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Abstract In this paper, we study the Cauchy problem for the generalized Keller–Segel
system with the cell diffusion being ruled by fractional diffusion:

⎧
⎪⎨

⎪⎩

∂t u + �αu + ∇ · (u∇ψ) = 0 in R
n × (0,∞),

−�ψ = u in R
n × (0,∞),

u(x, 0) = u0(x) in R
n .

In the case 1 < α ≤ 2, we prove local well-posedness for any initial data and global well-

posedness for small initial data in critical Besov spaces Ḃ
−α+ n

p
p,q (Rn) with 1 ≤ p < ∞,

1 ≤ q ≤ ∞, and analyticity of solutions for initial data u0 ∈ Ḃ
−α+ n

p
p,q (Rn) with 1 < p < ∞,

1 ≤ q ≤ ∞. Moreover the global existence and analyticity of solutions with small initial data
in critical Besov spaces Ḃ−α

∞,1(R
n) is also established. In the limit caseα = 1, we prove global

well-posedness for small initial data in critical Besov spaces Ḃ
−1+ n

p
p,1 (Rn) with 1 ≤ p < ∞

and Ḃ−1
∞,1(R

n) and show analyticity of solutions for small initial data in Ḃ
−1+ n

p
p,1 (Rn) with

1 < p < ∞ and Ḃ−1
∞,1(R

n), respectively.
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522 J. Zhao

1 Introduction

In this paper, we are concerned with the nonlinear nonlocal evolution equations generalizing
the well-known Keller–Segel model of chemotaxis:

⎧
⎪⎨

⎪⎩

∂t u + �αu + ∇ · (u∇ψ) = 0 in R
n × (0,∞),

−�ψ = u in R
n × (0,∞),

u(x, 0) = u0(x) in R
n,

(1.1)

where n ≥ 2, u and ψ are two unknown functions which stand for the cell density and the
concentration of the chemical attractant, respectively, and the anomalous (normal) diffusion
is modeled by a fractional power of the Laplacian with 1 ≤ α ≤ 2. The positive operator
�α = (−�)

α
2 is defined by

�α f (x) := c(α, n)P.V .

∫

Rn

f (x) − f (y)

|x − y|n+α
dy

and c(α, n) is a normalization constant. A simple alternative representation is given through
the Fourier transform as �α f = F−1[|ξ |αF f (ξ)], where F and F−1 are the Fourier trans-
form and the inverse Fourier transform, respectively.

Obviously, the choice α = 2 in the system (1.1) corresponds to a simplified system of
⎧
⎪⎨

⎪⎩

∂t u − �u = −∇ · (u∇ψ) in R
n × (0,∞),

∂tψ − �ψ = u − ψ in R
n × (0,∞),

u(x, 0) = u0(x), ψ(x, 0) = ψ0(x) in R
n .

(1.2)

The system (1.2) is a mathematical model of chemotaxis, which is formulated by Keller
and Segel [35] in 1970, while it is also connected with astrophysical models of gravitational
self-interaction of massive particles in a cloud or a nebula, see Biler et al. [6].

In biology, chemotaxis is the directed movement of an organism in response to ambi-
ent chemical gradients that are often segregated by the cells themselves. The system (1.2)
describes the manner in which cellular slime molds aggregate owing to the motion of the
cells, which move toward higher concentration of a chemical substance which they produce
themselves. In those cases where the chemical products are attractive (and they are called
chemoattractants), they lead to the phenomenon known as chemotactic collapse: the cells
accumulate in small regions of space giving rise to high density configurations. This phe-
nomenon exhibits that the system (1.2) admits finite time blowup solutions for large-enough
initial data. It was actually conjectured byChildress and Percus [18] that in a two-dimensional
domain� ⊂ R

2, there exists a threshold c0 such that if the initialmassm = ∫

�
u0(x)dx < c0,

then the solution exists globally in time, while if m = ∫

�
u0(x)dx > c0, then the solution

blows up in finite time. For various simplified versions of the Keller–Segel system (1.2),
the conjecture has been essentially verified, see [27,28] for a comprehensive review of these
aspects. Jager and Luckhaus [33] considered the system (1.2) with Neumann boundary con-
ditions in a bounded domain � ⊂ R

2 and showed that for sufficiently small 1
|�|

∫

�
u0(x)dx ,

there exists a unique smooth global positive solution, while for large 1
|�|

∫

�
u0(x)dx , there

exists radial solutions which explode in finite time. Herrero and Velázquez [25,26] studied
the system (1.2) with no-flux boundary conditions on a disk and showed by the method
of matched asymptotic expansion that there exists a nonnegative radial initial data (u0, ψ0)

with
∫

�
u0(x)dx > 8π such that the solution (u, ψ) corresponding to the initial data (u0, ψ0)

blows up only at the origin in finite time and u has a Dirac delta-type singularity at the origin.
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Biler [4], Gajewski and Zacharias [24], Nagai et al. [45] subsequently proved global exis-
tence of nonnegative solution under the condition

∫

�
u0(x)dx < 4π and existence of radial

solutions on a disk under the condition
∫

�
u0(x)dx < 8π . Moreover there exists a detailed

description of the asymptotic behavior of solutions of (1.2) in the case
∫

�
u0(x)dx < 8π to

[15], in the limit case
∫

�
u0(x)dx = 8π to [14] and in the radially symmetric case to [8,9].

For more results related to this topic, we refer the reader to see [10,21,40,41,44,53].
Since the chemical concentration ψ is determined by the Poisson equation, the second

equation of (1.1) gives rise to the coefficient ∇ψ in the first equation of (1.1), when ψ is
represented as the volume potential of u:

ψ(x, t) = (−�)−1u(x, t) =
{

1
n(n−2)ωn

∫

Rn
u(y,t)

|x−y|n−2 dy, n ≥ 3,

− 1
2π

∫

R2 u(y, t) log |x − y|dy, n = 2,

where ωn denotes the surface area of the unit sphere in Rn , the system (1.1) amounts essen-
tially to the following differential–integral Fokker–Planck system:

u = e−t�α

u0 −
∫ t

0
e−(t−τ)�α∇ · [u∇(−�)−1u

]
dτ, (1.3)

where e−t�α := F−1[e−t |ξ |αF]. We may find the solution of (1.3) by using the contraction
mapping argument for the mapping u �→ F(u) with

F(u) := e−t�α

u0 −
∫ t

0
e−(t−τ)�α∇ · [u∇(−�)−1u

]
dτ.

The invariant space for solving the integral equation (1.3) requires us to analyze the scaling
invariance property of the system (1.1). Set

uλ(x, t) := λαu(λx, λαt), ψλ(x, t) := λα−2ψ(λx, λαt).

Then if u solves (1.1) with initial data u0 (ψ can be determined by u), so does uλ with initial
data u0λ (ψλ can be determined by uλ), where u0λ(x) := λαu0(λx). In particular, the norm

of u0 ∈ Ḃ
−α+ n

p
p,q (Rn) (1 ≤ p, q ≤ ∞) is scaling invariant under the above change of scale.

Notice that in the case of classical Brownian diffusion α = 2, the solvability of the system
(1.1) has been relatively well developed in various classes of functions and distributions,
such as the Lebesgue space L1(Rn) ∩ L

n
2 (Rn) by Corrias et al. [19], the Sobolev space

L1(Rn) ∩ W 2,2(Rn) by Kozono and Sugiyama [36], the Hardy space H1(R2) by Ogawa
and Shimizu [46], the Besov space Ḃ0

1,2(R
2) by Ogawa and Shimizu [47], the Besov space

Ḃ
−2+ n

p
p,∞ (Rn) and Fourier–Herz space Ḃ−2

2 (Rn) by Iwabuchi [30] and the pseudomeasure
space PMn−2(Rn) by Biler et al. [5], for more results, see Lemarié-Rieusset [39] and the
references therein. We mention here that, for the drift–diffusion system (1.2) of bipolar type,
recently, the author of this paper, Liu andCui [57], proved that small data global existence and

large data local existence of solutions in critical Besov space Ḃ
−2+ n

p
p,q (Rn) with 1 < p < 2n

and 1 ≤ q ≤ ∞. Subsequently, Deng and Li [20] established a dichotomy for well-posedness
and ill-posedness issues in two dimensions; more precisely, they proved that the bipolar type

drift–diffusion system is well-posed in Ḃ
− 3

2
4,2 (R2), and ill-posed in Ḃ

− 3
2

4,q (R2) for 2 < q ≤ ∞.
Very recently, Iwabuchi and Ogawa [32] finally proved that the bipolar type drift–diffusion

system is ill-posed in Ḃ
−2+ n

p
p,q (Rn) with 2n < p ≤ ∞ and 1 ≤ q ≤ ∞, or p = 2n and

2 < q ≤ ∞.
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524 J. Zhao

For general fractional diffusion case 1 < α < 2, the system (1.1) was first studied by
Escudero [22], where it was used to describe the spatiotemporal distribution of a population
density of randomwalkers undergoing Lévy flights. Moreover the author proved that the one-
dimensional system (1.1) possesses global in time solutions not only in the case of α = 2 but
also in the case 1 < α < 2. Biler and Karch [7] proved local and global solutions with small
initial data of the system (1.1) in critical Lebesgue space L

n
α (Rn) for 1 < α < 2; they also

proved the finite time blowup of nonnegative solutions with some initial data imposed on
the large-mass or high-concentration conditions. Biler and Wu [11] established global well-
posedness of the system (1.1) with small initial data in the critical Besov spaces Ḃ1−α

2,q (R2)

for 1 < α < 2. Wu and Zheng [51] proved a local well-posedness with any initial data and
global well-posedness with small initial data in critical Fourier–Herz space Ḃ2−2α

q (Rn) for

1 < α ≤ 2 and 2 ≤ q ≤ ∞ and proved ill-posedness in Ḃ−2
q (Rn) and Ḃ−2∞,q(R

n) with α = 2
and 2 < q ≤ ∞. Zhai [55] proved the global existence, uniqueness and stability of solutions
with small initial data in critical Besov spaces with general potential type nonlinear term.
Parts of these results were also generalized for the fractional power drift–diffusion system of
bipolar type, please refer to [11,43,48,50] and the references therein.

In this paper, we aim at studying well-posedness and Gevrey analyticity of the generalized

Keller–Segel system (1.1)with initial data in criticalBesov spaces Ḃ
−α+ n

p
p,q (Rn) for 1 ≤ α ≤ 2

and 1 ≤ p, q ≤ ∞. The first novelty of this paper is that we resort to the Fourier localization
technique and the Bony’s paraproduct theory to address well-posedness issues of the system
(1.1) in critical Besov spaces either Ḃ−α

∞,1(R
n) with 1 < α < 2 or Ḃ−1

∞,1(R
n) with α = 1.

These critical spaces are marginal cases adapted to the system (1.1). The second novelty of
this paper is that we employ the Gevrey class regularity to prove analyticity of solutions. The
choice of this argument ismotivated by thework of Foias andTemam[23] for estimating space
analyticity radius of the Navier–Stokes equations (similar results were extended by many
authors to various equations, see [1,2,12,13,29,37] formore details). The result characterizes
space analyticity radius of solutions and has an important physical interpretation: at this length
scale, the viscous effects and the nonlinear inertial effects are roughly comparable; below
this length scale the Fourier spectrum decays exponentially. As a consequence of analyticity
result, we obtain temporal decay rates of higher-order Besov norms of solutions.

