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Abstract In this article, we study a globally modified Allen–Cahn–Navier–Stokes system
in a three-dimensional domain. The model consists of the globally modified Navier–Stokes
equations proposed in Caraballo et al. (Adv Nonlinear Stud 6(3):411–436, 2006) for the
velocity, coupled with an Allen–Cahn model for the order (phase) parameter. We prove the
existence and uniqueness of strong solutions. Using the flattening property, we also prove
the existence of global V-attractors for the model. Using a limiting argument, we derive the
existence of bounded entire weak solutions for the three-dimensional coupled Allen–Cahn–
Navier–Stokes system with time-independent forcing.

Keywords Allen–Cahn–Navier–Stokes · Globally modified · Strong solutions · Global
attractor

Mathematics Subject Classification 35Q30 · 35Q35 · 35Q72

1 Introduction

It is well accepted that the incompressible Navier–Stokes (NS) equation governs the motions
of single-phase fluids such as air or water. On the other hand, we are faced with the difficult
problem of understanding the motion of binary fluid mixtures, that is fluids composed by
either two phases of the same chemical species or phases of different composition. Diffuse
interface models are well-known tools to describe the dynamics of complex (e.g., binary)
fluids [17]. For instance, this approach is used in [2] to describe cavitation phenomena in a
flowing liquid. The model consists of the NS equation coupled with the phase-field system
[3,16–18]. In the isothermal compressible case, the existence of a global weak solution is
proved in [15]. In the incompressible isothermal case, neglecting chemical reactions and
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other forces, the model reduces to an evolution system which governs the fluid velocity v and
the order parameter φ. This system can be written as a NS equation coupled with a convective
Allen–Cahn equation [17]. The associated initial and boundary value problem was studied in
[17] in which the authors proved that the system generated a strongly continuous semigroup
on a suitable phase space which possesses a global attractor.

The dynamic of simple single-phase fluids has been widely investigated although some
important issues remain unresolved [34]. In the case of binary fluids, the analysis is evenmore
complicate and themathematical studied is still at it infancy as noted in [17]. As noted in [16],
themathematical analysis of binaryfluidflows is far frombeingwell understood. For instance,
the spinodal decomposition under shear consists of a two-stage evolution of a homogeneous
initial mixture: a phase separation stage in which somemacroscopic patterns appear and then
a shear stage in which these patters organize themselves into parallel layers (see, e.g., [32]
for experimental snapshots). This model has to take into account the chemical interactions
between the two phases at the interface, achieved using a Cahn–Hilliard approach, as well as
the hydrodynamic properties of themixture (e.g., in the shear case), forwhich aNavier–Stokes
equations with surface tension terms acting at the interface are needed. When the two fluids
have the same constant density, the temperature differences are negligible and the diffuse
interface between the two phases has a small but nonzero thickness, a well-known model
is the so-called Model H (cf. [19]). This is a system of equations where an incompressible
Navier–Stokes equation for the (mean) velocity v is coupled with a convective Cahn–Hilliard
equation for the order parameter φ, which represents the relative concentration of one of the
fluids.

Many challenges in the mathematical and numerical analysis of the AC–NS equations are
related to the fact that the full mathematical theory for the 3D Navier–Stokes equation (NSE)
in three dimensions is still lacking at present. Since the uniqueness theorem for the global
weak solutions (or the global existence of strong solutions) of the initial-value problem of
the 3D Navier–Stokes system is not proved yet, the known theory of global attractors of
infinite-dimensional dynamical systems is not applicable to the 3D Navier–Stokes system.
This situation is the same for the 3D coupled Allen–Cahn–Navier–Stokes systems. Using
regular approximation equations to study the classical 3DNavier–Stokes systems has become
an effective tool both from the numerical and the theoretical point of views. As noted in [36],
it was demonstrated analytically and numerically in many works that the LANS-α model
gives a good approximation in the study of many problems related to turbulence flows. In
particular, it was found that the explicit steady analytical solution of the LANS-α model
compares successfully with empirical and numerical experiment data for a wide range of
Reynolds numbers in turbulent channel and pipe flows [36]. Let us recall that the inviscid
3D LANS-α equations was first proposed in [20,21]. As described in [31], the 3D LANS-α
equations are a systems of partial differential equations for the mean velocity in which a
nonlinear dispersive mechanism filters the small scales. As such, the 3D LANS-α equations
serve as an appropriate model for turbulent flows and a suitable approximation of the 3D NS
as documented in [9–12].

In [7], the authors proposed a three-dimensional system of a globally modified Navier–
Stokes equations (GMNSE). They studied the existence and uniqueness of strong solutions
and established the existence of global V -attractors. As noted in [7], the GMNSE prevents
large gradients dominating the dynamic and leading to explosion. Let us recall that some
useful results about the three-dimensional NSE are obtained from the GMNSE. In particular,
using the GMNSE model, the authors of [7] established the existence of bounded entire
solutions of the 3D Navier–Stokes equations. In [30], the authors used the GMNSE to prove
that the attainability set of weak solutions of the 3D NS satisfying the energy inequality

123



Unique strong and V-attractor of a three-dimensional… 845

is weakly compact and weakly connected. Several articles are devoted to the mathematical
analysis of the GMNSE, see for instance [5,8,14,24,25,29,30,33], as well as the review
paper [4] in which the authors present some recent developments on the GMNSE.

Motivated by the above work, we propose in this article a three-dimensional system of a
globally modified AC–NS equations (GMACNSE). We prove the existence and uniqueness
of strong solutions as well as the existence of V-attractors, i.e., attractors in the space V

generated by strong solutions [see the definition 2.20 below]. Let us note that the coupling
between the Navier–Stokes and the Allen–Cahn equations introduces in the coupled model
a highly nonlinear term that makes the analysis more involved.

The article is divided as follows. In the next section, we introduce the GMACNSE and
its mathematical setting. The third section studies the existence and uniqueness of strong
solutions. In the fourth section, we study the asymptotic behavior of the strong solutions
when the forcing term is time independent and we prove the existence of global attractors in
V. In the fifth section, we prove that solutions to the GMACNSE converge to weak solution of
the AC–NS system. For a time-independent forcing, we also prove the existence of bounded
entire weak solutions of the 3D AC–NS equations.

2 A globally modified AC–NS model and its mathematical setting

2.1 Governing equations

In this article, we consider a globally modified version of a model of homogeneous incom-
pressible two-phase flow. More precisely, we assume that the domain M of the fluid is a
bounded domain in �3. We consider a globally modified version of the following AC–NS
system

⎧
⎪⎨

⎪⎩

∂v
∂t − ν�v + (v · ∇)v + ∇ p − Kμ∇φ = g,
div v = 0,
∂φ
∂t + v · ∇φ + μ = 0, μ = −ε�φ + α f (φ),

(2.1)

in M × (0,+∞).

In (2.1), the unknown functions are the velocity v = (v1, v2, v3) of the fluid, the pressure
p, the order (phase) parameter φ and the (given) external force field g. The quantity μ is the
variational derivative of the following free energy functional

F(φ) =
∫

M

( ε

2
|∇φ|2 + αF(φ)

)
ds, (2.2)

where, e.g., F(r) =
∫ r

0
f (ζ )dζ. Here, the constants ν > 0 and K > 0 correspond to the

kinematic viscosity of the fluid and the capillarity (stress) coefficient, respectively, ε, α > 0
are two physical parameters describing the interaction between the two phases. In particular,
ε is related with the thickness of the interface separating the two fluids. Hereafter, as in [17]
we assume that ε ≤ α.

We endow (2.1) with the boundary condition

v = 0,
∂φ

∂η
= 0 on ∂M × (0,+∞), (2.3)

where ∂M is the boundary of M and η is its outward normal.
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The initial condition is given by

(v, φ)(0) = (v0, φ0). (2.4)

Now, we define the function FN : �+ → �+ by

FN (r) = min{1, N/r}, r ∈ �+, (2.5)

for some (fixed) N ∈ �+ and we consider the following globally modified AC–NS equations
(GMACNSE)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂v
∂t − ν�v + FN (‖v‖) [(v · ∇)v] + ∇ p − FN (‖(v, φ)‖V) [Kμ∇φ] = g,

div v = 0,

∂φ
∂t + FN (‖(v, φ)‖V) [v · ∇φ] + μ = 0, μ = −ε�φ + α f (φ),

(2.6)

in M × (0,+∞), where ‖v‖ and ‖(v, φ)‖V are some norms defined by (2.9) and (2.21)
below.

The GMACNSE (2.6) is inspired from the globally modified Navier–Stokes equations
(GMNSE) proposed in [7]. As noted in [7] in the case of the GMNSE, the GMACNSE are
indeed globally modified. The factors FN (‖v‖) and FN (‖(v, φ)‖V) depend, respectively, on
the norms ‖v‖ and ‖(v, φ)‖V. They prevent large values of ‖v‖ and ‖(v, φ)‖V dominating
the dynamics. Just like the GMNSE, the GMACNSE violate the basic laws of mechanics,
but mathematically the model is well defined. See also [13] for other modifications of the
nonlinear term in the NSE.

2.2 Mathematical setting

Hereafter, we assume that the domain M is bounded with a smooth boundary ∂M (e.g., of
class C2). We also assume that f ∈ C1(�) satisfies

⎧
⎨

⎩

lim|r |→+∞ f ′(r) > 0,

| f ′(r)| ≤ c f (1 + |r |k), ∀r ∈ �,

(2.7)

where c f is some positive constant and k ∈ [1, 2] is fixed. It follows from (2.7) that

| f (r)| ≤ c f

(
1 + |r |k+1

)
, ∀r ∈ �. (2.8)

If X is a real Hilbert space with inner product (·, ·)X , we will denote the induced norm by
| · |X , while X∗ will indicate its dual. We set

V1 = {
v ∈ C∞

c (M) : div v = 0 in M}
.

