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Abstract In this work, we prove an existence result for an optimal partition problem of the
form

min{Fs(A1, . . . , Am) : Ai ∈ As, Ai ∩ A j = ∅ for i �= j},
where Fs is a cost functional with suitable assumptions of monotonicity and lower semicon-
tinuity, As is the class of admissible domains and the condition Ai ∩ A j = ∅ is understood
in the sense of Gagliardo s-capacity, where 0 < s < 1. Examples of this type of problem are
related to fractional eigenvalues. As the main outcome of this article, we prove some type of
convergence of the s-minimizers to the minimizer of the problem with s = 1, studied in [5].
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1 Introduction

Throughout this article, we consider � ⊂ R
n to be a fixed Lipschitz domain, that is an open

bounded subset of Rn with Lipschitz boundary. Fix 0 < s < 1 and m ∈ N. We consider
optimal partition problems of the form

min
{
Fs(A1, . . . , Am) : Ai ∈ As(�), Ai ∩ A j = ∅ for i �= j

}
, (1.1)

where Fs is a cost functional which satisfies some lower semicontinuity and monotonicity
assumptions and As(�) denotes the class of admissible domains.
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502 A. Ritorto

Optimal partition problems were studied by several authors: Bucur, Buttazzo and Henrot
[5], Bucur and Velichkov [6], Caffarelli and Lin [8], Conti, Terracini and Verzini [9,10],
Helffer, Hoffmann-Ostenhof and Terracini [19], among others.

In [8], Caffarelli and Lin established the existence of classical solutions to an optimal
partition problem for the Dirichlet eigenvalue, as well as the regularity of free interfaces.
One more recent work about regularity of solutions to optimal partition problems involving
eigenvalues of the Laplacian is [23], where Ramos, Tavares and Terracini used the existence
result of [5] and proved that the free boundary of the optimal partition is locally a C1,α-
hypersurface up to a residual set.

Conti, Terracini and Verzini proved in [9] the existence of the minimal partition for a
problem inN-dimensional domains related to themethod of nonlinear eigenvalues introduced
by Nehari in [21]. Moreover, they showed some connections between the variational problem
and the behavior of competing species systems with large interaction.

Tavares and Terracini proved in [26] the existence of infinitely many sign-changing
solutions for the system of m-Schrödinger equations with competition interactions and the
relation between the energies associated and an optimal partition problem which involves
m-eigenvalues of the Laplacian operator.

In a recent work [16], we studied a general shape optimization problem where m = 1.
To mention some references which have to do with optimal partition problems involving

fractional operators, we suggest to look through [27], [29], and references therein too.
A class of optimal partition problems involving the half-Laplacian operator and a subcrit-

ical cost functional was considered by Zilio in [29]. That work encompasses findings about
optimal regularity of the density-functions which characterize the partitions, for the entire
set of minimizers. Besides, a numerical-related scheme and its consequences are shown.

In [27], Terracini-Verzini-Zilio consider a class of competition-diffusion nonlinear sys-
tems involving the half-Laplacian, including the fractional Gross-Pitaevskii system.

For more references related to optimal partition problems see, for instance, [1,2,4,7,10,
18,22,25]

The goal of this article is to prove the existence of an optimal partition for the problem (1.1),
where Fs is decreasing in each coordinate and lower semicontinuous for a suitable notion
of convergence in As(�), which is the set of admissible domains. This existence result is
carried out in Sect. 3. The dependence on s is related to the Gagliardo s-capacity measure
and the fractional Laplacian operator (−�)s , and we will detail that and other preliminaries
in Sect. 2.

We follow the ideas given by Bucur, Buttazzo and Henrot in [5], where the existence of
solution to (1.1) in the case s = 1 was proved.

Furthermore, we prove convergence of minimums and optimal partition shapes to those
of the case s = 1, studied in [5]. This last aim is accomplished in Sect. 4, and we consider it
the most interesting contribution of this work.

At the end, we include “Appendix” with useful properties of s-capacity. Most of those
results we suppose are well known. Despite that, we decided to incorporate them for com-
pleteness.

2 Preliminaries and statements

2.1 Notations and preliminaries

Given s ∈ (0, 1)weconsider the fractional Laplacian, that for smooth functions u is defined as
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Optimal partition problems for the fractional Laplacian 503

(−�)su(x) := c(n, s)p.v.
∫

Rn

u(x) − u(y)

|x − y|n+2s dy

= −c(n, s)

2

∫

Rn

u(x + z) − 2u(x) + u(x − z)

|z|n+2s dz.

where c(n, s) := (
∫
Rn

1−cos ζ1
|ζ |n+2s dζ )−1 is a normalization constant.

The constant c(n, s) is chosen in such a way that the following identity holds,

(−�)su = F−1(|ξ |2sF(u)),

for u in the Schwarz class of rapidly decreasing and infinitely differentiable functions, where
F denotes the Fourier transform. See [14, Proposition 3.3].

The natural functional setting for this operator is the fractional Sobolev space Hs(Rn)

defined as

Hs(Rn) :=
{
u ∈ L2(Rn) : u(x) − u(y)

|x − y| n2 +s
∈ L2(Rn × R

n)

}

=
{
u ∈ L2(Rn) :

∫

Rn
(1 + |ξ |2s)|F(u)(ξ)|2 dξ < ∞

}

which is a Banach space endowed with the norm ‖u‖2s := ‖u‖22 + [u]2s , where the term

[u]2s :=
∫∫

Rn×Rn

|u(x) − u(y)|2
|x − y|n+2s dxdy

is the so-called Gagliardo semi-norm of u.
To contemplate the boundary condition,wework in Hs

0 (�), which is the closure ofC∞
c (�)

in the norm ‖ · ‖s . As we are dealing with a Lipschitz domain �, Hs
0 (�) coincides with the

space of functions vanishing outside �, i.e.,

Hs
0 (�) = {u ∈ Hs(Rn) : u = 0 in R

n \ �},
See [17, Corollary 1.4.4.5] for a proof of the identity above.

