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Abstract New results in the Weyl–Titchmarsh theory for linear Hamiltonian differential
systems are derived by using principal and antiprincipal solutions at infinity. In particular, a
non-limit circle case criterion is established and a close connection between theWeyl solution
and the minimal principal solution at infinity is shown in the limit point case. In addition, the
square integrability of the columns of theminimal principal solution at infinity is investigated.
All results are obtained without any controllability assumption. Several illustrative examples
are also provided.
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1 Introduction

In this paper we study the linear Hamiltonian differential system

z′(t, λ) = H(t, λ) z(t, λ), H(t, λ) := H(t) + λJW(t), J :=
(
0 I
−I 0

)
, (Hλ)

where t ∈ [a,∞),λ ∈ C is a spectral parameter, andH(t) andW(t) are piecewise continuous
even order matrix-valued functions such that the matrix H(t) is Hamiltonian, i.e., JH(t) +
H∗(t)J = 0, and W(t) = W∗(t) ≥ 0 for all t ∈ [a,∞). For some results we will also
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assume the Legendre condition, which means that the right upper block of the matrixH(t, λ)

is positive semidefinite, i.e.,

B(t, λ) ≥ 0, t ∈ [a,∞). (LCλ)

Precise assumptions about the coefficients are summarized in Notation 2.1 below. By using
recent theory of principal and antiprincipal solutions at infinity, we obtain new results in
the Weyl–Titchmarsh theory concerning the square integrable solutions of (Hλ). We do not
assume any controllability assumption and generalize the results in [7] dealing with the
second-order Sturm–Liouville differential equations to system (Hλ).

One of the fundamental contribution to the initial development of the spectral theory for
system (Hλ) goes back to the monograph [1] by Atkinson. This theory has been intensively
studied in the last four decades, see e.g., [3,5,17,18,20,22,26]. In this paper we are interested
in theWeyl–Titchmarsh theory,which is devoted to square integrable solutions of system (Hλ)
for λ ∈ C, i.e., to solutions z(·, λ) with∫ ∞

a
z∗(t, λ)W(t) z(t, λ) dt < ∞.

In this theory the so-calledWeyl solution plays a crucial role, because it provides a lower bound
for the number of linearly independent square integrable solutions of (Hλ) for λ ∈ C\R, see
[1, Section 9] and, e.g., [44, Formula (5.4)]. The minimal and maximal numbers of such
linearly independent square integrable solutions of (Hλ) then lead to the limit point and limit
circle classification of system (Hλ).

For the second-order Sturm–Liouville differential equation

− [P1(t) y′(t, λ)]′ + P0(t) y(t, λ) = λW (t) y(t, λ), (1.1)

being nonoscillatory and in the limit point case, it is known that for all λ ∈ R sufficiently
small the Weyl solution of (1.1) coincides up to a nonsingular constant multiple with the
principal solution of (1.1) at infinity, see [7, Theorems 2.13 and 3.11]. This relationship
allows to transfer the knowledge from the Weyl–Titchmarsh theory to the oscillation theory
of (1.1) and vice versa.

The latter result is a motivation for the present paper, in which we establish a similar
connection between the Weyl solution and the principal solution at infinity for system (Hλ).
We show that this theory can be developed without any controllability assumption on sys-
tem (Hλ), as opposed to the controllable equation (1.1). In this respect the unique minimal
principal solution of (Hλ) at infinity represents the (analytic) extension of the unique Weyl
solution to real values of λ, see Theorem 3.3. For the existence of the minimal principal
solution of (Hλ) at infinity we require the validity of the Legendre condition (LCλ), see [35].
On the other hand, the Weyl solution may exist for λ ∈ R even when (LCλ) is not satisfied,
as we show in Example 3.7. This means that the property of “being the Weyl solution for
λ ∈ R” is more general that the property of “being the minimal principal solution at infinity.”
This problem is also closely related to the square integrability of the columns of the minimal
principal solution at infinity, which we discuss in Theorem 3.8.

In the second main result of this paper (Theorem 4.1) we extend a well-known limit
point criterion for the second-order Sturm–Liouville differential equation (1.1) from [30,
Theorem 4.1]. In the context of system (Hλ) with the block diagonal weight matrix W(t)
it is formulated as a non-limit circle criterion, i.e., we prove the existence of a non-square
integrable solution of system (Hλ) for any λ ∈ C. This result is based on an asymptotic
characterization of (maximal) antiprincipal solutions of (Hλ) at infinity from [36].
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The paper is organized as follows. In Sect. 2 we recall some relevant results about sys-
tem (Hλ), in particular about theWeyl solution, the minimal principal solution at infinity, and
the antiprincipal solutions at infinity. In Sect. 3 we study a connection between the minimal
principal solution at infinity and the Weyl solution, as well as the square integrability of the
columns of the minimal principal solution at infinity. In Sect. 4 we establish a new non-limit
circle criterion for system (Hλ). Throughout the paper we provide several examples, which
illustrate our results.

2 Preliminaries

2.1 Notation and basic facts

Throughout the paper all vectors, vector-valued functions, matrices, and matrix-valued func-
tions are considered overC if not specified otherwise, with vectors beingwritten by lowercase

letters and matrices by capital letters. The block diagonal matrix

(
M 0
0 N

)
is abbreviated

as diag{M, N }. The transpose, conjugate transpose, inverse, Moore–Penrose pseudoinverse,
positive definiteness, positive semidefiniteness, determinant, rank, trace, kernel, Hermitian
components (or real and imaginary parts), and the largest eigenvalue for a given matrix M are
indicated, respectively, by M�, M∗, M−1, M†, M > 0, M ≥ 0, det M , rank M , tr M , Ker M ,
re(M) := (M + M∗)/2, im(M) := (M − M∗)/(2i), and �max(M). Moreover, the notation
M ≤ N for Hermitian matrices M and N means that N − M ≥ 0. For matrix-valued func-
tions we also write M∗(·) := [M(·)]∗, M−1(·) := [M(·)]−1, and M∗−1(·) := [M∗(·)]−1.
A 2n × 2n matrix M is said to be (conjugate) symplectic if M∗J M = J , where J is the
2n × 2n canonical skew-symmetric matrix defined in (Hλ) in Sect. 1.

By ‖M‖σ := √
�max(M∗M)we denote the spectral norm of a matrix M . It is well known

that the norm ‖·‖σ is submultiplicative and self-adjoint, i.e., ‖M N‖σ ≤ ‖M‖σ ×‖N‖σ and
‖M∗‖σ = ‖M‖σ , and for any Hermitian matrices M and N with 0 ≤ M ≤ N it satisfies,
see [4, Section 9],

(i) ‖M‖σ = �max(M), (ii) ‖M‖1/2σ = ‖M1/2‖σ , (iii) ‖M‖σ ≤ ‖N‖σ . (2.1)

For convenience of the reader we summarize the basic notation concerning system (Hλ),
which is used throughout the paper.