We denote by H1 and V1 the closure of V1 in (L2(M))3 and (H1
0 (M))3, respectively. The

scalar product in H1 is denoted by (·, ·) and the associated norm by | · |L2 . Moreover, the
space V1 is endowed with the scalar product

((u, v)) =
3∑

i=1

(∂xi u, ∂xi v)L2 , ‖u‖ = ((u, u))1/2. (2.9)

We now define the operator A0 by

A0u = P�u, ∀u ∈ D(A0) = H2(M) ∩ V1,
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Unique strong and V-attractor of a three-dimensional… 847

where P1 is the Leray–Helmholtz projector in L2(M) onto H1. Then, A0 is a self-adjoint
positive unbounded operator in H1 which is associated with the scalar product defined above.
Furthermore, A−1

0 is a compact linear operator on H1 and |A0 · |L2 is a norm on D(A0) that
is equivalent to the H2-norm.

Note that from (2.7), we can find γ > 0 such that

lim|r |→+∞ f ′(r) > 2γ > 0. (2.10)

We define the linear positive unbounded operator Aγ on L2(M) by:

Aγ φ = −�φ + γφ, ∀φ ∈ D(Aγ ), (2.11)

where

D(Aγ ) =
{

ρ ∈ H2(M); ∂ρ

∂η
= 0 on ∂M

}

.

Note that A−1
γ is a compact linear operator on L2(M) and |Aγ · |L2 is a norm on D(Aγ )

that is equivalent to the H2-norm.
We introduce the bilinear operators B0, B1 (and their associated trilinear forms b0, b1)

as well as the coupling mapping R0, which are defined from D(A0) × D(A0) into H1,

D(A0)× D(Aγ ) into L2(M), and L2(M)× D(A3/2
γ ) into H1, respectively. More precisely,

we set

(B0(u, v), w) =
∫

M
[(u · ∇)v] · wdx = b0(u, v, w), ∀u, v, w ∈ D(A0),

(B1(u, φ), ρ) =
∫

M
[(u · ∇)φ] ρdx = b1(u, φ, ρ), ∀u ∈ D(A0), φ, ρ ∈ D(Aγ ),

(R0(μ, φ),w) =
∫

M
μ [∇φ · w] dx = b1(w, φ, μ), ∀w ∈ D(A0), (μ, φ) ∈ L2(M) × D(A3/2

γ ).

(2.12)
Note that

R0(μ, φ) = P1μ∇φ.

We recall that B0, B1 and R0 satisfy the following estimates (see for instance [16,17,34,35])

|b0(u, v, w)| ≤ c|u|1/2
L2 ‖u‖1/2|A0v|L2 |w|L2 , ∀u ∈ V1, v ∈ D(A0)), w ∈ H1,

|B0(u, v)|V ∗
1

≤ c|u|1/4
L2 ‖u‖3/4|v|1/4

L2 ‖v‖3/4, ∀u, v ∈ V1,

|B0(u, v)|L2 ≤ c‖u‖‖v‖1/2|A0v|1/2
L2 , ∀u ∈ V1, v ∈ D(A0), (2.13)

|b1(u, φ, ψ)| ≤ c|u|1/2
L2 ‖u‖1/2|Aγ φ|L2 |ψ |L2 , ∀u ∈ V1, φ ∈ D(Aγ )), ψ ∈ H2,

|B1(u, φ)|V ∗
2

≤ c|u|1/4
L2 ‖u‖3/4|φ|1/4

L2 ‖φ‖3/4, ∀u ∈ V1, φ ∈ V2,

|B1(v, φ)|L2 ≤ c‖v‖‖φ‖1/2|Aγ φ|1/2
L2 , ∀v ∈ V1, φ ∈ D(Aγ ), (2.14)

|R0(Aγ φ, ρ)|V ∗
1

≤ c‖ρ‖1/2|Aγ ρ|1/2
L2 |Aγ φ|L2 , ∀φ, ρ ∈ D(Aγ ),

|R0(Aγ φ, ρ)|L2 ≤ c|Aγ ρ|L2 |Aγ φ|1/2
L2 |A3/3

γ φ|1/2
L2 , ∀φ ∈ D(Aγ ), ρ ∈ D(A3/2

γ ).

(2.15)
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For instance to derive (2.15)2, we note that

|〈R0(Aγ φ, ρ),w〉| = |b1(w, ρ, Aγ φ)| ≤ c|w|L2 |∇ρ|L6 |Aγ φ|L3

≤ c|w|L2 |Aγ ρ|L2 |Aγ φ|1/2
L2 |A3/2

γ φ|1/2
L2 , (2.16)

which gives (2.15)2.
Hereafter we set

bN0 (u, v, w) = FN (‖v‖)b0(u, v, w), 〈BN
0 (u, v), w〉 = bN0 (u, v, w), ∀u, v, w ∈ V1,

bN1 (v, φ, ψ) = FN (‖(v, φ)‖V)b1(v, φ, ψ), 〈BN
1 (v, φ), ψ〉 = bN0 (v, φ, ψ), ∀v ∈ V1, φ, ψ ∈ V2,

〈RN
0 (Aγ φ, φ),w〉 = FN (‖(v, φ)‖V)〈R0(Aγ φ, φ),w〉, ∀(v, φ) ∈ V1 × D(Aγ ), w ∈ V1.

(2.17)
It follows from (2.13–2.15) and (2.5) that

|bN0 (u, v, w)| ≤ cN‖u‖‖w‖, ∀u, v,∈ V1,

‖BN
0 (u, v)‖V ∗

1
≤ c|u|1/4

L2 ‖u‖3/4|v|1/4
L2 ‖v‖3/4, ∀u, v ∈ V1,

‖BN
0 (u, v)‖V ∗

1
≤ cN‖u‖, ∀u, v ∈ V1. (2.18)

We also note that

bN0 (u, v, v) = 0, ∀u, v ∈ V1,

bN1 (v, φ, φ) = 0, ∀v ∈ V1, φ ∈ V2,

bN1 (v, φ, Aγ φ) =
〈
RN
0 (Aγ φ, φ), v

〉
, ∀(v, φ) ∈ V1 × D(Aγ ). (2.19)

Now we define the Hilbert spaces Y and V by

Y = H1 × H1(M), V = V1 × D(Aγ ) (2.20)

endowed with the scalar products whose associated norms are

|(v, φ)|2
Y

= K−1|v|2L2 + ε
(|∇φ|2L2 + γ |φ|2L2

) = K−1|v|2L2 + ε|A1/2
γ φ|2L2 ,

‖(v, φ)‖2
V

= ‖v‖2 + |Aγ φ|2L2 . (2.21)

We also set

fγ (r) = f (r) − α−1εγ r

and observe that fγ still satisfies (2.10) with γ in place of 2γ since ε ≤ α. Also its primitive

Fγ (r) =
∫ r

0
fγ (ζ )ζ is bounded from below.

Hereafter, we will denote by λ > 0 a constant such that

λ|v|2L2 ≤ ‖v‖2, λ|A1/2
γ φ|2L2 ≤ |Aγ φ|2L2 , ∀(v, φ) ∈ V. (2.22)

Using the notations above, we rewrite (2.6), (2.3), (2.4) in the form
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dv
dt + νA0v + BN

0 (v, v) = KRN
0 (εAγ φ, φ) + g,

dφ
dt + μ + BN

1 (v, φ) = 0, μ = εAγ φ + α fγ (φ),

(v, φ)(0) = (v0, φ0).

(2.23)
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Remark 2.1 In the formulation (2.23), the termμ∇φ is replaced by εAγ ∇φ. This is justified
since f ′

γ (φ)∇φ is the gradient Fγ (φ) and can be incorporated into the pressure gradient, see
[17] for details.

Definition 2.1 Suppose that (v0, φ0) ∈ Y and g ∈ L2(0, T ; H1) for all T > 0. A weak
solution to (2.23) is any pair (v, φ) ∈ L2(0, T ;V) such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dv
dt + νA0v + BN

0 (v, v) = KRN
0 (εAγ φ, φ) + g in D′ (0,∞; V ′

1

)
,

dφ
dt + μ + BN

1 (v, φ) = 0, μ = εAγ φ + α fγ (φ) in D′ (0,∞; V ′
2

)
,

(v, φ)(0) = (
v0, φ0

)
.

(2.24)

Remark 2.2 Note that if (v, φ) ∈ L2(0, T ;V) satisfies (2.23), it follows from (2.18) that
d
dt (v, φ) ∈ L2([0, T );V∗) and consequently, (v, φ) ∈ C([0, T );Y).

Hereafter, for any (w,ψ) ∈ Y, we set

E(w,ψ) = |(w,ψ)|2
Y

+ 2〈Fγ (ψ), 1〉 + α0, (2.25)

where α0 > 0 is a constant large enough and independent of (w,ψ) such that E(w,ψ) is
nonnegative (note that Fγ is bounded from below).

We can check that (see [16] for details) there exists a monotone non-decreasing function
Q0 (independent of time and the initial condition) such that

|(w,ψ)|2
Y

≤ E(w,ψ) ≤ Q0

(
|(w, ψ)|2

Y

)
≡ C f

(
1 + |(w,ψ)|2

Y
+ |∇φ|k+2

L2

)
, ∀(w,ψ) ∈ Y,

(2.26)
where k is the integer that appears in (2.7)–(2.8) and C f > 0 is a constant.