Definition 2.1 Given A ⊂ �, for any 0 < s < 1, we define the Gagliardo s−capacity of A
relative to � as

caps(A,�) = inf
{[u]2s : u ∈ C∞

c (�), u ≥ 1 in a neighborhood of A
}
.

We say that a subset A of � is an s-quasi-open subset of � if there exists a decreasing
sequence {Gk}k∈N of open sets such that limk→∞ caps(Gk,�) = 0 and A ∪ Gk is an open
set.

We denote by As(�) the class of all s−quasi-open subsets of �.
In the case s = 1 the definitions are completely analogous with ‖∇u‖22 instead of [u]2s .
We say that a property P(x) holds s-quasi everywhere on E ⊂ � ( s-q.e. on E), if

caps({x ∈ E : P(x) does not hold},�) = 0.
A function u : Rn → R is said s-quasi-continuous if there exists a decreasing sequence

{Gk}k∈N of open sets such that limk→∞ caps(Gk,�) = 0 and u|Rn\Gk is continuous.
The following theorem allows us to work with s-quasi-continuous functions instead of

the classical fractional Sobolev ones.

Theorem 2.2 (Theorem 3.7, [28]) For every function u ∈ Hs
0 (�) there exist a unique

ũ : Rn → R s-quasi-continuous function such that u = ũ a.e. in R
n.
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504 A. Ritorto

From this point, we identify a function u ∈ Hs
0 (�) with its s-quasi-continuous represen-

tative.
For A ∈ As(�), we consider the fractional Sobolev space

Hs
0 (A) := {u ∈ Hs

0 (�) : u = 0 s-q.e. in R
n \ A}.

To go into detail about s-capacity we refer the reader, for instance, to [24,28].

2.2 Statements

Given A ∈ As(�), we denote by usA ∈ Hs
0 (A) the unique weak solution to

(−�)susA = 1 in A, usA = 0 in R
n \ A. (2.1)

With this notation, we define the following notion of set convergence.

Definition 2.3 (Strong γs-convergence) Let {Ak}k∈N ⊂ As(�) and A ∈ As(�). We say that

Ak
γs→ A if usAk

→ usA strongly in L2(�).

Let m ∈ N, {(Ak
1, . . . , A

k
m)}k∈N ⊂ As(�)m and (A1, . . . , Am) ∈ As(�)m . We say

(Ak
1, . . . , A

k
m)

γs→ (A1, . . . , Am) if Ak
i

γs→ Ai for every i = 1, . . . ,m.

Definition 2.4 (Weak γs-convergence) Let {Ak}k∈N ⊂ As(�) and A ∈ As(�). We say that

Ak
γs
⇀ A if there exists a function u ∈ L2(�) such that usAk

→ u strongly in L2(�) and
A = {u > 0} ∈ As(�).

Let m ∈ N and {(Ak
1, . . . , A

k
m)}k∈N ⊂ As(�)m and (A1, . . . , Am) ∈ As(�)m . We say

(Ak
1, . . . , A

k
m)

γs
⇀ (A1, . . . , Am) if Ak

i

γs
⇀ Ai for every i = 1, . . . ,m.

Remark 2.5 Wewant to emphasize the difference between strong and weak γs-convergence.
In the weak γs-convergence, the L2(�)-limit function u of the sequence {usAk

}k∈N is not
required to be a solution of (2.1) in A (the weak γs-limit), i.e., it is not required that u �= usA.
That is the main hassle we should get through to arrive at the compactness result on As(�),
in Sect. 3.1.

Let m ∈ N be fixed and 0 < s ≤ 1. Let Fs : As(�)m → [0,∞] be such that

• Fs is weak γs-lower semicontinuous, that is,

Fs(A1, . . . , Am) ≤ lim inf
k→∞ Fs(A

k
1, . . . , A

k
m),

for every {(Ak
1, . . . , A

k
m)}k∈N ⊂ As(�)m and (A1, . . . , Am) ∈ As(�)m such that

(Ak
1, . . . , A

k
m)

γs
⇀ (A1, . . . , Am).

• Fs is decreasing, that is, for every (A1, . . . , Am), (B1, . . . , Bm) ∈ As(�)m such that
Ai ⊂ Bi for i = 1, . . . ,m, we have

Fs(A1, . . . , Am) ≥ Fs(B1, . . . , Bm).

Under these assumptions,we are able to recover the existence result of [5], for the fractional
case. Rigorously speaking, we have the following theorem.

Theorem 2.6 Let Fs : As(�)m → [0,∞] be a decreasing and weak γs -lower semicontinu-
ous functional. Then, there exists a solution to

min
{
Fs(A1, . . . , Am) : Ai ∈ As(�), caps(Ai ∩ A j ,�) = 0 for i �= j

}
. (2.2)
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Optimal partition problems for the fractional Laplacian 505

The proof of Theorem 2.6 is carried out in Sect. 3 and we use ideas from [5] and [16].
Now, we present the main point of this article, that is the convergence of minimums and

optimal partition shapes to those of the case s = 1.
Once we know the existence of an optimal partition shape for each 0 < s < 1, we want

to analyze the limit of these minimizers and its minimum values when s ↑ 1. To this aim, we
need a suitable relationship between the cost functionals Fs , 0 < s ≤ 1 and a notion of set
convergence.

