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Abstract We give sharp asymptotic estimates at infinity of all radial partial derivatives of
the heat kernel on H-type groups. As an application, we give a new proof of the discreteness
of the spectrum of some natural sub-Riemannian Ornstein–Uhlenbeck operators on these
groups.
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1 Introduction

Estimates at infinity for the heat kernel on the Heisenberg group or, more generally, H-type
groups have attracted a lot of interest in the last decades (see, e.g. [2,7,10,12,16,17]). In the
context of H-type groups, in particular, some results were recently obtained by Eldredge [7]
and Li [17] independently. In [7], Eldredge provides precise upper and lower bounds for the
heat kernel ps and its horizontal gradient ∇H ps . In [17], Li provides asymptotic estimates
for the heat kernel ps , as well as upper bounds for all its derivatives. Nevertheless, to the
best of our knowledge, sharp asymptotic estimates at infinity for the derivatives of ps are
still missing. In this paper, we address this problem by providing asymptotic expansions at
infinity of the heat kernel and of all its derivatives.
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1018 T. Bruno, M. Calzi

Let G be an H-type group identified withR2n ×R
m via the exponential map and denote by

(x, t) its generic element, where x ∈ R
2n and t ∈ R

m . It is well known that the heat kernel ps

is a function of R := |x |2/4 and |t |. Outside the region {(x, t) ∈ G : t = 0}, any derivative
of ps(x, t) can thus be written as a finite linear combination with smooth coefficients of the
functions

ps,k1,k2(x, t) = ∂k1

∂ Rk1

∂k2

∂|t |k2 ps(x, t),

for suitable k1, k2 ∈ N. We call these functions radial partial derivatives of ps . Thus,
everything can be reduced to finding asymptotic estimates at infinity of ps,k1,k2 for every
k1, k2 ∈ N; these will yield asymptotic estimates of every desired derivative of ps .

We divide the paper into five sections. In the next section, we fix the notation and recall
some preliminary facts on H-type groups and the method of stationary phase. In the central
Sects. 3 and 4, the functions ps,k1,k2 are studied. In Sect. 3, we provide asymptotic estimates
for ps,k1,k2 in the case m = 1, namely when G is a Heisenberg group; in Sect. 4, we extend
the results of Sect. 3 to the more general class of H-type groups. This is done via a reduction
to the case m = 1 when m is odd; a descent method is then applied in order to cover the case
m even. The preliminary study of the case m = 1 is necessary except in a single case, for
which the general case could be treated directly; nevertheless, we include both proofs for the
sake of clarity. As the reader may see, our Theorem 4.2 and Corollary 4.15 cover the cases
of [17, Theorems 1.4 and 1.5] and [7, Theorem 4.2] as particular instances and imply [17,
Theorems 1.1 and 1.2] and [7, Theorem 4.4] as easy corollaries, by means of formula (5.1).
In Sect. 5, we show an interesting application of our estimates, providing a different proof
of a theorem due to Inglis [14] which concerns the discreteness of the spectrum of some
Ornstein–Uhlenbeck operators on G.

We emphasize that our methods are strongly related to those employed by Gaveau [10]
and then Hueber andMüller [12] in the case of the Heisenberg groupH1; some ideas are also
taken from the work of Eldredge [7]. In particular, we borrow from [10] and [12] the use of
the method of stationary phase, though in a stronger form provided by Hörmander [11].

2 Preliminaries

2.1 H-type groups

An H-type group G is a 2-step stratified group whose Lie algebra g is endowed with an inner
product ( · , · ) such that

1. if z is the centre of g and h = z⊥, then [h, h] = z;
2. for every Z ∈ z, the map JZ : h → h,

(JZ X, Y ) = (Z , [X, Y ]) ∀X, Y ∈ h,

is an isometry whenever (Z , Z) = 1.

In particular, g stratifies as h ⊕ z. It is very convenient, however, to realize an H-type group
G as R2n × R

m , for some n, m ∈ N, via the exponential map. More precisely, we shall
denote by (x, t) the elements of G, where x ∈ R

2n and t ∈ R
m . We denote by (e1, . . . , e2n)

and (u1, . . . , um) the standard bases of R2n and R
m , respectively. Under this identification,

the Haar measure (dy) is the Lebesgue measure. The maps {JZ : Z ∈ z} are identified with
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Asymptotics for the heat kernel on H-type groups 1019

2n × 2n skew symmetric matrices {Jt : t ∈ R
m}, which are orthogonal whenever |t | = 1.

This identification endows R2n × R
m with the group law

(x, t) · (x ′, t ′) =
(

x + x ′, t + t ′ + 1

2

m∑
k=1

(Juk x, x ′)uk

)
.

A basis of left-invariant vector fields for g is

X j = ∂x j + 1

2

m∑
k=1

(Juk x, e j )∂tk , j = 1, . . . , 2n; Tk = ∂tk , k = 1, . . . , m.

In particular, (X j )1≤ j≤2n is a basis for the first layer h ∼= R
2n . If f is a sufficiently smooth

function on G, its horizontal gradient will be the vector field ∇H f :=∑2n
j=1(X j f )X j , and

its sub-Laplacian L f := −∑2n
j=1 X2

j f . We refer the reader to [3] for further details.

2.2 The heat kernel

On an H-type group G � R
2n × R

m , the heat kernel (ps)s>0 has the form

ps(x, t) = 1

(4π)n(2π)msn+m

∫
Rm

e
i
s (λ,t)− |x |2

4s |λ| coth(|λ|)
( |λ|
sinh |λ|

)n

dλ, (2.1)

for every s > 0 and every (x, t) ∈ G (see [10] or [13] for the Heisenberg groups, [20] or
[24] for H-type groups). For the sake of clarity, we shall sometimes stress the dependence of
ps on the dimension m of the centre of G by writing p(m)

s instead of ps .
We begin by writing the heat kernel (2.1) in a more convenient form. LetR be an isometry

such thatRt = |t |u1, where u1 is the first element of the canonical basis1 of the centre of G,
namely R

m . Then make the change of variables λ �→ R−1λ in (2.1), which gives

ps(x, t) = 1

(4π)n(2π)msn+m

∫
Rm

e
i
s (λ,u1)|t |− |x |2

4s |λ| coth(|λ|)
( |λ|
sinh |λ|

)n

dλ. (2.2)

It is now more evident that ps depends only on |x | and |t |. This leads us to the following
definition.

Definition 2.1 Let R = |x |2
4 . For all s > 0 and for all k1, k2 ∈ N, define

ps,k1,k2(x, t) := ∂k1

∂ Rk1

∂k2

∂|t |k2 ps(x, t) = (−1)k1 i k2

(4π)n(2π)msn+m+k1+k2

×
∫
Rm

e
i
s |t |(λ,u1)− |x |2

4s |λ| coth |λ| |λ|n+k1 cosh(|λ|)k1

sinh(|λ|)n+k1
(λ, u1)

k2 dλ.

(2.3)

Notice that ps is a smooth function of R and |t | by formula (2.2), so that the definition of
ps,k1,k2 is meaningful on the whole of G. Moreover, consider a differential operator on G of
the form

Xγ = ∂ |γ |

∂xγ1∂tγ2

for some γ = (γ1, γ2) ∈ N
2n × N

m . By means of Faà di Bruno’s formula, the function
Xγ ps can be written on {t = 0} as a finite linear combination with smooth coefficients of the

1 The choice of u1 is actually irrelevant.

123



1020 T. Bruno, M. Calzi

functions ps,k1,k2 , for suitable k1 and k2. Since Xγ ps is uniformly continuous, the value of
Xγ ps(x, 0) can then be recovered by continuity uniformly in x ∈ R

2n . Therefore, one can
obtain asymptotic estimates for Xγ ps by combining appropriately some given estimates of
ps,k1,k2 (see also Remark 4.16). We shall see an application of this in Sect. 5.

Observe that it will be sufficient to study p1,k1,k2 , since

ps,k1,k2(x, t) = 1

sn+m+k1+k2
p1,k1,k2

(
x√
s
,

t

s

)

for every s > 0, k1, k2 ∈ N and (x, t) ∈ G. Hence, we shall focus only on p1,k1,k2 . Moreover,
from now on we shall fix the integers k1, k2 ≥ 0. Of course, the choice k1 = k2 = 0 gives
the heat kernel ps .

Remark 2.2 It is well known (see [6] or [3, Remark 3.6.7]) that there exist n and m for which
R
2n ×R

m cannot represent any H-type group. Nevertheless, (2.1) and hence (2.3) make sense
for every positive n, m ∈ N, and for such n and m we shall then study ps,k1,k2 .

Definition 2.3 (cf. [12]) For every (x, t) ∈ G, define2

ω := |t |
R

, δ :=
√

R

π |t | , κ := 2
√

π |t |R.

We shall split the asymptotic condition (x, t) → ∞ into four cases, some of which depend
on an arbitrary constant C > 1. In particular, the first one covers the case |t |/|x |2 bounded,
while the other three are a suitable splitting of the case |t |/|x |2 → ∞.

We shall describe the asymptotic behaviour of p1,k1,k2 in each of these four cases. The
first two will both need the method of stationary phase (Theorem 2.7), while the other two
can be treated through Taylor expansions.

In order to simplify the notation, we give some definitions.

Definition 2.4 Define the function θ : (−π, π) → R by

θ(λ) :=
{

2λ−sin(2λ)

2 sin2(λ)
if λ = 0,

0 if λ = 0.

Lemma 2.5 [10, §3, Lemma 3] θ is an odd, strictly increasing analytic diffeomorphism
between (−π, π) and R.

Definition 2.6 For every ω ∈ R, set yω := θ−1(ω). For every (x, t) ∈ G define

d(x, t) :=

⎧⎪⎨
⎪⎩

|x | yω

sin(yω)
if x = 0 and t = 0,

|x | if t = 0,√
4π |t | if x = 0.

2 Actually, ω is defined for x = 0 and δ for t = 0, but we shall not recall it again in the following.
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Asymptotics for the heat kernel on H-type groups 1021

It is worth observing that d(x, t) is the Carnot–Carathéodory distance between (x, t)
and the origin with respect to the horizontal distribution generated by the vector fields
X1, . . . , X2n . See [15] but also [2,7,21] for a proof and further details.

2.3 The method of stationary phase

The main tool that we shall use is an easy corollary of Hörmander’s theorem of stationary
phase [11, Theorem 7.7.5], stated in a form convenient for our needs. We include a proof
for the sake of clarity. Given an open set V ⊆ R

m , we write E(V ) for the space of C∞
complex-valued functions on V , endowed with the topology of locally uniform convergence
of all the derivatives. If f is a twice differentiable function on an open neighbourhood of 0,
we write P2,0 f for the Taylor polynomial of order 2 about 0 of f .

Theorem 2.7 Let V be an open neighbourhood of 0 inRm, and let F , G be bounded subsets
of E(V ) such that

1. Im f (λ) ≥ 0 for every λ ∈ V and every f ∈ F . Moreover, there exist η > 0 and c1 > 0
such that B(0, 2η) ⊆ V and Im f (λ) ≥ c1|λ| whenever |λ| ≥ η and f ∈ F ;

2. Im f (0) = f ′(0) = 0 and det f ′′(0) = 0 for all f ∈ F ;
3. there exists c2 > 0 such that | f ′(λ)| ≥ c2|λ| for all |λ| ≤ 2η and for all f ∈ F ;
4. there exists c3 > 0 such that |g(λ)| ≤ c3ec3|λ| whenever λ ∈ V , for every g ∈ G .

Then, for every k ∈ N,

∫
V

ei R f (λ)g(λ) dλ = ei R f (0)

√
(2π i)m

Rm det f ′′(0)

k∑
j=0

L j, f g

R j
+ O

(
1

R
m
2 +k+1

)
(2.4)

as R → +∞, uniformly as f ∈ F and g ∈ G , where

L j, f g = i− j
2 j∑

μ=0

( f ′′(0)−1∂, ∂)μ+ j [( f − P2,0 f )μg](0)
2μ+ jμ!(μ + j)! .