Now we state main results of this paper. Let us denote by �1 the Fourier multiplier whose
symbol is given by |ξ |1 = |ξ1| + · · · + |ξn |, and we refer the reader to see Sect. 2 for the
definitions of the stationary/time dependent homogeneous Besov spaces.

Theorem 1.1 Let n ≥ 2, 1 < α ≤ 2. Assume that u0 ∈ Ḃ
−α+ n

p
p,q (Rn) with 1 ≤ p, q ≤ ∞.

Then we have the following results:

(i) (Well-posedness for1 ≤ p < ∞) Let1 ≤ p < ∞. Then there exists a T ∗ = T ∗(u0) > 0
such that the system (1.1) has a unique solution u ∈ XT ∗ , where

XT ∗ := L̃∞
(

0, T ∗; Ḃ−α+ n
p

p,q (Rn)

)

∩ L̃ρ1
(
0, T ∗; Ḃs1

p,q(R
n)
)

∩ L̃ρ2
(
0, T ∗; Ḃs2

p,q(R
n)
)

(1.4)
with

s1 = −1+ n

p
+ε, s2 = −1+ n

p
−ε, ρ1 = α

α − 1 + ε
, ρ2 = α

α − 1 − ε
, 0 < ε < α−1.

If T ∗ < ∞, then ‖u‖
L̃

ρ1
T∗

(
Ḃ
s1
p,q

)
∩L̃

ρ2
T∗

(
Ḃ
s2
p,q

) = ∞.

Moreover if u0 ∈ Ḃ
−α+ n

p
p,q (Rn) is sufficiently small, then T ∗ = ∞.

123



Well-posedness and Gevrey analyticity of the generalized… 525

(ii) (Analyticity for 1 < p < ∞) Let 1 < p < ∞. Then the solution obtained in (i) satisfies

et
1
α �1u ∈ XT ∗ . (1.5)

Moreover if u0 ∈ Ḃ
−α+ n

p
p,q (Rn) is sufficiently small, then T ∗ = ∞.

(iii) (Well-posedness for p = ∞) Let 1 < α < 2 and p = ∞. Suppose that ‖u0‖Ḃ−α
∞,1

is

sufficiently small. Then the system (1.1) has a unique solution u satisfying

u ∈ L̃∞ (
0,∞; Ḃ−α

∞,1(R
n)
)

∩ L̃1 (0,∞; Ḃ0∞,1(R
n)
)
. (1.6)

(iv) (Analyticity for p = ∞) Let 1 < α < 2 and p = ∞. Then the solution obtained in (iii)
satisfies

et
1
α �1u ∈ L̃∞ (

0,∞; Ḃ−α
∞,1(R

n)
)

∩ L̃1 (0,∞; Ḃ0∞,1(R
n)
)
. (1.7)

(v) (Decay rate for 1 < p ≤ ∞) For any σ ≥ 0, 1 < p < ∞ or p = ∞ and q = 1, the
global solution obtained in (i) and (iii) satisfies

‖�σ u(t)‖
Ḃ

−α+ n
p

p,q

≤ Cσ t
− σ

α ‖u0‖
Ḃ

−α+ n
p

p,q

, (1.8)

where Cσ := ‖�σ e−�1‖L1 .

Remark 1.1 We mention here that Bourgain and Pavlović [17] proved ill-posedness for the
3D Navier–Stokes equations in Ḃ−1∞,∞(R3). Subsequently, Yoneda [54] proved ill-posedness

in some function spaces, which are larger than Ḃ−1
∞,2(R

3) but smaller than Ḃ−1∞,q(R
3) with

2 < q ≤ ∞; Wang [49] finally proved ill-posedness for the 3D Navier–Stokes equations
in Ḃ−1∞,q(R

3) for all 1 ≤ q ≤ 2. Note that when α = 2, Ḃ−1∞,q(R
n) for the Navier–Stokes

equations corresponds to Ḃ−2∞,q(R
n) for the system (1.1); therefore,we cannot expect thewell-

posedness of the system (1.1) in Ḃ−2∞,q(R
n) for 1 ≤ q ≤ ∞. However, when 1 < α < 2,

Theorem 1.1 shows that the system (1.1) is well-posedness in Ḃ−α
∞,1(R

n).

Remark 1.2 We emphasize here that the exponential operator et
1
α �1 is quantified by the

operator �1, whose symbol is given by the l1 norm |ξ |1 = ∑n
i=1 |ξi |, rather than the usual

operator � = √−�, whose symbol is given by the l2 norm |ξ | = (∑n
i=1 |ξi |2

) 1
2 . This

approach enables us to avoid cumbersome recursive estimation of higher-order derivatives
and intricate combinatorial arguments to get the desired decay estimates of solutions, see
[52,56].

Remark 1.3 The method we shall use to prove well-posedness of (1.1) in critical Besov

spaces Ḃ
−α+ n

p
p,q (Rn) is the Chemin mono-norm method, which is different from the methods

used in [30,55].

Remark 1.4 In [34], Kato obtained the first and second asymptotic profiles of solutions to
the parabolic system (1.2) in the Lebesgue framework; particularly, the optimal asymptotic
rate of the first asymptotic profiles is established. Similar results have been extended to the
fractional power drift–diffusion system of bipolar type, see Ogawa and Yamamoto [48].
Compared with the decay result in Theorem 1.1, (1.8) gives us the decay rates of solutions
in critical Besov spaces and is compatible with the decay rates of solutions to the linear
fractional power dissipative equation, and the result is an immediate by-product of Gevrey
regularity of solutions.

Corresponding to Theorem 1.1, in the case α = 1, we obtain the following results.

123



526 J. Zhao

Theorem 1.2 Let n ≥ 2, α = 1. Assume that u0 ∈ Ḃ
−1+ n

p
p,1 (Rn) with 1 ≤ p ≤ ∞. Then we

have the following results:

(i) (Well-posedness for 1 ≤ p < ∞) Let 1 ≤ p < ∞. Suppose that ‖u0‖
Ḃ

−1+ n
p

p,1

is

sufficiently small. Then the system (1.1) has a unique solution u satisfying

u ∈ L̃∞
(

0,∞; Ḃ−1+ n
p

p,1 (Rn)

)

. (1.9)

(ii) (Analyticity for 1 < p < ∞) Let 1 < p < ∞. Then the solution obtained in (i) satisfies

et
1
2n �1u ∈ L̃∞

(

0,∞; Ḃ−1+ n
p

p,1 (Rn)

)

. (1.10)

(iii) (Well-posedness for p = ∞) Let p = ∞. Suppose that ‖u0‖Ḃ−1
∞,1

is sufficiently small.

Then the system (1.1) has a unique solution u satisfying

u ∈ L̃∞ (
0,∞; Ḃ−1

∞,1(R
n)
)

∩ L̃1 (0,∞; Ḃ0∞,1(R
n)
)
. (1.11)

(iv) (Analyticity for p = ∞) Let p = ∞. Then the solution obtained in (iii) satisfies

et
1
2n �1u ∈ L̃∞ (

0,∞; Ḃ−1
∞,1(R

n)
)

∩ L̃1 (0,∞; Ḃ0∞,1(R
n)
)
. (1.12)

(v) (Decay rate for 1 < p ≤ ∞) For any σ ≥ 0 and 1 < p ≤ ∞, the global solution
obtained in (i) and (iii) satisfies

‖�σ u(t)‖
Ḃ

−1+ n
p

p,1

≤ C̃σ t
−σ ‖u0‖

Ḃ
−1+ n

p
p,1

, (1.13)

where C̃σ := ‖�σ e− 1
2n �1‖L1 .

Remark 1.5 In the case α = 1, since the dissipative operator e− 1
2 t� is not strong enough to

dominate the operator et�1 , we need to define Gevrey operator more carefully. By noticing a

simple fact that 1
2n |ξ |1 < 1

2 |ξ | for all ξ ∈ R
n , the Gevrey operator can be defined by e

1
2n t�1u.

Remark 1.6 In Miao and Wu [42], by making use of modulus of continuity and Fourier
localization technique, the authors proved that the critical Burgers equations ∂t u + u∂xu +
�u = 0 is well-posed in critical Besov space Ḃ

1
p
p,1 with p ∈ [1,∞), while thewell-posedness

in the limit case p = ∞ is successfully addressed by Iwabuchi [31]. The main crux in their
proof is an optimal a priori estimates for the transport–diffusion equation, which is distinct
from the method used in our paper; our proof is based on the fundamental estimates of the
linear fractional power dissipative equation in the Chemin–Lerner mixed type space, see
Sect. 4.

Before ending this section, let us sketch, for example, the proof of analyticity part in

Theorem 1.1. Setting U (t) = et
1
α �1u(t). Then we see that U (t) satisfies the following

integral equation:

U (t) = et
1
α �1−t�α

u0 −
∫ t

0
e

[(
t
1
α −τ

1
α

)
�1−(t−τ)�α

]

∇

× eτ
1
α �1

(

e−τ
1
α �1U (τ )e−τ

1
α �1∇(−�)−1U (τ )

)

dτ.

123



Well-posedness and Gevrey analyticity of the generalized… 527

Note that since et
1
α |ξ |1 can be dominated by e−t |ξ |α provided that |ξ | is sufficiently large, the

behavior of the linear term et
1
α �1−t�α

u0 closely resembles that of e−t�α
u0. In order to tackle

with the nonlinear term, we resort to [38] and [2] to find out the nice boundedness property
of the following bilinear operator:

Bt ( f, g) := et
1
α �1

(

e−t
1
α �1 f e−t

1
α �1g

)

= 1

(2π)n

∫

Rn

∫

Rn
ei x ·(ξ+η)et

1
α (|ξ+η|1−|ξ |1−|η|1) f̂ (ξ)ĝ(ξ)dξdη.

Based on the desired properties of Bt ( f, g), we can modify the argument of the proof of
well-posedness results in Theorem 1.1 to obtain Gevrey regularity.

This paper is organized as follows: We shall collect some basic facts on the Littlewood–
Paley dyadic decomposition theory and the various product laws in Besov spaces in Sect. 2
and then prove Theorem 1.1 in Sect. 3 and Theorem 1.2 in Sect. 4.

2 Preliminaries

2.1 Notations

In this paper, we shall use the following notations. For x = (x1, . . . , xn) ∈ R
n , we denote

|x |p = (|x1|p + · · · + |xn |p)
1
p and |x | = |x |2, and thus, we denote by �1 the Fourier

multiplier whose symbol is given by |ξ |1 = ∑n
i=1 |ξi | and by � = √−� the Fourier

multiplier whose symbol is given by |ξ | = (∑n
i=1 |ξi |2

) 1
2 . For any function space X and the

operator T : X → X , we denote

T X := {T f : f ∈ X} and ‖ f ‖T X := ‖T f ‖X .

The linear space of all multipliers on L p is denoted byMp and the norm on which is defined
by

‖ f ‖Mp := sup
{‖F−1[ f Fg]‖L p : ∀g ∈ S(Rn), ‖g‖L p = 1

}
.

For two constants A and B, the notation A � B means that there is a uniform constant C
(always independent of x, t), which may vary from line to line, such that A ≤ CB.