Let us startwith the notion of set convergence. For A ∈ A1(�), we introduce the analogous
notation u1A ∈ H1

0 (A) for the unique weak solution to

−�u1A = 1 in A, u1A = 0 in R
n \ A.

Definition 2.7 (γ -convergence) Let 0 < sk ↑ 1, {Ak}k∈N ⊂ Ask (�) and A ∈ A1(�). We

say that Ak
γ→ A if uskAk

→ u1A strongly in L2(�).

Let m ∈ N, (Ak
1, . . . , A

k
m) ∈ Ask (�)m and (A1, . . . , Am) ∈ A1(�)m . We say that

(Ak
1, . . . , A

k
m)

γ→ (A1, . . . , Am) if usk
Ak
i

→ u1Ai
strongly in L2(�), for every i = 1, . . . ,m.

Let m ∈ N and 0 < s ≤ 1. Let Fs : As(�)m → [0,∞] be decreasing and weak γs-lower
semicontinuous functionals. Then, there exists (As

1, . . . , A
s
m) solution to

ms := min
{
Fs(B1, . . . , Bm) : Bi ∈ As(�), caps(Bi ∩ Bj ,�) = 0 for i �= j

}
. (2.3)

The case s = 1 was solved in [5]. For 0 < s < 1, apply Theorem 2.6.
Assume the following hypotheses over the cost functionals:

(H1) Continuity. For every (A1, . . . , Am) ∈ A1(�)m ,

F1(A1, . . . , Am) = lim
s↑1 Fs(A1, . . . , Am).

(H2) Liminf inequality. For every 0 < sk ↑ 1, (Ak
1, . . . , A

k
m) ∈ Ask (�)m and

(A1, . . . , Am) ∈ A1(�)m such that (Ak
1, . . . , A

k
m)

γ→ (A1, . . . , Am),

F1(A1, . . . , Am) ≤ lim inf
k→∞ Fsk (A

k
1, . . . , A

k
m).

These conditions (H1)-(H2) are natural and analogous to those consider in [16], where a
similar shape optimization problem was studied with m = 1.

Now, we are able to establish the main result.

Theorem 2.8 Letm ∈ Nbe fixed and0 < s ≤ 1. Let Fs : As(�)m → [0,∞]be a decreasing
and weak γs -lower semicontinuous functional, and such that (H1)-(H2) are verified. Then,

m1 = lim
s↑1 ms, (2.4)

where ms is defined in (2.3).
Moreover, if (As

1, . . . , A
s
m) is a minimizer of (2.3), then, there exist a subsequence 0 <

sk ↑ 1, ( Ãsk
1 , . . . , Ãsk

m ) ∈ Ask (�)m and (A1
1, . . . , A

1
m) ∈ A1(�)m such that Ãsk

i ⊃ Ask
i and

( Ãsk
1 , . . . , Ãsk

m )
γ→ (A1

1, . . . , A
1
m),

where (A1
1, . . . , A

1
m) is a minimizer of (2.3) with s = 1.

The proof of Theorem 2.8 is carried out in Sect. 4, and we use again ideas from [16].
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506 A. Ritorto

2.3 Examples

Given A ∈ As(�), consider the problem

(−�)su = λsu in A, u ∈ Hs
0 (A) (2.5)

whereλs ∈ R is the eigenvalue parameter. It iswell known that there exists a discrete sequence
{λsk(A)}k∈N of positive eigenvalues of (2.5) approaching +∞ whose corresponding eigen-
functions {usk}k∈N form an orthogonal basis in L2(A). Moreover, the following variational
characterization holds for the eigenvalues

λsk(A) = min
u⊥Wk−1

c(n, s)

2

[u]2s
‖u‖22

, (2.6)

where Wk is the space spanned by the first k eigenfunctions us1, . . . , u
s
k .

Due to (2.6) and the stability result proved in [3, Theorem 1.2], we know that λsk(A) →
λ1k(A), when s ↑ 1, for every k ∈ N.

Consider functionals Fs(A1, . . . , Am) = 
s(λ
s
k1

(A1), . . . , λ
s
km

(Am)). Theorem 2.6
claims that for every (k1, . . . , km) ∈ N

m , the minimum

min{
s(λ
s
k1(A1), . . . , λ

s
km (Am)) : Ai ∈ As(�), caps(Ai ∩ A j ,�) for i �= j}

is achieved, where
s : Rm → R̄, is increasing in each coordinate and lower semicontinuous.
Moreover, if 
s(t1, . . . , tm) → 
1(t1, . . . , tm) for every (t1, . . . , tm) ∈ R

m and


1(t1, . . . , tm) ≤ lim inf
k→∞ 
sk (t

k
1 , . . . , tkm),

for every (tk1 , . . . , tkm) → (t1, . . . , tm), then Theorem 2.8 together with the existence result
of [5] imply that

min{
1(λk1(A1), . . . , λkm (Am)) : Ai ∈ A1(�), cap1(Ai ∩ A j ,�) = 0 for i �= j}
= lim

s↑1 min{
s(λ
s
k1(A1), . . . , λ

s
km (Am)) : Ai ∈ As(�), caps(Ai ∩ A j ,�) = 0 for i �= j}.

3 Proof of Theorem 2.6

In this section, we adapted the ideas from [5], where the authors consider the Laplacian
operator, to recover their results for the fractional case. Despite the similarity of the proofs,
we include them for the reader’s convenience and recalling that in the context of this article
we need the nonlocal tools proved in [16].