By taking the scalar product in H1 of (2.23)1 with v, then taking the scalar product in
L2(M) of (2.23)3 with μ, we derive that (v, φ) satisfies the energy equality

E(t) − E(s) +
∫ t

s

(
2ν‖v‖2 + 2|μ|2L2

)
dζ = 2

∫ t

s
〈g, v〉dζ for all 0 ≤ s ≤ t, (2.27)

where E(t) = E(v(t), φ(t)).
The weak formulation of (2.23) with FN replaced by 1 is studied in [16,17], where the

existence and uniqueness of solution was proved in the two-dimensional case. See also [1].
Hereafter, to simplify the notation, we set K = 1.

We recall from [7] the following properties of FN .

Lemma 1

|FN (p) − FN (r)| ≤ |p − r |
r

, ∀p, r ∈ �+, r �= 0,

|FN (‖v1‖) − FN (‖v1‖)| ≤ ‖v1 − v2‖
‖v2‖ , ∀v1, v2 ∈ V1, v1 �= 0,

|FM (p) − FN (r)| ≤ |M − N |
r

+ |p − r |
r

, ∀p, r, M, N ∈ �+, r �= 0. (2.28)

Proof See [7]. ��
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3 Existence and uniqueness of strong solution

Theorem 1 There exists at most one weak solution (v, φ) of (2.23) such that (v, φ) ∈
L2(0, T ; D(A0) × D(A3/2

γ )).

Proof Let (vi , φi ), i = 1, 2 be weak solutions to (2.23) that belong to L2(0, T ; D(A0) ×
D(A3/2

γ )). Let us set (w,ψ) = (v1, φ1) − (v2, φ2). Then (w,ψ) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dw
dt + νA0w + BN

0 (v1, v1) − BN
0 (v2, v2) = RN

0 (εAγ φ1, φ1) − RN
0 (εAγ φ2, φ2),

dψ
dt + εAγ ψ + BN

1 (v1, φ1) − BN
1 (v2, φ2) + α fγ (φ1) − α fγ (φ2) = 0,

(w,ψ)(0) = (0, 0).
(3.1)

From [7], we have

BN
0 (v1, v1) − BN

0 (v2, v2) = FN (‖v1‖)B0(w, v1) + FN (‖v2‖)B0(v2, w)

+ (FN (‖v1‖) − FN (‖v2‖)) B0(v2, v1), (3.2)

|〈BN
0 (v1, v1) − BN

0 (v2, v2), w〉| ≤ ν

8
‖w‖2 + c|A0v2|2L2 |w|2L2 + c‖v2‖|A0v2|L2 |w|2L2 .

(3.3)

We can also check that
〈
RN
0 (εAγ φ1, φ1) − RN

0 (εAγ φ2, φ2), w
〉
= 〈

FN (‖(v1, φ1)‖V)R0(εAγ φ1, φ1)

− FN (‖(v2, φ2)‖V)R0(εAγ φ2, φ2), w
〉

= FN (‖(v1, φ1)‖V) b1(w, φ1, εAγ ψ)

+ FN (‖(v2, φ2)‖V) b1(w,ψ, εAγ φ2)

+ FN (‖(v1, φ1)‖V)

− FN (‖(v2, φ2)‖V) b1
(
w,φ1, εAγ φ2

)

≡ K 1
2 + K 2

2 + K 3
2 , (3.4)

〈
BN
1 (v1, φ1) − BN

1 (v2, φ2), Aγ ψ
〉
= 〈FN (‖(v1, φ1)‖V)B1(v1, φ1)

− FN (‖(v2, φ2)‖V) B1(v2, φ2), w〉
= FN (‖(v1, φ1)‖V) b1(w, φ1, Aγ ψ)

+ FN (‖(v2, φ2)‖V) b1(v2, ψ, Aγ ψ)

+ FN (‖(v1, φ1)‖V)

− FN (‖(v2, φ2)‖V) b1(v2, φ1, Aγ ψ)

≡ K 1
3 + K 2

3 + K 3
3 . (3.5)

From (2.13–2.15), we have

|b1(w, φ1, εAγ ψ)| ≤ c|w|1/2
L2 ‖w‖1/2|Aγ φ1|L2 |Aγ ψ |L2 ,

|b1(w,ψ, εAγ φ2)| ≤ c|w|1/2
L2 ‖w‖1/2|Aγ ψ |L2 |Aγ φ2|L2 ,

|b1(w, φ1, εAγ φ2)| ≤ c|w|1/2
L2 ‖w‖1/2|Aγ φ1|L2 |Aγ φ2|L2 . (3.6)
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It follows from (2.5), (2.28) and (3.4)–(3.6) that

|K 1
2 | ≡ FN (‖(v1, φ1)‖V)|b1(w, φ1, εAγ ψ)| ≤ cN |w|1/2

L2 ‖w‖1/2|Aγ ψ |L2

≤ ν
8‖w‖2 + ε

8 |Aγ ψ |2
L2 + cN 4|w|2

L2 ,
(3.7)

|K 2
2 | ≡ FN (‖(v2, φ2)‖V)|b1(w,ψ, εAγ φ2)| ≤ cN |w|1/2

L2 ‖w‖1/2|Aγ ψ |L2

≤ ν
8‖w‖2 + ε

8 |Aγ ψ |2
L2 + cN 4|w|2

L2 ,
(3.8)

|K 3
2 | ≡ |FN (‖(v1, φ1)‖V) − FN (‖(v2, φ2)‖V||b1(w, φ1, εAγ φ2)|

≤ c ‖(w,ψ)‖V‖(v2, φ2)‖V |w|1/2
L2 ‖w‖1/2|Aγ φ1|L2 |Aγ φ2|L2

≤ ‖(w,ψ)‖3/2
V

|w|1/2
L2 |Aγ φ1|L2

≤ ν
8‖w‖2 + ε

8 |Aγ ψ |2
L2 + c|w|2

L2‖φ1‖2|A3/2
γ φ1|2L2 .

(3.9)

Similarly, from (2.13)–(2.15) we have

|b1(v2, ψ, εAγ ψ)| ≤ c‖v2‖‖ψ‖1/2|Aγ ψ |3/2
L2 ,

|b1(v2, φ1, εAγ ψ)| = 〈A1/2
γ B1(v2, φ1), A

1/2
γ ψ〉 ≤ c‖v2‖|Aγ φ1|L2‖ψ‖1/2|Aγ ψ |1/2

L2 .

(3.10)

It follows from (2.5), (2.28), (3.5) and (3.10) that

|K 1
3 | ≡ FN (‖(v1, φ1)‖V)|b1

(
w,φ1, εAγ ψ

) | ≤ cN |w|1/2
L2 ‖w‖1/2|Aγ ψ |L2

≤ ν

8
‖w‖2 + ε

8
|Aγ ψ |2L2 + cN 4|w|2L2 , (3.11)

|K 2
3 | ≡ FN (‖(v2, φ2)‖V)|b1

(
v2, ψ, εAγ ψ

) | ≤ cN‖ψ‖1/2|Aγ ψ |3/2
L2

≤ ε

8
|Aγ ψ |2L2 + cN 4‖ψ‖2, (3.12)

|K 3
3 | ≡ |FN (‖(v1, φ1)‖V) − FN (‖(v2, φ2)‖V||b1(v2, φ1, εAγ ψ)|

= |FN (‖(v1, φ1)‖V) − FN (‖(v2, φ2)‖V|〈A1/2
γ B1(v2, φ1), A

1/2
γ ψ〉|

≤ c
‖(w,ψ)‖V
‖(v2, φ2)‖V ‖v2‖|Aγ φ1|L2‖ψ‖1/2|Aγ ψ |1/2

L2

≤ ν

8
‖w‖2 + ε

8
|Aγ ψ |2L2 + c‖φ1‖2|A3/2

γ φ1|2L2‖ψ‖2. (3.13)

From (2.7)–(2.8), we can check that

α|〈 fγ (φ1) − fγ (φ2), Aγ ψ〉| ≤ ε

8
|Aγ ψ |2L2 + Q1 (‖φ1‖, ‖φ2‖) ‖ψ‖2, (3.14)

where Q1 = Q1(x1, x2) is a monotone non-decreasing function of x1 and x2.
Let us set

Y = |(w,ψ)|2
Y

= |w|2L2 + ‖ψ‖2,

Y1 = c|A0v2|2L2 + c‖v2‖|A0v2|L2 + c‖φ1‖2|A3/2
γ φ1|2L2 + Q1 (‖φ1‖, ‖φ2‖) + CN 4.

Multiplying (3.1)1 by w and (3.1)2 by Aγ ψ and using (3.4), (3.7)–(3.9) and (3.11)–(3.14),
we derive that

dY
dt

+ ν‖w‖2 + ε|Aγ ψ |2L2 ≤ Y1Y, (3.15)
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and the Gronwall lemma yields Y = |(w,ψ)|2
Y

= 0, i.e., (v1, φ1) = (v2, φ2). ��
Theorem 2 Suppose that g ∈ L2(0, T ; H1) for all T > 0 and (v0, φ0) ∈ V be given. Then
there exists a unique weak solution (v, φ) of (2.23), which is in fact a strong solution in the
sense that

(v, φ) ∈ C(0, T ;V) ∩ L2(0, T ; D(A0) × D(A3/2
γ )). (3.16)

If the initial condition (v0, φ0) ∈ Y\V and g ∈ L∞(0,∞; H1), then every weak solution
(v, φ) of (2.23) is a strong solution, in the sense that

(v, φ) ∈ C(τ, T ;V) ∩ L2(τ, T ; D(A0) × D(A3/2
γ )) for all T > τ > 0. (3.17)

Proof Since the injection of Y ⊂ V is compact, let {(wi , ψi ), i = 1, 2, 3, . . .} ⊂ V be an
orthonormal basis of Y, where {wi , i = 1, 2 . . .}, {ψi , i = 1, 2 . . .} are eigenvectors of A0

and Aγ , respectively. We set Vm = Ym = span{(w1, ψ1), . . . (wm, ψm)}.
We look for (vm, φm) ∈ Ym solution to the ordinary differential equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dvm
dt + νP1

m A0vm + BN
0 (vm, vm) = P1

m

(
RN
0

(
εAγ φm, φm

) + g
)
,

dφm
dt + P2

m

(
μm + BN

1 (vm, φm)
) = 0, μm = εAγ φm + fγ (φm),

(vm, φm)(0) = Pm(v0, φ0),

(3.18)

where Pm = (P1
m,P2

m) : H1 × L2(M) → Vm is the orthogonal projection. Since Pm(0, g)
is a local Lipschitz function in (v, φ), it follows from the theory of ordinary differential
equation that this equation has a solution (vm, φm), (see also Theorem A1 of [6]). Hereafter
C denotes a constant independent of m and depending only on data such as M and whose
value may be different in each inequality.