2.2 Littlewood–Paley theory and Besov spaces

The proofs of Theorems 1.1 and 1.2 are formulated by the dyadic decomposition in the
Littlewood–Paley theory. Let us briefly explain how it may be built in Rn . Let S(Rn) be the
Schwartz class of rapidly decreasing function and S ′(Rn) of temperate distributions be the
dual set of S(Rn). Let ϕ ∈ S(Rn) be a smooth radial function valued in [0, 1] such that ϕ is
supported in the shell C = {

ξ ∈ R
n, 3

4 ≤ |ξ | ≤ 8
3

}
, and

∑

j∈Z
ϕ(2− jξ) = 1, ∀ξ ∈ R

n\{0}.

Then for any f ∈ S ′(Rn), we set for all j ∈ Z,

� j f := ϕ(2− j D) f and S j f :=
∑

k≤ j−1

�k f. (2.1)

123



528 J. Zhao

By telescoping the series, we have the following homogeneous Littlewood–Paley decompo-
sition:

f =
∑

j∈Z
� j f for f ∈ S ′(Rn)/P(Rn),

where P(Rn) is the set of polynomials (see [3]). We remark here that the Littlewood–Paley
decomposition satisfies the property of almost orthogonality, that is to say, for any f, g ∈
S ′(Rn)/P(Rn), the following properties hold:

�i� j f ≡ 0 if |i − j | ≥ 2 and �i (S j−1 f � j g) ≡ 0 if |i − j | ≥ 5. (2.2)

Using the above decomposition, the stationary/time-dependent homogeneousBesov space
can be defined as follows:

Definition 2.1 Let s ∈ R, 1 ≤ p, q ≤ ∞ and f ∈ S ′(Rn), we set

‖ f ‖Ḃs
p,q

:=
⎧
⎨

⎩

(∑
j∈Z 2 jsq‖� j f ‖qL p

) 1
q

for 1 ≤ q < ∞,

sup j∈Z 2 js‖� j f ‖L p for q = ∞.

Then the homogeneous Besov space Ḃs
p,q(R

n) is defined by

• For s < n
p (or s = n

p if q = 1), we define

Ḃs
p,q(R

n) :=
{
f ∈ S ′(Rn)/P(Rn) : ‖ f ‖Ḃs

p,q
< ∞

}
.

• If k ∈ N and n
p + k ≤ s < n

p + k + 1 (or s = n
p + k + 1 if q = 1), then Ḃs

p,q(R
n) is

defined as the subset of distributions f ∈ S ′(Rn) such that ∂β f ∈ Ḃs−k
p,r (Rn) whenever

|β| = k.

Definition 2.2 For 0 < T ≤ ∞, s ≤ n
p (resp. s ∈ R), 1 ≤ p, q, ρ ≤ ∞. We define the

mixed time-space L̃ρ(0, T ; Ḃs
p,q(R

n)) as the completion of C([0, T ];S(Rn)) by the norm

‖ f ‖
L̃ρ
T

(
Ḃs
p,q

) :=
⎛

⎝
∑

j∈Z
2 jsq

(∫ T

0
‖� j f (·, t)‖ρ

L pdt

) q
ρ

⎞

⎠

1
q

< ∞

with the usual change if ρ = ∞ or q = ∞. For simplicity, we use ‖ f ‖L̃ρ
t (Ḃs

p,q ) instead of

‖ f ‖L̃ρ∞(Ḃs
p,q ).

In what follows, we shall frequently use the following Bony’s homogeneous paraproduct
decomposition, which is a mathematical tool to define a generalized product between two
temperate distributions (see [16]). Let f and g be two temperate distributions, the paraproduct
between f and g is defined by

T f g :=
∑

j∈Z
S j−1 f � j g =

∑

j∈Z

∑

k≤ j−2

�k f � j g.

Formally, we have the following Bony’s decomposition:

f g = T f g + Tg f + R( f, g),

where
R( f, g) :=

∑

j∈Z

∑

| j− j ′|≤1

� j f � j ′g.
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2.3 Essential lemmas

For the convenience of the readers, we list some basic facts of the Littlewood–Paley theory,
one may refer to [3,38] for more details.

Lemma 2.3 [3,38] Let B be a ball, and C a ring in R
n. There exists a constant C such that

for any positive real number λ, any nonnegative integer k and any couple of real numbers
(p, r) with 1 ≤ p ≤ r ≤ ∞, we have

suppF( f ) ⊂ λB ⇒ sup
|α|=k

‖∂α f ‖Lr ≤ Ck+1λ
k+n

(
1
p − 1

r

)

‖ f ‖L p , (2.3)

suppF( f ) ⊂ λC ⇒ C−1−kλk‖ f ‖L p ≤ sup
|α|=k

‖∂α f ‖L p ≤ C1+kλk‖ f ‖L p . (2.4)

Lemma 2.4 [3,38] Let f be a smooth function on R
n\{0} which is homogeneous of degree

m. Then for any s ∈ R, 1 ≤ p, q ≤ ∞, and

s − m <
n

p
, or s − m = n

p
and q = 1,

the operator f (D) is continuous from Ḃs
p,q(R

n) to Ḃs−m
p,q (Rn).

Lemma 2.5 [50] Let C be a ring in Rn. There exist two positive constants κ andK such that
for any p ∈ [1,∞] and any couple (t, λ) of positive real numbers, we have

suppF( f ) ⊂ λC ⇒ ‖et�α

f ‖L p ≤ Ke−κλα t‖ f ‖L p . (2.5)

3 The case 1 < α ≤ 2: Proof of Theorem 1.1

In this section, we prove Gevrey analyticity of the system (1.1) in critical Besov spaces

Ḃ
−α+ n

p
p,q (Rn) with 1 < α ≤ 2, 1 < p ≤ ∞ and 1 ≤ q ≤ ∞. The proof is based on an

adequate modification of the proof of local in time existence with any initial data and global
in time existence with small initial data to the system (1.1), and thus, we begin with the
detailed proof of the first part of Theorem 1.1.

3.1 The case 1 ≤ p < ∞: well-posedness

In this subsection, we intend to establish local well-posedness with any initial data and global

well-posednesswith small initial data to the system (1.1) in critical Besov spaces Ḃ
−α+ n

p
p,q (Rn)

for 1 ≤ p < ∞. Firstly, we are concerned with the Cauchy problem of the fractional power
dissipative equation: {

∂t u + �αu = f, x ∈ R
n, t > 0,

u(x, 0) = u0(x), x ∈ R
n .

(3.1)

Proposition 3.1 ([11]) Let s ∈ R, 1 ≤ p, q, ρ1 ≤ ∞ and 0 < T ≤ ∞. Assume

that u0 ∈ Ḃs
p,q(R

n) and f ∈ L̃ρ1
T (Ḃ

s+ α
ρ1

−α

p,q (Rn)). Then (3.1) has a unique solution

u ∈ ∩
ρ1≤ρ≤∞L̃ρ

T (Ḃ
s+ α

ρ
p,q (Rn)). In addition, there exists a constant C > 0 depending only

on α and n such that for any ρ1 ≤ ρ ≤ ∞, we have

‖u‖
L̃ρ
T

(
Ḃ
s+ α

ρ
p,q

) ≤ C

(

‖u0‖Ḃs
p,q

+ ‖ f ‖
L̃

ρ1
T

(
Ḃ
s+ α

ρ1
−α

p,q

)

)

. (3.2)
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In particular, if f ∈ L̃1
T (Ḃs

p,q(R
n)), then we have

‖u‖
L̃∞
T

(
Ḃs
p,q

)
∩L̃1

T

(
Ḃs+α
p,q

) ≤ C

(

‖u0‖Ḃs
p,q

+ ‖ f ‖
L̃1
T

(
Ḃs
p,q

)
)

. (3.3)

Next, by using in a fundamental way the algebraical structure of the system (1.1), we aim
at establishing the following crucial bilinear estimates in time-dependent Besov spaces.

Lemma 3.2 Let s > 0, 1 ≤ p < ∞, 1 ≤ q, ρ, ρ1, ρ2 ≤ ∞ with 1
ρ

= 1
ρ1

+ 1
ρ2
. Then for any

ε > 0, 0 < T ≤ ∞, we have

‖u∇(−�)−1v + v∇(−�)−1u‖
L̃ρ
T

(
Ḃs
p,q

) � ‖u‖L̃ρ1
T

(
Ḃs+ε
p,q

)‖v‖
L̃

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

)

+ ‖u‖
L̃

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

)‖v‖L̃ρ1
T

(
Ḃs+ε
p,q

). (3.4)

Moreover if we choose ε = 0, then (3.4) also holds for q = 1.

Proof Thanks to Bony’s paraproduct decomposition, we have

u∇(−�)−1v + v∇(−�)−1u := I1 + I2 + I3, (3.5)

where

I1 :=
∑

j ′∈Z
� j ′u∇(−�)−1S j ′−1v + � j ′v∇(−�)−1S j ′−1u,

I2 :=
∑

j ′∈Z
S j ′−1u∇(−�)−1� j ′v + S j ′−1v∇(−�)−1� j ′u,

I3 :=
∑

j ′∈Z

∑

| j ′− j ′′|≤1

� j ′u∇(−�)−1� j ′′v + � j ′v∇(−�)−1� j ′′u.

In the sequel, we estimate Ii (i = 1, 2, 3) one by one. For I1, we need only to deal with the
first term

∑
j ′∈Z � j ′u∇(−�)−1S j ′−1v, while the second one can be done analogously, thus

using the facts (2.1) and (2.2), and applying Hölder’s inequality and Lemmas 2.3 and 2.4,
one has

∥
∥
∥
∥
∥
∥
� j

∑

j ′∈Z
� j ′u∇(−�)−1S j ′−1v

∥
∥
∥
∥
∥
∥
Lρ
T (L p)

�
∑

| j ′− j |≤4

‖� j ′u‖Lρ1
T (L p)

‖∇(−�)−1S j ′−1v‖Lρ2
T (L∞)

�
∑

| j ′− j |≤4

‖� j ′u‖Lρ1
T (L p)

∑

k≤ j ′−2

2

(
−1+ n

p

)
k‖�kv‖Lρ2

T (L p)

�
∑

| j ′− j |≤4

‖� j ′u‖Lρ1
T (L p)

∑

k≤ j ′−2

2εk2

(
−1+ n

p −ε
)
k‖�kv‖Lρ2

T (L p)

�
∑

| j ′− j |≤4

2−s j ′2(s+ε) j ′ ‖� j ′u‖Lρ1
T (L p)

‖v‖
L̃

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

). (3.6)

Multiplying (3.6) by 2s j , then taking lq norm to the resulting inequality, we obtain
∥
∥
∥
∥
∥
∥

∑

j ′∈Z
� j ′u∇(−�)−1S j ′−1v

∥
∥
∥
∥
∥
∥
L̃ρ
T

(
Ḃs
p,q

)
� ‖u‖L̃ρ1

T

(
Ḃs+ε
p,q

)‖v‖
L̃

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

),
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which implies that

‖I1‖L̃ρ
T

(
Ḃs
p,q

) � ‖u‖L̃ρ1
T

(
Ḃs+ε
p,q

)‖v‖
L̃

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

) + ‖u‖
L̃

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

)‖v‖L̃ρ1
T

(
Ḃs+ε
p,q

). (3.7)

Similarly, for the first term of I2, applying Hölder’s inequality and Lemmas 2.3 and 2.4 again,
we see that

∥
∥
∥
∥
∥
∥
� j

∑

j ′∈Z
S j ′−1u∇(−�)−1� j ′v

∥
∥
∥
∥
∥
∥
Lρ
T (L p)

�
∑

| j ′− j |≤4

∑

k≤ j ′−2

2
n
p k‖�ku‖Lρ2

T (L p)
2− j ′ ‖� j ′v‖Lρ1

T (L p)

�
∑

| j ′− j |≤4

∑

k≤ j ′−2

2(1+ε)k2

(
−1+ n

p −ε
)
k‖�ku‖Lρ2

T (L p)
2− j ′ ‖� j ′v‖Lρ1

T (L p)

�
∑

| j ′− j |≤4

2−s j ′2(s+ε) j ′ ‖� j ′v‖Lρ1
T (L p)

‖u‖
L̃

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

), (3.8)

which yields directly that

∥
∥
∥
∥
∥
∥

∑

j ′∈Z
S j ′−1u∇(−�)−1� j ′v

∥
∥
∥
∥
∥
∥
L̃ρ
T

(
Ḃs
p,q

)
� ‖u‖

L̃
ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

)‖v‖L̃ρ1
T

(
Ḃs+ε
p,q

).