3.1 Certain compactness onAs(�)

Consider Ks given by

Ks := {w ∈ Hs
0 (�) : w ≥ 0, (−�)sw ≤ 1 in �}. (3.1)

Proposition 3.1 (Proposition 3.3 and Lemma 3.5, [16]) Ks is convex, closed and bounded
in Hs

0 (�). Moreover, if u, v ∈ Ks , then, max{u, v} ∈ Ks .

Proposition 3.2 (Lemma 3.2, [16]) Given A ∈ As(�), usA is the solution to

max
{
w ∈ Hs

0 (�) : w ≤ 0 in R
n \ A, (−�)sw ≤ 1 in �

}
.
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Moreover, usA ∈ Ks , for every A ∈ As(�).

From now on, we understand the identity A = {usA > 0} in the sense of the Gagliardo
s-capacity, thanks to Proposition A.5.

Remark 3.3 The class As(�) is sequentially pre-compact with respect to the weak γs-
convergence. Indeed, given a sequence {Ak}k∈N ⊂ As(�), we know that {usAk

}k∈N ⊂ Ks .
By Proposition 3.1, there exists a subsequence {usAk j

} j∈N ⊂ {usAk
}k∈N and a function u ∈ Ks

such that usAk j
→ u strongly in L2(�). Denote by A := {u > 0}. Then, Ak j

γs
⇀ A.

Next proposition allows us to pass from the weak γs-convergence to the strong one, if we
are willing to enlarge the sequence involved.

Proposition 3.4 Let {Ak}k∈N ⊂ As(�) and A, B ∈ As(�) be such that Ak
γs
⇀ A ⊂ B.

Then, there exists a subsequence {Ak j } j∈N ⊂ {Ak}k∈N and a sequence {Bk j } j∈N ⊂ As(�)

such that Ak j ⊂ Bk j and Bk j
γs→ B.

Proof Since Ak
γs
⇀ A ⊂ B, we know that usAk

→ u strongly in L2(�), where {u > 0} = A.
As a consequence of Proposition 3.1, u ∈ Ks . Moreover, by Proposition 3.2, u ≤ usA. Since
A ⊂ B, usA ≤ usB . Then, u ≤ usB .

Denote by Bε = {usB > ε} and consider {usAk∪Bε }k∈N ⊂ Ks . Again by Proposition 3.1,

there exists a subsequence {Ak j } j∈N ⊂ {Ak}k∈N such that usAk j ∪Bε → uε strongly in L2(�).

Due to the convergence usAk j
→ u strongly in L2(�) and u ≤ usB , we conclude from [16,

Lemma 3.6], uε ≤ usB .
Inside the proof of [16, Lemma 3.7], it was shown that (usB − ε)+ ≤ usBε . Since Bε ⊂

Ak j ∪ Bε, it follows that usBε ≤ usAk j ∪Bε . So, taking the limit j → ∞, we obtain

(usB − ε)+ ≤ usBε ≤ uε ≤ usB .

The sequence {uε}ε>0 is contained in Ks . So, by Proposition 3.1, up to a subsequence,
we know it has a weak limit in Hs

0 (�). But, the previous inequality tells that this weak limit
should be usB . In addition, uε → usB strongly in L2(�).

Thus, there exists a sequence ε j ↓ 0 such that us
Ak j ∪Bε j → usB strongly in L2(�). That

is, Ak j ∪ Bε j =: Bk j
γs→ B, where {Bk j } j∈N is the enlarged sequence. ��

3.2 An auxiliary functional

Fix m ∈ N and 0 < s < 1. Let Fs : As(�)m → [0,∞] be a decreasing and strong γs-lower
semicontinuous functional.

We define a functional Gs : Km
s → [0,∞]

Gs(w1, . . . , wm) := inf

{
lim inf
k→∞ Js(w

k
1, . . . , w

k
m) : wk

i → wi strongly in L2(�)

}
, (3.2)

where Js : Km
s → [0,∞] is defined as

Js(w1, . . . , wm) := inf
{
Fs(A1, . . . , Am) : Ai ∈ As(�), usAi

≤ wi for i = 1, . . . ,m
}

and Ks was given in (3.1).
We will show that Gs satisfies the following properties:
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508 A. Ritorto

(G1) Gs is decreasing on Km
s , that is Gs(u1, . . . , um) ≥ Gs(v1, . . . , vm), if ui ≤ vi for

every i = 1, . . . ,m.
(G2) Gs is lower semicontinuous on Ks with respect to the strong topology on L2(�),
(G3) Gs(usA1

, . . . , usAm
) = Fs(A1, . . . , Am) for every (A1, . . . , Am) ∈ As(�)m .

The conditions (G1) and (G2) are easy to check, and it is the content of next proposition.

Proposition 3.5 With the notation above, Gs satisfies (G1) and (G2).

Proof By construction, it is clear that Gs verifies (G2).
To prove (G1), let (u1, . . . , um), (v1, . . . , vm) ∈ Km

s such that ui ≤ vi for every i =
1, . . . ,m.

Take {uki }k∈N ⊂ Ks such that uki → ui strongly in L2(�) for every i = 1, . . . ,m and

Gs(u1, . . . , um) = lim
k→∞ Js(u

k
1, . . . , u

k
m).

Consider vki := max{vi , uki } for every i = 1, . . . ,m and k ∈ N. By Proposition 3.1,
we obtain that vki ∈ Ks . In addition, vki → max{vi , ui } = vi strongly in L2(�), for every
i = 1, . . . ,m. Thus, noticing that Js is decreasing, we have

Gs(v1, . . . , vm) ≤ lim inf
k→∞ Js(v

k
1, . . . , v

k
m) ≤ lim

k→∞ Js(u
k
1, . . . , u

k
m) = Gs(u1, . . . , um).