By taking the scalar product in H1 of (3.18)1 with vm, then taking the scalar product in
L2(M) of (3.18)3 with μm, we derive that (see [17] for the details)

dE
dt

+ 2ν‖vm‖2 + 2|μm |2L2 = 2〈g, vm〉, (3.19)

where E = E(t) = E(vm(t), φm(t)).
From (3.19), it follows that [see (2.26)]

E(t) +
∫ t

0

(
ν‖vm‖2 + 2|μm |2L2

)
ds ≤ E(0) + c

∫ t

0
‖g‖2V ∗

1
ds

≤ Q0
(|(v0, φ0)|2

Y

) + c
∫ t

0
‖g‖2V ∗

1
ds. (3.20)

This proves that (vm, φm) is uniformly bounded in L∞(0, T ;Y) ∩ L2(0, T ;V).

Note that from

μm = εAγ φm + α fγ (φm),

we derive that
|Aγ φm |2L2 ≤ c|μm |2L2 + Q2

(‖φm‖2) , (3.21)

where Q2 is a monotone non-decreasing function independent of time, the initial condition
and m. It follows from (3.20)–(3.21) that Aγ φm is bounded in L2(0, T ; H2).

We conclude that there exists a subsequence of (vm, φm) (still) denoted (vm, φm) such
that

(vm, φm) → (v, φ) weak-star in L∞(0, T ;Y),
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(vm, φm) → (v, φ) weakly in L2(0, T ;V), (3.22)

where

(v, φ) ∈ L∞(0, T ;Y) ∩ L2(0, T ;V).

By a well-known compactness result (see Theorem 5.1 in Chapter 1 of [26] or [34]), we can
assume that

(vm, φm) → (v, φ) strongly in L2(0, T ;Y),

(vm, φm) → (v, φ) a.e., in (0, T ) × M. (3.23)

The weak convergence in L2(0, T ;V) is not enough to ensure that

FN (‖vm‖) → FN (‖v‖) as m → ∞,

FN (‖(vm, φm)‖V) → FN (‖(v, φ)‖V) as m → ∞. (3.24)

Therefore, we need to derive stronger a priori estimates. Now taking the inner product in H1

of (3.18)1 with 2A0vm, the inner product in L2(M) of (3.18)2 and (3.18)3 with 2A2
γ φm and

adding the resulting equalities gives

dY
dt

+ 2ν|A0vm |2L2 + 2ε|A3/2
γ φm |2L2 = 2bN1 (A0vm, φm, εAγ φm)

− 2bN0 (vm, vm, A0vm) + 2〈g, A0vm〉
− 2α(A1/2

γ fγ (φm), A3/2
γ φm)L2

− 2bN1 (vm, φm, A2
γ φm), (3.25)

where

Y(t) = ‖(vm, φm)‖2
V

= ‖vm(t)‖2 + |Aγ φm(t)|2L2 .

As noted in [7], we have
∣
∣
∣bN0 (vm, vm, A0vm)

∣
∣
∣ ≤ ν

8
|A0vm |2L2 + cN 4‖vm‖2. (3.26)

We can also check that
∣
∣b1(A0vm, φm, Aγ φm)

∣
∣ ≤ c|A0vm |L2 |Aγ φm |3/2

L2 |A3/2
γ φm |1/2

L2 , (3.27)
∣
∣
∣b1(vm, φm, A2

γ φm)

∣
∣
∣ =

∣
∣
∣〈A1/2

γ B1(vm, φm), A3/2
γ φm〉

∣
∣
∣

≤ c‖vm‖1/2|A0vm |1/2
L2 |Aγ φm |L2 |A3/2

γ φm |L2

+ c‖vm‖|Aγ φm |1/2
L2 |A3/2

γ φm |3/2
L2 . (3.28)

It follows from (3.27)–(3.28) that
∣
∣
∣bN1 (A0vm, φm, εAγ φm)

∣
∣
∣ = FN (‖(vm, φm)‖V)

∣
∣b1

(
A0vm, φm, Aγ φm

)∣
∣

≤ cN |A0vm |L2 |Aγ φm |1/2
L2 |A3/2

γ φm |1/2
L2

≤ ν

8
|A0vm |2L2 + ε

8
|A3/2

γ φm |2L2 + cN 4|Aγ φm |2L2 , (3.29)

123



854 T. T. Medjo

∣
∣
∣bN1 (vm, φm, A2

γ φm)

∣
∣
∣ = FN (‖(vm, φm)‖V) |〈B1(vm, φm), A2

γ φm〉|
≤ cN‖vm‖1/2|A0vm |1/2

L2 |A3/2
γ φm |L2 + cN |Aγ φm |1/2

L2 |A3/2
γ φm |3/2

L2

≤ ν

8
|A0vm |2L2 + ε

8
|A3/2

γ φm |2L2 + cN 4 (|Aγ φm |2L2 + ‖vm‖2) .

(3.30)

We also have

α

∣
∣
∣

〈
fγ (φm), A2

γ φm

〉∣
∣
∣ = α|〈A1/2

γ fγ (φm), A3/2
γ φm〉|

≤ ε

8
|A3/2

γ φm |2L2 + Q2
(‖φm‖2) |Aγ φm |2L2 . (3.31)

Let us set

Y1 = CN 4 + Q2(‖φm‖2).
It follows from (3.25)–(3.26) and (3.29)–(3.31) that Y satisfies

dY
dt

+ ν|A0vm |2L2 + ε|A3/2
γ φm |2L2 ≤ Y1Y + c|g|2L2 . (3.32)

Case 1: (v0, φ0) ∈ V.

We recall that

‖(vm, φm)(0)‖V = ‖Pm(v0, φ0)‖V ≤ ‖(v0, φ0)‖V.

Using the Gronwall lemma, we derive from (3.20) and (3.32) that (vm, φm) satisfies

‖(vm, φm)(t)‖V ≤ C,

∫ T

0

(
ν|A0vm |2L2 + ε|A3/2

γ φm |2L2

)
ds ≤ C, (3.33)

which proves that (vm, φm) is bounded in L∞(0, T ;V) ∩ L2(0, T ; D(A0) × D(A3/2
γ )).

Using (3.33) and (2.13)–(2.18), we can check that

d

dt
(vm, φm) is bounded in L2(0, T,Y). (3.34)

Since D(A0) × D(A3/2
γ ) ⊂ V ⊂ Y with compact injections, it follows that there exists

(v, φ) ∈ L∞(0, T ;V) ∩ L2(0, T ; D(A0) × D(A3/2
γ )) and a subsequence of (vm, φm) (still)

denoted (vm, φm) such that for all T > 0, we have

(vm, φm) → (v, φ) strongly in L2(0, T ;V),

(vm, φm) → (v, φ) a.e., in (0, T ) × M,

(vm, φm) → (v, φ) weakly-star in L∞(0, T ;V),

(vm, φm) → (v, φ) weakly in L2
(
0, T ; D(A0) × D

(
A3/2

γ

))
,

d

dt
(vm, φm) → d

dt
(v, φ) weakly in L2(0, T,Y). (3.35)

Since (vm, φm) → (v, φ) in L2(0, T ;V) for all T > 0, there exists a subsequence (still)
denoted (vm, φm) such that

‖(vm, φm)‖V → ‖(v, φ)‖V a.e., in (0,∞),
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and therefore

FN (‖(vm, φm)‖V) → FN (‖(v, φ)‖V) a.e., in (0,∞),

FN (‖vm‖) → FN (‖v‖) a.e., in (0,∞).

Therefore as in [7], we can take the limit in (3.18) to derive that (v, φ) is a weak solution to
(2.23) satisfying (2.27). In fact, let us set

Z = RN
0

(
εAγ φm, φm

) − RN
0

(
εAγ φ, φ

)
, (w,ψ) = (vm, φm) − (v, φ).

Then for any θ ∈ D(A0), we have

〈Z , θ〉 = FN (‖(vm, φm)‖V) b1(θ, φm, εAγ ψ)FN (‖(v, φ)‖V) b1(θ, ψ, εAγ φ)

+ (FN (‖(vm, φm)‖V) − FN (‖(v, φ)‖V)) b1(θ, φm, εAγ φ)

= Z1 + Z2 + Z3. (3.36)

From (3.34), (3.35), we can check that as m → +∞, we have (see some details in Sect. 5)
∫ T

0
Z1ds =

∫ T

0
FN (‖(vm , φm)‖V) b1(θ, φm , εAγ ψ)ds

=
∫ T

0
FN (‖(vm , φm)‖V)

〈
A1/2γ B1

(
θ, φm , εA1/2γ ψ

)〉
ds −→ 0,

∫ T

0
Z2ds =

∫ T

0
FN (‖(v, φ)‖V) b1(θ, ψ, Aγ φ) −→ 0,

∫ T

0
Z3ds =

∫ T

0
(FN (‖(vm , φm)‖V) − FN (‖(v, φ)‖V)) b1(θ, φm , εAγ ψ)ds

=
∫ T

0
(FN (‖(vm , φm)‖V) − FN (‖(v, φ)‖V))

〈
A1/2γ B1(θ, φm), εA1/2γ ψ

〉
ds −→ 0.