In particular, L0, f g = g(0).

Proof Take some τ ∈ C∞
c (Rm) such that χB(0,η) ≤ τ ≤ χB(0,2η). Then split the integral as∫

V
ei R f (λ)g(λ) dλ =

∫
V

ei R f (λ)g(λ)τ(λ) dλ +
∫

V
ei R f (λ)g(λ)(1 − τ(λ)) dλ

and apply [11, Theorem 7.7.5] to the first term, thanks to the first assumption in 1 and
assumptions 2 and 3: this represents the main contribution to the integral and gives the right-
hand side of (2.4). The second term is instead negligible, since by the second assumption in
1 and by 4 we get, if R is large enough,∣∣∣∣
∫

V
ei R f (λ)g(λ)(1 − τ(λ)) dλ

∣∣∣∣ �
∫

|λ|≥η

e−R Im f (λ)+c3|λ| dλ �
∫ ∞

η

e−Rc1ρ+c3ρρm−1 dρ

=
∫ ∞

η

e−(c1Rρ−(1+c3)ρ)−ρρm−1 dρ

� e−(c1R−(1+c3))η
∫ ∞

0
e−ρρm−1 dρ,

which is O
(
e−Rc1η

)
. The proof is complete. ��
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1022 T. Bruno, M. Calzi

Remark 2.8 Theorem 2.7 covers more cases than only oscillatory integrals. Indeed, assume
we have an integral of the form ∫

V
e−R f (λ)g(λ) dλ

where f is real. Under suitable assumptions, such integrals are usually treated via Laplace’s
method (see, e.g. [8,25]). In this case, one can use directly Theorem 2.7, by substituting Im f
by f in assumptions 1–4, thus getting∫

V
e−R f (λ)g(λ) dλ =

√
(2π)m

Rm det f ′′(0)

k∑
j=0

L j, f g

R j
+ O

(
1

R
m
2 +k+1

)
, (2.5)

with the obvious modifications on L j, f g. Coherently, in such cases Theorem 2.7 will be
referred to as Laplace’s method.

3 The Heisenberg group

In this section, we deal with the case m = 1, namely when G = H
n is the Heisenberg group.

The function p1,k1,k2 of Definition 2.1 here reads

p1,k1,k2(x, t) = 2(−1)k1 i k2

(4π)n+1

∫
R

eiλ|t |− |x |2
4 λ coth(λ) λ

n+k1+k2 cosh(λ)k1

sinh(λ)n+k1
dλ.

Indeed, the absolute values of λ in integral (2.3) can be removed by parity reasons. We begin
by introducing some functions which greatly simplify the notation.

Definition 3.1 Define

hk1,k2(R, t) := (−1)k1 i k2

∫
R

eiλ|t |−Rλ coth(λ) λ
n+k1+k2 cosh(λ)k1

sinh(λ)n+k1
dλ

=
∫
R

ei Rϕω(λ)ak1,k2(λ) dλ,

where

ak1,k2(λ) =
{

(−1)k1 i k2 λn+k1+k2 cosh(λ)k1

sinh(λ)n+k1
if λ /∈ π iZ,

(−1)k1 i k2δk2,0 if λ = 0,

ϕω(λ) =
{

ωλ + iλ coth(λ) if λ /∈ π iZ,

i if λ = 0.

(3.1)

Notice that

p1,k1,k2(x, t) = 2

(4π)n+1 hk1,k2 (R, t)

for all (x, t) ∈ H
n ; hence, we can reduce matters to studying hk1,k2(R, t). Observe moreover

that yω = θ−1(ω) ∈ [0, π), since ω ≥ 0.
It will be convenient to reverse the dependence relation between (R, ω) and (x, t); hence,

we shall no longer consider R and ω as functions of (x, t), but rather as “independent
variables”. In this order of ideas, the formula |t | = R ω should sound as a definition.

Our intent will be to apply Theorem 2.7 to a function closely related to hk1,k2 ; hence, we
shall find some stationary points of the phase of hk1,k2 , namely ϕω. The lemma below is of
fundamental importance.
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Asymptotics for the heat kernel on H-type groups 1023

Lemma 3.2 [10, §3, Lemma 6] ϕ′
ω(λ) = ω+ θ̃ (iλ) for all λ /∈ π iZ∗, where θ̃ is the analytic

continuation of θ to Dom(ϕω). In particular, iyω is a stationary point of ϕω.

3.1 I. Estimates for (x, t) → ∞ while 4|t|/|x|2 ≤ C.

Theorem 3.3 Fix C > 0. If (x, t) → ∞ while 0 ≤ ω ≤ C, then

p1,k1,k2(x, t) = 1

|x |e− 1
4 d(x,t)2Ψ (ω)

[
(−1)k1+k2 yn+k1+k2

ω cos(yω)k1

sin(yω)n+k1
+ O

(
1

|x |2
)]

(3.2)

where

Ψ (ω) =
⎧⎨
⎩

1
4nπn+1

√
π sin(yω)3

sin(yω)−yω cos(yω)
if ω = 0,

(3π)1/2

4nπn+1 if ω = 0.

It is worthwhile to stress that the above estimates may not be sharp when ω → 0 and k2 > 0,
as well as whenω → π

2 and k1 > 0. In these cases indeed yω → 0 and yω → π
2 , respectively,

and the first term of the asymptotic expansion (3.2) may be smaller than the remainder. Since
the sharp asymptotic behaviour of p1,k1,k2 when ω remains bounded is rather involved, we
avoid to outline the complete picture for the moment. The statement above is just a simplified
version of Theorem 4.2 of Sect. 4.1, where the general case of H-type groups is completely
described.

In this section, we then limit ourselves to consider Theorem 3.3 in the stated form. Its proof
mostly consists in a straightforward generalization of [10, §3, Theorem 2], but it can also be
seen as Proposition 4.4 of Sect. 4.1 in the current setting of Heisenberg groups. Nevertheless,
for the sake of completeness we give a brief sketch of the proof.

The main idea is to change the contour of integration in the integral defining hk1,k2 in
order to meet a stationary point of ϕω. Since Im ϕω(λ) = ω Im λ + Re [λ coth(λ)] for every
λ /∈ π iZ, to make this change we need to deepen our knowledge of Re [λ coth(λ)] and
|ak1,k2 |; this is done in the following lemma, which we state without proof.

Lemma 3.4 For all λ, y ∈ R such that |λ| > |y|,

Re[(λ + iy) coth(λ + iy)] = λ sinh(2λ) + y sin(2y)

2(sinh(λ)2 + sin(y)2)
> 0.

Moreover, for all λ, y ∈ R such that either y /∈ πZ or λ = 0,

|ak1,k2(λ + iy)| = |λ + iy|n+k1+k2(sinh(λ)2 + cos(y)2)
k1
2

(sinh(λ)2 + sin(y)2)
n+k1
2

.

In the following lemma, we perform the change of the contour of integration in the defi-
nition of hk1,k2 . Its proof is a simple adaptation of that of [12, Lemma 1.4].

Lemma 3.5 For all y ∈ [0,+∞) \ πN∗

hk1,k2(R, t) =
∫
R

ei Rϕω(λ+iy)ak1,k2(λ + iy) dλ + 2π i
∑
k∈N∗

kπ∈[0,y]

Res
(

ei Rϕω ak1,k2 , kπ i
)

.

Proof of Theorem 3.3 Define

ψω = ϕω( · + iyω) − ϕω(iyω)
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1024 T. Bruno, M. Calzi

and observe that

ϕω(iyω) = iω yω + iyω cot(yω) = i
y2ω

sin(yω)2
,

since ω = θ(yω). Therefore, by Lemma 3.5 (recall that 0 ≤ yω < π , so that there are no
residues)

hk1,k2(R, t) = e− 1
4 d(x,t)2

∫
R

ei Rψω(λ)ak1,k2(λ + iyω) dλ.

Our intent is to apply Theorem 2.7 to the bounded subsets F = {ψω : ω ∈ [0, C]} and
G = {ak1,k2(· + iyω) : ω ∈ [0, C]} of E(R). Therefore, we first verify that the four conditions
of its statement hold.

2. Lemmata 3.2 and 2.5 imply that iϕ′′
ω (iyω) = −θ ′(−yω) < 0 for all ω ∈ R+. From the

definition of ψω, we then get

ψω(0) = ψ ′
ω(0) = 0, iψ ′′

ω(0) < 0. (3.3)

3. Consider the mapping ψ : R × (−π, π) � (λ, y) �→ ψθ(y)(λ). By (3.3), ∂1ψ(0, y) = 0
and i∂21ψ(0, y) < 0 for all y ∈ [0, π); moreover, ψ is analytic thanks to Lemma 2.5.
Therefore, by Taylor’s formula we may find two constants η > 0 and C ′ > 0 such that
|∂1ψ(λ, y)| ≥ C ′|λ| for all λ ∈ [−2η, 2η] and for all y ∈ [0, θ−1(C)].

1. Lemma 3.4 implies that

Imψ(λ, y) = λ cosh(λ) sinh(λ) − y cot(y) sinh(λ)2

sinh(λ)2 + sin(y)2

for all λ ∈ R and for all y ∈ (−π, π), y = 0; moreover, the mapping (0, π) � y �→
y cot(y) is strictly decreasing and tends to 1 as y → 0+. Therefore, if λ = 0 and
y ∈ [0, π), then

Imψ(λ, y) ≥ λ coth(λ) − 1

1 + 1
sinh(λ)2

> 0

since λ coth(λ) − 1 > 0. Observe finally that, since λ coth(λ)−1
1+ 1

sinh(λ)2
∼ |λ| for λ → ∞, the

second condition is also satisfied.
4. Just observe that G is bounded in L∞(R).

By Theorem 2.7, we then get∫
R

ei Rψω(λ)ak1,k2(λ + iyω) dλ = (2π)(4π)n

|x | Ψ (ω)ak1,k2(iyω) + O

(
1

|x |3
)

for R → +∞, uniformly as ω runs through [0, C]. ��

From now on, we shall consider the case ω → +∞. The method of stationary phase
cannot be applied directly in this case, since yω → π , and iπ is a pole of the phase (as well
as of the amplitude). Although it seems possible to adapt the techniques developed by Li [17]
to this situation, our proof follows the idea presented by Hueber and Müller [12, Theorem
1.3 (i)] for the Heisenberg group H

1. We shall take advantage of this singularity to get the
correct behaviour of hk1,k2 , by means of the residues obtained by Lemma 3.5.

123



Asymptotics for the heat kernel on H-type groups 1025

3.2 II. Estimates for δ → 0+ and κ → +∞.

We state below the main result of this section.

Theorem 3.6 For δ → 0+ and κ → +∞

p1,k1,k2(x, t) = (−1)k2πk1+k2

4n(πδ)n+k1−1
√
2πκ

e− 1
4 d(x,t)2

[
1 + O

(
1

κ
+ δ

)]
.

The proof of Theorem 3.6 will be prepared by several lemmata. The first step will be to
invoke Lemma 3.5, of which we keep the notation, to move the contour of integration beyond
the singularity at π i ; since at 2π i there is another one, it seems convenient to stop at 3π i

2 .
We first notice that the integral on R + 3π i

2 may be neglected in some circumstances, as the
following lemma shows. It is essentially [12, Lemma 1.4], so we omit the proof.

Lemma 3.7 There exists a constant C ′ > 0 such that∣∣∣∣
∫
R

e
i Rϕω

(
λ+ 3π i

2

)
ak1,k2

(
λ + 3π i

2

)
dλ

∣∣∣∣ ≤ C ′e− 3π |t |
2 .