Thus, we obtain

‖I2‖L̃ρ
T

(
Ḃs
p,q

) � ‖u‖L̃ρ1
T

(
Ḃs+ε
p,q

)‖v‖
L̃

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

) + ‖u‖
L̃

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

)‖v‖L̃ρ1
T

(
Ḃs+ε
p,q

). (3.9)

Nowwe tacklewith themost tricky term I3. Based on careful analysis of the algebraical struc-
ture of the system (1.1), we can split I3 into the following three terms for m = 1, 2, . . . , n:

I3 := K1 + K2 + K3, (3.10)

where

K1 :=
∑

j ′∈Z

∑

| j ′− j ′′|≤1

(−�)
{(

(−�)−1� j ′u
)(

∂m(−�)−1� j ′′v
)}

,

K2 :=
∑

j ′∈Z

∑

| j ′− j ′′|≤1

2∇ ·
{(

(−�)−1� j ′u
)(

∂m∇(−�)−1� j ′′v
)}

,

K3 :=
∑

j ′∈Z

∑

| j ′− j ′′|≤1

∂m

{(
(−�)−1� j ′u

)
� j ′′v

}
.
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Moreover since K2 can be treated similarly to K3, we treat K1 and K3 only. We first consider
the case 2 ≤ p < ∞, and by using Hölder’s inequality and Lemmas 2.3 and 2.4, it follows
from (2.2) that there exists N0 ∈ N such that

‖� j K1‖Lρ
T (L p) � 2

(
2+ n

p

)
j ∑

j ′≥ j−N0

∑

| j ′− j ′′ |≤1

‖(−�)−1� j ′u‖Lρ1
T (L p)

‖∂m(−�)−1� j ′′v‖Lρ2
T (L p)

� 2

(
2+ n

p

)
j ∑

j ′≥ j−N0

∑

| j ′− j ′′ |≤1

2

(
−2−s− n

p

)
j ′
2(s+ε)‖� j ′u‖Lρ1

T (L p)
2

(
−1+ n

p −ε
)
j ′′ ‖� j ′′v‖Lρ2

T (L p)

� 2−s j
∑

j ′≥ j−N0

2
−
(
2+s+ n

p

)
( j ′− j)

2(s+ε) j ′ ‖� j ′u‖Lρ1
T (L p)

‖v‖
L

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

). (3.11)

‖� j K3‖Lρ
T (L p) � 2

(
1+ n

p

)
j ∑

j ′≥ j−N0

∑

| j ′− j ′′ |≤1

‖(−�)−1� j ′u‖Lρ1
T (L p)

‖� j ′′v‖Lρ2
T (L p)

� 2

(
1+ n

p

)
j ∑

j ′≥ j−N0

∑

| j ′− j ′′ |≤1

2

(
−1−s− n

p

)
j ′
2(s+ε) j ′ ‖� j ′u‖Lρ1

T (L p)
2

(
−1+ n

p −ε
)
j ′′ ‖� j ′′v‖Lρ2

T (L p)

� 2−s j
∑

j ′≥ j−N0

2
−
(
1+s+ n

p

)
( j ′− j)

2(s+ε) j ′ ‖� j ′u‖Lρ1
T (L p)

‖v‖
L

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

). (3.12)

On the other hand, in the case that 1 ≤ p < 2, we choose 2 < p′ ≤ ∞ such that 1
p + 1

p′ = 1,
it follows that

‖� j K1‖Lρ
T (L p) � 2

(
2+n− n

p

)
j ∑

j ′≥ j−N0

∑

| j ′− j ′′ |≤1

‖(−�)−1� j ′u‖Lρ1
T (L p′ )‖∂m(−�)−1� j ′′v‖Lρ2

T (L p)

� 2

(
2+n− n

p

)
j ∑

j ′≥ j−N0

∑

| j ′− j ′′ |≤1

2

(
−2+n

(
1
p − 1

p′
))

j ′ ‖� j ′u‖Lρ1
T (L p)

2− j ′′ ‖� j ′′v‖Lρ2
T (L p)

� 2

(
2+n− n

p

)
j ∑

j ′≥ j−N0

2
−
(
2+n+s− n

p

)
j ′
2(s+ε) j ′ ‖� j ′u‖Lρ1

T (L p)
2

(
−1+ n

p −ε
)
j ′ ‖� j ′v‖Lρ2

T (L p)

� 2−s j
∑

j ′≥ j−N0

2
−
(
2+n+s− n

p

)
( j ′− j)

2(s+ε) j ′ ‖� j ′u‖Lρ1
T (L p)

‖v‖
L

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

). (3.13)

‖� j K3‖Lρ
T (L p) � 2

(
1+n− n

p

)
j ∑

j ′≥ j−N0

∑

| j ′− j ′′ |≤1

‖(−�)−1� j ′u‖Lρ1
T (L p′ )‖� j ′′v‖Lρ2

T (L p)

� 2

(
1+n− n

p

)
j ∑

j ′≥ j−N0

∑

| j ′− j ′′ |≤1

2

(
−2+n

(
1
p − 1

p′
))

j ′ ‖� j ′u‖Lρ1
T (L p)

‖� j ′′v‖Lρ2
T (L p)

� 2

(
1+n− n

p

)
j ∑

j ′≥ j−N0

2
−
(
1+n+s− n

p

)
j ′
2(s+ε) j ′ ‖� j ′u‖Lρ1

T (L p)
2

(
−1+ n

p −ε
)
j ′ ‖� j ′v‖Lρ2

T (L p)

� 2−s j
∑

j ′≥ j−N0

2
−
(
1+n+s− n

p

)
( j ′− j)

2(s+ε) j ′ ‖� j ′u‖Lρ1
T (L p)

‖v‖
L

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

). (3.14)

Under the hypotheses of Lemma 3.2, we have

2 + s + n

p
> 0, 1 + s + n

p
> 0, 2 + n + s − n

p
> 0, 1 + n + s − n

p
> 0.

Then we infer from the estimates (3.11)–(3.14) that for all 1 ≤ p < ∞,

‖I3‖L̃ρ
T

(
Ḃs
p,q

) � ‖u‖L̃ρ1
T

(
Ḃs+ε
p,q

)‖v‖
L̃

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

). (3.15)
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Hence plugging (3.7), (3.9) and (3.15) into (3.5), we get (3.4). The proof of Lemma 3.2 is
complete. ��

Now we are in a position to prove well-posedness of the system (1.1) in the case that
1 < α ≤ 2 and 1 ≤ p < ∞. Define the map

F : u(t) → e−t�α

u0 −
∫ t

0
e−(t−τ)�α∇ · (u∇(−�)−1u

)
dτ (3.16)

in the metric space (I = [0, T ]):

DT :=
{

u : ‖u‖
L̃

ρ1
T

(
Ḃ
s1
p,q

)
∩L̃

ρ2
T

(
Ḃ
s2
p,q

) ≤ η, d(u, v) := ‖u − v‖
L̃

ρ1
T

(
Ḃ
s1
p,q

)
∩L̃

ρ2
T

(
Ḃ
s2
p,q

)

}

with

s1 = −1+ n

p
+ε, s2 = −1+ n

p
−ε, ρ1 = α

α − 1 + ε
, ρ2 = α

α − 1 − ε
, 0 < ε < α−1.

Applying Proposition 3.1 and Lemma 3.2 by choosing ρ = α
2α−2 , for any u, v ∈ DT , we see

that

‖F(u)‖
L̃

ρ1
T

(
Ḃ
s1
p,q

)
∩L̃

ρ2
T

(
Ḃ
s2
p,q

)�‖e−t�α

u0‖L̃ρ1
T

(
Ḃ
s1
p,q

)
∩L̃

ρ2
T

(
Ḃ
s2
p,q

)+‖u∇(−�)−1u‖
L̃

α
2α−2
T

(

Ḃ
−1+ n

p
p,q

)

� ‖e−t�α

u0‖L̃ρ1
T

(
Ḃ
s1
p,q

)
∩L̃

ρ2
T

(
Ḃ
s2
p,q

) + ‖u‖2
L̃

ρ1
T

(
Ḃ
s1
p,q

)
∩L̃

ρ2
T

(
Ḃ
s2
p,q

),

(3.17)

and

d(F(u),F(v)) � ηd(u, v). (3.18)

Based on these two estimates (3.17) and (3.18), applying the standard contraction mapping
argument (cf. [38]), we can show that if we choose T is properly small, then F is a contraction
mapping from (DT , d) into itself, and we omit the details here. Therefore there exists u ∈ DT

such that F(u) = u, which is a unique solution of the system (1.1). Moreover by Proposition
3.1, we have

‖u‖
L̃∞
T

(

Ḃ
−α+ n

p
p,q

) � ‖u0‖
Ḃ

−α+ n
p

p,q

+ ‖u‖2
L̃

ρ1
T

(
Ḃ
s1
p,q

)
∩L̃

ρ2
T

(
Ḃ
s2
p,q

) � ‖u0‖
Ḃ

−α+ n
p

p,q

+ η2.

Thus the solution u can be extended step by step, and finally there is a maximal time T ∗ such
that

u ∈ L̃∞
(

0, T ∗; Ḃ−α+ n
p

p,q (Rn)

)

∩ L̃ρ1
(
0, T ∗; Ḃs1

p,q(R
n)
)

∩ L̃ρ2
(
0, T ∗; Ḃs2

p,q(R
n)
)

.

If T ∗ < ∞ and ‖u‖L̃ρ1
T∗ (Ḃ

s1
p,q )∩L̃

ρ2
T∗ (Ḃ

s2
p,q )

< ∞, we claim that the solution can be extended

beyond the maximal time T ∗. Indeed, let us consider the integral equation

u(t) = e−(t−T )�α

u(T ) −
∫ t

T
e−(t−τ)�α∇ · (u∇(−�)−1u)dτ. (3.19)

As we have proved before, we can show that if we choose T sufficiently close to T ∗, then

‖u(t)‖
L̃ρ1

(
T,T ∗;Ḃs1

p,q

)
∩L̃ρ2

(
T,T ∗;Ḃs2

p,q

) ≤ ‖u(T )‖
L̃ρ1

(
T,T ∗;Ḃs1

p,q

)
∩L̃ρ2

(
T,T ∗;Ḃs2

p,q

)

+ ‖u‖2
L̃ρ1

(
T,T ∗;Ḃs1

p,q

)
∩L̃ρ2

(
T,T ∗;Ḃs2

p,q

). (3.20)
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Note that (3.20) is analogous to (3.17), which yields immediately that the solution exists
on [T, T ∗]. This is a contradiction to the fact that T ∗ is maximal. Moreover observe that if
‖u0‖

Ḃ
−α+ n

p
p,q

is sufficiently small, we can directly choose T = ∞ in (3.17) and (3.18), which

yields global well-posedness of (1.1) with small initial data. We conclude the proof of the
first part of Theorem 1.1.