Notation 2.1 The numbers a ∈ R and n ∈ N are fixed and

H(t) :=
(

A(t) B(t)
C(t) −A∗(t)

)
, W(t) :=

(
W1(t) W ∗

2 (t)
W2(t) W4(t)

)
,

H(t, λ) =
(A(t, λ) B(t, λ)

C(t, λ) D(t, λ)

)
:=

(
A(t) + λW2(t) B(t) + λW4(t)
C(t) − λW1(t) −A∗(t) − λW ∗

2 (t)

)
,

whereW(t) ≥ 0 on [a,∞), and the complex n ×n matrix-valued functions A(t), B(t), C(t),
W1(t), W2(t), W4(t) are piecewise continuous on [a,∞) with B(t) = B∗(t), C∗(t) = C(t),
W ∗

1 (t) = W1(t), and W ∗
4 (t) = W4(t).

With this notation system (Hλ) can be equivalently written as

−J z′(t, λ) = [−JH(t) + λW(t)] z(t, λ)
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with−JH(t) being a Hermitian matrix. This form is traditionally used in the spectral theory
of linear Hamiltonian systems, see e.g., [1,3,22,26,46]. Moreover, the matrices H(t) and
JW(t) are Hamiltonian, and the blocks of H(t, λ) satisfy

B∗(t, λ) = B(t, λ̄), C∗(t, λ) = C(t, λ̄), A∗(t, λ) = −D(t, λ̄), t ∈ [a,∞), λ ∈ C.

(2.2)
It is easy to see that the matrix H(t, λ) is Hamiltonian on [a,∞) when λ ∈ R.

By a (vector) solution of (Hλ) we mean a 2n vector-valued function z(·, λ) ∈ C1
p (i.e.,

piecewise continuously differentiable) satisfying system (Hλ) for all t ∈ [a,∞). Matrix-
valued solutions are defined accordingly. In addition, by x(·, ·), u(·, ·) and X (·, ·), U (·, ·) we
denote the “halves” of a vector solution z(·, ·) and a matrix solution Z(·, ·), respectively, i.e.,
z(t, λ) = (

x�(t, λ), u�(t, λ)
)� and Z(t, λ) = (

X�(t, λ), U�(t, λ)
)� for all t ∈ [a,∞) and

λ ∈ C.
The followingLagrange identity represents one of the crucial tools in theWeyl–Titchmarsh

theory. If p, q ∈ N and λ, ν ∈ C are arbitrary, then for any 2n × p and 2n × q solutions
Z1(·, λ) and Z2(·, ν) of systems (Hλ) and (Hν) and s ∈ [a,∞) we have

W [Z1(t, λ), Z2(t, ν)] = W [Z1(s, λ), Z2(s, ν)] + (λ̄ − ν)

∫ t

s
Z∗
1(τ, λ)W(τ ) Z2(τ, ν) dτ,

(2.3)
see e.g., [1, Formula (9.1.11)]. Here W [Z1(t, λ), Z2(t, ν)] denotes the natural extension of
the Wronskian to the complex λ-dependent systems, i.e.,

W [Z1(t, λ), Z2(t, ν)] := Z∗
1(t, λ)J Z2(t, ν) = X∗

1(t, λ) U2(t, ν) − U∗
1 (t, λ) X2(t, ν).

If ν = λ̄ (in particular if ν = λ ∈ R), identity (2.3) reduces to the well-known fact about the
constancy of theWronskian, i.e., W [Z1(t, λ), Z2(t, λ̄)] ≡ W [Z1(a, λ), Z2(a, λ̄)] on [a,∞).
We will pay a special attention to solutions Z(·, λ) satisfying rank Z(t, λ) = n for some (and
hence for any) t ∈ [a,∞) and

W [Z(t, λ), Z(t, λ̄)] ≡ 0, i.e., X∗(t, λ) U (t, λ̄) = U∗(t, λ) X (t, λ̄). (2.4)

When λ ∈ R such solutions are called conjoined bases of (Hλ). An alternative terminology
is an isotropic or prepared or self-conjugate solution of (Hλ), see [8,16,23,32,34].

In this paper we will utilize two 2n × n solutions

Ẑα(·, λ) = (
X̂�

α (·, λ), Û�
α (·, λ)

)� and Z̃α(·, λ) = (
X̃�

α (·, λ), Ũ�
α (·, λ)

)� (2.5)

of system (Hλ) determined by the initial conditions Ẑα(a, λ) = α∗ and Z̃α(a, λ) = −J α∗,
where α ∈ � := {α ∈ C

n×2n | αα∗ = I, α J α∗ = 0}. Since these initial conditions do not
depend on λ and the 2n × 2n matrix (α∗,−J α∗) is symplectic, it follows that 	α(t, λ) :=(
Ẑα(t, λ), Z̃α(t, λ)

)
is a fundamental matrix of (Hλ), which satisfies the symplectic-type

identity

	∗
α(t, λ)J	α(t, λ̄) =

(
W [Ẑα(t, λ), Ẑα(t, λ̄)] W [Ẑα(t, λ), Z̃α(t, λ̄)]
W [Z̃α(t, λ), Ẑα(t, λ̄)] W [Z̃α(t, λ), Z̃α(t, λ̄)]

)

≡ 	∗
α(a, λ)J	α(a, λ̄) = J .

For simplicity, we write 	I (t, λ) = (
Ẑ I (t, λ), Z̃ I (t, λ)

)
if α = (I, 0), that is, 	I (a, λ) = I .

Remark 2.2 If the matrices X̃α(t, λ) and X̃α(t, λ̄) are invertible for some t ∈ [a,∞) and
λ ∈ C, then the equalities W [Z̃α(t, λ), Z̃α(t, λ̄)] = 0 and W [Z̃α(t, λ), Ẑα(t, λ̄)] = −I
imply
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Ûα(t, λ) − Ũα(t, λ) X̃−1
α (t, λ) X̂α(t, λ) = −X̃∗−1

α (t, λ̄). (2.6)

Similarly, when the matrices X̂α(t, λ) and X̂α(t, λ̄) are invertible, then

Ũα(t, λ) − Ûα(t, λ) X̂−1
α (t, λ) X̃α(t, λ) = X̂∗−1

α (t, λ̄). (2.7)

2.2 Elements of Weyl–Titchmarsh theory

In this subsection we recall some basic results from the Weyl–Titchmarsh theory for sys-
tem (Hλ). We denote byL2

W the usual space of Lebesguemeasurable functions z : [a,∞) →
C
2n such that

∫ ∞
a z∗(t)W(t) z(t) dt < ∞. Moreover, we use the notation

N (λ) :=
{

z(·, λ) ∈ C1
p ∩ L2

W
∣∣ z(·, λ)solves system (Hλ)

}

for the linear space of all square integrable solutions of (Hλ). Let us note that L2
W is not a

Hilbert space in general, because of the semidefiniteness of W(·). The number of linearly
independent square integrable solutions of (Hλ) is then equal to dimN (λ). If dimN (λ) = n,
we say that system (Hλ) is in the limit point case, while in the maximal case dimN (λ) = 2n
we say that system (Hλ) is in the limit circle case. For a basic estimate of the value of
dimN (λ) we will need the following weak Atkinson condition, see [44, Hypothesis 4.5].

Hypothesis 2.3 (Weak Atkinson condition) There exists λ ∈ C and b ∈ (a,∞) such that
∫ b

a
z∗(t, λ)W(t) z(t, λ) dt > 0

for any nontrivial linear combination z(·, λ) of the columns of the solution Z̃α(·, λ).