Hence, matters are reduced to the computation of the residue. First of all, define

r(λ) =
{
1 + 1

λ
− π(1 + λ) cot(πλ) if λ /∈ Z,

0 if λ = 0,

and observe that r is holomorphic on its domain. It will be useful to define also

ϕ̃k1,k2(R, ξ) :=
{

eR r(−ξ) (πξ)n+k1 cos(πξ)k1 (1−ξ)n+k1+k2

sin(πξ)n+k1
if ξ /∈ Z,

1 if ξ = 0,

and
ϕδ,k1,k2(s) := e−i(n+k1−1)s ϕ̃k1,k2(0, δeis) (3.4)

whenever δeis /∈ Z
∗. The following lemma may be proved again on the lines of [12, Lemma

1.4].

Lemma 3.8 For every δ < 1

2π i Res
(

ei Rϕω ak1,k2 , π i
)

= (−1)k2πk2+1

δn+k1−1 e−R−π |t |
∫ π

−π

eκ cos(s)+Rr(−δeis )ϕδ,k1,k2(s) ds.

(3.5)

Therefore, it remains only to estimate the integral in (3.5), namely

Hk1,k2(R, t) :=
∫ π

−π

eκ cos(s)+Rr(−δeis )ϕδ,k1,k2(s) ds =
∫ π

−π

eκqδ(−is)ϕδ,k1,k2(s) ds,

(3.6)
where

q(δ, ζ ) = qδ(ζ ) := cosh(ζ ) + δ

2
r(−δe−ζ ). (3.7)

Notice that we may apply Theorem 2.7 only when κ → +∞, and this is why we confined
ourselves to the case where δ → 0+ (and we shall assume 0 < δ < 1) and κ → +∞.
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1026 T. Bruno, M. Calzi

Again for technical convenience, we shall reverse the dependence relation between (δ, κ)

and (R, |t |), thus assuming that δ and κ are “independent variables”. Indeed, δ and κ com-
pletely describe our problem, since

|t | = κ

2πδ
, R = κδ

2
,

and |t | + R → +∞ if δ → 0+ and κ → +∞. We shall sometimes let δ assume complex
values. The following lemma is essentially [12, Lemma 1.2]. We present a slightly shorter
proof.

Lemma 3.9 q is holomorphic on the set {(δ, ζ ) ∈ C × C| δe−ζ /∈ Z
∗}. Moreover, there

exist two constants δ1 ∈ (0, 1) and η1 > 0 such that for all δ ∈ BC(0, δ1) there is a unique
σδ ∈ BC(0, η1) such that q ′

δ(σδ) = 0. Then, the mappingBC(0, δ1) � δ �→ σδ is holomorphic
and real on (−δ1, δ1). Finally, σδ = O(δ2) and qδ(σδ) = 1 + O(δ2) for δ → 0.

Proof q is holomorphic since r is. Furthermore, ∂2q(0, 0) = 0 and ∂22q(0, 0) = 1. Therefore,
the implicit function theorem (cf. [5, Proposition 6.1 of IV.5.6]) implies the existence of some
δ1 and η1 as in the statement, the holomorphy of themapping δ �→ σδ , and that d

dδ
σδ|δ=0 = 0.

Notice also that σ0 = 0, so that σδ = O(δ2) for δ → 0 by Taylor’s formula.
Since qδ is real on real numbers, q ′

δ(σδ) = q ′
δ(σδ) = 0; thus, σδ = σδ for the uniqueness

of σδ , and hence σδ ∈ R for all δ ∈ (−δ1, δ1).
The last assertion follows from Taylor’s formula, since q0(σ0) = q0(0) = 1 and

d
dδ

qδ(σδ)|δ=0 = ∂1q(0, 0) + ∂2q(0, 0) d
dδ

σδ|δ=0 = 0. ��
The contour of integration can now be changed in order to apply the method of stationary
phase. For the remainder of this section, we keep δ1 and η1 of Lemma 3.9 fixed.

Lemma 3.10 Let τ ∈ C∞
c (R) such that χ[− π

2 , π
2 ] ≤ τ ≤ χ[π,π ]. Define, for all δ ∈ (−δ1, δ1),

the path γδ(s) := s + iσδ τ(s), and

Fδ(s) := −iqδ(−iγδ(s)) + iqδ(σδ) and ψδ,k1,k2 := (ϕδ,k1,k2 ◦ γδ) γ ′
δ .

Then

Hk1,k2(R, t) = eκ qδ(σδ)

∫ π

−π

eiκ Fδ(s)ψδ,k1,k2(s) ds.

Proof of Theorem 3.6 We shall apply Theorem 2.7 to the bounded subsets F = {Fδ : δ ∈
(0, δ2)} and G = {ψδ,k1,k2 : δ ∈ (0, δ2)} of E((−π, π)), depending on some δ2 to be fixed
later. Hence, we check that the four conditions of the statement are satisfied.

1. The mapping F : (−δ1, δ1) × R � (δ, s) �→ Fδ(s) is of class C∞, and ∂22 F(0, 0) = i ;
thus, we may find δ2 ∈ (0, δ1), η2 ∈ (0, π

2

)
and C ′′ > 0 such that Im ∂22 F(δ, s) ≥ 2C ′′

for all δ ∈ [−δ2, δ2] and for all s ∈ [−2η2, 2η2]. From Taylor’s formula then

Im F(δ, s) =
∫ s

0
∂22 Im F(δ, τ )(s − τ) dτ ≥ C ′′s2

for all s ∈ [−2η2, 2η2] and for all δ ∈ [−δ2, δ2]. Since Im F(0, s) = 1 − cos(s) for
all s ∈ [−π, π], by reducing δ2 and C ′′ if necessary one may assume that Im F(δ, s) ≥
C ′′π2 ≥ C ′′s2 for all s ∈ R such that 2η2 ≤ |s| ≤ π and for all δ ∈ [−δ2, δ2].

2. It is immediately seen that Fδ(0) = F ′
δ(0) = 0 by definition.
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3. For every δ ∈ [−δ2, δ2] and s ∈ [−2η2, 2η2]

|∂2F(δ, s)| ≥ |∂2 Im F(δ, s)| =
∣∣∣∣
∫ s

0
∂22 Im F(δ, τ ) dτ

∣∣∣∣ ≥ 2C ′′|s|.

4. Just observe that G is bounded in L∞((−π, π)).

By Theorem 2.7, then,

∫ π

−π

eiκ Fδ(s)τ2(s)ψδ,k1,k2(s) ds =
√

2π i

κ F ′′
δ (0)

ψδ,k1,k2(0) + O

(
1

κ3/2

)
.

It is then easily seen that F ′′
δ (0) = iq ′′

δ (σδ) = i(1+ O(δ)) and ψδ,k1,k2(0) = ϕδ,k1,k2(iσδ) =
1 + O(δ) for δ → 0+.

Now, by construction,

−R − π |t | + κqδ(s) = i R ϕω(π i(1 − δe−s))

for s in a neighbourhood of σδ . Take δ3 ∈ (0, δ2] so that (1 − δe−σδ ) ∈ (−1, 1) for all
δ ∈ [0, δ3], and fix δ ∈ (0, δ3) and t = 0. We shall prove that

yω = π(1 − δe−σδ ).

Indeed, yω is the unique element of (−π, π) such that ϕ′
ω(iyω) = 0; furthermore, π(1 −

δe−σδ ) ∈ (−π, π) for the choice of δ3, and −R π δ e−σδϕ′
ω(π i(1− δe−σδ )) = κ q ′

δ(σδ) = 0.
Therefore, yω = π(1 − δe−σδ ). Finally, equality holds by analyticity whenever both sides
are defined. It then follows that

− R − π |t | + κqδ(σδ) = i Rϕω(iyω) = −1

4
d(x, t)2. (3.8)

Finally observe that, by definition of κ and δ, and by Lemma 3.9,

−3π |t |
2

+ R + π |t | − κqδ(σδ)+ log κ ≤ − κ

2πδ

[
π

2
− πδ2 + 2πδ(1 + O(δ2))−2πδ

log κ

κ

]
,

which tends to −∞ as δ → 0+ and κ → +∞. This means that

e− 3π |t |
2 = o

(
e−R−π |t |+κqδ(σδ)

κ

)

for κ → +∞, uniformly as δ runs through (0, δ2]. Our assertion is then a consequence
of Lemmata 3.5 and 3.7. ��
3.3 III and IV. Estimates for δ → 0+ and κ bounded.

Strictly speaking, cases III and IV have already been considered together by Hueber and
Müller [12, Theorem 1.3 (ii)] on the Heisenberg group H

1, i.e. when n = 1. Since their
method does not apply when n > 1, we shall follow a different approach similar to that of
Li [16].

We first recall that, for all ν ∈ Z and ζ ∈ C, the modified Bessel function Iν of order ν is
defined as

Iν(ζ ) =
∑
k∈N

ζ 2k+ν

22k+νk!�(k + ν + 1)
.
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1028 T. Bruno, M. Calzi

If s > 0, then also

Iν(s) = 1

2π

∫ π

−π

es cos(ξ)−iνξ dξ,

as one can verify from [9, 7.3.1 (2)] by applying the change of variables ψ = π
2 − ϕ and by

taking into account the relationship [9, 7.2.2 (12)] between Iν = I−ν and Jν , and also the
periodicity of the integrand. Notice that for s > 0 and ν ∈ Z, Iν(s) is strictly positive unless
s = 0 and ν = 0. The main result of this section is the following.

Theorem 3.11 Fix C > 1. If δ → 0+ while 1/C ≤ κ ≤ C, then

p1,k1,k2(x, t) = (−1)k2πk1+k2

4n(πδ)n+k1−1 e− 1
4 d(x,t)2e−κ In+k1−1(κ) [1 + O(δ)] . (3.9)

When κ → 0+ and |t | → +∞

p1,k1,k2(x, t) = (−1)k2πk1+k2

4n(n + k1 − 1)! |t |
n+k1−1e− 1

4 d(x,t)2
[
1 + O

(
1

|t | + κ

)]
. (3.10)

Lemma 3.12 For every N ∈ N

Hk1,k2(R, t) = 2π
∑

|α|≤N

In+k1−1−α2(κ)
∂αϕ̃k1,k2(0, 0)κ

α1

2α1α! δ|α| + O
(
δN+1

)

for δ → 0+, uniformly as κ runs through [0, C].

Proof By substituting (3.4) in (3.5) and by Taylor’s formula applied to ϕ̃k1,k2 ,

Hk1,k2(R, t) =
∫ π

−π

eκ cos(s)e−i(n+k1−1)s ϕ̃k1,k2(R, δeis) ds

=
∑

|α|≤N

∂αϕ̃k1,k2(0, 0)

α! Rα1δα2

∫ π

−π

eκ cos(s)e−i(n+k1−1−α2)s ds + RN+1(δ, κ)

= 2π
∑

|α|≤N

In+k1−1−α2(κ)
∂αϕ̃k1,k2(0, 0)κ

α1

2α1α! δ|α| + RN+1(δ, κ),

where the last equality holds since R = δκ
2 . Moreover, RN+1(δ, κ) is easily seen to be

O
(
δN+1

)
for δ → 0+ uniformly as κ runs through [0, C]. This completes the proof. ��

Proof of Theorem 3.11 Lemmata 3.7 and 3.8 imply that

p1,k1,k2(x, t)= (−1)k22πk2−n

4n+1δn+k1−1 e−R−π |t | Hk1,k2(R, t) + O
(

e− 3π |t |
2

)
.

Moreover, recall that δ|t | = κ
2π and R = κδ

2 ; therefore, for every N ∈ N,

e− 3π |t |
2 = o

(
δN+2−n−k1e−R−π |t |) (3.11)

as δ → 0+, uniformly as κ runs through [1/C, C]. By (3.8) and Lemma 3.9, the first assertion
follows from Lemma 3.12 for N = 0.
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As for (3.10), observe first that κ → 0+ and |t | → +∞ is equivalent to saying δ, κ → 0+
and δ = o(κ). Then Lemma 3.12 with N = n + k1 − 1 and an easy development of the
Bessel function in a neighbourhood of 0 imply that

p1,k1,k2(x, t) = πk1+k2(−1)k2

4n(πδ)n+k1−1 e−π |t |−R
[
κn+k1−1

I (n+k1−1)
n+k1−1 (0)

(n + k1 − 1)! + O(κn+k1)

+
∑

1≤|α|≤n+k1−1

O
(

In+k1−1−α2(κ)κα1δ|α|)+ O(δn+k1)

]
+ O

(
e− 3π |t |

2

)
.