3.2 The case 1 < p < ∞: Gevrey analyticity

In this subsection, we prove analyticity of the system (1.1) with initial data in Ḃ
−α+ n

p
p,q (Rn)

with 1 < α ≤ 2 and 1 < p < ∞. We first recall the following two elementary results.

Lemma 3.3 (Lemma 3.2 in [2]) Consider the operator Eα := e−[(t−s)
1
α +s

1
α −t

1
α ]�1 for

0 ≤ s ≤ t . Then Eα is either the identity operator or is the Fourier multiplier with L1 kernel
whose L1-norm is bounded independent of s and t.

Lemma 3.4 (Lemma 3.3 in [2]) Assume that the operator Fα := et
1
α �1− 1

2 t�
α
for t ≥ 0.

Then Fα is the Fourier multiplier which maps boundedly L p → L p for 1 < p < ∞, and its
operator norm is uniformly bounded with respect to t ≥ 0.

Proposition 3.5 Let s ∈ R, 1 < p < ∞, 1 ≤ q, ρ1 ≤ ∞ and 0 < T ≤ ∞. Assume

that u0 ∈ Ḃs
p,q(R

n) and f ∈ L̃ρ1
T (et

1
α �1 Ḃ

s+ α
ρ1

−α

p,q (Rn)). Then (3.1) has a unique solution

u ∈ ∩
ρ1≤ρ≤∞L̃ρ

T (et
1
α �1 Ḃ

s+ α
ρ

p,q (Rn)). In addition, there exists a constant C > 0 depending

only on α and n such that for any ρ1 ≤ ρ ≤ ∞, we have

‖u‖
L̃ρ
T

(
et

1
α �1 Ḃ

s+ α
ρ

p,q

) ≤ C

(

‖u0‖Ḃs
p,q

+ ‖ f ‖
L̃

ρ1
T

(
et

1
α �1 Ḃ

s+ α
ρ1

−α

p,q

)

)

. (3.21)

Proof Since Proposition 3.1 has already ensured that (3.1) has a unique solution u, it suffices

to prove that the inequality (3.21) holds. For this purpose, setting U (t) = et
1
α �1u(t), then

applying � jet
1
α �1 to (3.1) and taking L p norm to the resulting equality imply that

‖� jU (t)‖L p ≤
∥
∥
∥
∥e

t
1
α �1−t�α

� j u0

∥
∥
∥
∥
L p

+
∥
∥
∥
∥

∫ t

0
et

1
α �1−(t−τ)�α

� j f (τ )dτ

∥
∥
∥
∥
L p

. (3.22)

It follows from Lemmas 3.4 and 2.5 that there exists κ > 0 such that
∥
∥
∥
∥e

t
1
α �1−t�α

� j u0

∥
∥
∥
∥
L p

=
∥
∥
∥
∥e

t
1
α �1− t

2�α

e− t
2�α

� j u0

∥
∥
∥
∥
L p

�
∥
∥
∥e− t

2�α

� j u0
∥
∥
∥
L p

� e−κ2α j t‖� j u0‖L p . (3.23)

Notice the fact that we can rewrite

et
1
α �1−(t−τ)�α = e

−
[
(t−τ)

1
α +τ

1
α −t

1
α

]
�1+

[
(t−τ)

1
α �1− t−τ

2 �α
]
− t−τ

2 �α

eτ
1
α �1 .

It follows from Lemmas 3.3 and 3.4 that
∥
∥
∥
∥

∫ t

0
et

1
α �1−(t−τ)�α

� j f (τ )dτ

∥
∥
∥
∥
L p

�
∫ t

0

∥
∥
∥
∥e

− t−τ
2 �α

� je
τ
1
α �1 f (τ )

∥
∥
∥
∥
L p

dτ

�
∫ t

0
e−κ(t−τ)2α j

∥
∥
∥
∥� je

τ
1
α �1 f (τ )

∥
∥
∥
∥
L p

dτ. (3.24)
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Combining (3.23) and (3.24), we see that

‖� jU (t)‖L p � e−κ2α j t‖� j u0‖L p +
∫ t

0
e−κ(t−τ)2α j

∥
∥
∥
∥� je

τ
1
α �1 f (τ )

∥
∥
∥
∥
L p

dτ. (3.25)

Taking Lρ([0, T ]) norm to (3.25) and using Young’s inequality,

‖� jU (t)‖Lρ
T (L p) �

(
1 − e−κρ2α j T

κρ2α j

) 1
ρ

‖� j u0‖L p

+
(
1 − e−κρ22α j T

κρ22α j

) 1
ρ2
∥
∥
∥
∥� je

t
1
α �1 f (τ )

∥
∥
∥
∥
L

ρ1
T (L p)

, (3.26)

where 1
ρ

+ 1 = 1
ρ2

+ 1
ρ1
. Finally, multiplying 2(s+ α

ρ
) j and taking the lq norm to (3.26), we

conclude that

‖U‖
L̃ρ
T

(

Ḃ
s+ α

ρ
p,q

) �

⎡

⎣
∑

j∈Z

(
1 − e−κρ2α j T

κρ

) q
ρ

(2s j‖� j u0‖L p )q

⎤

⎦

1
q

+
⎡

⎣
∑

j∈Z

(
1 − e−κρ22α j T

κρ2

) q
ρ2
(

2
(s+ α

ρ1
−α)

∥
∥
∥
∥� je

t
1
α �1 f

∥
∥
∥
∥
L

ρ1
T (L p)

)q
⎤

⎦

1
q

� ‖u0‖Ḃs
p,q

+ ‖ f ‖
L̃ρ1

(

0,T ;et
1
α �1 Ḃ

s+ α
ρ1

−α

p,q

),

which leads to (3.21) . ��
We also need to establish the corresponding result as Lemma 3.2 in terms of the operator

et
1
α �1 .

Lemma 3.6 Let s > 0, 1 < p < ∞, 1 ≤ q, ρ, ρ1, ρ2 ≤ ∞ with 1
ρ

= 1
ρ1

+ 1
ρ2
. Then for any

ε > 0, 0 < T ≤ ∞, we have
∥
∥u∇(−�)−1v + v∇(−�)−1u

∥
∥
L̃ρ
T

(

et
1
α �1 Ḃs

p,q

)

� ‖u‖
L̃

ρ1
T

(

et
1
α �1 Ḃs+ε

p,q

)‖v‖
L̃

ρ2
T

(

et
1
α �1 Ḃ

−1+ n
p −ε

p,q

)

+ ‖u‖
L̃

ρ2
T

(

et
1
α �1 Ḃ

−1+ n
p −ε

p,q

)‖v‖
L̃

ρ1
T

(

et
1
α �1 Ḃs+ε

p,q

). (3.27)

Moreover if we choose ε = 0, then (3.27) also holds for q = 1.

Proof Set U (t) = et
1
α �1u(t), V (t) = et

1
α �1v(t). Then as Lemma 3.2, we use Bony’s

paraproduct decomposition to get

et
1
α �1

(
u∇(−�)−1v + v∇(−�)−1u

) = et
1
α �1

(
e−t

1
α �1Ue−t

1
α �1∇(−�)−1V

+ e−t
1
α �1V e−t

1
α �1∇(−�)−1U

)

:= J1 + J2 + J3, (3.28)
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where

J1 := et
1
α �1

∑

j ′∈Z
e−t

1
α �1� j ′Ue−t

1
α �1∇(−�)−1S j ′−1V

+ e−t
1
α �1� j ′V e−t

1
α �1∇(−�)−1S j ′−1U,

J2 := et
1
α �1

∑

j ′∈Z
e−t

1
α �1 S j ′−1Ue−t

1
α �1∇(−�)−1� j ′V

+ e−t
1
α �1 S j ′−1V e−t

1
α �1∇(−�)−1� j ′U,

J3 := et
1
α �1

∑

j ′∈Z

∑

| j ′− j ′′|≤1

e−t
1
α �1� j ′Ue−t

1
α �1∇(−�)−1� j ′′V

+ e−t
1
α �1� j ′V e−t

1
α �1∇(−�)−1� j ′′U.

To estimate the terms Ji (i = 1, 2, 3), we use an idea as in [37] and [1] and consider the
following bilinear operator Bt ( f, g) of the form

Bt ( f, g) : = et
1
α �1

(

e−t
1
α �1 f e−t

1
α �1g

)

= 1

(2π)n

∫

Rn

∫

Rn
ei x ·(ξ+η)et

1
α (|ξ+η|1−|ξ |1−|η|1) f̂ (ξ)ĝ(η)dξdη. (3.29)

Note thatwe can split the domain of integration into sub-domains, depending on the sign of ξ j ,
ofη j and of ξ j+η j . Indeed, forς = (ς1, . . . , ςn),μ = (μ1, . . . , μn), ν = (ν1, . . . , νn) ∈ R

n

such that ςi , μi , νi ∈ {−1, 1}, we denote
Dς := {η : ςiηi ≥ 0, i = 1, 2, . . . , n} ,

Dμ := {ξ : μiξi ≥ 0, i = 1, 2, . . . , n} ,

Dν := {ξ + η : νi (ξi + ηi ) ≥ 0, i = 1, 2, . . . , n} .

Let χD be the characteristic function on the domain D. Then we can rewrite Bt ( f, g) as

Bt ( f, g) = 1

(2π)n

∫

Rn

∫

Rn
ei x ·(ξ+η)χDν e

t
1
α (|ξ+η|1−|ξ |1−|η|1)χDμ f̂ (ξ)χDς ĝ(η)dξdη.

By this observation, we introduce the monodimensional operators:

K1 f := 1

2π

∫ +∞

0
ei xξ f̂ (ξ)dξ, K−1 f := 1

2π

∫ 0

−∞
ei xξ f̂ (ξ)dξ,

and

Lt,ε1,ε2 f := f if ε1ε2 = 1, Lt,ε1,ε2 f := 1

2π

∫ +∞

−∞
ei xξ e−2t

1
α |ξ |1 f̂ (ξ)dξ if ε1ε2 = −1.

Moreover for t > 0, we define the operator

Zt,ς,μ := Kμ1Lt,ς1,μ1 ⊗ · · · ⊗ Kμn Lt,ςn ,μn . (3.30)

We mention here that the above tensor product (3.30) means that the j−th operator in the
tensor product acts on the j−th variable of the function f (x1, . . . , xn). Then an elementary
calculation yields the following identity:
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Bt ( f, g) =
∑

ς,μ,ν∈{−1,1}n×3

Kς1 ⊗ · · · ⊗ Kςn (Zt,ς,μ f Zt,ς,νg). (3.31)

Noticing that for ξ + η ∈ Dν , ξ ∈ Dμ and η ∈ Dς , et
1
α (|ξ+η|1−|ξ |1−|η|1) must belong to the

following set:

E :=
{

1, e−2t
1
α |ξi+ηi |1 , e−2t

1
α |ξi |1 , e−2t

1
α |ηi |1 , i = 1, 2, . . . , n

}

.