In other words, Hypothesis 2.3 means that any solution z(·, λ) such that z(t, λ) =
Z̃α(t, λ) ξ on [a,∞) with ξ ∈ C

n and
∫ ∞

a z∗(t, λ)W(t) z(t, λ) dt = 0 is necessarily a trivial
solution. Moreover, it can be shown similarly as in [3, Lemma 2.10] that Hypothesis 2.3
holds for one λ ∈ C if and only if the same condition is satisfied for any λ ∈ C.

If λ ∈ C\R is fixed, then system (Hλ) possesses at least n linearly independent square inte-
grable solutions under Hypothesis 2.3, see e.g., [1, Theorem 9.11.1] and [44, Theorem 5.1].
This fact follows from the square integrability of the columns of the Weyl solution

X (t, λ) := 	α(t, λ)

(
I
M

)
= Ẑα(t, λ) + Z̃α(t, λ) M, (2.8)

where M ∈ C
n×n belongs to the limiting Weyl disk

D+(λ) := {P+(λ) + R+(λ)VR+(λ̄) | V ∈ V}. (2.9)

Here V := {V ∈ C
n×n | V∗V ≤ I } is the set of all n × n contractive matrices, and the n × n

matrices P+(λ) and R+(λ) are defined as the limits

P+(λ) := lim
t→∞ P(t, λ), P(t, λ) := H−1(t, λ) G(t, λ),

R+(λ) := lim
t→∞ R(t, λ), R(t, λ) := H−1/2(t, λ),

where

G(t, λ) := iδ(λ) Z̃∗
α(t, λ)J Ẑα(t, λ), H(t, λ) := iδ(λ) Z̃∗

α(t, λ)J Z̃α(t, λ), δ(λ) := sgn(im λ),
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see [1, Section 9.8], [40, Section 3], and [44, Section 4]. Note that Hypothesis 2.3 implies
the invertibility of H(t, λ) for all t ≥ b by (2.3), see also [44, Identity (4.15)]. The Weyl
disks D(t, λ), t ≥ b, can be expressed similarly as D+(λ) in (2.9) with the matrices P+(λ),
R+(λ), R+(λ̄) replaced by P(t, λ), R(t, λ), R(t, λ̄).

For β ∈ �, λ ∈ C\R, and t ≥ b we define the Weyl–Titchmarsh function

M(t, λ) := −[β Z̃α(t, λ)]−1 β Ẑα(t, λ). (2.10)

For simplicity, we suppress the dependence on α ∈ � in the notation of the above matrices,
which are defined through Ẑα(t, λ) and Z̃α(t, λ). Note that the matrix M(t, λ) in (2.10)
depends also on β ∈ �. However, note that the resulting number of linearly independent
square integrable solutions, i.e., the dimension of N (λ), does not depend on α, see [44,
Theorem 5.7]. In particular, dimN (λ) = n+rank R+(λ), where rank R+(λ) does not depend
on α.

In [44, Section 4] it is shown that M(t, λ) is closely related to the matrices M ∈ C
n×n

lying on the boundary of the Weyl disk D(t, λ), i.e., on the Weyl circle

C(t, λ) := {P(t, λ) + R(t, λ)UR(t, λ̄) | U ∈ U}, U := {U ∈ C
n×n | U∗U = I }.

A subsequent limit of M(t, λ) with β = β(t) ∈ � as t → ∞ is called the half-line Weyl–
Titchmarsh function and denoted by M+(λ). Especially, if system (Hλ) is in the limit point
case for all λ ∈ C\R, then we can take β = β(t) ≡ (I, 0) or β = β(t) ≡ (0, I ), which
yields that

M+(λ) = − lim
t→∞ X̃−1

α (t, λ) X̂α(t, λ) = − lim
t→∞ Ũ−1

α (t, λ) Ûα(t, λ), (2.11)

see [17, Theorem 3.1]. Note that in this case we have R+(λ) = 0 and consequently D+(λ) =
{P+(λ)} is a singleton. Therefore, in the limit point case the square integrable Weyl solution
is uniquely determined by the matrix M = M+(λ) = P+(λ). The invertibility of X̃α(t, λ)

and Ũα(t, λ) for large t used in (2.11) is guaranteed by Hypothesis 2.3, as we prove in the
following lemma. The analogous result for X̂α(·, λ) and Ûα(·, λ) can be shown by the same
arguments, e.g., under Hypothesis 2.5 below.

Lemma 2.4 Let Hypothesis 2.3 be satisfied. Then for any λ ∈ C\R the n × n matrices
X̃α(t, λ) and Ũα(t, λ) are invertible for all t ≥ b, where b ∈ (a,∞) is given in Hypothe-
sis 2.3.

Proof Let λ ∈ C\R and t ≥ b be fixed. Then identity (2.3) yields

W [Z̃α(t, λ), Z̃α(t, λ)] = −2i im(λ)

∫ t

a
Z̃∗

α(τ, λ)W(τ ) Z̃α(τ, λ) dτ. (2.12)

Assume that X̃α(t, λ) is singular, i.e., X̃α(t, λ) ξ = 0 for some ξ �= 0. Since rank Z̃α(t, λ) =
n for all t ∈ [a,∞), it follows that Z̃α(·, λ) ξ is a nontrivial solution of (Hλ) and from
identity (2.12) we get

0 = i
2 ξ∗ [X̃∗

α(t, λ) Ũα(t, λ) − Ũ∗
α (t, λ)X̃α(t, λ)

]
ξ

= im(λ)

∫ t

a
ξ∗ Z̃∗

α(τ, λ)W(τ ) Z̃α(τ, λ) ξ dτ,

which contradicts Hypothesis 2.3. Similar argument shows the invertibility of Ũα(t, λ) for
t ≥ b. ��
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The number of linearly independent square integrable solutions has been traditionally
studied under the stronger hypothesis including all nontrivial solutions of system (Hλ), which
we call the strong Atkinson condition (or definiteness condition), see [1, Inequality (9.1.6)].
The sufficiency of the weak Atkinson condition given in Hypothesis 2.3 was identified for the
first time in [43,44], and it enabled us to extend some related results to systems with jointly
varying endpoints (such as the periodic or antiperiodic endpoints), see [44, Section 8].

Hypothesis 2.5 (Strong Atkinson condition) There exists λ ∈ C and b ∈ (a,∞) such that

∫ b

a
z∗(t, λ)W(t) z(t, λ) dt > 0

for any nontrivial solution of system (Hλ).

Again, if Hypothesis 2.5 is satisfied for some λ ∈ C, then it is true for all λ ∈ C as shown
in [3, Lemma 2.10]. It can be shown that the number of linearly independent square integrable
solutions of (Hλ) is constant in the upper and lower half planes of C, but these values may
be different, i.e., it is possible dimN (λ) �= dimN (λ̄), see [26, Proposition 2.20] and [28].
It is easy to see that if system (Hλ) has only real-valued coefficients, then z(t, λ̄) = z(t, λ)

and so dimN (λ) = dimN (λ̄) for all λ ∈ C\R. This equality also holds in the case of
complex-valued coefficients if system (Hλ) is in the limit circle case. This result is known
as the invariance of the limit circle case. More specifically, if there exists ν ∈ C such that
system (Hν) is in the limit circle case and

∫ ∞

a
|im(ν) × tr JW(t)| dt < ∞, (2.13)

then system (Hλ) is in the limit circle case for any λ ∈ C, see [1, Theorem 9.11.2], [48,
Theorem 2], and [45, Theorem 4.1].