Since δ = o(κ), one has δα2+α1−1 = O(κα2+α1−1) for every α = 0. Therefore,∑
1≤|α|≤n+k1−1

O
(

In+k1−1−α2(κ)κα1δ|α|) =
∑

1≤|α|≤n+k1−1

O
(
κn+k1−2+2α1δ

)

= O
(
κn+k1−2δ

)
.

Since κ
2πδ

= |t | and I (n+k1−1)
n+k1−1 (0) = 1

2n+k1−1 , we get

p1,k1,k2(x, t) = πk1+k2(−1)k2

4n(n + k1 − 1)!e−π |t |−R |t |n+k1−1
[
1 + O

(
1

|t | + κ + δ

)]
+ O

(
e− 3π |t |

2

)
.

Finally, δ = o
(

1
|t |
)
since δ|t | = κ

2π ; moreover

e− 3π |t |
2 = o

(
e−π |t |−R |t |n+k1−2

)
since R → 0+ and |t | → +∞. The assertion follows. ��

The estimates in cases II, III, and IV can be put together. This is done in the following
corollary, which will turn out to be fundamental later on. Define first, for ζ ∈ C and ν ∈ Z,

Ĩν(ζ ) :=
∑
k≥0

ζ 2k

22k+νk!�(k + ν + 1)
.

From now on we shall use the following abbreviation. We keep the notation of Lemma 3.9.

Definition 3.13 For δ ∈ BC(0, δ1), define ρ(δ) := qδ(σδ).

By Lemma 3.9, ρ is a holomorphic function such that ρ(0) = 1 and ρ′(0) = 0, so that
ρ(δ) = 1 + O(δ2) as δ → 0.

Corollary 3.14 When (x, t) → ∞ and δ → 0+

p1,k1,k2(x, t) = (−1)k2πk1+k2

2n−k1+1 |t |n+k1−1e− 1
4 d(x,t)2e−κρ(δ) Ĩn+k1−1 (κρ(δ)) [1 + g(|x |, |t |)] ,

where

g(|x |, |t |) =

⎧⎪⎨
⎪⎩

O
(
δ + 1

κ

)
if δ → 0+ and κ → +∞,

O(δ) if δ → 0+ and κ ∈ [1/C, C],
O
(

1
|t | + κ

)
if δ → 0+ and κ → 0+

(3.12)

for every C > 1.
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Proof 1. Assume first that κ → +∞. Since Iν(s) = es√
2πs

[
1 + O

( 1
s

)]
for s → +∞, ν ∈ Z

(cf. [9, 7.13.1 (5)]),

Ĩν(s) = es

sν
√
2πs

[
1 + O

(
1

s

)]
for s → +∞. (3.13)

Therefore, Theorem 3.6 implies that

p1,k1,k2 (x, t) = (−1)k2πk1+k2

4n(πδ)n+k1−1
√
2πκ

e− 1
4 d(x,t)2

[
1 + O

(
1

κ
+ δ

)]

= (−1)k2πk1+k2 Ĩn+k1−1 (κρ(δ))

2n−k1+1 |t |n+k1−1e− 1
4 d(x,t)2e−κρ(δ)

×
[
1 + O

(
1

κρ(δ)

)][
1 + O

(
1

κ
+ δ

)]

= (−1)k2πk1+k2 Ĩn+k1−1 (κρ(δ))

2n−k1+1 |t |n+k1−1e− 1
4 d(x,t)2e−κρ(δ)

[
1 + O

(
1

κ
+ δ

)]
,

since ρ(δ) = 1 + O(δ2) and 2|t |
κ

= 1
πδ

.
2. Assume now that κ ∈ [1/C, C] for some C > 1. Then, by Theorem 3.11,

p1,k1,k2 (x, t) = (−1)k2πk1+k2

4n(πδ)n+k1−1 e− 1
4 d(x,t)2e−κ In+k1−1(κ) [1 + O (δ)]

= (−1)k2πk1+k2

2n−k1+1 |t |n+k1−1e− 1
4 d(x,t)2e−κρ(δ) Ĩn+k1−1(κρ(δ))[1 + O(δ2)] [1 + O (δ)]

= (−1)k2πk1+k2

2n−k1+1 |t |n+k1−1e− 1
4 d(x,t)2e−κρ(δ) Ĩn+k1−1(κρ(δ)) [1 + O (δ)] ,

where the second equality holds since In+k1−1(κρ(δ)) − In+k1−1(κ) = O(κ(ρ(δ) − 1)) =
O(δ2) uniformly as κ runs through [1/C, C] by Taylor’s formula.

3. Finally, if κ → 0+ then

Ĩn+k1−1(κ) = Ĩn+k1−1(0) + O(κ) = 1

2n+k1−1(n + k1 − 1)! + O(κ)

by the definition of Ĩn+k1−1. Combining this estimate with Theorem 3.11 yields the assertion.
��

4 H-type groups

In this section, we deal with the general case m ≥ 1. In particular, we prove a refined version
of Theorem 3.3 and extend Theorems 3.6 and 3.11: this is done through Theorems 4.2,
4.13 and 4.14, respectively. Theorem 4.2 treats the case I and is still inspired by [10, §3,
Theorem 2]. The asymptotic estimates in the other three cases are first obtained in the case m
odd, “reducing” to the casem = 1; the casem even is then achieved through a descentmethod.

The first step in order to apply the method of stationary phase is to extend the integrand
to a meromorphic function on Cm . If m > 1, such extension is no longer automatic as when
m = 1. A natural way consists in taking advantage of the parity of the functions that appear, as
in [7]. Indeed, any continuous branch of λ �→ √

λ2 is a holomorphic functionwhich coincides
with λ �→ ±|λ| on R

m ; therefore, whenever g is an even holomorphic function defined on
a symmetric open subset of C, the function λ �→ g(

√
λ2) is well-defined, holomorphic, and
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coincides with λ �→ g(|λ|) on R
m . Hence, we are led to the following definition, which is

the analogue of Definition 3.1. We shall use the same notation as before, without stressing
the (new) dependence on m.

Definition 4.1 Define

hk1,k2(R, t) =
∫
Rm

ei Rϕω(λ)ak1,k2(λ) dλ

where

ak1,k2(λ) =
⎧⎨
⎩(−1)k1 i k2

√
λ2

n+k1 cosh(
√

λ2)k1

sinh(
√

λ2)n+k1
(λ, u1)

k2 if
√

λ2 /∈ iπZ∗,
(−1)k1 i k2δk2,0 if λ = 0,

ϕω(λ) =
{

ω (λ, u1) + i
√

λ2 coth(
√

λ2) if
√

λ2 /∈ iπZ∗,
i if λ = 0.

(4.1)

Define also
ak1,k2,ω(λ) := ak1,k2(λ + iyωu1). (4.2)

Observe again that

p1,k1,k2(x, t) = 1

(4π)n(2π)m
hk1,k2 (R, t)

for all (x, t) ∈ R
2n × R

m , and that yω = θ−1(ω) ∈ [0, π), since ω ≥ 0.

4.1 I. Estimates for (x, t) → ∞ while 4|t|/|x|2 ≤ C.

The main result of this section is Theorem 4.2. As already said, the main ingredient of its
proof is the method of stationary phase (cf. Proposition 4.4), which is already employed
in [10, Theorem 2 of 3] to treat the case n = m = 1 and k1 = k2 = 0.

The novelty of considering all the derivatives of the heat kernel p1 (in other words, all
the cases k1 ≥ 0 and k2 ≥ 0) introduces additional complexity to the developments, since
the choice k = 0 in (2.4) may not give the sharp asymptotic behaviour of p1,k1,k2 at infinity,
while ω remains bounded. In particular, this happens in the cases ω → 0 and k2 > 0, or
ω → π

2 and k1 > 0. If ω remains bounded and away from 0 and π
2 , the first term is instead

enough.

Theorem 4.2 Fix ε, C > 0. If (x, t) → ∞ while 0 ≤ ω ≤ C, then

p1,k1,k2(x, t) = 1

|x |m e− 1
4 d(x,t)2Ψ (ω)Υ (x, t)

where

Ψ (ω) =
⎧⎨
⎩

1
4nπn+m

√
(2π)m ym−1

ω sin(yω)3

2ωm−1(sin(yω)−yω cos(yω))
if ω = 0,

(3π)m/2

4nπn+m if ω = 0,
(4.3)

and

1. if ε ≤ ω ≤ π
2 − ε or π

2 + ε ≤ ω ≤ C,

Υ (x, t) = (−1)k1+k2 yn+k1+k2
ω cos(yω)k1

sin(yω)n+k1
+ O

(
1

|x |2
)

; (4.4)
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2. if ω → 0 and k2 is even,

Υ (x, t) =
k2/2∑
j=0

ck1,k2, j
ωk2−2 j

|x |2 j
+ O

⎛
⎝k2/2∑

j=0

ωk2−2 j+1

|x |2 j
+ 1

|x |k2+2

⎞
⎠ ; (4.5)

3. if ω → 0, k2 is odd and |t | → ∞,

Υ (x, t) =
(k2−1)/2∑

j=0

ck1,k2, j
ωk2−2 j

|x |2 j
+ O

⎛
⎝(k2+1)/2∑

j=0

ωk2−2 j+1

|x |2 j

⎞
⎠ ; (4.6)

4. if ω → 0, k2 is odd and 0 ≤ |t | ≤ C

Υ (x, t) = ck1,k2+1,(k2+1)/2
|t |

|x |k2+1 + O

( |t |
|x |k2+3

)
; (4.7)

5. if ω → π
2 and k1 is even,

Υ (x, t) =
k1/2∑
j=0

bk1,k2, j

(
ω − π

2

)k1−2 j

|x |2 j
+ O

⎛
⎝k1/2∑

j=0

(
ω − π

2

)k1−2 j+1

|x |2 j
+ 1

|x |k1+2

⎞
⎠ ; (4.8)

6. if ω → π
2 and k1 is odd,

Υ (x, t) =
(k1−1)/2∑

j=0

bk1,k2, j

(
ω − π

2

)k1−2 j

|x |2 j
+ bk1,k2,(k1+1)/2

|x |k1+1

+ O

⎛
⎝(k1−1)/2∑

j=0

(
ω − π

2

)k1−2 j+1

|x |2 j
+ ω − π

2

|x |k1+1 + 1

|x |k1+3

⎞
⎠ . (4.9)

The coefficients ck1,k2, j and bk1,k2, j are explicitly given by (4.15), (4.17), and (4.18).

The remainder of this section is devoted to the proof of Theorem 4.2. Since it is quite involved,
we split this section into two parts: in the first one we apply the method of stationary phase,
while in the second one we find the asymptotics of the development given by Theorem 2.7,
which are required to get the sharp developments (4.5)–(4.9). These proofs go through several
lemmata.

Remark 4.3 Notice that any pair of terms in the sums appearing in developments (4.5), (4.6),
(4.8), and (4.9) are not comparable with each other under the stated asymptotic condition.
Therefore, these developments cannot be simplified. Observe moreover that for k1 and k2
fixed the coefficients bk1,k2, j (resp. ck1,k2, j ) have the same sign; thus, no cancellation can
occur, and our developments are indeed sharp. A more detailed description will be given in
Sect. 4.1.2.