Moreover it is clear that χDς , χDμ , χDν ∈ Mp , and every element in E are the Fourier
multipliers on L p(Rn) for 1 < p < ∞, which yield that the operators Kς and Zt,ς,μ defined
above are combinations of the identity operator and of the Fourier multipliers on L p(Rn)

(includingHilbert transform).Hence the operators Kς and Zt,ς,μ are bounded linear operators
on L p(Rn) for 1 < p < ∞, and the corresponding operator norm of Zt,ς,μ is bounded
independent of t ≥ 0. Moreover for 1 < p, p1, p2 < ∞,

‖Bt ( f, g)‖L p � ‖Zt,ς,μ f Zt,ς,νg‖L p � ‖ f ‖L p1 ‖g‖L p2 with
1

p1
+ 1

p2
= 1

p
.

Since the nice boundedness property of the bilinear operator Bt ( f, g), we can follow the
proof of Lemma 3.2 to complete the proof of Lemma 3.4. Indeed, we take the first term of
J1 as an example:

∥
∥
∥
∥
∥
∥
� je

t
1
α �1

∑

j ′∈Z
e−t

1
α �1� j ′Ue−t

1
α �1∇(−�)−1S j ′−1V

∥
∥
∥
∥
∥
∥
Lρ
T (L p)

=
∥
∥
∥
∥
∥
∥
� j

∑

j ′∈Z
Bt

(
� j ′U,∇(−�)−1S j ′−1V

)

∥
∥
∥
∥
∥
∥
Lρ
T (L p)

�
∑

| j ′− j |≤4

∥
∥Kς1 ⊗ . . . ⊗ Kςn (Zt,ς,μ� j ′UZt,ς,ν∇(−�)−1S j ′−1V )

∥
∥
Lρ
T (L p)

�
∑

| j ′− j |≤4

∥
∥Zt,ς,μ� j ′U‖Lρ1

T (L p)
‖Zt,ς,ν∇(−�)−1S j ′−1V

∥
∥
L

ρ2
T (L∞)

�
∑

| j ′− j |≤4

‖Zt,ς,μ� j ′U‖Lρ1
T (L p)

∑

k≤ j ′−2

2

(
−1+ n

p

)
k‖Zt,ς,ν∇(−�)−1�kV ‖Lρ2

T (L p)

�
∑

| j ′− j |≤4

‖� j ′U‖Lρ1
T (L p)

∑

k≤ j ′−2

2εk2

(
−1+ n

p −ε
)
k‖�kV ‖Lρ2

T (L p)

�
∑

| j ′− j |≤4

2−s j ′2(s+ε) j ′ ‖� j ′U‖Lρ1
T (L p)

‖V ‖
L̃

ρ2
T

(

Ḃ
−1+ n

p −ε

p,q

).

The other terms can be established analogously, and thus, we get the desired estimate (3.27).
��
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Combining Proposition 3.5 and Lemma 3.6, returning to the mapping (3.16), we obtain

‖F(u)‖
L̃

ρ1
T

(

et
1
α �1 Ḃ

s1
p,q

)

∩L̃
ρ2
T

(

et
1
α �1 Ḃ

s2
p,q

) �
∥
∥
∥
∥e

t
1
α �1−t�α

u0

∥
∥
∥
∥
L̃

ρ1
T (Ḃ

s1
p,q )∩L̃

ρ2
T (Ḃ

s2
p,q )

+ ‖u∇(−�)−1u‖
L̃

ρ1
T

(

et
1
α �1 Ḃ

s1
p,q

)

∩L̃
ρ2
T

(

et
1
α �1 Ḃ

s2
p,q

)

�
∥
∥
∥e− t

2�α

u0
∥
∥
∥
L̃

ρ1
T

(
Ḃ
s1
p,q

)
∩L̃

ρ2
T

(
Ḃ
s2
p,q

)

+ ‖u‖2
L̃

ρ1
T

(

et
1
α �1 Ḃ

s1
p,q

)

∩L̃
ρ2
T

(

et
1
α �1 Ḃ

s2
p,q

). (3.32)

Based on the above estimate (3.32), by applying the standard contraction mapping argument,
we complete the proof, as desired.

3.3 The case 1 < α < 2 and p = ∞: well-posedness

In this subsection, we focus on the limit case p = ∞. We first intend to prove the following
result.

Lemma 3.7 For 1 ≤ α < 2, we have

‖u∇(−�)−1v + v∇(−�)−1u‖
L̃1
t

(
Ḃ1−α

∞,1

) � ‖u‖
L̃∞
t

(
Ḃ−α

∞,1

)‖v‖
L̃1
t

(
Ḃ0∞,1

)

+ ‖u‖
L̃1
t

(
Ḃ0∞,1

)‖v‖
L̃∞
t

(
Ḃ−α

∞,1

). (3.33)

Proof Following from Lemma 3.2, by applying Hölder’s inequality, Lemmas 2.3 and 2.4,
we estimate the terms Ii (i = 1, 2, 3) as follows:

‖� j I1‖L1
t (L∞)

�
∑

| j ′− j |≤4

(
‖� j ′u‖L1

t (L∞)‖∇(−�)−1S j ′−1v‖L∞
t (L∞)

+ ‖� j ′v‖L1
t (L∞)‖∇(−�)−1S j ′−1u‖L∞

t (L∞)

)

�
∑

| j ′− j |≤4

(
‖� j ′u‖L1

t (L∞)

∑

k≤ j ′−2

2(α−1)k2−αk‖�kv‖L∞
t (L∞)

+ ‖� j ′v‖L1
t (L∞)

∑

k≤ j ′−2

2(α−1)k2−αk‖�ku‖L∞
t (L∞)

)

� 2(α−1) j
∑

| j ′− j |≤4

(

‖� j ′u‖L1
t (L∞)‖v‖

L̃∞
t

(
Ḃ−α

∞,1

) + ‖� j ′v‖L1
t (L∞)‖u‖

L̃∞
t

(
Ḃ−α

∞,1

)

)

.

This along with Definition 2.2 leads to

‖I1‖L̃1
t

(
Ḃ1−α

∞,1

) � ‖u‖
L̃1
t

(
Ḃ0∞,1

)‖v‖
L̃∞
t

(
Ḃ−α

∞,1

) + ‖u‖
L̃∞
t

(
Ḃ−α

∞,1

)‖v‖
L̃1
t

(
Ḃ0∞,1

). (3.34)
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Similarly, for I2, we obtain

‖� j I2‖L1
t (L∞)

�
∑

| j ′− j |≤4

2− j ′ ∑

k≤ j ′−2

(
‖�ku‖L1

t (L∞)‖� j ′v‖L∞
t (L∞) + ‖�kv‖L1

t (L∞)‖� j ′u‖L∞
t (L∞)

)

� 2(α−1) j
∑

| j ′− j |≤4

2−α j ′
(
‖� j ′v‖L∞

t (L∞)‖u‖
L̃1
t

(
Ḃ0∞,1

) + ‖� j ′u‖L∞
t (L∞)‖v‖

L̃1
t

(
Ḃ0∞,1

)
)
,

which yields directly to

‖I2‖L̃1
t

(
Ḃ1−α

∞,1

) � ‖u‖
L̃1
t

(
Ḃ0∞,1

)‖v‖
L̃∞
t

(
Ḃ−α

∞,1

) + ‖u‖
L̃∞
t

(
Ḃ−α

∞,1

)‖v‖
L̃1
t

(
Ḃ0∞,1

). (3.35)

To treat with the remainder term I3, as Lemma 3.2, we split I3 = K1 + K2 + K3 for
m = 1, 2, . . . , n and consider K1 and K3 only. It follows from Hölder’s inequality, Lemmas
2.3 and 2.4 that

‖� j K1‖L1
t (L∞) � 22 j

∑

j ′≥ j−N0

∑

| j ′− j ′′|≤1

‖(−�)−1� j ′u‖L1
t (L∞)‖∂m(−�)−1� j ′′v‖L∞

t (L∞)

� 22 j
∑

j ′≥ j−N0

∑

| j ′− j ′′|≤1

2−2 j ′ ‖� j ′u‖L1
t (L∞)2

− j ′′ ‖� j ′′v‖L∞
t (L∞)

� 22 j
∑

j ′≥ j−N0

2(α−3) j ′ ‖� j ′u‖L1
t (L∞)‖v‖L̃∞

t (Ḃ−α
∞,1)

� 2(α−1) j
∑

j ′≥ j−N0

2(α−3)( j ′− j)‖� j ′u‖L1
t (L∞)‖v‖L̃∞

t (Ḃ−α
∞,1)

, (3.36)

‖� j K3‖L1
t (L∞) � 2 j

∑

j ′≥ j−N0

∑

| j ′− j ′′|≤1

2−2 j ′ ‖� j ′u‖L1
t (L∞)‖� j ′′v‖L∞

t (L∞)

� 2 j
∑

j ′≥ j−N0

2(α−2) j ′ ‖� j ′u‖L1
t (L∞)‖v‖

L̃∞
t

(
Ḃ−α

∞,1

)

� 2(α−1) j
∑

j ′≥ j−N0

2(α−2)( j ′− j)‖� j ′u‖L1
t (L∞)‖v‖

L̃∞
t

(
Ḃ−α

∞,1

). (3.37)

Under the assumption 1 ≤ α < 2, we have α−3 < 0 and α−2 < 0. Hence putting the above
estimates (3.36) and (3.37) together, and multiplying 2(1−α) j to the resulting inequality, then
taking l1 norm yields that

‖I3‖L̃1
t

(
Ḃ1−α

∞,1

) � ‖u‖
L̃1
t

(
Ḃ0∞,1

)‖v‖
L̃∞
t

(
Ḃ−α

∞,1

). (3.38)

Thanks to (3.34), (3.35) and (3.38), we get (3.33). The proof of Lemma 3.7 is complete. ��

In order to prove the third part of Theorem 1.1, we consider the resolution space
L̃∞
t (Ḃ−α

∞,1(R
n))∩ L̃1

t (Ḃ
0∞,1(R

n)). Then for themapping (3.16), we infer fromProposition 3.1
and Lemma 3.7 that

‖F(u)‖
L̃∞
t

(
Ḃ−α

∞,1

)
∩L̃1

t

(
Ḃ0∞,1

) � ‖u0‖Ḃ−α
∞,1

+ ‖u∇(−�)−1u‖
L̃1
t

(
Ḃ1−α

∞,1

)

� ‖u0‖Ḃ−α
∞,1

+ ‖u‖2
L̃∞
t

(
Ḃ−α

∞,1

)
∩L̃1

t

(
Ḃ0∞,1

). (3.39)
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As before, applying the standard contractionmapping argument, we can show that if ‖u0‖Ḃ−α
∞,1

is sufficiently small, then F is a contraction mapping from some suitable metric space into
itself, and this leads to that the system (1.1) admits a unique solution in u ∈ L̃∞

t (Ḃ−α
∞,1(R

n))∩
L̃1
t (Ḃ

0∞,1(R
n)). We complete the proof, as desired.