2.3 Principal and antiprincipal solutions at infinity

Now we discuss the (non-)oscillatory behavior of system (Hλ) and the concept of an (anti-)
principal solution at infinity. System (Hλ) is said to be completely controllable (or identically
normal), if the trivial solution is the only solution with x(t) ≡ 0 on a non-degenerate subin-
terval of [a,∞). In the following simple lemma we illustrate the relationship between the
controllability of system (Hλ) and Hypothesis 2.5. The assumptions of the statement are sat-
isfied, e.g., for system (Hλ) corresponding to the second-order Sturm–Liouville differential
equation, see Remark 4.2(iii) with m = 1.

Lemma 2.6 Let W(t) = diag{W1(t), W4(t)} with W1(t) > 0 on a non-degenerate subin-
terval of [a,∞) and let system (Hν) be completely controllable for some ν ∈ C. Then
Hypothesis 2.5 holds for λ = ν, and consequently it holds for all λ ∈ C.

Proof Let us assume that Hypothesis 2.5 does not hold for the given ν, i.e., there exists
a nontrivial solution z(·, ν) such that

∫ b
a z∗(t, ν)W(t) z(t, ν) dt = 0 for all b ∈ (a,∞).

Since W1(t) > 0 on some non-degenerate subinterval of [a,∞), it follows that x(t, ν) ≡ 0
on this subinterval. But then the controllability of system (Hν) implies z(t, ν) ≡ 0 on [a,∞).
Henceweget a contradiction,whichmeans thatHypothesis 2.5 holds. The second part follows
immediately from the comment following Hypothesis 2.5. ��
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System (Hλ), for which the completely controllability assumption is not required, is called
abnormal. In such case we define the maximal order of abnormality of (Hλ) as

d∞(λ) := max
t∈[a,∞)

dλ[t,∞) ≤ n,

where dλ[c,∞) denotes the dimension of the linear space of n-dimensional vector-valued
functions u(·, λ) ∈ C1

p such that the pair x(t, λ) ≡ 0 and u(·, λ) solves system (Hλ) on
[c,∞). Obviously, d∞(λ) = 0 in the controllable case. A solution Z(·, λ) with constant
kernel of X (t, λ) on some interval [c,∞) is called a minimal conjoined basis on [c,∞),
if it is a conjoined basis and rank X (t, λ) = n − dλ[c,∞) on [c,∞). Similarly, Z(·, λ) is
a maximal conjoined basis on [c,∞), if it is a conjoined basis and rank X (t, λ) = n for all
t ∈ [c,∞), see [35, Section 5] for more details.

For the rest of this section we fix λ ∈ R such that the Legendre condition (LCλ) is satisfied.
In this case for any conjoined basis Z(·, λ) of (Hλ) the points t0 ∈ [a,∞), where the kernel
of X (·, λ) changes, are isolated, by [24, Theorem 3]. System (Hλ) is called nonoscillatory
if there exists a conjoined basis Z(·, λ) with finite number of proper focal points in [a,∞).
Recall that t0 ∈ (a,∞) is a proper focal point of Z(·, λ) if Ker X (t−0 , λ) � Ker X (t0, λ),
see [41,42] and the references therein. In the opposite case system (Hλ) is called oscillatory.
This notion then does not depend on the choice of the conjoined basis Z(·, λ), by [41,
Theorem 2.2].

In the oscillation theory the concept of a principal solution at infinity is used in order to
indicate eventually the smallest one at infinity among all solutions of the given differential
equation. We refer to [7,25,29] for this notion for second-order scalar differential equations,
to [15] for second-order matrix differential equations, and to [31,33] for system (H0) under
the controllability assumption. For abnormal system (Hλ) the principal solution at infinity
is defined as a conjoined basis Z(·, λ) with constant kernel of X (t, λ) on [c,∞) for some
c ∈ [a,∞) such that

lim
t→∞ S†

c (t, λ) = 0, where Sc(t, λ) :=
∫ t

c
X†(τ, λ)B(τ, λ) X†∗(τ, λ) dτ, (2.14)

see [37, Definition 7.1]. It is known in [37, Theorem 7.6] that the nonoscillation of (Hλ) is
equivalent with the existence of a principal solution Z p(·, λ) of (Hλ), such that the rank rp(λ)

of X p(t, λ) for t large enough lies between the numbers n − d∞(λ) and n. In addition, the
principal solution Z p(·, λ) is said to beminimal if rp(λ) = n−d∞(λ), it is said to bemaximal
if rp(λ) = n, and for the remaining values rp(λ) ∈ {n − d∞(λ) + 1, . . . , n − 1} it is called
intermediate. The minimal and maximal principal solutions of system (Hλ) are, respectively,
denoted by Z [min]

p (·, λ) and Z [max]
p (·, λ). Theminimal principal solution Z [min]

p (·, λ) is unique
up to a right nonsingular constant multiple, by [35, Theorem 7.6]. One easily observes that in
the controllable case all principal solutions coincide (up to a constant nonsingular multiple)
with the minimal principal solution Z [min]

p (·, λ).
Similarly, an antiprincipal solution at infinity of system (Hλ) is defined as a conjoined

basis Z(·, λ) of (Hλ) such that Ker X (t, λ) is constant on [c,∞) for some c ∈ [a,∞) and

rank T (λ) = n − d∞(λ), where T (λ) := lim
t→∞ S†

c (t, λ),

see [36,Definition5.1]. Since again the rank ra(λ)of X (t, λ) for large t lies betweenn−d∞(λ)

and n, we obtain in the case of ra(λ) = n − d∞(λ) the notion of a minimal antiprincipal
solution, while for ra(λ) = n we obtain the notion of a maximal antiprincipal solution.
Minimal and maximal antiprincipal solutions of (Hλ) will be denoted by Z [min]

a (·, λ) and
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Z [max]
a (·, λ), respectively. By [36, Theorem 5.3 and Remark 5.4], antiprincipal solutions of

(Hλ) are characterized by the property that

lim
t→∞ Sc(t, λ) exists, (2.15)

in which case this limit is necessarily equal to T †(λ). Moreover, by [36, Theorem 5.8] the
nonoscillation of system (Hλ) is equivalent with the existence of an antiprincipal solution
Za(·, λ) with ra(λ) := rank Xa(t, λ) for large t lying between n − d∞(λ) and n. Condi-
tion (2.15) then implies that

�max
(
lim

t→∞ Sc(t, λ)
)

< ∞, i.e., ‖ lim
t→∞ Sc(t, λ)‖σ = lim

t→∞ ‖Sc(t, λ)‖σ < ∞ (2.16)

for any antiprincipal solution Z(·, λ) of (Hλ).
In the following statement we recall a limit characterization of the minimal principal

solution Z [min]
p (·, λ), which can be found in [38, Corollary 5.5].