(3.37)

The convergence of the other nonlinear terms in (3.18) is proved similarly.

Case 2: (v0, φ0) ∈ Y\V, g ∈ L∞(0,∞; H1). We proceed as in [7,13,35].
Hereafter we set |g|∞ = ‖g‖L∞(0,∞;H1).

From (3.32), we derive that

Y(t) ≤ Y(t0) exp

(∫ t

t0
Y1(s)ds

)

+ c|g|2∞(t − t0) exp

(∫ t

t0
Y1(s)ds

)

for any 0 ≤ t0 ≤ t.

(3.38)
From (3.20)–(3.21), we also have

∫ t+τ

t
Y(s)ds ≤ Q0

(|(vm, φm)(t)|2
Y

) + cτ |g|2∞ + c1τ +
∫ t+τ

t
Q2(‖φm‖2)ds. (3.39)

We can also check that (vm, φm) satisfy the following estimate [see (4.10) in Sect. 4 for the
details]

|(vm, φm)|2
Y

≤ Q0

(∣
∣
(
v0, φ0)∣∣2

Y

)
e−κt + c

∫ t

0
e−κ(t−s)

(
‖g‖2V ∗

1
+ c1

)
ds, (3.40)

where κ > 0 is given by (4.8) below. It follows that

|(vm, φm)|2
Y

≤ Q0
(|(v0, φ0)|2

Y

) + c
(|g|2∞ + c1

) ≡ K1. (3.41)
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From (3.41), we have also have
∫ t

t0
Y1(s)ds =

∫ t

t0

(
CN 4 + Q2(‖φm‖2)) ds ≤ (

CN 4 + Q2(K1)
)
(t − t0) ≡ K3(t − t0).

(3.42)
From (3.20) and (3.41), we also derive that

∫ t+τ

t
Y(s)ds =

∫ t+τ

t
‖(vm, φm)‖2

V
ds ≤ Q0

(|(v, φ)(t)|2
Y

)

+
∫ t+τ

t
Q2

(‖φm‖2) ds + cτ |g|2∞
≤ Q0(K1) + τQ2(K1) + cτ |g|2∞ ≡ K2. (3.43)

Let ρ > 0 defined by

ρ2 = 2K2

τ
(3.44)

and consider the sets

Dm = {s ∈ [t, t + τ ] : Y(s) ≥ ρ2}
and let us denote |Dm | the Lebesgue measure of Dm . From (3.43), we have

ρ2|Dm | ≤
∫

Dm

Y(s)ds ≤
∫ t+τ

t
Y(s) ≤ τρ2

2
, (3.45)

which gives |Dm | ≤ τ
2 .

From this property, we have that for any given τ > 0 and any t ≥ τ, there exists a
t0 ∈ (t − τ, t) such that

Y(t0) ≤ 2K2. (3.46)

From (3.38) and (3.52), we deduce that

Y(t) ≤ 2K2 exp (K3(t − t0)) + c|g|2∞(t − t0) exp ((K3(t − t0))

≤ 2K2 exp(τK3) + c|g|2∞τ exp(τK3) for all t ≥ τ. (3.47)

From (3.20), (3.53) and (3.32), we derive that the sequence (vm, φm) is bounded in
L∞(0, T ;Y) ∩ L∞(τ ; T ;V) ∩ L2(τ, T ; D(A0) × D(A3/2

γ )), for all T > τ > 0. Reasoning

as in case 1, we can check that the sequence d
dt (vm, φm) is also bounded in L2(τ, T ;Y) for

all T > τ > 0. Hence, there exists an element

(v, φ) ∈ L∞(0, T ;Y) ∩ L∞(τ ; T ;V) ∩ L2(τ, T ; D(A0) × D(A3/2
γ ))

for all T > τ > 0, and a subsequence (still) denoted (vm, φm), such that

(vm, φm) → (v, φ) weakly in L2(0, T ;V),

(vm, φm) → (v, φ) a.e., in (0, T ) × M,

(vm, φm) → (v, φ) strongly in L2(0, T ;Y),

(vm, φm) → (v, φ) strongly in L2(τ, T ;V),

(vm, φm) → (v, φ) weakly-star in L∞(0, T ;Y),

(vm, φm) → (v, φ) weakly in L2(τ, T ; D(A0) × D(A3/2
γ )),
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(vm, φm) → (v, φ) weakly-star in L∞(τ, T ;V),

d

dt
(vm, φm) → d

dt
(v, φ) weakly in L2(τ, T ;Y). (3.48)

As in Case 1, we can take the limit in (3.18) and prove that (v, φ) is a solution to (2.23)
satisfying (2.27). ��
3.1 Continuous dependence on initial values and N

In this part, we prove that the semiflows generated by the solutions (vN , φN )(t, (v0, φ0)) of
the GMACNES (2.23) with the parameter N depend continuously on the parameter N and
the initial value (v0, φ0). More precisely, we have the following result.

Theorem 3 Suppose that g ∈ L2(0, T ; H1) for all T > 0 and let Ni > 0, (v0i , φ
0
i ) ∈

V, i = 1, 2 be given. Let (vi , φi ) be the solution to (2.23) corresponding to the parameter
Ni and the initial value (v0i , φ

0
i ), i = 1, 2. Then, there exists an constant C independent of

Ni , (v
0
i , φ

0
i ) such that

‖(v1, φ1)(t) − (v2, φ2)(t)‖2V
≤

{

‖(v01, φ0
1) − (v02, φ

0
2)‖2V + C(N1 − N2)

2
∫ t

0
Y3(s)ds

}

× exp

(∫ t

0
Y1(s)ds

)

,

∫ t

0

(
ν|A0(v1 − v2)|2L2 + ε|A3/2

γ (φ1 − φ2)|2L2

)
ds

≤
{

‖ (
v01, φ

0
1

) − (
v02, φ

0
2

) ‖2
V

+ C(N1 − N2)
2
∫ t

0
Y3(s)ds

}

× exp

(∫ t

0
Y1(s)ds

)

.

(3.49)

where

Y1 = c
(
N 4
1 + N 4

2 + |Aγ φ1|L2 |A3/2
γ φ1|L2

)
+ Q1

(|Aγ φ1|L2 , |Aγ φ2|L2
)
,

Y3 = c|Aγ φ1|L2 |A3/2
γ φ1|L2 . (3.50)

Proof Let us set (w,ψ) = (v1, φ1) − (v2, φ2). Then (w,ψ) satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dw
dt + νA0w + BN1

0 (v1, v1) − BN2
0 (v2, v2) = RN1

0 (εAγ φ1, φ1) − RN2
0 (εAγ φ2, φ2),

dψ
dt + εAγ ψ + BN1

1 (v1, φ1) − BN2
1 (v2, φ2) + α fγ (φ1) − α fγ (φ2) = 0,

(w,ψ)(0) = (v01, φ
0
1) − (v02, φ

0
2).

(3.51)
Let us set

K1 = BN1
0 (v1, v1) − BN2

0 (v2, v2), K2 = RN1
0 (Aγ φ1, φ1) − RN2

0 (Aγ φ2, φ2),

K3 = BN1
1 (v1, φ1) − BN2

1 (v2, φ2).
(3.52)

We can easily check that (see [7])

|〈K1, A0w〉| ≤ ν

8
|A0w|2L2 + CN4

1 ‖w‖2 + c|A0v2|2L2‖w‖2

+ c|A0v2|2L2 (‖w‖2 + (N1 − N2)
2). (3.53)
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We also note that

〈K2, A0w〉 = FN1 (‖(v1, φ1)‖V) b1
(
A0w, φ1, εAγ ψ

)

+FN2 (‖(v2, φ2)‖V) b1
(
A0w, ψ, εAγ φ2

)

+ (
FN1 (‖(v1, φ1)‖V) − FN2 (‖(v2, φ2)‖V)

)
b1

(
A0w, φ1, εAγ φ2

)

= K 1
2 + K 2

2 + K 3
2 , (3.54)

〈K3, A
2
γ ψ〉 = FN1 (‖(v1, φ1)‖V) b1

(
w, φ1, εA

2
γ ψ

)
+ FN2 (‖(v2, φ2)‖V) b1

(
v2, ψ, εA2γ ψ

)

+ (
FN1 (‖(v1, φ1)‖V) − FN2 (‖(v2, φ2)‖V)

)
b1

(
v2, φ1, εA

2
γ ψ

)

= K 1
3 + K 2

3 + K 3
3 . (3.55)

From (2.13) to (2.15), we have

|b1(A0w,φ1, εAγ ψ)| ≤ c|A0w|L2 |Aγ φ1|L2 |Aγ ψ |1/2
L2 |A3/2

γ ψ |1/2
L2 ,

|b1(A0w,ψ, εAγ φ2)| ≤ c|A0w|L2 |Aγ φ2|L2 |A3/2
γ ψ |1/2

L2 |Aγ ψ |1/2
L2 ,

|b1(A0w,φ1, εAγ φ2)| ≤ c|A0w|L2 |Aγ φ2|L2 |Aγ φ1|1/2L2 |A3/2
γ φ1|1/2L2 .