3.4 The case 1 < α < 2 and p = ∞: Gevrey analyticity

Set U (t) := et
1
α �1u(t). Then U (t) satisfies the following integral equation

U (t)=et
1
α �1−t�α

u0−
∫ t

0

[
et

1
α �1−(t−τ)�α∇·(e−τ

1
α �1U ·e−τ

1
α �1∇(−�)−1U

)]
dτ. (3.40)

Consider the linear part, since the symbol et
1
α |ξ |1− t

2 |ξ |α is uniformly bounded for all ξ and
decays exponentially for |ξ | � 1, when localized in dyadic blocks in the Fourier spaces,

the Fourier multiplier Fα := et
1
α �1− 1

2 t�
α
maps uniformly bounded from L∞ to L∞ for all

t ≥ 0. Then by Young’s inequality, we have
∥
∥
∥
∥e

t
1
α �1−t�α

u0

∥
∥
∥
∥
L̃∞
t

(
Ḃ−α

∞,1

)
∩L̃1

t

(
Ḃ0∞,1

) �
∥
∥
∥e− 1

2 t�
α

u0
∥
∥
∥
L̃∞
t

(
Ḃ−α

∞,1

)
∩L̃1

t

(
Ḃ0∞,1

) � ‖u0‖Ḃ−α
∞,1

.

For the nonlinear part, by proceeding the same line as the proof of Lemma 3.6, and observe
that in general, the operators Kς and Zt,ς,μ defined in Lemma 3.6 do not map L∞ to L∞
boundedly. However, when localized in dyadic blocks in the Fourier spaces, these operators
are bounded in L∞. Therefore we can follow the calculations line by line from (3.34) to
(3.38) in the proof of Lemma 3.7 to deal with the nonlinear term, and finally together with
the estimate of the linear term ensure that

‖u(t)‖
L̃∞
t

(

et
1
α �1 Ḃ−α

∞,1

)

∩L̃1
t

(

et
1
α �1 Ḃ0∞,1

) � ‖u0‖Ḃ−α
∞,1

+‖u(t)‖2
L̃∞
t

(

et
1
α �1 Ḃ−α

∞,1

)

∩L̃1
t

(

et
1
α �1 Ḃ0∞,1

).

This completes the proof, as desired.

3.5 Decay rate of solution

In this subsection, we focus on the decay rate estimates of solutions obtained in Theorem
1.1. The proof is based on the following result.

Lemma 3.8 For all σ ≥ 0 and 1 < α ≤ 2, the operator �σ e−t
1
α �1 is the convolution

operator with a kernel Kσ (t) ∈ L1(Rn) for all t > 0. Moreover

‖Kσ (t)‖L1 ≤ Cσ t
− σ

α , (3.41)

where Cσ := ‖�σ e−�1‖L1 .

Proof It suffices to consider the operator �σ e−�1 and its kernel k̂σ (ξ) = |ξ |σ e−|ξ |1 due to
the general case can be obtained by using the scaling: ξ �→ t

1
α ξ . It is clear that k̂σ (ξ) =

|ξ |σ e−|ξ |1 ∈ L1. Thus kσ is a continuous bounded function. Moreover if σ > 0, we introduce
a function φ ∈ S(Rn) so that 0 /∈ Suppφ and

∑
j∈Z φ(2 jξ) = 1. Then |ξ |σ φ(ξ) ∈ S(Rn),

and if we write |ξ |σ φ(ξ) = �̂σ (ξ) and θ = 1 − ∑
j≥0 φ(2 jξ), then we have

k̂σ (ξ) =
∑

j≥0

2− jσ �̂σ (2 jξ)e−|ξ |1 + θ(ξ)|ξ |σ e−|ξ |1 .
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Hence

‖kσ ‖L1 ≤
∑

j≥0

2− jσ ‖�σ ‖L1‖F−1(e−|ξ |1)‖L1 + ‖F−1(θ(ξ)|ξ |σ e−|ξ |1)‖L1 < ∞.

We complete the proof of Lemma 3.8. ��
Now the existence parts of Theorem 1.1 tell us that if the initial data u0 is sufficiently small

in critical Besov spaces Ḃ
−α+ n

p
p,q (Rn) for either 1 < α ≤ 2, 1 < p < ∞ and 1 ≤ q ≤ ∞ or

1 < α < 2, p = ∞ and q = 1, then the solution is in the Gevrey class. Consequently, for all
σ ≥ 0, applying Lemma 3.8, we get the following time decay of mild solution in terms of
the homogeneous Besov norm:

‖�σ u(t)‖
Ḃ

−α+ n
p

p,q

=
∥
∥
∥
∥�

σ e−t
1
α �1et

1
α �1u(t)

∥
∥
∥
∥
Ḃ

−α+ n
p

p,q

≤ Cσ t
− σ

α

∥
∥
∥
∥e

t
1
α �1u(t)

∥
∥
∥
∥
Ḃ

−α+ n
p

p,q

≤ Cσ t
− σ

α ‖u0‖
Ḃ

−α+ n
p

p,q

. (3.42)

This completes the proof, as desired.

4 The case α = 1: the Proof of Theorem 1.2

In this section, we consider the case α = 1 for the system (1.1) with initial data in critical

spaces Ḃ
−1+ n

p
p,1 (Rn) (1 ≤ p ≤ ∞). The global well-posedness with small initial data and

Gevrey analyticity will be established in the case that 1 ≤ p < ∞ and p = ∞, respectively.

4.1 The case 1 ≤ p < ∞: well-posedness

We first recall some time-space estimates for solutions of the linear evolution equation:
{

∂t u + �u = f (x, t), x ∈ R
n, t > 0,

u(x, 0) = u0(x), x ∈ R
n .

(4.1)

Proposition 4.1 ([29]) Let s ∈ R, 1 ≤ p, q ≤ ∞ and 0 < T ≤ ∞. Assume that u0 ∈
Ḃs
p,q(R

n) and f ∈ L̃1
T (Ḃs

p,q(R
n)). Then (4.1) has a unique solution u ∈ L̃∞

T (Ḃs
p,q(R

n)) ∩
L̃1
T (Ḃs+1

p,q (Rn)). In addition, there exists a constant C > 0 depending only on n such that

‖u‖
L̃∞
T

(
Ḃs
p,q

)
∩L̃1

T

(
Ḃs+1
p,q

) ≤ C

(

‖u0‖Ḃs
p,q

+ ‖ f ‖
L̃1
T

(
Ḃs
p,q

)
)

. (4.2)

Now for any initial data u0 ∈ Ḃ
−1+ n

p
p,1 (Rn), we consider the resolution space

L̃∞
t (Ḃ

−1+ n
p

p,1 (Rn)). Slightly modifying the proof of Lemma 3.7, we get the following result.

Lemma 4.2 For any u, v ∈ L̃∞
t (Ḃ

−1+ n
p

p,1 ), we have

‖u∇(−�)−1v + v∇(−�)−1u‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

) � ‖u‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

)‖v‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

). (4.3)
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Proof We calculate the estimation of I1 as follows:

‖� j I1‖L∞
t (L p)

�
∑

| j ′− j |≤4

(
‖� j ′u‖L∞

t (L p)‖∇(−�)−1S j ′−1v‖L∞
t (L∞)

+ ‖� j ′v‖L∞
t (L p)‖∇(−�)−1S j ′−1u‖L∞

t (L∞)

)

�
∑

| j ′− j |≤4

(
‖� j ′u‖L∞

t (L p)

∑

k≤ j ′−2

2(−1+ n
p )k‖�kv‖L∞

t (L p)

+ ‖� j ′v‖L∞
t (L p)

∑

k≤ j ′−2

2(−1+ n
p )k‖�ku‖L∞

t (L p)

)

�
∑

| j ′− j |≤4

⎛

⎝‖� j ′u‖L∞
t (L p)‖v‖

L̃∞
t (Ḃ

−1+ n
p

p,1 )
+ ‖� j ′v‖L∞

t (L p)‖u‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

)

⎞

⎠ . (4.4)

Multiplying 2(−1+ n
p ) j to (4.4), then taking l1 norm to the resulting inequality, we get

‖I1‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

) � ‖u‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

)‖v‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

). (4.5)

Similarly, for I2,

‖� j I2‖L∞
t (L p)

�
∑

| j ′− j |≤4

⎛

⎝
∑

k≤ j ′−2

2k2

(
−1+ n

p

)
k‖�ku‖L∞

t (L p)2
− j ′ ‖� j ′v‖L∞

t (L p)

+
∑

k≤ j ′−2

2k2

(
−1+ n

p

)
k‖�kv‖L∞

t (L p)2
− j ′ ‖� j ′u‖L∞

t (L p)

⎞

⎠

�
∑

| j ′− j |≤4

⎛

⎝‖� j ′v‖L∞
t (L p)‖u‖

L̃∞
t

(

Ḃ
−1+ n

p
p,1

) + ‖� j ′u‖L∞
t (L p)‖v‖

L̃∞
t

(

Ḃ
−1+ n

p
p,1

)

⎞

⎠ , (4.6)

which leads directly to

‖I2‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

) � ‖u‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

)‖v‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

). (4.7)
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Moreover for the remainder term I3 = K1 + K2 + K3. In the case that 2 ≤ p < ∞, K1 and
K3 can be estimated as follows (K2 can be done analogously):

‖� j K1‖L∞
t (L p)

� 2

(
2+ n

p

)
j ∑

j ′≥ j−N0

∑

| j ′− j ′′|≤1

‖(−�)−1� j ′u‖L∞
t (L p)‖∂m(−�)−1� j ′′v‖L∞

t (L p)

� 2

(
2+ n

p

)
j ∑

j ′≥ j−N0

∑

| j ′− j ′′|≤1

2−2 j ′ ‖� j ′u‖L∞
t (L p)2

− j ′′ ‖� j ′′v‖L∞
t (L p)

� 2

(
2+ n

p

)
j ∑

j ′≥ j−N0

2−(1+ 2n
p ) j ′2

(
−1+ n

p

)
j ′ ‖� j ′u‖L∞

t (L p)2
(−1+ n

p ) j ′ ‖� j ′v‖L∞
t (L p)

� 2

(
1− n

p

)
j ∑

j ′≥ j−N0

2
−
(
1+ 2n

p

)
( j ′− j)

2

(
−1+ n

p

)
j ′ ‖� j ′u‖L∞

t (L p)‖v‖
L∞
t

(

Ḃ
−1+ n

p
p,1

), (4.8)

‖� j K3‖L∞
t (L p)

� 2

(
1+ n

p

)
j ∑

j ′≥ j−N0

∑

| j ′− j ′′|≤1

‖(−�)−1� j ′u‖L∞
t (L p)‖� j ′′v‖L∞

t (L p)

� 2

(
1+ n

p

)
j ∑

j ′≥ j−N0

2− 2n
p j ′2

(
−1+ n

p

)
j ′ ‖� j ′u‖L∞

t (L p)2

(
−1+ n

p

)
j ′ ‖� j ′v‖L∞

t (L p)

� 2

(
1− n

p

)
j ∑

j ′≥ j−N0

2

(
− 2n

p

)
( j ′− j)

2

(
−1+ n

p

)
j ′ ‖� j ′u‖L∞

t (L p)‖v‖
L∞
t

(

Ḃ
−1+ n

p
p,1

). (4.9)

In the case that 1 ≤ p < 2, there exists 2 ≤ p′ ≤ ∞ such that 1
p + 1

p′ = 1 such that

‖� j K1‖L∞
t (L p)