Proposition 2.7 Let λ ∈ R be such that condition (LCλ) holds and system (Hλ) is nonoscil-
latory. In addition, let Z [min](·, λ) and Z [max](·, λ) be minimal and maximal conjoined bases
of system (Hλ) such that Ker X [min](t, λ) is constant and X [max](t, λ) is invertible on [c,∞)

for some c ∈ [a,∞). Define the constant n × n matrices N := W [Z [min](t, λ), Z [max](t, λ)]
for some (and hence) any t ∈ [a,∞) and L := limt→∞ S[max]

c (t, λ)[S[max]
c (t, λ)]† with

S[max]
c (·, λ) given in (2.14) through X [max](·, λ). Then Z [min](·, λ) is the minimal principal

solution and rank N L = n − d∞(λ) if and only if

lim
t→∞[X [max](t, λ)]−1X [min](t, λ) = 0. (2.17)

In this case Z [max](·, λ) is an antiprincipal solution of (Hλ).

Finally, it was shown in [39, Theorem 1] that theminimal principal solution of system (Hλ)
can be obtained by using the Reid construction as stated in the following theorem, see also
[32, Theorem 6.1].

Proposition 2.8 Let λ ∈ R be such that condition (LCλ) holds and system (Hλ) is nonoscil-
latory. Suppose that Z [min](·, λ) is a minimal conjoined basis of system (Hλ) on [c,∞), where
c ∈ [a,∞) is such that dλ[c,∞) = d∞(λ). If Z(·, λ) is a conjoined basis of system (Hλ)
satisfying

W [Z [min](·, λ), Z(t, λ)] ≡ I and [X [min](c, λ)]†X (c, λ) = 0,

then X (t, λ) is invertible for all t large enough and the solution Zτ (·, λ) given by the initial
conditions

Xτ (τ, λ) = 0, Uτ (τ, λ) = −X∗−1(τ, λ)

is a conjoined basis satisfying

Z [min]
p (t, λ) = lim

τ→∞ Zτ (t, λ) for all t ∈ [a,∞).

For completeness we note that the conjoined basis Z(·, λ) from Proposition 2.8 is a maximal
antiprincipal solution of system (Hλ), see [39, Proposition 1].
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3 Weyl solution on real line

In this section we study the problem of extending the Weyl solution X (·, λ) to the real
values of λ, when system (Hλ) is in the limit point case on C\R. This means that we show
a connection of theWeyl solutionwith theminimal principal solution Z [min]

p (·, λ). In addition,

we investigate the square integrability of the columns of Z [min]
p (·, λ).

First we present a natural extension of the Reduction of Order Theorem to system (Hλ),
compare with [8, Proposition 1, pg. 35].

Theorem 3.1 (Reduction of order)Let λ ∈ C be fixed. Let Z(·, λ) be a solution of system (Hλ)
such that (2.4) holds and suppose that X (t, λ) and X (t, λ̄) are invertible on [c,∞) for some
c ∈ [a,∞). Then the 2n × n matrix function Z(·, λ) determined for t ∈ [c,∞) by the blocks

X(t, λ) := X (t, λ) [M + Sc(t, λ) N ], U (t, λ) := U (t, λ) [M + Sc(t, λ) N ] + X∗−1(t, λ̄) N ,

(3.1)

where M, N ∈ C
n×n are arbitrary constant matrices and Sc(t, λ) is defined in (2.14), solves

system (Hλ) and satisfies

W [Z(t, λ̄), Z(t, λ)] ≡ N , W [Z(t, λ̄), Z(t, λ)] ≡ M∗N − N∗M.

Proof The proof is based on straightforward calculations similarly as in the classical Reduc-
tion of Order Theorem, see [8, Proposition 1, pg. 35]. In the proof we utilize the first and third
equalities in (2.2) and the identity U (t, λ̄) X−1(t, λ̄) = X∗−1(t, λ) U∗(t, λ), which follows
from (2.4). ��

Next we derive two formulas for the half-line Weyl–Titchmarsh function M+(λ) from
(2.11) and discuss their form for the Sturm–Liouville differential equations. If Hypothesis 2.3
holds, then the solution Z̃α(·, λ) defined in (2.5) satisfies the assumptions of Theorem 3.1
with c := b andλ ∈ C\R, as it is shown inLemma2.4. Then by (3.1)with Z(·, λ) := Z̃α(·, λ)

and M := 0, N := I we get

X(t, λ) := X̃α(t, λ) S̃b(t, λ), U (t, λ) := Ũα(t, λ) S̃b(t, λ) + X̃∗−1
α (t, λ̄), t ≥ b,

where S̃b(·, λ) denotes the S-matrix defined similarly as in (2.14) through thematrix X̃α(·, λ).
In this case the (columns of the) solutions Z(·, λ) and Z̃α(·, λ) are linearly independent.
Indeed, let us assume that the matrix

(t) :=
(

X(t, λ) X̃α(t, λ)

U (t, λ) Ũα(t, λ)

)

is not invertible. Then there exists ξ = (ξ�
1 , ξ�

2 )� ∈ C
2n\{0} such that (t) ξ = 0 for some

t ≥ b, which is equivalent with the conditions

X̃α(t, λ) [S̃b(t, λ) ξ1 + ξ2] = 0 and Ũα(t, λ) [S̃b(t, λ) ξ1 + ξ2] + X̃∗−1
α (t, λ̄) ξ1 = 0.

However, the invertibility of X̃α(t, λ) implies S̃b(t, λ) ξ1 + ξ2 = 0, which upon substitution
into the second equation yields that ξ1 = 0, and consequently ξ2 = 0. Therefore, the pair
Z(·, λ), Z̃α(·, λ) forms a fundamental system of solutions of (Hλ), which means that there
exist matrices V1, V2 ∈ C

n×n such that

Ẑα(t, λ) ≡ Z(t, λ) V1 + Z̃α(t, λ) V2, t ≥ b. (3.2)
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If we put t = b in (3.2), we obtain by using (2.6) that V1 = −I and V2 = X̃−1
α (b, λ) X̂α(b, λ).

Therefore, the function M+(λ) given in (2.11) can be equivalently written as

M+(λ) = − lim
t→∞ X̃−1

α (t, λ) [X(t, λ) V1 + X̃α(t, λ) V2] = −V2 + lim
t→∞ S̃b(t, λ)

= −X̃−1
α (b, λ) X̂α(b, λ) +

∫ ∞

b
X̃−1

α (t, λ)B(t, λ) X̃∗−1
α (t, λ̄) dt, λ ∈ C\R.

(3.3)

Similarly, the associated conjoined basis Ẑα(·, λ) satisfies the assumptions of Theorem 3.1
for example when Hypothesis 2.5 is satisfied. In that case we get from (3.1) with the choices
Z(·, λ) := Ẑα(·, λ) and M := 0, N := I that

X(t, λ) := X̂α(t, λ) Ŝb(t, λ), U (t, λ) := Ûα(t, λ) Ŝb(t, λ) + X̂∗−1
α (t, λ̄), t ≥ b,

where Ŝb(·, λ) is defined as in (2.14) through X̂α(·, λ). Then the solutions Z(·, λ) and Ẑα(·, λ)

are linearly independent, which means that Z̃α(t, λ) ≡ Z(t, λ) V1 + Ẑα(t, λ) V2 for all
t ≥ b and some matrices V1, V2 ∈ C

n×n . Since by using (2.7) we obtain V1 = I and
V2 = X̂−1

α (b, λ) X̃α(b, λ), the function M+(λ) given in (2.11) has also the form

M+(λ) = − lim
t→∞[X(t, λ) V1 + X̂α(t, λ) V2]−1 X̂α(t, λ) = − lim

t→∞[V2 + Ŝb(t, λ)]−1

= − lim
t→∞

[
X̂−1

α (b, λ) X̃α(b, λ) +
∫ t

b
X̂−1

α (τ, λ)B(τ, λ) X̂∗−1
α (τ, λ) dτ

]−1

, λ ∈ C\R.