Finally, notice that it is possible to obtain even more precise expansions if one does
not develop the terms L j,ψω ak1,k2,ω which appear in Proposition 4.4. In particular, in the
cases when ω → 0+ and k2 = 0, or ω → π

2 and k1 = 0, the explicit computation
of L0,ψωak1,k2,ω = ak1,k2(iyωu1) leads to better remainders than those in (4.5) and (4.8),
respectively.
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4.1.1 Application of the Method of Stationary Phase

As already said, Proposition 4.4 is essentially an easy generalization of Theorem 3.3.

Proposition 4.4 Fix C > 0 and let k ∈ N. Then, if (x, t) → ∞ while 0 ≤ ω ≤ C,

p1,k1,k2(x, t) = 1

|x |m e− 1
4 d(x,t)2Ψ (ω)

⎡
⎣ k∑

j=0

4 j L j,ψω ak1,k2,ω

|x |2 j
+ O

(
1

|x |2k+2

)⎤⎦ (4.10)

where Ψ is defined by (4.3).

In the same way as in Sect. 3.1, we begin by finding some stationary points of the phase of
hk1,k2 , namely ϕω.

Lemma 4.5 [7, Formula (5.7)] For all λ such that
√

λ2 /∈ iπZ∗,

ϕ′
ω(λ) = ωu1 + λ

θ̃(i
√

λ2)√
λ2

where θ̃ is the analytic continuation of θ to Dom(ϕω). In particular, iyωu1 is a stationary
point of ϕω.

We then change the contour of integration in the integral defining hk1,k2 in order to meet
a stationary point of ϕω. This is done in the following lemma, which is the analogue of
Lemma 3.5.

Lemma 4.6 For every y ∈ [0, π)

hk1,k2(R, t) =
∫
Rm

ei Rϕω(λ+iyu1)ak1,k2(λ + iyu1) dλ.

Proof The theorem is proved in a similar fashion to [7, Lemma 5.4]. It may be useful to
observe that for every λ ∈ C

m such that either Im
√

λ2 /∈ πZ or Re
√

λ2 = 0, we have

|ak1,k2(λ)| =
|λ|n+k1

(
sinh

(
Re

√
λ2
)2 + cos

(
Im

√
λ2
)2)k1/2

(
sinh

(
Re

√
λ2
)2 + sin

(
Im

√
λ2
)2)(n+k1)/2

|(λ, u1)|k2 ,

by Lemma 3.4, since |√λ2| = |λ|. Moreover, ak1,k2 is bounded on the set {λ + iyu1 : λ ∈
R

m, y ∈ [0, C ′]} for every C ′ ∈ (0, π). ��
Proof of Proposition 4.4 Define

ψω = ϕω( · + iyωu1) − ϕω(iyωu1)

and observe that, since
√

(iyωu1)2 = ±iyω and ω = θ(yω), ϕω(iyωu1) = i y2ω
sin(yω)2

. There-
fore, by Lemma 4.6

hk1,k2(R, t) = e− 1
4 d(x,t)2

∫
R

ei Rψω(λ)ak1,k2(λ + iyωu1) dλ.

We shall apply Theorem 2.7 to the bounded subsets F = {ψω : ω ∈ [0, C]} and G =
{ak1,k2,ω : ω ∈ [0, C]} of E(Rm).
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1034 T. Bruno, M. Calzi

2. Elementary computations show that

− iψ ′′
ω(0) = θ ′(yω)u1 ⊗ u1 + ω

yω

m∑
j=2

u j ⊗ u j , (4.11)

so that det(−iψ ′′
ω(0)) = θ ′(yω)

(
θ(yw)

yw

)m−1
> 0. The conditions ψω(0) = ψ ′

ω(0) = 0

hold by construction.
3. Consider the mapping ψ : Rm × (−π, π) � (λ, y) �→ ψθ(y)(λ). Then, by the preceding

arguments, there is c > 0 such that ∂1ψ(0, y) = 0 and −i∂21ψ(0, y) ≥ c( · , · ) for
all y ∈ [0, π); moreover, ψ is analytic by Lemma 2.5. Therefore, by Taylor’s formula
we may find two constants η > 0 and C ′ > 0 such that |∂1ψ(λ, y)| ≥ C ′|λ| for all
λ ∈ BRm (0, 2η) and for all y ∈ [0, θ−1(C)].

1. Combining [7, Lemmata 5.3 and 5.7], we infer that there is a constant C ′′ > 0 such that

Imψ(λ, y) = yθ(y) + Re

[√
(λ + iyu1)2 coth

(√
(λ + iyu1)2

)]
− y2

sin2 y
≥ C ′′|λ|

whenever |λ| ≥ η and 0 ≤ y ≤ θ−1(C).
4. Just observe that G is bounded in L∞(Rm).

By Theorem 2.7, then,

∫
Rm

ei Rψω(λ)ak1,k2(λ + iyωu1) dλ

= (2π)m(4π)n

|x |m Ψ (ω)

k∑
j=0

4 j L j,ψω ak1,k2,ω

|x |2 j
+ O

(
1

|x |m+2k+2

)

for R → +∞, uniformly as ω runs through [0, C]. ��

4.1.2 Further developments and completion of the proof of Theorem 4.2

We begin by recalling that, for every j ∈ N,

L j,ψω ak1,k2,ω = i− j
2 j∑

μ=0

(ψ ′′
ω(0)−1∂, ∂)μ+ j [(ψω − P2,0ψω)μak1,k2,ω](0)

2μ+ jμ!(μ + j)! . (4.12)

Thus, the point 1 of Theorem 4.2 follows immediately by taking k = 0 in Proposition 4.4,
since

L0,ψω ak1,k2,ω = ak1,k2,ω(0) = ak1,k2(iyωu1).

As for the other developments, observe that by (4.11)

(ψ ′′
ω(0)−1∂, ∂)μ+ j [(ψω − P2,0ψω)μak1,k2,ω](0)
=

∑
|α|=μ+ j

(μ + j)!
α!

1

(iθ ′(yω))α1

( yω

iω

)|α|−α1
∂2α[(ψω − P2,0ψω)μak1,k2,ω](0), (4.13)
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Asymptotics for the heat kernel on H-type groups 1035

where

∂2α[(ψω − P2,0ψω)μak1,k2,ω](0)
=
∑

β≤2α,
|β|≥3μ

(2α)!
β! (2α − β)!∂

β [(ψω − P2,0ψω)μ](0) ∂2α−βak1,k2(iyωu1). (4.14)

The sum above is restricted to |β| ≥ 3μ since ψω(λ) − P2,0ψω(λ) is infinitesimal of order
at least 3 for λ → 0. Observe moreover that, since |2α − β| = 2|α| − |β| ≤ 2 j − μ, we
have |2α − β| ≤ 2 j and |2α − β| = 2 j if and only if μ = 0 and β = 0. We first consider
the case ω → 0.

Lemma 4.7 For every j ∈ N such that 2 j ≤ k2, define

ck1,k2, j := (−1)k1+k2 3k2− j k2!
2k2−2 j (k2 − 2 j)! j ! . (4.15)

Then

4 j L j,ψω ak1,k2,ω = ck1,k2, jω
k2−2 j + O

(
ωk2−2 j+1

)
for ω → 0.

Proof Recall that ak1,k2 is an analytic function on its domain, and observe that3

ak1,k2(λ) = (−1)k1 i k2λ
k2
1 + O

(
|λ|k2+2

)
for λ → 0. Therefore, for every h = 0, . . . , k2 we have

a(h)
k1,k2

(λ) = (−1)k1 i k2 k2!
(k2 − h)!λ

k2−h
1 u⊗h

1 + O
(
|λ|k2−h+2

)
(4.16)

as λ → 0.
We now consider (4.14). If |2α − β| < 2 j , then by (4.16)

∂β [(ψω − P2,0ψω)μ](0)∂2α−βak1,k2(iyωu1) = O
(

yk2−|2α−β|
ω

)
= O

(
yk2−2 j+1
ω

)
for ω → 0. Otherwise, let |2α − β| = 2 j , so that μ = 0 and β = 0. If α = ju1, then (4.16)
implies that

∂2αak1,k2(iyωu1) = O
(

yk2−2 j+2
ω

)
= O

(
yk2−2 j+1
ω

)
,

while, if α = ju1,

∂
2 j
1 ak1,k2(iyωu1) = (−1)k1+k2 i−2 j k2!

(k2 − 2 j)! yk2−2 j
ω .

From this and the fact that

θ ′(0) = lim
ω→0

ω

yω

= 2

3

we get the asserted estimate. ��
Lemma 4.7 gives expansions 2 and 3 of Theorem 4.2. Indeed, it allows us to choose k in
Proposition 4.4 as

3 Here and in the following, λ1 stands for (λ, u1).
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2. k = k2/2 if k2 is even, since in this case the last term of the sum in (4.10) is

ck1,k2,k2/2

|x |k2 + O

(
ω

|x |k2
)

which is bigger than the remainder.
3. k = (k2 − 1)/2 if k2 is odd and |t | → ∞, since in this case the last term of the sum

in (4.10) is

ck1,k2,(k2−1)/2
ω

|x |k2−1 + O

(
ω2

|x |k2−1

)
= ck1,k2,(k2−1)/2

|t |
|x |k2+1 + O

( |t |2
|x |k2+3

)

which is bigger than the remainder, since |t | → ∞.

The case 4 of Theorem 4.2, which is the case when k2 is odd, ω → 0 and |t | is bounded,
has to be treated in a different way, since ω/|x |k2−1 may be comparable with the remainder
1/|x |k2+1 or even smaller. Thus, the development given abovemaynot be sharp in this case. To
overcome this difficulty, we make use of the following lemma. For the reader’s convenience,
we also consider k2 even and a stronger statement than that we need (see Remark 4.16).

Lemma 4.8 Let N ∈ N. Then, when ω → 0,

p1,k1,k2(x, t) =
N∑

h=0

1

(2h + 1)! |t |
2h+1 p1,k1,k2+2h+1(x, 0) + O

(
|t |2N+3 p1,k1,k2+2N+3(x, 0)

)

if k2 odd; if k2 is even

p1,k1,k2(x, t) =
N∑

h=0

1

(2h)! |t |
2h p1,k1,k2+2h(x, 0) + O

(
|t |2N+2 p1,k1,k2+2N+2(x, 0)

)
.

Proof Assume that k2 is odd. Then

(4π)n(2π)m

∣∣∣∣∣p1,k1,k2(x, t) −
N∑

h=0

1

(2h + 1)! |t |
2h+1 p1,k1,k2+2h+1(x, 0)

∣∣∣∣∣
=
∣∣∣∣∣
∫
Rm

e− |x |2
4 |λ| coth |λ| |λ|n+k1 cosh(|λ|)k1

sinh(|λ|)n+k1
(λ, u1)

k2

{
ei |t |(λ,u1)−

N∑
h=0

[i |t |(λ, u1)]2h+1

(2h + 1)!

}
dλ

∣∣∣∣∣
≤ |t |2N+3

(2N + 3)!
∫
Rm

e− |x |2
4 |λ| coth |λ| |λ|n+k1 cosh(|λ|)k1

sinh(|λ|)n+k1
(λ, u1)

k2+2N+3 dλ

= (4π)n(2π)m

(2N + 3)! |t |2N+3|p1,k1,k2+2N+3(x, 0)|.
The first assertion is then proved. The proof in the case k2 even is analogous. ��
Thus, the case ω → 0 while |t | remains bounded when k2 is odd can be related to the
same case when k2 is even, which is completely described by Lemma 4.7. Observe that the
expansion appearing in Theorem 4.2, 4, is obtained with the choice N = 0 in Lemma 4.8.

We finally consider the case ω → π
2 , which as above provides expansions 5 and 6 of

Theorem 4.2.

Lemma 4.9 Define, for j ∈ N such that 2 j ≤ k1,

bk1,k2, j := (−1)k2 k1!
2k1−2 j (k1 − 2 j)! j !