(3.56)

It follows from (2.28) and (3.56) that

|K 1
2 | = FN1(‖(v1, φ1)‖V)|b1(A0w,φ1, εAγ ψ)| ≤ cN1|A0w|L2 |Aγ ψ |1/2

L2 |A3/2
γ ψ |1/2

L2

≤ ν

8
|A0w|2L2 + ε

8
|A3/2

γ ψ |2L2 + cN 4
1 |Aγ ψ |2L2 , (3.57)

|K 2
2 | = FN2(‖(v2, φ2)‖V)|b1(A0w,ψ, εAγ φ2)| ≤ cN2|A0w|L2 |Aγ ψ |1/2

L2 |A3/2
γ ψ |1/2

L2

≤ ν

8
|A0w|2L2 + ε

8
|A3/2

γ ψ |2L2 + cN 4
2 |Aγ ψ |2L2 , (3.58)

|K 3
2 | = |(FN1(‖(v1, φ1)‖V) − FN2(‖(v2, φ2)‖V))||b1(A0w,φ1, εAγ φ2)|

≤ c|A0w|L2 |Aγ φ2|L2 |Aγ φ1|1/2L2 |A3/2
γ φ1|1/2L2

( |N1 − N2|
‖(v2, φ2)‖V + ‖(w,ψ)‖V

‖(v2, φ2)‖V
)

≤ c|A0w|L2 |Aγ φ1|1/2L2 |A3/2
γ φ1|1/2L2 (|N1 − N2| + ‖(w,ψ)‖V)

≤ ν

8
|A0w|2L2 + c|Aγ φ1|L2 |A3/2

γ φ1|L2(|N1 − N2|2 + ‖(w,ψ)‖2
V
). (3.59)

Similarly, we can check that

|b1(w, φ1, A
2
γ ψ)| = |〈A1/2

γ B1(w, φ1), A
3/2
γ ψ〉| ≤ c‖w‖1/2|A0w|1/2

L2 ||Aγ φ1|L2 |A3/2
γ ψ |L2 ,

|b1(v2, ψ, A2
γ ψ)| = |〈A1/2

γ B1(v2, ψ), A3/2
γ ψ〉| ≤ c‖v2‖|Aγ ψ |1/2

L2 ||A3/2
γ ψ |3/2

L2 ,

|b1(v2, φ1, A
2
γ ψ)| = |〈A1/2

γ B1(v2, φ1), A
3/2
γ ψ〉| ≤ c‖v2‖|Aγ φ1|1/2L2 ||A3/2

γ φ1|1/2L2 |A3/2
γ ψ |L2 .

(3.60)

It follows from (2.28) and (3.60) that

|K 1
3 | = FN1(‖(v1, φ1)‖V)|b1(w, φ1, εA

2
γ ψ)| ≤ cN1‖w‖1/2|A0w|1/2

L2 ||A3/2
γ ψ |L2

≤ ν

8
|A0w|2L2 + ε

8
|A3/2

γ ψ |2L2 + cN 4
1 ‖w‖2, (3.61)

|K 2
3 | = FN2(‖(v2, φ2)‖V)|b1(v2, ψ, εA2

γ ψ)| ≤ cN2|Aγ ψ |1/2
L2 ||A3/2

γ ψ |3/2
L2

≤ ε

8
|A3/2

γ ψ |2L2 + cN 4
2 |Aγ ψ |2L2 , (3.62)
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|K 3
3 | = |(FN1(‖(v1, φ1)‖V) − FN2(‖(v2, φ2)‖V))||b1(v2, φ1, εA

2
γ ψ)|

≤ c|Aγ φ1|1/2L2 ||A3/2
γ φ1|1/2L2 |A3/2

γ ψ |L2(|N1 − N2| + ‖(w,ψ)‖V)

≤ ε

8
|A3/2

γ ψ |2L2 + c|Aγ φ1|L2 ||A3/2
γ φ1|L2(|N1 − N2|2 + ‖(w,ψ)‖2

V
). (3.63)

Finally, we note that

α|〈 fγ (φ1) − fγ (φ2), A2
γ ψ〉| ≤ Q1(|Aγ φ1|L2 , |Aγ φ2|L2)|Aγ ψ |2

L2 + ε
8 |A3/2

γ ψ |2
L2 .

(3.64)
Let us set

Y = ‖(w,ψ)‖2
V
.

Multiplying (3.51)1 by A0w and (3.51)2 by A2
γ ψ and using (3.52)–(3.54), (3.57)–(3.59) and

(3.61)–(3.64), we derive that

dY
dt

+ ν|A0w|2L2 + ε|A3/2
γ ψ |2L2 ≤ Y1Y + Y2. (3.65)

where

Y1 = c(N 4
1 + N 4

2 + |Aγ φ1|L2 |A3/2
γ φ1|L2) + Q1(|Aγ φ1|L2 , |Aγ φ2|L2),

Y2 = c(N1 − N2)
2|Aγ φ1|L2 |A3/2

γ φ1|L2 ≡ (N1 − N2)
2Y3.

(3.66)

It follows from the Gronwall lemma that

Y(t) ≤
(

Y(0) + (N1 − N2)
2
∫ t

0
Y3(s)ds

)

exp

(∫ t

0
Y1(s)ds

)

, (3.67)

and (3.49) follows. ��

As a consequence of (3.49), we have a continuous dependence on the initial value and N .

More precisely, if we denote by (vN , φN )(·, (v0, φ0)) the solution to (2.23) corresponding
to the parameter N and the initial value (v0, φ0), then the following result holds true.

Corollary 3.1 We assume that T > 0 and g ∈ L2(0, T ; H1). Then for any (v0, φ0) ∈ V

and N > 0, we have

(vM , φM )(·, (w0, ψ0)) −→ (vN , φN )(·, (v0, φ0)) in C(0, T ;V)∩L2(0, T ; D(A0)×D(A3/2γ ))

(3.68)
as (M, (w0, ψ0)) −→ (N , (v0, φ0)) in �+ × V.

Proof It follows from (3.49). ��

4 Existence of global attractor in V of the GMACNSE

In this section, we assume that N > 0 and g ∈ H1 are fixed and we denote by (v, φ) ∈ V the
unique strong solution to (2.23). If we set SN (t)(v0, φ0) = (v, φ)(t), then it follows from
Theorems 1, 2 and 3 that {SN (t)}t≥0 is a C0 semigroup in V.

Below we recall from [27] a lemma belonging to the family of Gronwall’s type lemmas
which we shall use in the sequel.
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Lemma 2 We assume that for some k > 0, τ ∈ �, we have

y′(s) + ky(s) ≤ h(s) for all s > τ,

where the functions y, y′, h are assumed to be locally integrable and y, h nonnegative on the
interval t < s < t + r, for some t ≥ τ. Then

y(t + r) ≤ 2

r
e−k r

2

∫ t+r

t
y(s)ds + e−k(t+r)

∫ t+r

t
eksh(s)ds. (4.1)

Proof See [27]. ��
4.1 Absorbing set in Y

As in [17], we can check that
dE
dt

+ κE(t) = ∧1(t), (4.2)

where
E(t) = |(v, φ)(t)|2

Y
+ 2α

(
Fγ (φ(t)), 1

)

L2 + Ce, (4.3)

and

∧1 (t) = −2ν‖v‖2 + κ|v|2L2 − 2|μ|2L2 − (2 − κ)ε(|∇φ)|2L2 + (
γ |φ(t)|2L2

)

+ 2α
[
κ(Fγ (φ) − fγ (φ)φ, 1)L2 − (1 − κ)( fγ (φ)φ, 1)L2

]

+ 2〈v, g〉 + κ|φ(t)|2L2 + 2καCFγ |M|. (4.4)

From (2.7), we have

c∗| fγ (y)|(1 + |y|) ≤ 2 fγ (y)y + c f
(
1 + α−1ε

)
,

Fγ (y) − fγ (y)y ≤ c′
f

(
1 + α−1ε

) |y|2 + c′′
f , (4.5)

for any y ∈ �, where c f , c∗, c′
f and c

′′
f are positive, sufficiently large constants that depend

only on f.
From [17], we also note that

∧1 (t) ≤ − (ν − κCm |M|) ‖v(t)‖2 − 2|μ(t)|2L2 − (2 − κ)ε|∇φ(t)|2L2

−
(
2 − κ

(
1 + 2c′

f (α + ε)
)

(εγ )−1
)

εγ |φ(t)|2L2

− c∗α(1 − κ)
(| fγ (φ(t))|, 1 + |φ(t)|)L2 + 2〈v, g〉 + c1, (4.6)

where Cm depends on the shape of M, but not its size and c1 is given by

c1 = 2καCFγ |M| + 2αc′′
f |M| + c f (α + ε)(1 − κ)|M|. (4.7)

Let us choose κ ∈ (0, 1) as

κ = min

{

ν(2Cm |M|)−1,
(
1 + 2c′

f (α + ε)(εγ )−1
)−1

}

. (4.8)

From now on, ci will denote a positive constant independent of the initial data and on time.
Let us set

2α1 = ν − κCm |M|, 2α2 = min
(
2 − κ,

(
2 − κ

(
1 + 2c′

f (α + ε)
)

(εγ )−1
))

. (4.9)
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It follows from (4.3)–(4.8) that

dE
dt

+ κE(t) + α1‖v(t)‖2 + α2|∇φ(t)|2L2 + εγ |φ(t)|2L2 + 2|μ(t)|2L2

+ c3(| fγ (φ(t)|, 1 + |φ(t)|)L2 ≤ c‖g‖2V ∗
1

+ c1, (4.10)

which gives

dE
dt

+ κE(t) + α1‖v(t)‖2 + α2‖φ(t)‖2 + 2|μ(t)|2L2

+ c3(| fγ (φ(t)|, 1 + |φ(t)|)L2 ≤ c‖g‖2V ∗
1

+ c1. (4.11)

It follows from (4.11) that

E(t) ≤ E(0)e−κt + c‖g0‖2V ∗
1

+ c1 ≤ Q0(|(v0, φ0)|2
Y
)e−κt + c‖g0‖2V ∗

1
+ c1, (4.12)

E(t) +
∫ t+1

t

(
α1‖v(s)‖2 + α2|∇φ(s)|2L2

)
ds

+
∫ t+1

t

[|∇μ(s)|2L2 + c3(| f (φ(s))|, 1 + |φ(s)|)L2
]
ds ≤ Q0(|(v, φ)(t)|2

Y
)e−κt + c1.