� 2

(
2+n− n

p

)
j ∑

j ′≥ j−N0

∑

| j ′− j ′′|≤1

‖(−�)−1� j ′u‖L∞
t (L p′ )‖∂m(−�)−1� j ′′v‖L∞

t (L p)

� 2

(
2+n− n

p

)
j ∑

j ′≥ j−N0

∑

| j ′− j ′′|≤1

2

(
−2+n

(
1
p − 1

p′
))

j ′ ‖� j ′u‖L∞
t (L p)2

− j ′′ ‖� j ′′v‖Lρ1
t (L p)

� 2

(
2+n− n

p

)
j ∑

j ′≥ j−N0

2−(n+1) j ′2

(
−1+ n

p

)
j ′ ‖� j ′u‖L∞

t (L p)2

(
−1+ n

p

)
j ′ ‖� j ′v‖Lρ1

t (L p)

� 2

(
1− n

p

)
j ∑

j ′≥ j−N0

2−(n+1)( j ′− j)2(−1+ n
p ) j ′ ‖� j ′u‖L∞

t (L p)‖v‖
L∞
t

(

Ḃ
−1+ n

p
p,1

), (4.10)

‖� j K3‖L∞
t (L p) � 2

(
1+n− n

p

)
j ∑

j ′≥ j−N0

∑

| j ′− j ′′|≤1

‖(−�)−1� j ′u‖L∞
t (L p′ )‖� j ′′v‖L∞

t (L p)

� 2

(
1+n− n

p

)
j ∑

j ′≥ j−N0

2−nj ′2

(
−1+ n

p

)
j ′ ‖� j ′u‖L∞

t (L p)2

(
−1+ n

p

)
j ′ ‖� j ′v‖L∞

t (L p)

� 2

(
1− n

p

)
j ∑

j ′≥ j−N0

2−n( j ′− j)2

(
−1+ n

p

)
j ′ ‖� j ′u‖L∞

t (L p)‖v‖
L∞
t

(

Ḃ
−1+ n

p
p,1

). (4.11)
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Thus putting the above estimates (4.8)–(4.11) together, we obtain for all 1 ≤ p < ∞,

‖I3‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

) � ‖u‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

)‖v‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

). (4.12)

Combining (4.5), (4.7) and (4.12), we conclude that (4.3) holds. The proof of Lemma 4.2 is
complete. ��

Based on Proposition 4.1 and Lemma 4.2, consider the mapping (3.16), we obtain

‖F(u)‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

) � ‖u0‖
Ḃ

−1+ n
p

p,1

+ ‖u∇(−�)−1u‖
L̃∞
t

(

Ḃ
−1+ n

p
p,1

)

� ‖u0‖
Ḃ

−1+ n
p

p,1

+ ‖u‖2
L̃∞
t

(

Ḃ
−1+ n

p
p,1

). (4.13)

Thus, if ‖u0‖
Ḃ

−1+ n
p

p,1

is sufficiently small, we can prove that F is a contraction mapping from

some suitable metric space into itself, which implies that the system (1.1) admits a unique

solution in L̃∞
t (Ḃ

−1+ n
p

p,1 (Rn)). The proof is complete, as desired.

4.2 The case 1 < p < ∞: Gevrey analyticity

Notice that when α = 1, the dissipation term e−t� is not strong enough to overcome the
operator et�1 . Thereforeweneed to define theGevreyoperatormore carefully. Since 1

2n |ξ |1 <
1
2 |ξ | for all ξ ∈ R

n , we define

U (t) := e
1
2n t�1u(t).

Then U (t) satisfies the following integral equation:

U (t) = e
1
2n t�1−t�u0 −

∫ t

0

[
e

1
2n t�1−(t−τ)�∇ · (e− 1

2n τ�1U · e− 1
2n τ�1∇(−�)−1U

)]
dτ.

(4.14)
Notice that the operator e

1
2n t�1− 1

2 t� is a Fourier multiplier which maps uniformly bounded
from L p(Rn) to L p(Rn) for 1 < p < ∞, and moreover, its operator norm is uniformly

bounded with respect to any t ≥ 0 because the symbol e
1
2n t |ξ |1− 1

2 t |ξ | is uniformly bounded
and decays exponentially for all |ξ | ≥ 1. Therefore by Proposition 4.1, the linear term can
be treated with

∥
∥
∥e

1
2n t�1−t�u0

∥
∥
∥
L̃∞
t

(

Ḃ
−1+ n

p
p,1

) �
∥
∥
∥e− 1

2 t�u0
∥
∥
∥
L̃∞
t

(

Ḃ
−1+ n

p
p,1

) � ‖u0‖
Ḃ

−1+ n
p

p,1

. (4.15)

For the nonlinear term, we rewrite

e
1
2n t�1−(t−τ)� = e

1
2n (t−τ)�1−(t−τ)�e

1
2n τ�1 .

Thus based on the nice boundedness properties of the operator e
1
2n t�1− 1

2 t� and the bilinear
operator B̃t ( f, g) of the form

B̃t ( f, g) := e
1
2n t�1

(
e− 1

2n t�1 f e− 1
2n t�1g

)
,

we can proceed along the lines of the proof of Lemma 4.2 to obtain the Gevrey analyticity
of the solution. Indeed, the bilinear operator B̃t ( f, g) has a similar expression as (3.31), and
moreover, the corresponding operators K̃ς and Z̃t,ς,μ are bounded linear operators on L p(Rn)
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for 1 < p < ∞, and the corresponding operator norm of Z̃t,ς,μ is bounded independent of
t ≥ 0, thus, for 1 < p, p1, p2 < ∞, we still have

‖B̃t ( f, g)‖L p � ‖Z̃t,ς,μ f Z̃t,ς,νg‖L p � ‖ f ‖L p1 ‖g‖L p2 with
1

p1
+ 1

p2
= 1

p
.

This completes the proof, as desired.

4.3 The case p = ∞: well-posedness

In the case p = ∞, the resolution space L̃∞
t (Ḃ−1

∞,1(R
n)) can not be adapted to the system

(1.1), and therefore,we turn to consider the resolution space L̃∞
t (Ḃ−1

∞,1(R
n))∩L̃1

t (Ḃ
0∞,1(R

n)).
Firstly, from Proposition 4.1, we see that

‖e−t�u0‖L̃∞
t

(
Ḃ−1

∞,1

)
∩L̃1

t

(
Ḃ0∞,1

) � ‖u0‖Ḃ−1
∞,1

. (4.16)

Secondly, from Lemma 3.7, we get

‖u∇(−�)−1u‖
L̃1
t

(
Ḃ0∞,1

) � ‖u‖2
L̃∞
t

(
Ḃ−1

∞,1

)
∩L̃1

t

(
Ḃ0∞,1

). (4.17)

Hence consider the mapping (3.16), we deduce from Proposition 4.1, (4.16) and (4.17) that

‖F(u)‖
L̃∞
t

(
Ḃ−1

∞,1

)
∩L̃1

t

(
Ḃ0∞,1

) � ‖u0‖Ḃ−1
∞,1

+ ‖u∇(−�)−1u‖
L̃1
t

(
Ḃ0∞,1

)

� ‖u0‖Ḃ−1
∞,1

+ ‖u‖2
L̃∞
t

(
Ḃ−1

∞,1

)
∩L̃1

t

(
Ḃ0∞,1

). (4.18)

This reveals that, through the standard contraction mapping argument, if ‖u0‖Ḃ−1
∞,1

is suf-

ficiently small, then F is a contraction mapping from some suitable metric space into
itself, which means that the system (1.1) admits a unique solution in L̃∞

t (Ḃ−1
∞,1(R

n)) ∩
L̃1
t (Ḃ

0∞,1(R
n)). The proof is complete, as desired.

4.4 The case p = ∞: Gevrey analyticity

To treat the Gevrey analyticity of solution in the case p = ∞, it suffices to prove that the
following a priori estimate holds:
∥
∥
∥e

1
2n t�1u(t)

∥
∥
∥
L̃∞
t

(
Ḃ−1

∞,1

)
∩L̃1

t

(
Ḃ0∞,1

) � ‖u0‖Ḃ−1
∞,1

+
∥
∥
∥e

1
2n t�1u(t)

∥
∥
∥
2

L̃∞
t

(
Ḃ−1

∞,1

)
∩L̃1

t

(
Ḃ0∞,1

) . (4.19)

Since the symbol e
1
2n t |ξ |1− 1

2 t |ξ | is uniformly bounded in R
n and decays exponentially for

sufficiently large |ξ | � 1 with respect to all t ≥ 0, the estimation of linear part is straightfor-
ward due to the fact that when localized in dyadic blocks in the Fourier spaces, the operator

e
1
2n t�1− 1

2 t� maps uniformly bounded from L∞ to L∞ with respect to t ≥ 0. Thus
∥
∥
∥e

1
2n t�1−t�u0

∥
∥
∥
L̃∞
t

(
Ḃ−1

∞,1

)
∩L̃1

t

(
Ḃ0∞,1

) �
∥
∥
∥e− 1

2 t�u0
∥
∥
∥
L̃∞
t

(
Ḃ−1

∞,1

)
∩L̃1

t

(
Ḃ0∞,1

) � ‖u0‖Ḃ−1
∞,1

. (4.20)

For the nonlinear part, following the proofs of Lemmas 3.6 and 3.7, the only difficulty arises
from the following bilinear operator B̃t ( f, g) of the form

B̃t ( f, g) = e
1
2n t�1

(
e− 1

2n t�1 f e− 1
2n t�1g

)
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is not bounded from L∞ × L∞ to L∞, more precisely, the corresponding operators K̃ς

and Z̃t,ς,μ in (3.31) do not map L∞ to L∞ uniformly bounded. However when localized in
dyadic blocks in the Fourier spaces, these operators are bounded in L∞. Therefore we can
follow the calculations line by line from (3.34) to (3.38) with α = 1 in the proof of Lemma
3.7 to complete the estimation of the nonlinear term, which along with (4.20), we arrive at
(4.19). The proof is complete, as desired.

4.5 Decay rate of solution

In this subsection, we show the decay rate estimates of solutions obtained in Theorem 1.2.

Based on Lemma 3.8, we can show that for all σ ≥ 0, the operator �σ e− 1
2n t�1 is the

convolution operator with a kernel Kσ (t) ∈ L1(Rn) for all t > 0. Moreover

‖Kσ (t)‖L1 ≤ C̃σ t
−σ , (4.21)

where C̃σ = ‖�σ e− 1
2n �1‖L1 . Now we know that the existence parts of Theorem 1.2 imply

that if u0 ∈ Ḃ
−1+ n

p
p,1 (Rn) (1 < p ≤ ∞) is sufficiently small, then the solution is in the Gevrey

class. Consequently for all σ ≥ 0, applying (4.21), we get

‖�σ u(t)‖
Ḃ

−1+ n
p

p,1

=
∥
∥
∥�

σ e− 1
2n t�1e

1
2n t�1u(t)

∥
∥
∥
Ḃ

−1+ n
p

p,1

≤ C̃σ t
−σ

∥
∥
∥e

1
2n t�1u(t)

∥
∥
∥
Ḃ

−1+ n
p

p,1

≤ C̃σ t
−σ ‖u0‖

Ḃ
−1+ n

p
p,1

. (4.22)

We complete the proof of Theorem 1.2, as desired.
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