(3.4)

Formulas (3.3) and (3.4) are new in the context of abnormal aswell as completely controllable
linear Hamiltonian systems (Hλ).

Remark 3.2 From identities (3.3) and (3.4) we can derive new formulas for the function
M+(λ) associated with the even order n-vector-valued Sturm–Liouville differential equation

(−1)m [Pm(t) y(m)(t, λ)](m) + (−1)m−1 [Pm−1(t) y(m−1)(t, λ)](m−1)

+ · · · + [P2(t) y′′(t, λ)]′′ − [P1(t) y′(t, λ)]′ + P0(t) y(t, λ) = λW (t) y(t, λ),

⎫⎬
⎭ (3.5)

where m ∈ N, P0(t), . . . , Pm(t), W (t) ∈ C
n×n , W (t) = W ∗(t) ≥ 0, P0(t), . . . , Pm(t) are

Hermitian, Pm(t) is invertible, and y(t, λ) ∈ C
n for all t ∈ [a,∞) and λ ∈ C. Equation (3.5)

is equivalent with system (Hλ), where

A(t) ≡

⎛
⎜⎜⎜⎜⎜⎝

0 I 0 . . . 0
0 0 I . . . 0
...

...
. . .

. . .
...

0 0 0 . . . I
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

,

B(t) = diag{0, . . . , 0, P−1
m (t)},

C(t) = diag{P0(t), P1(t), . . . , Pm−1(t)},
W1(t) = diag{W (t), 0, . . . , 0},
W2(t) = W4(t) ≡ 0

⎫⎬
⎭

(3.6)

with A(t), B(t), C(t), W1(t), W2(t), W4(t) ∈ C
nm×nm , see e.g., [8, Section 2.7] for more

details. Observe that in this special case the corresponding Legendre condition (LCλ) does
not depend on λ. If W (t) > 0 on [a,∞), then Hypothesis 2.5 is satisfied for any b > a,
which implies that X̃(0,I )(t, λ) is invertible on [a,∞) for all λ ∈ C\R, see Lemma 2.4. Then
for the system (Hλ), and consequently also for equation (3.5), being in the limit point case,
we obtain from (3.3) that

M+(λ) =
∫ ∞

a
X̃−1

(0,I )(t, λ) diag
{
0, . . . , 0, P−1

m (t)
}

X̃∗−1
(0,I )(t, λ̄) dt, λ ∈ C\R,
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because X̃−1
(0,I )(a, λ) X̂(0,I )(a, λ) = 0. Similarly, the matrix X̂ I (t, λ) = X̂(I,0)(t, λ) is invert-

ible on [a,∞) × C\R. Hence in the limit point case we obtain from (3.4) that

M+(λ) = − lim
t→∞

[ ∫ t

a
X̂−1

I (τ, λ) diag{0, . . . , 0, P−1
m (t)} X̂∗−1

I (τ, λ) dτ

]−1

, λ ∈ C\R,

(3.7)
because X̂−1

I (a, λ) X̃ I (a, λ) = 0. In particular, identity (3.7) reduces to [7, Identity (117)]
in the case of m = 1, and to [7, Identity (58)] if m = n = 1.

In the following resultwedescribe a connection between theWeyl solution and theminimal
principal solution of system (Hλ). This result will allow to extend formulas (3.3) and (3.4) for
M+(λ) to certain real values of λ. Denote by X+(·, λ) the Weyl solution defined as in (2.8)
with the matrix M := M+(λ). Then Hypothesis 2.3 guarantees that X+(·, λ) is well defined
for any λ ∈ C\R. In this case we have all basic information about the number and structure
of square integrable solutions as well as about the functions X+(·, λ) and M+(λ). But the
situation starts to be more complicated when λ approaches the real line. This problem is
solved in the limit point case in the following theorem, which generalizes [7, Theorems 2.13
and 3.11]. We also note that the construction utilized in the proof is slightly different than
the one used in [7, Theorem 3.11].

Theorem 3.3 Let system (Hλ) be in the limit point case for all λ ∈ C\R. Let ν ∈ R be
such that (LCν) holds and system (Hν) is nonoscillatory. Moreover, let α ∈ � be such
that Hypothesis 2.3 holds and the associated solution Ẑα(·, ν) defined in (2.5) is a minimal
conjoined basis of (Hν) on [c,∞) with X̂†

α(c, ν) X̃α(c, ν) = 0 for some c ∈ [a,∞). Then
the Weyl solution X+(·, λ) can be extended to λ = ν and X+(·, ν) is the minimal principal
solution of system (Hν).

Proof Let the assumptions hold. Then for any λ ∈ C\R the Weyl solution X+(·, λ) satisfies

X+(t, λ)
(2.11)= Ẑα(t, λ) + Z̃α(t, λ)

[− lim
τ→∞ X̃−1

α (τ, λ) X̂α(τ, λ)
]

= lim
τ→∞

(
X̂α(t, λ) − X̃α(t, λ) X̃−1

α (τ, λ) Xα(τ, λ)

Ûα(t, λ) − Ũα(t, λ) X̃−1
α (τ, λ) Xα(τ, λ)

)
= lim

τ→∞ Zτ (t, λ), (3.8)

where, by Lemma 2.4, the solution Zτ (·, λ) satisfies

Zτ (τ, λ) =
(
0
Uα(τ, λ) − Ũα(τ, λ) X̃−1(τ, λ) Xα(τ, λ)

)
(2.6)=

(
0
−X̃∗−1

α (τ, λ̄)

)

for τ ≥ b. This means that Zτ (·, λ) is the same solution as the one in Proposition 2.8. At
the same time the assumptions of the theorem imply that the limit on the right-hand side
of (3.8) exists also for λ = ν and is equal to Z [min]

p (·, ν), by Proposition 2.8. Therefore, by

the continuous dependence of solutions on the spectral parameter λ, the function Z [min]
p (·, ν)

represents an extension of the Weyl solution X+(·, λ) to λ = ν. ��
Remark 3.4 (i) The proof of Theorem 3.3 shows that the Weyl solution X+(·, λ) extends to

the value λ = ν, at which it coincides with the minimal principal solution Z [min]
p (·, ν)

obtained from the Reid construction in Proposition 2.8.
(ii) If the assumptions of Theorem 3.3 are satisfied for all ν ∈ (λ1, λ2), where −∞ ≤ λ1 <

λ2 ≤ ∞, then the Weyl solution X+(·, λ) can be analytically extended to λ ∈ (λ1, λ2)

and for these values of λ it is the minimal principal solution of (Hλ), compare with [33,
Problem I.10.4, pg. 79].
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The result in Theorem 3.3 is new even for the controllable system (Hν), in which case we
obtain the following statement.