��

Now, we prove the most important property of Gs , which is the connection with the cost
functional Fs .

Proposition 3.6 The functional Gs satisfies (G3).

Proof By definition of Gs (3.2), it is clear that Gs(usA1
, . . . , usAm

) ≤ Fs(A1, . . . , Am), for
every (A1, . . . , Am) ∈ As(�)m .

To obtain the other inequality, it is enough to prove that for every sequence {uki }k∈N ⊂
Ks(�) such that uki → usAi

strongly in L2(�) for i = 1, . . . ,m, we have

Fs(A1, . . . , Am) ≤ lim inf
k→∞ Js(u

k
1, . . . , u

k
m).

By definition of Js , there exists {(Ak
1, . . . , A

k
m)}k∈N ⊂ As(�)m such that

us
Ak
i

≤ uki for i = 1, . . . ,m, and Fs(A
k
1, . . . , A

k
m) ≤ Js(u

k
1, . . . , u

k
m) + 1

k
. (3.3)

By Remark 3.3, there exists vi ∈ Ks such that us
Ak
i

→ vi strongly in L2(�), up to a

subsequence. That is, Ak
i

γs
⇀ Bi := {vi > 0} ∈ As(�), for every i = 1, . . . ,m.

Moreover, taking the limit in us
Ak
i

≤ uki , we obtain that vi ≤ usAi
for every i = 1, . . . ,m.

In addition, we have Bi ⊂ Ai = {usAi
> 0}. We are able to apply Proposition 3.4, to

obtain the existence of subsequences {Ak j
i } j∈N, {Bk j

i } j∈N ⊂ As(�) such that A
k j
i ⊂ B

k j
i

and B
k j
i

γs→ Ai .
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Optimal partition problems for the fractional Laplacian 509

Now, by using the strong γs-lower semicontinuity and decreasing property of Fs and (3.3),
we conclude

Fs(A1, . . . , Am) ≤ lim inf
j→∞ Fs(B

k j
1 , . . . , B

k j
m )

≤ lim inf
j→∞ Fs(A

k j
1 , . . . , A

k j
m )

≤ lim inf
j→∞ Js(u

k j
1 , . . . , u

k j
m ),

which implies the remaining inequality Fs(A1, . . . , Am) ≤ Gs(usA1
, . . . , usAm

). ��
The decreasing property of a functional Fs makes equivalent its weak and strong γs-lower

semicontinuity, which is the content of next theorem.

Theorem 3.7 Let m ∈ N and 0 < s < 1. Let Fs : As(�)m → [0,∞] be a decreasing
functional. Then, the following assertions are equivalent

1 Fs is weakly γs -lower semicontinuous.
2 Fs is strong γs -lower semicontinuous.

Proof Since every strongly γs-convergent sequence {Ak}k∈N is, in addition, weakly γs-
convergent, (1) ⇒ (2) is clear. (See definitions and Proposition A.5). Let us see the converse.

Now, suppose Fs is strongly γs-lower semicontinuous. To arrive at the weakly γs-lower
semicontinuity of Fs from the strong one, the strategy is to take into account the auxiliary
functional Gs defined in (3.2) and its properties.

Fix {(Ak
1, . . . , A

k
m)}k∈N ⊂ As(�)m and (A1, . . . , Am) ∈ As(�)m such that

(Ak
1, . . . , A

k
m)

γs
⇀ (A1, . . . , Am).

That means us
Ak
i

→ ui strongly in L2(�) and Ai = {ui > 0}, for i = 1, . . . ,m.

Since for every i = 1, . . . ,m, {us
Ak
i
}k∈N ⊂ Ks , by Proposition 3.1, ui ∈ Ks . Moreover,

by Proposition 3.2, ui ≤ usAi
. Then, we can use (G3), the decreasing property of Gs , so that

we obtain
Gs(u

s
A1

, . . . , usAm
) ≤ Gs(u1, . . . , um). (3.4)

On the other hand, by recalling (G1), the relationship between Fs and Gs , we get the
following identities

Fs(A1, . . . , Am) = Gs(u
s
A1

, . . . , usAm
) and Fs(A

k
1, . . . , A

k
m) = Gs(u

s
Ak
1
, . . . , usAk

m
),

(3.5)
for every k ∈ N.

Now, due to (G2) (the L2(�)-lower semicontinuity of Gs) in addition to us
Ak
i

→ ui

strongly in L2(�) for every i = 1, . . . ,m, we connect (3.4) and (3.5) to conclude that

Fs(A1, . . . , Am) = Gs(u
s
A1

, . . . , usAm
) ≤ Gs(u1, . . . , um)

≤ lim inf
k→∞ Gs(u

s
Ak
1
, . . . , usAk

m
)

= lim inf
k→∞ Fs(A

k
1, . . . , A

k
m).

Since {(Ak
1, . . . , A

k
m)}k∈N is an arbitrary weak γs-convergent sequence, we get that Fs is

weak γs-lower semicontinuous, as we desired. ��
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3.3 Existence of an optimal partition

With the help of the previous outcomes of this section, we are able to prove existence of a
minimal partition shape for (2.2).

Proof of Theorem 2.6 Denote by

α := inf
{
Fs(A1, . . . , Am) : Ai ∈ As(�), caps(Ai ∩ A j ,�) = 0 for i �= j

}
.

Let {(Ak
1, . . . , A

k
m)}k∈N ⊂ As(�)m be such that

caps(A
k
i ∩ Ak

j ,�) = 0 for i �= j, and lim
k→∞ Fs(A

k
1, . . . , A

k
m) = α.