(π

2

)n+k1+k2
, (4.17)
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Asymptotics for the heat kernel on H-type groups 1037

and, when k1 is odd,

bk1,k2,(k1+1)/2

:= (−1)k2 (k1 + 1)!
[(k1 + 1)/2]!

(π

2

)n+k1+k2−1
(

n + k1 + k2 + π2

24
(k1 + 2) + 3

2
(m − 1)

)
.

(4.18)

Then, for ω → π
2 , if 2 j ≤ k1

4 j L j,ψω ak1,k2,ω = bk1,k2, j

(
ω − π

2

)k1−2 j + O

((
ω − π

2

)k1−2 j+1
)

while if k1 is odd, then

2k1+1L(k1+1)/2,ψω
ak1,k2,ω = bk1,k2,(k1+1)/2 + O

(
ω − π

2

)
.

Proof By elementary computations,

ak1,k2,π/2 (λ) = (−1)k1 i k2−n
(

i
π

2

)n+k1+k2
λ

k1
1

+ (−1)k1 i k2−n
(

i
π

2

)n+k1+k2−1
(

(n + k1 + k2)λ
k1+1
1 + k1

2
λ

k1−1
1 (λ2 − λ21)

)

+ O
(
|λ|k1+2

)
. (4.19)

Therefore, since ak1,k2,π/2 is analytic on its domain, we infer that for every h = 0, . . . , k1

a(h)
k1,k2,π/2(λ) = (−1)k1 i k2−n

(
i
π

2

)n+k1+k2 k1!
(k1 − h)!λ

k1−h
1 u⊗h

1 + O
(
|λ|k1−h+1

)
(4.20)

as λ → 0.
Consider first j such that 2 j ≤ k1. Then, arguing as in the proof of Lemma 4.7 and taking

into account (4.20) and the fact that

yω − π

2
= 1

2

(
ω − π

2

)
+ O

[(
ω − π

2

)2]

when ω → π/2, the first assertion follows.
Let now k1 be odd, so that (k1 + 1)/2 is an integer. We shall prove that

2k1+1L(k1+1)/2,ψπ/2ak1,k2,π/2 = bk1,k2,(k1+1)/2.

The estimate in the statement is then a consequence of this by Taylor expansion.
Since (ψ ′′

π/2(0)
−1∂, ∂)μ+(k1+1)/2 is a differential operator of degree 2μ + k1 + 1 while

[(ψω − P2,0ψω)μak1,k2,ω] is infinitesimal of degree 3μ+k1 at 0, the only terms in sum (4.12)
(with j = (k1 + 1)/2) which are not zero are clearly those for which

2μ + k1 + 1 ≥ 3μ + k1,

namely μ ≤ 1. Consider first μ = 0. Then, since θ ′(yπ/2) = 2, by (4.13)

(ψ ′′
π/2(0)

−1∂, ∂)(k1+1)/2ak1,k2,π/2(0) = i−(k1+1)/2
∑

|α|=(k1+1)/2

[(k1 + 1)/2]!
2α1α! ∂2αak1,k2,π/2(0).
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Observe that, by (4.19), ∂2αak1,k2,π/2(0) = 0 only if α = ((k1 − 1)/2)u1 + uh for some
h = 1, . . . , m. For the choice h = 1,

∂
k1+1
1 ak1,k2,π/2(0) = (−1)k1 i k2−n

(
i
π

2

)n+k1+k2−1
(k1 + 1)!(n + k1 + k2)

while, for h = 2, . . . , m,

∂
k1−1
1 ∂2h ak1,k2,π/2(0) = (−1)k1 i k2−n

(
i
π

2

)n+k1+k2−1
k1!

so that

(ψ ′′
π/2(0)

−1∂, ∂)(k1+1)/2ak1,k2,π/2(0)

= (−1)k1 i k2−n− k1+1
2

2
k1+1
2

(
i
π

2

)n+k1+k2−1
(k1 + 1)!(n + k1 + k2 + m − 1).

Consider now μ = 1. Then by (4.13)

(ψ ′′
π/2(0)

−1∂, ∂)(k1+3)/2 [(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2
]
(0)

= i−(k1+3)/2
∑

|α|=(k1+3)/2

[(k1 + 3)/2]!
2α1α! ∂2α

[
(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2

]
(0).

Since

ψ ′′′
π/2(0) = πu1 ⊗ u1 ⊗ u1 + 2

π

m∑
h=2

(u1 ⊗ uh ⊗ uh + uh ⊗ u1 ⊗ uh + uh ⊗ uh ⊗ u1),

we deduce that the only α for which we get a nonzero term in the above sum are u1(k1 +
1)/2 + uh for h = 1, . . . , m. Now,

∂
k1+3
1

[
(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2

]
(0) = (k1 + 3)!

3! (−1)k1 i k2−nπ
(

i
π

2

)n+k1+k2
,

while, for h = 2, . . . , m,

∂
k1+1
1 ∂2h

[
(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2

]
(0) = 2

π
(−1)k1 i k2−n

(
i
π

2

)n+k1+k2
(k1 + 1)!.

Therefore,

(ψ ′′
π/2(0)

−1∂, ∂)(k1+3)/2 [(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2
]
(0)

= (−1)k1 i k2− k1+1
2

(k1 + 1)!
2(k1+3)/2

i−n
(

i
π

2

)n+k1+k2−1
(k1 + 3)

[
π2

12
(k1 + 2) + m − 1

]

from which one gets the asserted estimate. ��
Theorem 4.2 is now completely proved. In the following Table 1, we summarize the asymp-
totic behaviour, without remainders, of Υ (x, t).

The Other Cases

We now consider the case ω → +∞. We begin by showing that, when m is odd, matters can
be reduced to the case m = 1.
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Table 1 Asymptotic behaviour of Υ (x, t) in case I: principal part

ε ≤ ω ≤ π/2 − ε
or

π/2 + ε ≤ ω ≤ C
(−1)k1+k2 yn+k1+k2

ω cos(yω)k1

sin(yω)n+k1

ω → 0

k2 even
k2/2

j=0

ck1,k2,j
ωk2−2j

|x|2j

k2 odd

|t| → ∞
(k2−1)/2

j=0

ck1,k2,j
ωk2−2j

|x|2j

0 ≤ |t| ≤ C ck1,k2+1,(k2+1)/2
|t|

|x|k2+1

ω → π
2

k1 even
k1/2

j=0

bk1,k2,j
ω − π

2
k1−2j

|x|2j

k1 odd
(k1−1)/2

j=0

bk1,k2,j

ω − π
2

k1−2j

|x|2j
+

bk1,k2,(k1+1)/2

|x|k1+1

Lemma 4.10 When m is odd, m ≥ 3,

p(m)
1,k1,k2

(x, t) =
m−1
2∑

k=1

cm,k(−1)k

(2π)
m−1
2

k2∑
r=0

(
k2
r

)
(−1)r (m − 1 − k)r

|t |m−1−k+r
p(1)
1,k1,k2+k−r (x, |t |), (4.21)

where

cm,k = (m − k − 2)!
2

m−1
2 −k

(m−1
2 − k

)!(k − 1)!
and (m − 1 − k)r = (m − 1 − k) · · · (m − 1 − k + r − 1) is the Pochhammer symbol4.

Proof Let m be odd, m ≥ 3. We first pass to polar coordinates in (2.3) for k2 = 0 and get

p(m)
1,k1,0

(x, t) = (−1)
m−1
2

(2π)m(4π)n

∫ ∞

0

∫
Sm−1

eiρ|t |(σ,u1) dσ e−Rρ coth(ρ)ak1,m−1(ρ) dρ

where dσ is the (m − 1)-dimensional (Hausdorff) measure on Sm−1 and ak1,m−1 is the
function defined in (3.1). Since the Bessel function is an elementary function when m is odd,
one can prove that (see, e.g. [7, equation (6.5)] and references therein)5

∫
Sm−1

eiρ|t |(σ,u1) dσ = 2(2π)
m−1
2 Re

eiρ|t |

(ρ|t |)m−1

m−1
2∑

k=1

cm,k(−i |t |ρ)k .

This yields

p(m)
1,k1,0

(x, t) =
m−1
2∑

k=1

cm,k(−1)k

(2π)
m−1
2

1

|t |m−1−k
p(1)
1,k1,k

(x, |t |)

4 See, e.g. [9].
5 This is why we had to restrict to the case k2 = 0; otherwise, we would get the additional term (σ, u1)

k2 in
the integral on the sphere.
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which gives (4.21), since p(m)
1,k1,k2

(x, t) = ∂k2

∂|t |k2 p(m)
1,k1,0

(x, t) by definition. ��

Corollary 4.11 Let m be odd. Then, when (x, t) → ∞ and δ → 0+

p(m)
1,k1,k2

(x, t) = (−1)k2πk1+k2

2n−k1+1+ m−1
2

|t |n+k1−1− m−1
2 e− 1

4 d(x,t)2e−κρ(δ) Ĩn+k1−1(κρ(δ)) [1 + g(|x |, |t |)] ,
(4.22)

where g satisfies estimates (3.12).

Proof If m = 1, the statement reduces to Corollary 3.14. Suppose then m ≥ 3. Since
p(1)
1,k1,r

� p(1)
1,k1,k2

for every 0 ≤ r ≤ k2 by Corollary 3.14, the principal term in (4.21)

corresponds to r = 0, k = m−1
2 . Hence,

p(m)
1,k1,k2

(x, t) = (−1)
m−1
2

(2π)
m−1
2

|t |− m−1
2 p(1)

1,k1,k2+ m−1
2

(x, t)

[
1 + O

(
1

|t |
)]

. (4.23)

Now substitute the estimate given by Corollary 3.14 into (4.23). The remainder g in (4.22)
still satisfies (3.12), since (3.12) is satisfied by 1/|t |. ��
Let now m be even, m ≥ 2. We start by a descent method, in the same spirit of [7]: indeed,
observe that the Fourier inversion formula yields

p(m)
1,k1,0

(x, t) =
∫
R

p(m+1)
1,k1,0

(x, (t, tm+1)) dtm+1,

so that, by differentiating under the integral sign,

p(m)
1,k1,k2

(x, t) =
∫
R

∂k2

∂|t |k2 p(m+1)
1,k1,0

(x, (t, tm+1)) dtm+1.

Observe now that |(t, tm+1)| = |t |
√
1 + t2m+1

|t |2 . Therefore, if we define Ik2 := {h ∈
N

k2 : ∑k2
j=1 jh j = k2}, then Faà di Bruno’s formula applied twice6 leads to

p(m)
1,k1,k2

(x, t) =
∑

h∈Ik2

k2!
h!
∫
R

p(m+1)
1,k1,|h|(x, (t, tm+1)) Fh(t, tm+1) dtm+1

where

Fh(t, tm+1) =
k2∏

j=1

⎛
⎝ ∑

�1+2�2= j

2�1

�! (−1)|�|
(

−1

2

)
|�|

|t |1− j

(
1 + t2m+1

|t |2
) 1

2−|�|⎞⎠
h j

.

6 Applied once, it yields

∂k2

∂|t |k2 p(m+1)
1,k1,0

(x, (t, tm+1)) =
∑

h∈Ik2

k2!
h! p(m+1)

1,k1,|h|(x, (t, tm+1))

k2∏
j=1

(
1

j !
∂ j

∂|t | j

√
|t |2 + t2m+1

)h j

,

and then

∂ j

∂|t | j

√
|t |2 + t2m+1 =

∑
�1+2�2= j

j !
�! (−1)|�|

(
− 1

2

)
|�|

(|t |2 + t2m+1)
1
2−|�|

(2|t |)�1 .
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Since F(k2,0,...,0) =
(
1 + t2m+1

|t |2
)−k2/2

while Fh = O

(
1
|t |
(
1 + t2m+1

|t |2
)−1/2

)
otherwise, we

have proved the following lemma.