Corollary 3.5 Let system (Hλ) be in the limit point case for all λ ∈ C\R. Let ν ∈ R be such
that (LCν) holds and system (Hν) is completely controllable and nonoscillatory. Moreover, let
α ∈ � be such that Hypothesis 2.3 holds and the associated conjoined basis Ẑα(·, ν) defined
in (2.5) is such that X̂α(t, ν) is invertible on [c,∞) for some c ∈ [a,∞) and X̃α(c, ν) = 0.
Then the Weyl solution X+(·, λ) can be extended to λ = ν and X+(·, ν) is the minimal
principal solution of system (Hν). Consequently, if the above assumptions are satisfied for
all ν ∈ (λ1, λ2), where −∞ ≤ λ1 < λ2 ≤ ∞, then the Weyl solution X+(·, λ) can be
analytically extended to λ ∈ (λ1, λ2) and for these values of λ it is the principal solution
of (Hλ).

Remark 3.6 (i) The application of Proposition 2.8 in the latter proof clarifies the impor-
tance of the role of α in the initial values for Ẑα(·, λ) and Z̃α(·, λ). If ν ∈ R is as in
Theorem 3.3, then in general it is not possible to anticipate that for a particular choice
of α the solution Ẑα(·, ν) will be a minimal conjoined basis. This fact is always true
only in the controllable case. In addition, if system (Hν) is controllable, disconjugate,
and det X̂ I (t, ν) �= 0 for all t ∈ [a,∞) as in [7, Section 3], then we can take without
lost of generality α = (I, 0).

(ii) If the assumptions of Theorem 3.3 and Proposition 2.7 are satisfied for the conjoined
bases Z [min](·, ν) := Z [min]

p (·, ν) and Z [max](·, ν) := Z̃α(·, ν), then from the equality

Z [min]
p (t, ν) = X+(t, ν) and identity (2.17) we can derive the corresponding value of

M+(ν). More precisely, we have

M+(ν) = − lim
t→∞ X̃−1

α (t, ν) X̂α(t, ν). (3.9)

This implies together with [39, Identity (10)] that

M+(ν) = − lim
t→∞ Ŝ †

c (t, ν) = − lim
t→∞

[ ∫ t

c
X̂ †

α (τ, ν)B(τ, ν) X̂ †∗
α (τ, ν) dτ

]†
, (3.10)

compare with (3.4). Let us also note that the condition rank N L = n − d∞(ν) in
Proposition 2.7 is trivially satisfied if det N �= 0, i.e., if the solutions Z [min]

p (·, ν) and

Z̃α(·, ν) are linearly independent. Especially, if Z [min]
p (·, ν) = Ẑα(·, ν), then M+(ν) =

0, which obviously agrees with formula (3.10), see (2.17) and (2.14).
(iii) However, the additional assumptions in part (ii) are never satisfied in the controllable

case. Fortunately, in that case it suffices to assume only the linear independence of
Z [min]

p (·, ν) and Z̃α(·, ν). Since X̃α(·, ν) is invertible on [d,∞) for some d ∈ [a,∞),
it follows that (3.9) holds by the definition of the (minimal) principal solution. The
symplectic property of the fundamental matrix 	α(t, ν) then implies the equality[

X̃−1
α (t, ν) X̂α(t, ν)

]′ = −X̃−1
α (t, ν)B(t, ν) X̃∗−1

α (t, ν). (3.11)

Upon combining (3.9) and (3.11) we obtain the formula

M+(ν) = −X̃−1
α (d, ν) X̂α(d, ν) + lim

t→∞

∫ t

d
X̃−1

α (τ, ν)B(τ, ν) X̃∗−1
α (τ, ν) dτ. (3.12)

(iv) Similar conclusion as in Theorem 3.3 is hidden, in some sense, in the exponential
dichotomy for a class of linear Hamiltonian differential systems studied in [10–12,18,
19] and recently in [21, Section 5.6].
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The result of Theorem 3.3 is illustrated in the following example, where system (Hλ) is
the 2 × 2 Dirac system with constant real-valued coefficients.

Example 3.7 Let us consider the scalar system (Hλ) on [0,∞) with

H(t, λ) =
(

p q + λ

r − λ −p

)
, i.e., H(t) ≡

(
p q
r −p

)
, W(t) ≡ diag{1, 1}, (3.13)

where p, q, r ∈ R are given constants with p > 0 and q �= −r , compare with [47, Exam-
ple 3.1]. If we choose α = (0, 1), then we obtain the fundamental matrix 	(0,1)(t, λ) =(
Ẑ(0,1)(t, λ), Z̃(0,1)(t, λ)

)
of (Hλ) with (3.13) in the form

	(0,1)(t, λ) =
(

q+λ
ω(λ)

sinh(ω(λ) t) − cosh(ω(λ) t) − p
ω(λ)

sinh(ω(λ) t)

cosh(ω(λ) t) − p
ω(λ)

sinh(ω(λ) t) − r−λ
ω(λ)

sinh(ω(λ) t)

)

for all λ ∈ C\{λ1,2}, where

ω(λ) :=
√

p2 + (q + λ)(r − λ), λ1,2 := ( − q + r ±
√

(q + r)2 + 4p2
)
/2,

i.e., λ1,2 ∈ R are the zeros of ω(λ) and the principal square root is taken in ω(λ). Since
we have Z̃∗

(0,1)(t, λ)W(t) Z̃(0,1)(t, λ) > 0 on [0,∞), Hypothesis 2.3 is satisfied with any

b > 0. Moreover, one can easily see that Ẑ(·, λ), Z̃(·, λ) /∈ L2
W for any λ ∈ C\R, so that

system (Hλ) with (3.13) is in the limit point case for all λ ∈ C\R. Then by (2.11) we get for
all λ ∈ C\R that

M+(λ) = lim
t→∞

q + λ

ω(λ) coth(ω(λ) t) + p
= q + λ

p + ω(λ)
,

because reω(λ) > 0 for λ ∈ C\R implies that limt→∞ coth(ω(λ) t) = 1. Hence, by (2.8)
we have for λ ∈ C\R the Weyl solution

X+(t, λ) =
(

− q+λ
ω(λ)+p

1

)
e−ω(λ) t , X+(·, λ) ∈ L2

W . (3.14)

Since the principal square root is not well defined for negative real numbers, theWeyl solution
X+(·, λ) can be extended to C\((∞, λ1) ∪ (λ2,∞)

)
and on the interior of this region the

function X+(·, λ) is analytic and square integrable. On the other hand, for α = (1, 0) we
have

	I (t, λ) =
(
cosh(ω(λ) t) + p

ω(λ)
sinh(ω(λ) t) q+λ

ω(λ)
sinh(ω(λ) t)

r−λ
ω(λ)

sinh(ω(λ) t) cosh(ω(λ) t) − p
ω(λ)

sinh(ω(λ) t)

)
,

(3.15)
which yields by (2.11) and (2.8) the functions

M̂+(λ) = − p + ω(λ)

q + λ
, X̂+(t, λ) = −ω(λ) + p

q + λ
X+(t, λ). (3.16)

We can see that the Weyl solution X̂+(t, λ) is not defined for λ = −q .
Since the Legendre condition for (Hλ) is satisfied when λ ≥ −q , the conclusion of

Theorem 3.3 will hold on the interval [−q, λ2] ⊆ [λ1, λ2]. System (Hλ) with (3.13) is
controllable for λ ∈ R\{−q} and nonoscillatory for λ ∈ R such that ω(λ) ≥ 0, i.e., for
λ ∈ [λ1, λ2].