By Remark 3.3, there exist A1 ∈ As(�) and a subsequence {Ak j
1 } j∈N ⊂ {Ak

1}k∈N such

that A
k j
1

γs
⇀ A1. Now, consider {Ak j

2 } j∈N and apply again Remark 3.3. Thus, there exist

A2 ∈ As(�) and a subsequence {Ak jl
2 }l∈N ⊂ {Ak j

2 } j∈N such that A
k jl
i

γs
⇀ Ai for i = 1, 2.

Repeating this argument, we find a sequence {(Ak
1, . . . ,Ak

m)}k∈N and (A1, . . . , Am) ∈ As(�)

such that Ak
i

γs
⇀ Ai for every i = 1, . . . ,m.

Since Fs is weak γs-lower semicontinuous, we obtain

Fs(A1, . . . , Am) ≤ lim inf
k→∞ Fs(A

k
1, . . . , A

k
m) = α. (3.6)

To finish the proof, let us see caps(Ai ∩ A j ,�) = 0 for i �= j be satisfied.
Let i, j ∈ {1, . . . ,m} be such that i �= j . Notice that this product us

Ak
i

· us
Ak
j
is an s-

continuous function too, by Lemma A.1, and us
Ak
i

· us
Ak
j

= 0 s-q.e. in R
n \ (Ak

i ∩ Ak
j ).

Moreover, since caps(A
k
i ∩ Ak

j ,�) = 0, we have us
Ak
i
· us

Ak
j
= 0 s-q.e. in R

n .

By [28, Lemma 3.8], there exist subsequences {us
Ak
i
}k∈N and {us

Ak
j
}k∈N, denoted with the

same index, which converge s-q.e. to ui and u j , respectively. Then, passing to the limit, we
obtainui ·u j = 0 s-q.e. inRn . That is caps({ui ·u j �= 0},�) = 0.But, {ui ·u j �= 0} = Ai∩A j .

We have shown that (A1, . . . , Am) is admissible for the minimization problem (2.2) and
recalling (3.6) the result is proved. ��

Due to Theorems 3.7 and 2.6, we can establish the next immediate corollary.

Corollary 3.8 Let Fs : As(�)m → [0,∞] be a decreasing and strong γs -lower semicontin-
uous functional. Then, there exists a solution to (2.2).

4 Proof of Theorem 2.8

This is the main part of the article, where we study the behavior of optimal partition shapes
obtained in Sect. 3 and their minimum values. Again, we use some results from [16].

Lemma 4.1 (Lemma 4.1, [16]) Let 0 < sk ↑ 1 and let uk ∈ Ksk . Then, there exists u ∈
H1
0 (�) and a subsequence {uk j } j∈N ⊂ {uk}k∈N such that uk j → u strongly in L2(�).
Moreover, if uk ∈ Ksk is such that uk → u strongly in L2(�), then u ∈ K1.

Next proposition gives an idea of the limit behavior of usA when the domains also are
varying with s.

123



Optimal partition problems for the fractional Laplacian 511

Proposition 4.2 (Proposition 4.5, [16]) Let 0 < sk ↑ 1, Ak ∈ Ask (�) be such that usk
Ak → u

strongly in L2(�). Then, there exist Ãk ∈ Ask (�) such that Ak ⊂ Ãk and Ãk γ−converges
to A := {u > 0}.

Now we are ready to prove the main result of this article.

Proof of Theorem 2.8 First, notice that m1 is achieved by [5, Theorem 3.2].
Let 0 < sk ↑ 1. By Theorem 2.6, there exists (Ak

1, . . . , A
k
m) ∈ Ask (�)m such that

capsk (A
k
i ∩ Ak

j ,�) = 0 for i �= j and Fsk (A
k
1, . . . , A

k
m) = mk, (4.1)

where mk = msk defined in (2.2).
Let (A1, . . . , Am) ∈ A1(�)m be such that cap1(Ai ∩ A j ,�) = 0 for i �= j . Since

0 < sk ↑ 1, we can assume 0 < ε0 < sk ↑ 1, for some fixed ε0.
Now, recalling Corollary A.7 and Remark A.8, we know that (A1, . . . , Am) belongs to

{(B1, . . . , Bm) : Bi ∈ Ask (�), capsk (Bi ∩ Bj ,�) = 0 for i �= j},
for every k ∈ N. This fact and condition (H1) imply that

lim sup
k→∞

Fsk (A
k
1, . . . , A

k
m) ≤ lim

k→∞ Fsk (A1, . . . , Am) = F1(A1, . . . , Am).

It follows that
lim sup
k→∞

mk ≤ m1. (4.2)

To see the remaining inequality, let us denote uki := usk
Ak
i

∈ Ksk . By Lemma 4.1, there is

ui ∈ K1 such that, up to a subsequence, uki → ui strongly in L2(�) and a.e. in �.
Denote by Ai := {ui > 0} ∈ A1(�) for every i = 1, . . . ,m. We claim that cap1(Ai ∩

A j ,�) = 0 for i �= j .
Indeed, let i �= j be fixed. For each k ∈ N, due to Lemma A.2 and (4.1), we know that

|{uki · ukj �= 0}| = |Ak
i ∩ Ak

j | ≤ C(n, sk)capsk (A
k
i ∩ Ak

j ,�) = 0.

Then, uki · ukj = 0 a.e. in R
n . Since ukl → ul a.e. in � for l = 1, 2, we conclude ui · u j = 0

a.e in �, it is still true in Rn \ � considering that they belong to Hs
0 (�). So, ui · u j = 0 a.e.

in R
n .