Lemma 4.12 When m is even, m ≥ 2,

p(m)
1,k1,k2

(x, t) =
∫
R

(
1 + t2m+1

|t |2
)− k2

2

p(m+1)
1,k1,k2

(x, (t, tm+1)) dtm+1

+ O

⎡
⎣ 1

|t | max
0≤r<k2

∫
R

(
1 + t2m+1

|t |2
)− 1

2

p(m+1)
1,k1,r

(x, (t, tm+1)) dtm+1

⎤
⎦ .

As a consequence of Lemma 4.12, matters can be reduced to finding the asymptotic expan-
sions of the integrals

∫
R

(
1 + t2m+1

|t |2
)α

p(m+1)
1,k1,r

(x, (t, tm+1)) dtm+1 (4.24)

when α ∈ R and 0 ≤ r ≤ k2. From these, it will also be proved that the remainder in Lemma
4.12 is indeed smaller than the principal part, which a priori is not obvious.

With this aim, we define the function σ : R � s �→ √
1 + s2 and write t ′ = (t, tm+1) ∈

R
m+1. It is straightforward to check that |t ′| = |t |σ

(
tm+1
|t |
)
. Thus, define

δ(s) := δ√
σ(s)

, κ(s) := κ
√

σ(s) = 2π |t |δ√σ(s).

Obviously, δ(0) = δ and κ(0) = κ . If we put a prime on the quantities introduced in
Definition 2.3 relative to t ′, moreover,

δ′ = δ

(
tm+1

|t |
)

, κ ′ = κ

(
tm+1

|t |
)

.

In cases II, III and IV, |t | → ∞ and δ → 0+. By substituting (4.22) into (4.24) and by the
change of variable tm+1

|t | �→ s in the integral, (4.24) equals

(−1)rπr+k1

2n−k1+1+ m
2

|t |n+k1−1− m
2 +1e− 1

4 d(x,t)2e−κρ(δ)I2α+n+k1−1− m
2
,

where

Iβ =
∫
R

σ(s)βe−|t |π(σ(s)−1) Ĩn+k1−1 (κ(s)ρ (δ(s))) [1 + g(|x |, |t |σ(s))] ds, (4.25)

and g satisfies estimates (3.12). Therefore, matters can be reduced to finding some asymptotic
estimates of the integrals Iβ .

4.2 II. Estimates for δ → 0+ and κ → +∞.

Theorem 4.13 For δ → 0+ and κ → +∞

p1,k1,k2(x, t) = (−1)k2πk1+k2

4n(πδ)n+k1− m+1
2

√
2πκm

e− 1
4 d(x,t)2

[
1 + O

(
δ + 1

κ

)]
.
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1042 T. Bruno, M. Calzi

Proof When m is odd, the theorem is obtained by combining Theorem 3.6 with (4.23).
Therefore, we only consider m even. By the preceding arguments, it will be sufficient to
study Iβ in (4.25).

Since the argument of the modified Bessel function tends to +∞, we use development
(3.13), which gives

Iβ = (2π)−n−k1eκρ(δ)

δn+k1− 1
2 |t |n+k1− 1

2

∫
R

e−|t |ϕδ(s) σ (s)β− 1
4− n+k1−1

2

ρ (δ(s))n+k1− 1
2

×
[
1 + O

(
1

δ|t |√σ(s)

)]
[1 + g(|x |, |t |σ(s))] ds

where

ϕδ(s) = π [σ(s) − 1] + 2πδ
[
ρ(δ) −√σ(s)ρ (δ(s))

]
.

We first study the principal part of the integral, to which we apply Laplace’s method (see
Remark 2.8) with

F = {ϕδ : δ ∈ [0, δ2]}, G =
{

σ(·)β− 1
4− n+k1−1

2

ρ (δ(·))n+k1− 1
2

: δ ∈ [0, δ2]
}

for some δ2, smaller than the δ1 of Lemma 3.9, to be determined.

2. It is easily seen that ϕδ(0) = 0. Moreover,

ϕ′
δ(s) = π

s

σ(s)

[
1 − δ(s)ρ (δ(s)) + δ2

σ(s)
3
2

ρ′ (δ(s))
]

, (4.26)

so that ϕ′
δ(0) = 0 and ϕ′′

δ (0) = π(1 − δρ(δ) + δ2ρ′(δ)). Observe that there is δ2 > 0,
which we may choose smaller than δ1, such that

1 − δ(s)ρ (δ(s)) + δ2

σ(s)
3
2

ρ′ (δ(s)) ≥ 1

2
(4.27)

for every s and every δ ∈ [0, δ2]. Therefore, ϕ′′
δ (0) ≥ π

2 for every δ ∈ [0, δ2].
3. By (4.26) and (4.27), for s ∈ R and δ ∈ (0, δ2),

|ϕ′
δ(s)| ≥ π

2σ(s)
|s|. (4.28)

In particular, |ϕ′
δ(s)| ≥ π

2σ(2) |s| for every s ∈ [−2, 2].
1. Observe that ϕ′

δ(s) = sign(s)|ϕ′
δ(s)| by (4.26); then, by (4.28),

ϕδ(s) =
∫ s

0
sign(s)

∣∣ϕ′
δ(u)

∣∣ du =
∣∣∣∣
∫ s

0

∣∣ϕ′
δ(u)

∣∣ du

∣∣∣∣ ≥ π

2σ(s)

∣∣∣∣
∫ s

0
|u| du

∣∣∣∣ ≥ πs2

4σ(s)

for every s ∈ R, since σ is even and increasing on [0,∞).

4. By definition of σ and since ρ is continuous in zero, we get g(s) � |s|β− 1
4− n+k1−1

2 for
s → ∞, uniformly in g ∈ G .
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By Theorem 2.7, then,

∫
R

e−|t |ϕδ(s) σ (s)β− 1
4− n+k1−1

2

ρ (δ(s))n+k1− 1
2

ds =
√

2

|t | (1 − δρ(δ) + δ2ρ′(δ)
) [1 + O

(
1

|t |
)]

=
√

2

|t |
[
1 + O

(
δ + 1

|t |
)]

.

The remainder can be treated similarly, and with the same arguments as above one gets

∫
R

e−|t |ϕδ(s) σ (s)β− 1
4− n+k1−1

2

ρ (δ(s))n+k1− 1
2

[
O

(
1

δ|t |√σ(s)

)
+ O

(
1

κ
+ δ

)]
ds

=
√

2

|t |
[
1 + O

(
δ + 1

|t |
)]

O

(
1

δ|t | + 1

κ
+ δ

)
=
√

2

|t | O

(
1

κ
+ δ

)

since 1
δ|t | = 2π

κ
= O

( 1
κ

)
and 1/

√
σ(s) ≤ 1 for every s ∈ R. The proof is complete. ��

4.3 III and IV. Estimates for δ → 0+ and κ bounded

These two cases can be treated together, and the principal part of p(m)
1,k1,k2

is easy to get.
The remainders are more tricky, since when passing from the m-dimensional variable t to
the (m + 1)-dimensional variable t ′ the asymptotic conditions in II, III, and IV do not
correspond to those in II’, III’, IV’ (these symbols standing for the cases relative to m + 1);
on the contrary, they mix together according to the values of the additional variable tm+1.

Theorem 4.14 Fix C > 1. If δ → 0+ while 1/C ≤ κ ≤ C, then

p1,k1,k2(x, t) = (−1)k2πk1+k2

4n(πδ)n+k1− m+1
2 κ

m−1
2

e− 1
4 d(x,t)2e−κ In+k1−1(κ) [1 + O (δ)] .

When κ → 0+ and |t | → +∞

p1,k1,k2(x, t) = (−1)k2πk1+k2

22n+ m−1
2 (n + k1 − 1)!

|t |n+k1−1− m−1
2 e− 1

4 d(x,t)2
[
1 + O

(
κ + 1

|t |
)]

.

Proof The theorem holds when m is odd by Theorem 3.11 combined with (4.23). When m
is even, we shall apply Laplace’s method to Iβ . We first deal with the principal part. Define
first

ϕ(s) = πσ(s) − π,

so that Theorem 2.7 will be applied to

F = {ϕ}, G = {σ(·)β Ĩn+k1−1 (κ(·)ρ (δ(·))) : δ ∈ [0, δ1), κ ∈ [0, C]}
where δ1 is that of Lemma 3.9.

2. Notice that ϕ(0) = 0, that ϕ′(s) = π s
σ(s) , and that ϕ′′(0) = π .

1. Observe that ϕ(s) = π s2

1+√
1+s2

≥ π s2
2+|s| , for every s ∈ R.

3. It is easily seen that |ϕ′(s)| ≥ π
σ(1) |s| for every s ∈ [−1, 1].
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1044 T. Bruno, M. Calzi

4. Recall that by (3.13)

Ĩn+k1−1(κ(s)ρ(δ(s))) � eκ(s)ρ(δ(s)) � eκ
√

σ(s)

as s → ∞, uniformly as κ ∈ [0, C] and δ ∈ [0, δ1). Hence, there is a constant c1 > 0
such that |σ(s)β Ĩn+k1−1 (κ(s)ρ (δ(s)))| ≤ c1ec1|s|.

Therefore, by Theorem 2.7

∫
R

e−|t |ϕ(s)σ (s)β Ĩn+k1−1 (κ(s)ρ (δ(s))) ds =
√

2

|t | Ĩn+k1−1(κρ(δ))

[
1 + O

(
1

|t |
)]

uniformly in κ and δ. Since Ĩn+k1−1(κρ(δ)) − Ĩn+k1−1(κ) = O(κρ(δ) − κ) = O(δ2)

uniformly as κ ∈ [0, C] by Taylor’s formula, we are done with the principal part. We now
deal with the remainders, namely

I ′
β =

∫
R

e−|t |ϕ(s)σ (s)β Ĩn+k1−1 (κ(s)ρ (δ(s))) g(|x |, |t |σ(s)) ds

where

g(|x |, |t |σ(s)) =

⎧⎪⎪⎨
⎪⎪⎩

O
(
δ(s) + 1

κ(s)

)
if δ(s) → 0+ and κ(s) → +∞,

O(δ(s)) if δ(s) → 0+ and κ(s)∈ [1/C ′, C ′],
O
(

1
|t |σ(s) + κ(s)

)
if δ(s) → 0+ and κ(s) → 0+

for every C ′ > 1. Since δ(s) ≤ δ for every s ∈ R, we may find some positive constants C ′′,
δ2 ≤ δ1, where δ1 is that of Lemma 3.9, and κ2 ≤ κ1 such that

|g(|x |, |t |σ(s))| ≤

⎧⎪⎪⎨
⎪⎪⎩

C ′′
(
δ(s) + 1

κ(s)

)
when δ ≤ δ2, κ(s) ≥ κ1,

C ′′δ(s) when δ ≤ δ2, κ2 ≤ κ(s) ≤ κ1,

C ′′
(

1
|t |σ(s) + κ(s)

)
when δ ≤ δ2, κ(s) ≤ κ2.

We shall split the integrals accordingly. Notice first that we may assume also that κ2 ≤
1/(2C) ≤ 2C ≤ κ1, and, up to taking a smaller δ2, that

ϕ(s) − 2πδ
√

σ(s)ρ (δ(s)) ≥ 1

2
|s|

whenever |s| ≥ 2 and δ ∈ [0, δ2).
Consider first case III, where κ ∈ [1/C, C]. We split

I ′
β =

∫
κ(s)≤κ1

+
∫

κ(s)≥κ1

= I ′
β,1 + I ′

β,2.