(4.13)

From (2.26), we derive that

|(v, φ)(t)|2
Y

≤ Q0
(|(v0, φ0)|2

Y

)
e−κt + c‖g‖2V ∗

1
+ c1. (4.14)

We conclude that SN (t) has an absorbing set BY in Y given by

BY =
{
(v, φ) ∈ Y, |(v, φ)|2

Y
≤ 1 + c‖g‖2V ∗

1
+ c1

}
. (4.15)

4.2 Absorbing set in V

Hereafter, we denote by CN ≡ C(N ) > 0 a monotone non-decreasing function of the
parameter N . From [7], we have

|bN0 (v, v, A0v)| ≤ ν

8
|A0v|2L2 + CN |v|2L2 . (4.16)

We also note that

|〈R0(εAγ φ, φ), A0v〉| = |b1(A0v, φ, εAγ φ)|
≤ c|A0v|L2‖φ‖1/4|Aγ φ|3/4

L2 |Aγ φ|1/4
L2 |A3/2

γ φ|3/4
L2 ,

(4.17)

from which we derive that

|〈FN (‖(v, φ)‖V)R0(εAγ φ, φ), A0v〉| ≤ cN |A0v|L2 |A3/2
γ φ|3/4

L2 ‖φ‖1/4
≤ ν

8 |A0v|2
L2 + ε

8 |A3/2
γ φ|2

L2 + CN‖φ‖2. (4.18)

Similarly, we have

|b1(v, φ, A2
γ φ)| = |〈A1/2

γ B1(v, φ), A3/2
γ φ〉|

≤ c‖v‖1/4|A0v|3/4
L2 ‖φ‖1/4|Aγ φ|3/4

L2 |A3/2
γ φ|L2

+ c|v|1/4
L2 ‖v‖3/4|Aγ φ|1/4

L2 |A3/2
γ φ|3/4

L2 |A3/2
γ φ|L2 , (4.19)
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which gives

|〈BN
1 (v, φ), A2

γ φ)〉| = FN (‖(v, φ)‖V)|〈A1/2
γ B1(v, φ), A3/2

γ φ〉|
≤ cN |A0v|3/4

L2 ‖φ‖1/4|A3/2
γ φ|L2 + cN |v|1/4

L2 |A3/2
γ φ|7/4

L2

≤ ν
8 |A0v|2

L2 + ε
8 |A3/2

γ φ|2
L2 + CN

(
‖φ‖2 + |v|2

L2

)
.

(4.20)

Finally from (2.7)–(2.8), we derive that

|〈 fγ (φ), A2
γ φ〉| = |〈A1/2

γ fγ (φ), A3/2
γ φ〉| ≤ | f ′

γ (φ)|L2 |A1/2
γ φ|L∞|A3/2

γ φ|L2

≤ c(1 + ‖φ‖k)|Aγ φ|1/2
L2 |A3/2

γ φ|3/2
L2 ≤ c(1 + ‖φ‖k)‖φ‖1/4|A3/2

γ φ|7/4
L2

≤ ε
8 |A3/2

γ φ|2
L2 + Q2(‖φ‖2).

(4.21)
Let us set

Y = ‖(v, φ)‖2
V
.

Multiplying (2.23)1 by A0v and (2.23)2 by A2
γ φ and using (4.16), (4.18), (4.20)–(4.21), we

derive that

dY
dt + ν|A0v|2

L2 + ε|A3/2
γ φ|2

L2 ≤ CN (‖φ‖2 + |v|2
L2) + Q2(‖φ‖2) + c|g|2

L2

≤ Q2((|(v, φ)|2
Y
) + c|g|2

L2 ,
(4.22)

and
dY
dt + ζY ≤ Q2((|(v, φ)|2

Y
) + c|g|2

L2 , (4.23)

where ζ = min (λν, λε).

From Lemma 2, we derive that

Y(t + 1) ≤ 2e− ζ
2

∫ t+1

t
Y(s)ds + e−ζ(t+1)

∫ t+1

t
eζ s(Q2(|(v, φ)|2

Y
) + c|g|2L2)ds. (4.24)

But from (3.21) and (4.11)–(4.12), we have
∫ t+1

t
Y(s)ds ≤ E(t) +

∫ t+1

t
(c|g|2V ∗

1
+ c1 + Q2(‖φ‖2))ds

≤ Q0(|(v0, φ0)|2
Y
)e−κt + c|g|2V ∗

1
+ 2c1

+ Q2

[
Q0(|(v0, φ0)|2

Y
)e−κt + c|g|2V ∗

1
+ c1

]
, (4.25)

and

e−ζ(t+1)
∫ t+1

t
eζ s(Q2(|(v, φ)(s)|2

Y
) + c|g|2L2)ds

≤ Q2

[
Q0(|(v0, φ0)|2

Y
)e−κt + c|g|2V ∗

1
+ c1

]
+ c|g|2L2 . (4.26)

Let

R1 = 2e− ζ
2

(
c|g|2V ∗

1
+ c1 + Q2

(
c|g|2V ∗

1
+ c1

))
+ c|g|2L2 .

From (4.24)–(4.26), we derive that the ball

BN
V

= {
(v, φ) ∈ V, ‖(v, φ)‖2

V
≤ R1

}
(4.27)

is an absorbing set in V.
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4.3 Asymptotic compactness in V

In this part, we prove the asymptotic compactness of the semigroup SN (t). We will prove
the following flattening property (see [22,23,28]) of the semigroup SN (t).

Proposition 1 (Flattening property). For any bounded set B ofV and any ε1 > 0, there exists
Tε1(B) > 0 and a finite dimensional subspace Vε1 of V such that {Pε1 SN (t)B, t ≥ Tε1(B)}
is bounded and

‖(I − Pε1)SN (t)(v0, φ0)‖V ≤ ε1, ∀t ≥ Tε1(B), (v0, φ0) ∈ B, (4.28)

where Pε1 : V → Vε1 is the projection operator.

Proof Without loss of generality, we can restrict ourselves to B = BN
V

, the absorbing set
of SN (t) in V given by (4.27). Let ε1 > 0. We will find an integer Nε1 > 0 such that the
flattening property holds for the Nε1 -dimensional subspace Vε1 of V spanned by the first
eigenfunctions (ei , ψi ), i = 1, 2, . . . Nε1 , where (ei , ψi ) are the eigenfunctions used in the
proof of Theorem 2. Let us denote by λ1i , λ

2
i the eigenvalues defined by

A0ei = λ1i ei , Aγ ψi = λ2i ψi , i = 1, 2, . . . .

Let λ = min(νλ1Nε1
, ελ2Nε1

).

Since B is a bounded absorbing set and ‖Pε1(w,ψ)‖V ≤ ‖(w,ψ)‖V, ∀(w,ψ) ∈ V,

there exists Tε1(B) > 0 such that the set {Pε1 SN (t)B, t ≥ Tε1(B)} is bounded. Let us now
prove (4.28).

Let (v0, φ0) ∈ BN
V

, (v, φ)(t) = SN (t)(v0, φ0) and Y = ‖(v, φ)‖2
V
. For t large enough,

we know that (v, φ)(t) is uniformly bounded in V.

From (4.22) we derive that for any α2 > 0, we have

e−α2t
∫ t

0
eα2s

(
ν|A0v|2L2 + ε|A3/2

γ φ|2L2

)
ds ≤ C < ∞. (4.29)

Let (w,ψ) = (I − Pε1)SN (t)(v0, φ0). Multiplying (2.23)1 by A0w and (2.23)2 by A2
γ ψ,

we can easily check that (w,ψ) satisfies

d

dt
(‖w‖2 + |Aγ ψ |2L2) + 2ν|A0w|2L2 + 2ε|A3/2

γ ψ |2L2 + bN0 (v, v, A0w)

+ bN1 (v, φ, A2
γ ψ) + α〈 fγ (φ), A2

γ ψ〉 = bN1 (A0w,φ, εAγ φ) + 〈g,A0w〉. (4.30)

We note that (for t large enough)

|bN0 (v, v, A0w)| ≤ ν

8
|A0w|2L2 + CN |A0v|L2 , (4.31)

|bN1 (A0w,φ, εAγ φ)| ≤ ν

8
|A0w|2L2 + CN |A3/2

γ φ|L2 , (4.32)

|bN1 (v, φ, A2
γ ψ)| ≤ cN |A0v|1/2

L2 |A3/2
γ ψ |L2 + cN |A3/2

γ φ|1/2
L2 |A3/2

γ ψ |L2

≤ ε

8
|A3/2

γ ψ |2L2 + CN

(
|A0v|L2 + |A3/2

γ φ|L2

)
, (4.33)

α|〈 fγ (φ), A2
γ ψ〉| ≤ ε

8
|A3/2

γ ψ |2L2 + C. (4.34)

Now let

Y1 = ‖w‖2 + |Aγ ψ |2L2 .
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It follows from (4.31)–(4.34) that

dY1

dt
+ ν|A0w|2L2 + ε|A3/2

γ ψ |2L2 ≤ CN

(
|A0v|L2 + |A3/2

γ φ|L2

)
+ C + C |g|2L2 , (4.35)

and
dY1

dt
+ λY1 ≤ CN

(
|A0v|L2 + |A3/2

γ φ|L2

)
+ C + C |g|2L2 , (4.36)

which gives

Y1(t) ≤ Y1(0)e−λt + C
λ

|g|2
L2 + C

λ
+ ce−λt

∫ t

0
eλs

(
ν|A0v|L2 + ε|A3/2

γ φ|L2

)
ds

≤ Y1(0)e−λt + C
λ

|g|2
L2 + C

λ
+ C√

λ
.

