1
N∑

j=1

btj (x, D̃; λ)Xt
j (x, D̃) + λ−2ct (x, D̃; λ), (4.4)

for suitable analytic pseudodifferential operators ati j , b
t
j , c

t of order zero.
We can apply Theorem 2.1 and deduce that

λ
2
r ‖u‖�t ,1 ≤ C

(‖Pu‖�t , + λα‖u‖�t ,\1

)
,

where 1 ⊂⊂ , α is a fixed positive integer and P denotes the realization on  of the given
operator P . Let Q the realization on  of the real analytic pseudodifferential operator of
order θ < 2/r in the statement of Theorem 1.2. We have

λ
2
r ‖u‖�t ,1 ≤ C

(‖ (P + Q) u‖�t , + ‖Qu‖�t , + λα‖u‖�t ,\1

)
. (4.5)

Let us consider the second term in the right-hand side of the above inequality. We have

‖Qu‖�t , ≤ C1λ
θ‖u‖�t , ≤ C1λ

θ
(‖u‖�t ,1 + ‖u‖�t ,\1

)

Since θ < 2/r the first term of above inequality is absorbed on the left-hand side of (4.5)
provided λ is large enough. Hence we have

λ
2
r ‖u‖�t ,1 ≤ C

(‖ (P + Q) u‖�t , + λα‖u‖�t ,\1

)
, (4.6)

for a suitable new positive constant C .
Assume now that (x0, ξ0) /∈ WFa((P + Q)u). We may choose  in such a way that

‖(P + Q)u‖�0, ≤ Ce−λ/C , (4.7)

for a suitable positive constant C . From

�t (x) = �0(x) + 1

2

∫ t

0
h

(
x,

2

i
∂x�s(x)

)
ds, (4.8)

using the fact that h∣∣��0
≥ 0, and recalling that ��t = exp(i t Hh)��0 , we deduce that

h∣∣��t
≥ 0 so that

�t (x) ≥ �0(x), x ∈ . (4.9)

Hence, by (4.9) and (4.7),

‖(P + Q)u‖�t , ≤ Ce−λ/C , (4.10)

for a suitable positive constant C .
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Let us now estimate the second term in the right-hand side of (4.6). We point out that

h∣∣��0∩ \1
≥ a > 0.

It follows, because of (4.8), that

�t (x) ≥ �0(x) + c′t, x ∈  \ 1. (4.11)

Then

‖u‖2�t ,\1
=

∫

\1

e−2λ�t (x)|u(x)|2L(dx)

≤
∫

\1

e−2λ�0(x)−2λc′t |u(x)|2L(dx)

≤ Ce−2λc′tλN

≤ Ce−λc′′t , t > 0.

By (4.6), we deduce that ‖u‖�t ,1 ≤ C exp(−λt/C), for a suitable positive constant C . Let
now 2 ⊂⊂ 1 be a neighborhood of x0 such that �t ≤ �0 + t/(2C) in 2. We conclude
that

‖u‖2�0,2
≤ Ce−λt/C , t > 0.

This proves the theorem.

A Appendix

We collect here a few facts concerning the hypoellipticity of pseudodifferential perturbations
of sums of squares.

Let k be an integer, k ≥ 2, and consider

P(x, D) = D2
1 + x2(k−1)

1 D2
2, x ∈ R

2.

Let

Q(x, D) = λ|D2|2/k .
Q is microlocally elliptic near points in Char(P) = {(x, ξ) ∈ R

4 | x1 = ξ1 = 0, ξ2 �= 0}.
Here λ is a constant that we shall choose later.

Performing a Fourier transform w.r.t. x2, and the dilation (we recall that ξ2 �= 0)

x1 → |ξ2|−1/k x1,

P + Q becomes, modulo a microlocally elliptic factor which we can disregard,

D2
1 + x2(k−1)

1 + λ.

Let ϕλ(x1) be such that

−ϕ′′
λ + x2(k−1)

1 ϕλ + λϕλ = 0.

This is possible since the above operator, by [3], has a discrete, positive, simple spectrum,
so that, if λ is the opposite of an eigenvalue, ϕλ, the associated eigenfunction, satisfies the
above equation. It is well known that ϕλ ∈ S (R), i.e., is rapidly decreasing at infinity.
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Consider

u(x) =
∫ +∞

0
eix2ρϕλ(x1ρ

1/k)(1 + ρ4)−1dρ. (A.1)

We see immediately that (P + Q)u = 0. Let us show that u /∈ C∞.
Let us assume first that ϕλ(0) �= 0. Then

u(0, x2) = ϕλ(0)
∫ +∞

0
eix2ρ(1 + ρ4)−1dρ,

and it is obvious that it cannot be smooth since we cannot take an arbitrary derivative w.r.t.
x2.

If ϕλ(0) = 0, then necessarily ϕ′
λ(0) �= 0. It suffices then to consider

(∂x1u)(0, x2) = ϕ′
λ(0)

∫ +∞

0
eix2ρ(1 + ρ4)−1ρ1/kdρ,

and argue exactly as in the preceding case.
This shows that a pseudodifferential perturbation of the same order as the subelliptic-

ity index does not preserve the C∞ hypoellipticity. Analogous argument for the analytic
hypoellipticity.

We also point out that allowing a general pseudodifferential perturbation of order equal
to the subellipticity index may lead to both a hypoelliptic and a non-hypoelliptic operator.

Consider for instance, microlocally near the point (0, e2), P as above and Q = λ|D2|2/k+
μ(x2)|D2|ε, with ε < 2/k. Then P + Q can be analytic hypoelliptic, Gs hypoelliptic for
some s, or not even C∞ hypoelliptic, depending on the analytic function μ. We do not wish
to give any detail about this since it goes far beyond the scope of the present note.
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