Observe that κ(s) ≥ κ1 if and only if |s| ≥
√

κ41
κ4

− 1 =: s1,κ ≥ 2. Since

Ĩn+k1−1(κ(s)ρ(δ(s))e−|t |ϕ(s) = O
(

e|t |[2πδ
√

σ(s)ρ(δ(s))−ϕ(s)]) = O
(

e− 1
2 |t ||s|)

as s → ∞, and since δ = O
( 1

κ

) = O(1) in case III, we get

|I ′
β,2| ≤ C ′

(
δ + 1

κ

)∫
|s|≥s1,κ

σ (s)β− 1
2 Ĩn+k1−1 (κ(s)ρ (δ(s))) e−|t |ϕ(s) ds = O

(
e− s1,κ

4 |t |) ,
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which is negligible relative to 1
|t |3/2 . By Laplace’s method, moreover,

|I ′
β,1| ≤ C ′δ

∫
|s|≤s1,κ

σ (s)β− 1
2 Ĩn+k1−1 (κ(s)ρ (δ(s))) e−|t |ϕ(s) ds = O

(
δ

1√|t |
)

with the same arguments as above. This concludes the study of case III.
Consider now case IV, where κ → 0+. We split

I ′
β =

∫
κ(s)≤κ2

+
∫

κ2≤κ(s)≤κ1

+
∫

κ(s)≥κ1

= I ′
β,1 + I ′

β,2 + I ′
β,3.

Observe that κ(s) ≥ κ2 if and only if s ≥
√

κ42
κ4

− 1 =: s2,κ , and s1,κ ≥ s2,κ ≥ 2 if κ is

sufficiently small. Exactly as above, we get

|I ′
β,3|≤C ′

(
δ + 1

κ

)∫
|s|≥s1,κ

σ (s)β− 1
2 Ĩn+k1−1 (κ(s)ρ (δ(s))) e−|t |ϕ(s) ds = O

(
1

κ
e− s1,κ

4 |t |
)

which is negligible relative to 1
|t |3/2 . Then

|I ′
β,2| ≤ C ′δ

∫
s2,κ≤|s|≤s1,κ

σ (s)β− 1
2 Ĩn+k1−1 (κ(s)ρ (δ(s))) e−|t |ϕ(s) ds = O

(
δ e− s2,κ

4 |t |) ,

which is negligible relative to 1
|t |3/2 in case IV. Finally,

|I ′
β,1| ≤ C ′

∫
|s|≤s2,κ

σ (s)β Ĩn+k1−1 (κ(s)ρ (δ(s))) e−|t |ϕ(s)
(√

σ(s)κ + 1

σ(s)|t |
)

ds

= O

[
1√|t |
(

1

|t | + κ

)]
,

by Laplace’s method as above. The proof is complete. ��
We can finally state the following corollary, which is the natural extension of Corollary 3.14.

Corollary 4.15 For (x, t) → ∞ and δ → 0+

p1,k1,k2 (x, t) = (−1)k2πk1+k2

2n−k1+1+ m−1
2

|t |n+k1− m+1
2 e− 1

4 d(x,t)2e−κρ(δ) Ĩn+k1−1(κρ(δ)) [1 + g(|x |, |t |)] ,

where

g(|x |, |t |) =

⎧⎪⎪⎨
⎪⎪⎩

O
(
δ + 1

κ

)
if δ → 0+ and κ → +∞,

O(δ) if δ → 0+ and κ ∈ [1/C, C],
O
(

1
|t | + κ

)
if δ → 0+ and κ → 0+

for every C > 0.

We have not been able to find a single function which displays the asymptotic behaviour
of p1,k1,k2(x, t) as (x, t) → ∞, though we showed that the exponential decrease is the same
in the four cases. This is also the same decrease found by Eldredge [7, Theorems 4.2 and 4.4],
when k1 = k2 = 0 and for the horizontal gradient, and Li [17, Theorems 1.4 and 1.5], when
k1 = k2 = 0. Notice that in [17, Theorem 1.5 and the following Remark (1)] the remainders
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1046 T. Bruno, M. Calzi

for k1 = k2 = 0 seem to be better than those we put in Corollary 4.15, but they reduce to
ours when developing the estimates in a more convenient form in cases II and IV, as we did
in Theorems 4.13 and 4.14.

Remark 4.16 Our sharp estimates for p1,k1,k2 can be used to obtain asymptotic estimates of
all the derivatives of the heat kernel p1. Indeed, Faà di Bruno’s formula leads to

∂ |γ |

∂xγ1∂tγ2
p1(x, t)

= γ1!γ2!
∑

η,μ,β

|μ|!2|μ1|−|γ1|

η!μ!β!

⎡
⎣ |μ|∏

h=1

(( 1
2

)
h

h!

)βh
⎤
⎦ xη1 sign(t)μ1 |t ||β|−|γ2| p1,|η|,|β|(x, t),

(4.29)

where the sum is extended to all η = (η1, η2) ∈ N
2n × N

2n , μ = (μ1, μ2) ∈ N
m × N

m and
β ∈ N

|μ| such that

γ1 = η1 + 2η2, γ2 = μ1 + 2μ2,

|μ|∑
h=1

hβh = |μ|.

However, the sharp asymptotic expansions we explicitly provided in Theorems 4.2, 4.13,
and 4.14 may not be enough to get directly sharp asymptotic estimates of any desired
derivative of p1: some cancellations among the principal terms may indeed occur in (4.29).
Nevertheless, by inspecting case by case, the interested reader could consider as many terms
of the expansions given by Theorem 2.7 or Lemma 3.12 as necessary. In the case when
t → 0, one may also make use of Lemma 4.8 before expanding each term: a suitable choice
for N gets rid of the negative powers of |t | appearing in (4.29). Despite this, our estimates
for p1,k1,k2 lead to the sharp behaviour at infinity of ∇H ps and Lps , as we shall see in the
next section.

5 Sub-Riemannian Ornstein–Uhlenbeck operators

For every s > 0 consider the operator on L2(ps) given by

Lps = L − ∇H ps

ps
· ∇H : C∞

c → L2(ps)

which arises from the Dirichlet form ϕ �→ ∫
G |∇Hϕ(y)|2 ps(y) dy. For a fixed time s > 0,

Lps can be considered as a sub-Riemannian version of the classical Ornstein–Uhlenbeck
operator (see [1,18]). Arguing as Strichartz [23, Theorem 2.4] it is not hard to see that Lps

with domain C∞
c (G) is essentially self-adjoint on L2(ps), for every s > 0. Let us then

consider its closure, which we still denote by Lps .

Theorem 5.1 Lps has purely discrete spectrum for all s > 0.

Theorem5.1 is indeed due to Inglis [14], whose proof relies on super Poincaré inequalities.
Instead, we reduce matters to studying a Schrödinger-type operator by conjugating Lps

with the isometry Us : L2(ps) → L2 defined by Us f = f
√

ps (see, e.g. [4,19]). More
precisely, we consider the operator Us Lps U−1

s : L2 → L2. Simple computations then lead
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Asymptotics for the heat kernel on H-type groups 1047

to UsLps U−1
s = L + Vs , where Vs is the multiplication operator7 given by the function

Vs = −1

4

|∇H ps |2
p2s

− 1

2

Lps

ps
= −1

4

∑2n
j=1(X j ps)

2

p2s
+1

2

∑2n
j=1 X2

j ps

ps
.

The main ingredient of the proof is due to Simon [22, Theorem 2]. Given a potential V and
M > 0, we defineΩM := {g ∈ G : V (g) ≤ M}. For a subset E of G, we write |E | to denote
its measure with respect to dy.

Theorem 5.2 Let V be a potential bounded from below such that |ΩM | < ∞ for every
M > 0. Then there exists a self-adjoint extension of L + V with purely discrete spectrum.

In order to apply Proposition 5.2, some estimates of the potential are needed; this is done in
the following proposition.

Proposition 5.3 When (x, t) → ∞, Vs(x, t) � s−2d(x, t)2 for every s > 0.

Proof Since Vs(x, t) = 1
s V1

(
x√
s
, t

s

)
, it will be sufficient to consider V1 only. For every

(x, t) ∈ G
|∇H p1|2(x, t) = R p1,1,0(x, t)2 + R p1,0,1(x, t)2, (5.1)

while

Lp1(x, t) = −R p1,2,0(x, t) − n p1,1,0(x, t) − R p1,0,2(x, t)+ R

|t | (m − 1)p1,0,1(x, t).

Hence,

V1 = − R

4

p21,1,0 + p21,0,1
p21,0,0

+ R

2

p1,2,0 + p1,0,2 + n
R p1,1,0 − m−1

|t | p1,0,1

p1,0,0
.

In order to find the asymptotics for the potential, it turns out that only the principal term
of p1,k1,k2 is necessary, and therefore, for the sake of simplicity, we shall avoid an explicit
treatment of the remainders. If one is interested in amore detailed description of the behaviour
of the potential, however, it is enough to use the remainders that we found in the previous
sections.

I. If ω runs through [0, C] for some C > 0, then both yω

sin(yω)
and yω

ω
are positive and

bounded both from above and from below. Hence,

V1(x, t) ∼ − R

4

y2ω
sin(yω)2

+ R

2

y2ω
sin(yω)2

= R

4

y2ω
sin(yω)2

� d(x, t)2

thanks to Theorem 4.2.
II. Let δ → 0+ and κ → +∞. Then 1

Rδ
= o

(
1

δ2
√

κ

)
, and κ + |t |√

κ
= o(|t |). Therefore,

by Theorem 4.13,

V1(x, t) ∼ − R

4

1

δ2
+ R

2

1

δ2
= π

4
|t | � d(x, t)2.

III. Let δ → 0+ and κ ∈ [1/C, C] for some C > 1. Then δ � R. Elementary computa-
tions yield

I ′
ν(ζ ) = Iν−1(ζ ) + Iν+1(ζ )

2
,

7 With a slight abuse of notation, we do not distinguish between a multiplication operator by a function and
the function itself.
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1048 T. Bruno, M. Calzi

so that

(2Iν−1 Iν+1 − I 2ν )′(ζ ) = Iν−2(ζ )Iν+1(ζ ) + Iν−1(ζ )Iν+2(ζ )

for all ν ∈ Z and for all ζ ∈ C. Thus, 2In−1 In+1 − I 2n is strictly increasing on [0,∞), hence
strictly positive on (0,∞). Therefore, by Theorem 4.14

V1(x, t) ∼ − R

4

1
δ2

In(κ)2

In−1(κ)2
+ R

2

1
δ2

In+1(κ) + n
Rδ

In(κ)

In−1(κ)

= π |t |
4

2n
κ

In(κ)In−1(κ) + 2In−1(κ)In+1(κ) − In(κ)2

In−1(κ)2
� d(x, t)2.

IV. Finally, let κ → 0+ and |t | → +∞. Then |t | = o
( 1

R

)
, so that

V1(x, t) ∼ − R

4

π2

(n!)2 |t |2 + π2

[(n−1)!]2
1

[(n−1)!]2
+ R

2

π2

(n+1)! |t |2 + π2

(n−1)! + nπ
R n! |t | + (m−1)π

(n−1)!|t |
1

(n−1)!

∼ π

2
|t | � d(x, t)2,

thanks to Theorem 4.14 again. ��
Remark 5.4 The estimates provided by Eldredge [7] are not sufficient to prove Proposi-
tion 5.3, not even with some precise estimates of Lp1/p1. Indeed, as the proof above shows,
in cases I, II, and III one has Lp1/p1 � |∇H p1|2/p21, so that no lower control of V1 can be
inferred. On the other hand, the upper bounds of the derivatives of ps explicitly provided by
Li [17] are not enough to describe the behaviour at infinity of Vs .

Proof of of Theorem 5.1 Since Vs is continuous and diverges at infinity by Proposition 5.3,
the assumptions of Theorem 5.2 are fulfilled and this ensures the existence of a self-adjoint
extension (Ts,Ds) of (L + Vs, C∞

c ) with purely discrete spectrum. Since the multiplication
by the square root of ps , which we called Us , preserves C∞

c , U−1
s Ds ⊇ C∞

c ; there-
fore, (U−1

s TsUs, U−1
s Ds) is a self-adjoint extension—with purely discrete spectrum—of

(Lps , C∞
c ), which is essentially self-adjoint. The result follows. ��
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