Reminding that we are working with 1-quasi-continuous representative functions in
H1
0 (�), the previous identity ui · u j = 0 a.e. in R

n and [20, Lemma 3.3.30] tells that
ui · u j = 0 1-q.e. in Rn . That means cap1(Ai ∩ A j ,�) = 0.

Consequently, (A1, . . . , Am) is admissible to the problem 2.2 with s = 1 and we obtain
m1 ≤ F1(A1, . . . , Am).

Moreover, by Proposition 4.2, there exists Ãk
i ∈ Ask (�) such that Ak

i ⊂ Ãk
i and

( Ãk
1, . . . , Ã

k
m) γ−converges to (A1, . . . , Am).

Finally, from condition (H2) and the decreasing property of Fsk , we conclude that

m1 ≤ F1(A1, . . . , Am) ≤ lim inf
k→∞ Fsk ( Ã

k
1, . . . , Ã

k
m)

≤ lim inf
k→∞ Fsk (A

k
1, . . . , A

k
m) = lim inf

k→∞ mk .

Therefore, from previous conclusion and (4.2) we have the identity (2.4), so that the results
follow. ��
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Appendix A. Some useful properties of s-capacity

The following lemmas address some basic properties of s-capacity and s-quasi-continuous
functions. We suppose those results are well known, and we include them for completeness.

Lemma A.1 Let u, v : Rn → R be s-quasi-continuous functions. Then, the product u · v is
also an s-quasi-continuous function.

Proof By definition, there exist decreasing sequences {Ak}k∈N and {Bk}k∈N of open sets such
that limk→∞ caps(Ak,�) = limk→∞ caps(Bk,�) = 0 and u|Rn\Ak , v|Rn\Bk are continuous.

Consider Ck := Ak ∪ Bk . Then, {Ck}k∈N is a decreasing sequence of open sets such
that limk→∞ caps(Ck,�) = 0, since caps(Ck,�) ≤ caps(Ak,�) + caps(Bk,�) by [28,
Proposition 3.6]. Moreover, (u · v)|Rn\Ck is continuous. ��

Next lemma gives a relation between the Lebesgue measure and the s-capacity of a subset
A ⊂ �. The proof is easy and follows [15, Section 4.7, Theorem 2 VI], where it was shown
with the classical capacity measure (s = 1).

Lemma A.2 For every A ⊂ �, |A| ≤ C(�, s)caps(A,�), where C(�, s) is the Poincaré’s
constant in Hs

0 (�).

Proof For every ε > 0, there exists a function uε ∈ Hs
0 (�) such that uε ≥ 1 a.e. in a

neighborhood of A and

[uε]2s ≤ caps(A,�) + ε.

On the other hand, by Poincaré’s inequality,

|A| =
∫

A
1 dx ≤

∫

Rn
u2ε dx ≤ C(�, s)[uε]2s ≤ C(�, s)

(
caps(A,�) + ε

)
.

Take the limit ε ↓ 0 to obtain the result. ��

For every A ∈ As(�), we will show that A = {usA > 0} in the sense of caps(·,�). To
prove this aim, we need some previous results which are modifications from [11, Lemma 2.1]
and [12, Proposition 5.5].

Lemma A.3 Let A ∈ As(�), Then, there exists an increasing sequence {vk}k∈N ⊂ Hs
0 (�)

of nonnegative functions, such that supk∈N vk = 1A s-q.e. on �.

We omit the proof since it is completely analogous to that of [11, Lemma 2.1].
We prove a density result in Hs

0 (A), for A ∈ As(�), which is similar to [12, Proposi-
tion 5.5].

Lemma A.4 Let A ∈ As(�). Then, {ϕusA : ϕ ∈ C∞
c (�)} is dense in Hs

0 (A).
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Proof In order to prove the lemma, it is sufficient to see that we can approximate any
nonnegative function w ∈ Hs

0 (A) with (−�)sw ∈ L∞(�), since L∞(�) is dense in
H−s(�) and w = w+ − w−. Indeed, for an arbitrary function w ∈ Hs

0 (�), we know
that (−�)sw =: f ∈ H−s(�).

Denote by f := (−�)sw. Then,

(−�)sw ≤ ‖ f ‖L∞(�) = ‖ f ‖L∞(�)(−�)susA in A.

By comparison, we obtain 0 ≤ w ≤ cusA, where c := ‖ f ‖L∞(�).
For every ε > 0, consider (w − cε)+ ∈ Hs

0 (�). Thus,

{(w − cε)+ > 0} ⊂ {usA > ε}. (A.1)

Notice that usA ∈ L∞(�) by [13, Theorem 4.1]. Observe that, using (A.1), ε < usA ≤
‖usA‖L∞(�) in {(w − cε)+ > 0}. Then, the function (w−cε)+

usA
belongs to Hs

0 (�). So, there

exists a sequence {ϕε
k }k∈N ⊂ C∞

c (�) such that ϕε
k → (w−cε)+

usA
strongly in Hs

0 (�), when

k → ∞. Therefore, ϕε
k u

s
A → (w − cε)+ strongly in Hs

0 (�), when k → ∞.
On the other hand, (w − cε)+ → w strongly in Hs

0 (�), when ε ↓ 0.
Consequently, by a diagonal argument, there exist subsequences ε j ↓ 0 and {ϕε j

k j
} j∈N ⊂

C∞
c (�) such that ϕ

ε j
k j
usA → w strongly in Hs

0 (�). ��
The following proposition is an essential component to relate domains and functions. It

also contributes to the proofs of principal results Theorems 2.6 and 2.8.