(4.37)

Note that we use the fact

e−λt
∫ t

0
eλs

(
ν|A0v|L2 + ε|A3/2

γ φ|L2

)
ds

≤
(

e−λt
∫ t

0
eλsds

)1/2 (

e−λt
∫ t

0
eλs

(
ν|A0v|2L2 + ε|A3/2

γ φ|2L2

)
ds

)1/2

≤ C√
λ

,

(4.38)

since from (4.29), we also have

e−λt
∫ t

0
eλs

(
ν|A0v|2L2 + ε|A3/2

γ φ|2L2

)
ds ≤ C. (4.39)

Therefore, for Nε1 and t large enough, we derive that Y1(t) ≤ ε1,which proves the flattening
property of SN (t). ��
Theorem 4 If g ∈ H1, then the GMACNSE (2.6) has a global attractor AN in V for each
N > 0. Moreover, the set-valued mapping N �→ AN is upper semicontinuous, i.e.,

distV(AN ,AM ) → 0 as M → N , (4.40)

where distV is the Hausdorff semidistance on V.

Proof The existence of the global attractor follows from the existence of the absorbing set in
V as well as the flattening property proved above. The upper semicontinuity (4.40) is proved
as in [7]. Note that for each N > 0,we haveAN ⊂ BN

V
and from (4.27), we have BN1

V
⊂ BN2

V

for N1 ≤ N2. ��

5 Convergence to weak solution of the AC–NS systems

We suppose that g ∈ L2(0, T ; H1) for all T > 0.Let (vN , φN )(t) be aweak solution to (2.23)
with initial value (v0N , φ0

N ) ∈ Y, where (v0N , φ0
N ) → (v0, φ0) weakly in Y as N → +∞.

If we set

E = |(vN , φN )|2
Y

+ 2〈Fγ (φN ), 1〉 + α0,

where α0 is given in (2.25). Then

dE
dt

+ ν‖vN‖2 + 2|μN |2L2 = 2〈g, v〉, (5.1)
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which gives
dE
dt

+ ν‖vN‖2 + 2|μN |2L2 ≤ c|g|2V ∗
1
. (5.2)

It follows from (5.2) that (vN , φN ) is bounded in L∞(0, T ;Y) ∩ L2(0, T ;V), ∀T > 0
and d

dt (vN , φN ) is bounded in L4/3(0, T ; V ∗
1 ) × L2(0, T ; H2). Therefore by a diagonal

argument, there exists a subsequence of (vN , φN ) still denoted (vN , φN ) such that

(vN , φN ) → (v, φ) weakly-star in L∞(0, T ;Y),

(vN , φN ) → (v, φ) weakly in L2(0, T ;V),

(vN , φN ) → (v, φ) strongly in L2(0, T ;Y),

(5.3)

where (v, φ) ∈ L∞(0, T ;Y) ∩ L2(0, T ;V). As in [7], we will prove that (v, φ) is a weak
solution to the AC–NS (5.17) below. Note that from μN = εAγ φN ) + α fγ (φN ), we derive
that ∫ t

0
|Aγ φN |2L2ds ≤ C. (5.4)

Lemma 3 We have

FN (‖vN (s)‖) → 1 in L p(0, T ; �),

FN (‖ (vN , φN ) (s)‖) → 1 in L p(0, T ; �), (5.5)

as N → +∞ for each p > 1.

Proof The proof of (5.5)1 is given in [7], and that of (5.5)2 is similar. ��

Using Lemma 3, it is proved in [7] that as N → ∞, we have
∫ t

0
FN (‖vN (s)‖)b0(vN , vN , w)ds →

∫ t

0
b0(v, v,w)ds, ∀t ∈ [0, T ], w ∈ D(A0).

(5.6)
Let us now focuss on the convergence of the other nonlinear terms that appear in (3.18). We
will restrict our attention to the term RN

0 (εAγ φN , φN ) which is the strongest nonlinearity in
(2.23). Our goal is to prove that as N → ∞, we have

∫ t

0
〈FN (‖(vN , φN )(s)‖V)R0(εAγ φN , φN ), w〉ds

=
∫ t

0
FN (‖(vN , φN )(s)‖V)b1(w, φN , εAγ φN )ds

→
∫ t

0
b1(w, φ, εAγ φ)ds =

∫ t

0
〈R0(εAγ φ, φ),w〉, ∀t ∈ [0, T ], w ∈ D(A0).

(5.7)

We proceed as in [7] and we set

FN (s) = FN (‖(vN , φN )(s)‖V), rN (s) = 〈R0(εAγ φN , φN ), w〉, r(s) = 〈R0(εAγ φ, φ),w〉.
We want to prove that

∫ t

0
FN (s)rN (s)ds →

∫ T

0
r(s)ds as N → ∞. (5.8)
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We note that
∫ t

0
(FN (s)rN (s) − r(s))ds =

∫ t

0
(FN (s) − 1)rN (s)ds +

∫ T

0
(rN (s) − r(s))ds. (5.9)

Note that

rN (s) − r(s) = b1(w, φN , εAγ φN ) − b1(w, φ, εAγ φ)

= b1(w, φN − φ, εAγ φN ) + b1
(
w, φ, εAγ (φN − φ)

) ≡ I1 + I2, (5.10)

|I1| = |b1(w, φN − φ, εAγ φN )| ≤ c‖w‖‖φN − φ‖1/2|Aγ φN |1/2
L2 ,

|I2| = |b1
(
w, φ, εAγ (φN − φ)

)
| ≤ c‖w‖|Aγ φ|L2‖φN − φ‖1/2|Aγ (φN − φ)|1/2

L2 .

(5.11)

It follows from (5.3) and (5.11) that

∫ T

0
(rN (s) − r(s))ds → as N → +∞. (5.12)

We also have
∣
∣
∣
∣

∫ t

0
(FN (s) − 1)rN (s)ds

∣
∣
∣
∣

2

≤
(∫ T

0
|FN (s) − 1|2ds

) ∫ T

0
|rN (s)|2ds. (5.13)

We note that

|rN (s)| = |b1(w, φN , εAγ φN )| ≤ c‖w‖|A0w|L2‖φN‖|Aγ φN |L2 , (5.14)

which gives (see Lemma 1)
∣
∣
∣
∣

∫ t

0
(FN (s) − 1)rN (s)ds

∣
∣
∣
∣

2

≤
∫ T

0
|FN (s) − 1|2ds

∫ T

0
|rN (s)|2ds

≤ c

(∫ T

0
|FN (s) − 1|2ds

)∫ T

0
‖w‖2|A0w|2L2‖φN ‖2|Aγ φN |2L2ds

≤ c

(∫ T

0
|FN (s) − 1|2ds

)

‖w‖2|A0w|2
L2

∫ T

0
‖φN ‖2|Aγ φN |2L2ds

≤ C‖w‖2|A0w|2
L2

∫ T

0
|FN (s) − 1|2ds → 0 as N → ∞.

(5.15)
Similarly, we can check that
∫ t

0
FN (‖(vN , φN )(s)‖V)b1(vN , φN , ρ)ds →

∫ t

0
b1(v, φ, ρ)ds, ∀t ∈ [0, T ], ρ ∈ D(Aγ ).

(5.16)
This proves that the limit (v, φ) is a weak solution of the following three-dimensional AC–NS
system ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

dv
dt + νA0v + B0(v, v) = R0(εAγ φ, φ) + g,

dφ
dt + μ + B1(v, φ) = 0, μ = εAγ φ + α fγ (φ),

(v, φ)(0) = (v0, φ0).

(5.17)
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5.1 Existence of bounded entire weak solutions of the AC–NS equations

Hereafter, we assume that the forcing g ∈ H1. Following similar steps as in [7], we prove
the existence of a bounded entire weak solution of the AC–NS equations.

Theorem 5 There exists a bounded entire weak solution of the AC–NS equations (5.17).
More precisely, there exists a bounded entire weak solutions of (5.17) with initial value
(v0, φ0) ∈ U0, where U0 is a subset of Y consisting of weak Y-cluster points of a sequence
in AN .

Proof The proof is similar to that of Theorem 14 of [7]. Therefore, we omit the details
and only give a sketch. We consider a sequence (v0N , φ0

N ) ∈ V with (v0N , φ0
N ) ∈ AN for

each N . Then SN (t)AN = AN for all t ≥ 0. It follows that there exists an entire strong
solution of the GMACNSE (2.23) (wN , ψN ) : � → V with (wN , ψN )(0) = (v0N , φ0

N ) and
(wN , ψN )(t) ∈ AN for all t ∈ � and each N .Note thatAN ⊂ BY for each N ,whereBY is the
absorbing set inY given by (4.15). SinceBY is independent of N , it follows that the sequence
(wN , ψN ) is bounded in L∞(0, T ;Y) ∩ L2(0, T ;V). Therefore, there exists a subsequence
(still) denoted (wN , ψN )which converges to a function (w,ψ) ∈ L∞(0, T ;Y)∩L2(0, T ;V)

weak-star in L∞(0, T ;Y),weakly in L2(0, T ;V) and strongly in L2(0, T ;Y) for all T > 0.
Moreover, (w,ψ) ∈ BY by the weak-star lower semicontinuity of the norm in L∞(0, T ;Y).

As in [7], we can extend this weak solution backward in time and obtain an entire weak
solution (w,ψ) of the AC–NS system (5.17) with values in BY. ��
Acknowledgements The authorwould like to thank the anonymous refereeswhose comments help to improve
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