Proposition A.5 Let A ∈ As(�). Then, A = {usA > 0} in sense of caps(·,�). That is,
caps(A�{usA > 0},�) = 0.

Proof It is clear that usA = 0 s-q.e. on Rn \ A. So, {usA > 0} ⊂ A.
To see A ⊂ {usA > 0}, we use the previous lemmas.
By Lemma A.3, there exists an increasing sequence {vk}k∈N ⊂ Hs

0 (�) of nonnegative
functions, such that supk∈N vk = 1A s-q.e. on �.

For every vk , byLemmaA.4, there exists a sequence {ϕk
j } j∈N ∈ C∞

c (�) such thatϕk
j u

s
A →

vk strongly in Hs
0 (�) and s-q.e., when j → ∞. Since ϕk

j u
s
A = 0 s-q.e. in {usA = 0},

then vk = 0 s-q.e. in {usA = 0}. Therefore, 1A = 0 s-q.e. in {usA = 0}, which implies
A ⊂ {usA > 0}. ��

Now, we prove a key estimate used in Sect. 4, which is a simply remark following the
proof of [14, Proposition 2.2]. Notice that we are interested in finding a positive constant
connecting in some sense caps(·,�) and cap1(·,�). But, we also want that this constant does
not depend on s. As our goal in Sect. 4 is related to the limit case s ↑ 1, we can assume
0 < ε0 < s < 1 for some ε0 and that will be enough to obtain this desired and independent
constant.

As we said before, the proof of next lemma follows [14, Proposition 2.2] and, despite the
similarity, it is included since we want to analyze how the constant depends on s.

Lemma A.6 Let ε0 > 0 and ε0 < s < 1. Then, there exits a constant C > 0 such that for
every u ∈ H1

0 (�)

(1 − s)[u]2s ≤ C‖∇u‖2L2(�)
.

and C = C(�, n, ε0) does not depend on s.
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Proof Let u ∈ C∞
c (�), we split [u]2s into two pieces.

For the first part, use the change of variable z = y− x and observe that for z ∈ B1(0)\{0}
and ϕ(t) := u(x + t z) for t ∈ [0, 1] we estimate

|u(x + z) − u(x)|
|z| =

∣∣∣
∫ 1
0 ϕ′(t) dt

∣∣∣

|z| =
∣∣∣
∫ 1
0 ∇u(x + t z) · z dt

∣∣∣

|z| ≤
∫ 1

0
|∇u(x + t z)| dt.

Now, use the previous remark and Jensen’s inequality to obtain
∫

Rn

∫

Rn∩{|y−x |<1}
|u(x) − u(y)|2
|x − y|n+2s dxdy =

∫

Rn

∫

B1(0)

|u(x) − u(z + x)|2
|z|n+2s dzdx

=
∫

Rn

∫

B1(0)

|u(x) − u(z + x)|2
|z|2|z|n+2(s−1)

dzdx

≤
∫

Rn

∫

B1(0)

(∫ 1

0

|∇u(x + t z)|
|z| n2 +s−1

dt

)2

dzdx

≤
∫

B1(0)

1

|z|n+2(s−1)

∫ 1

0
‖∇u‖2L2(�)

dtdz

≤ ‖∇u‖2L2(�)

∫

B1(0)

1

|z|n+2(s−1)
dz

= |B1(0)|
2(1 − s)

‖∇u‖L2(�).

For the remaining part, use |a − b|2 ≤ 2(a2 + b2) and easily follows
∫

Rn

∫

Rn∩{|y−x |≥1}
|u(x) − u(y)|2
|x − y|n+2s dxdy ≤ 2

∫

Rn

∫

Rn∩{|y−x |≥1}
|u(x)|2 + |u(y)|2

|x − y|n+2s dxdy

≤ 4
∫

Rn

∫

Rn∩{|y−x |≥1}
|u(x)|2

|x − y|n+2s dxdy

≤
∫

Rn
|u(x)|2

(∫

{|z|≥1}
1

|z|n+2s dz

)
dx

= |B1(0)|
2s

‖u‖L2(�)

≤ |B1(0)|
2ε0

C1(�, n)‖∇u‖L2(�),

where C1(�, n) is the constant of classical Poincaré’s inequality in H1
0 (�).

Then, put together the two estimates to conclude

(1 − s)[u]2s ≤ (1 − s)

(
C1(�, n)

2ε0
+ 1

2(1 − s)

)
|B1(0)|‖∇u‖L2(�)

≤
(
C1(�, n)

2ε0
+ 1

2

)
|B1(0)|‖∇u‖L2(�)

= C(�, n, ε0)‖∇u‖L2(�).

��
Automatically, we obtain an estimate relating the s-capacity and the 1-capacity.
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Corollary A.7 Let ε0 > 0 and ε0 < s < 1. Then, there exits a constant C > 0 such that for
every A ⊂ �

(1 − s)caps(A,�) ≤ Ccap1(A,�),

and C = C(�, n, ε0) does not depend on s.

We deduce other useful remark from Lemma A.6: Every 1-quasi open set is also an
s-quasi-open, for 0 < s < 1.

Remark A.8 For every 0 < s < 1, A1(�) ⊂ As(�). Moreover, if 0 < s < t ≤ 1, then
At (�) ⊂ As(�).

Proof Let A ∈ A1(�). There exists a decreasing sequence of open sets {Gk}k∈N such that
A ∪ Gk is open and cap1(Gk,�) → 0.

Let 0 < s < 1. By Corollary A.7, caps(Gk,�) → 0. Then, A ∈ As(�).
To prove At (�) ⊂ As(�) for 0 < s < t ≤ 1, use definitions of capacity and [14,

Proposition 2.1]. ��
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