If λ ∈ (−q, λ2) and α = (1, 0), then Ẑ I (·, λ), which is the first column of 	I (·, λ) in
(3.15), satisfies the assumptions of Theorem 3.3 with c = 0. This means that for these values
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of λ the minimal principal solution Z [min]
p (t, λ) coincides (up to a constant nonzero multiple)

with the Weyl solution X̂+(t, λ) in (3.16).
Similarly, the assumptions of Theorem 3.3 are satisfied for λ = −q with c = 0 and

α = (0, 1). In this case, the order of abnormality is d∞(−q) = 1 and the corresponding
minimal principal solution is Z [min]

p (t,−q) = (0, 1)�e−p t , which coincides with the Weyl
solution X+(t,−q) in (3.14).

Finally, for λ = λ2 �= −q we obtain the same result with the choice of α = (1, 0), i.e.,
with

	I (t, λ2) =
(

pt + 1 (λ2 + q) t

− p2

λ2+q t 1 − pt

)
.

In this case the minimal principal solution Z [min]
p (t, λ2) = (λ2+q, −p)� is again a constant

multiple of the Weyl solution X̂+(t, λ2) in (3.16), but Z [min]
p (·, λ2) /∈ L2

W . Let us also note
that the previous choices of the matrices α are the only possibilities satisfying the conditions
of Theorem 3.3 for c = 0.

In addition, we can calculate the M+(λ) function according to formulas (3.10) and (3.12)
from Remark 3.6(ii), because the additional assumptions are satisfied in all three cases. In
particular, for λ ∈ (−q, λ2) we have M+(λ) = −[p + ω(λ)]/(q + λ) by (3.12) with d = 1,
for λ = λ2 we get M+(λ2) = −p/(q + λ2) by (3.12) with d = 1, and for λ = −q
we get M+(−q) = 0 by (3.10), which agrees with the equality between Ẑ(0,1)(t,−q) and
Z [min]

p (t,−q).
We note for completeness that for λ ∈ [λ1,−q) we cannot discuss principal solutions, as

the Legendre condition (LCλ) is not satisfied in this case. However, the corresponding Weyl
solution X+(·, λ) possesses similar properties as above. ��

In the last part of this section we focus on the square integrability of the columns of the
minimal principal solution Z [min]

p (·, ν). From the above result we know that Z [min]
p (·, ν) is

essentially equal to theWeyl solutionX+(·, ν), whenever the assumptions of Theorem 3.3 are
satisfied. In the limit point case and under Hypothesis 2.3, the columns of the Weyl solution
X+(·, λ) for λ ∈ C\R form a basis of the space N (λ) of all square integrable solutions of
(Hλ). At the same time, for λ ∈ R the number of square integrable solutions of (Hλ) can be
less (but not greater) than n, see [26, Lemma 2.25]. In some very special cases, such as for
equation (3.5) with m = n = 1 in the limit point case, it is possible to obtain an information
about the square integrability of the (minimal) principal solutionwhenever a square integrable
solution exists. The proof of this fact utilizes the following three tools: (i) the equality between
theWeyl solution and the (minimal) principal solution, (ii) any solution is eitherminimal (and
simultaneously maximal) principal or maximal (and simultaneously minimal) antiprincipal,
and (iii) the limit characterization of principal solutions, see [7, Theorem 2.13] and also [49,
Theorem 3.5].

In the next resultwe establish an analogous result for system (Hλ)withW2(t) = W4(t) ≡ 0
on [a,∞). This restriction is a direct consequence of the fact that the properties of
(anti-)principal solutions are related to the block X (·, λ), while the square integrability
depends in general also on the block U (·, λ). We note that the result below does not rely
on Theorem 3.3 or on the limit point case. Its last part can be used as a simple limit circle
test for (Hλ).

Theorem 3.8 Let W2(t) = W4(t) ≡ 0 on [a,∞). Suppose that ν ∈ R is such that (LCν)
holds and system (Hν) is nonoscillatory. Let Z [min]

p (·, ν) and Z [max]
a (·, ν) be the minimal prin-

cipal solution and a maximal antiprincipal solution of (Hν) such that rank N L = n −d∞(ν),
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where the matrices N and L are defined in Proposition 2.7. If all columns of Z [max]
a (·, ν)

belong to L2
W , then all columns of Z [min]

p (·, ν) do as well and consequently, system (Hν) has
at least 2n − d∞(ν) linearly independent solutions in L2

W , i.e., dimN (ν) ≥ 2n − d∞(ν).

Especially, if the (columns of the) two solutions Z [min]
p (·, ν) and Z [max]

a (·, ν) are linearly
independent, then system (Hλ) is in the limit circle case for all λ ∈ C if and only if all
columns of Z [max]

a (·, ν) belong to L2
W .

Proof For simplicity we abbreviate Z p(t, ν) := Z [min]
p (t, ν) and Za(t, ν) := Z [max]

a (t, ν)

for t ∈ [a,∞). Then Proposition 2.7 yields that

lim
t→∞ X−1

a (t, ν) X p(t, ν) = 0, or equivalently lim
t→∞ ‖X−1

a (t, ν) X p(t, ν)‖σ = 0.

This means that there exists ω > 0 such that

‖X−1
a (t, ν) X p(t, ν)‖σ ≤ ω, or equivalently ‖X∗

p(t, ν) X∗−1
a (t, ν)‖σ ≤ ω,

for all t ∈ [c,∞) with c ∈ [a,∞) large enough. If we define the Hermitian matrix

ϒ(t) := X−1
a (t, ν) X p(t, ν) X∗

p(t, ν) X∗−1
a (t, ν), t ∈ [c,∞),

then we have �max[ϒ(t)] ≤ ω2. This implies that ϒ(t) ≤ �max[ϒ(t)] I ≤ ω2 I . Thus, it
holds

X p(t, ν) X∗
p(t, ν) ≤ ω2Xa(t, ν) X∗

a(t, ν).

Upon multiplying the latter equality by W 1/2
1 (t) ≥ 0 from both sides and using the fact that

the value of �max(·) preserves the ordering of Hermitian matrices, we obtain

‖W 1/2(t) X p(t, ν)‖σ ≤ ‖W 1/2(t) Xa(t, ν)‖σ . (3.17)

As a consequence of the special structure of W(·), it follows that all columns of Za(·, ν)

belong to L2
W if and only if

∫ ∞
a ‖W 1/2(t) Xa(t, ν)‖σ dt < ∞. But in that case also∫ ∞

a ‖W 1/2(t) X p(t, ν)‖σ dt < ∞, by (3.17), which yields that all columns of Z p(·, ν) belong
to L2

W . Since rank N L = n − d∞(ν) is assumed, it follows that

rank W [Z p(t, ν), Za(t, ν)] ≡ rank N ≥ n − d∞(ν).

This means that at least n−d∞(ν) columns of Z p(·, ν) and Za(·, ν) are linearly independent,
and by the previous part these columns belong to L2

W . Therefore, the number of square
integrable solutions of system (Hν) is at least 2n − d∞(ν). In particular, if the solutions
Z p(·, ν) and Za(·, ν) are linearly independent and if all columns of Za(·, ν) belong to L2

W ,
then all columns of Z p(·, ν) belong toL2

W as well and hence dimN (ν) = 2n. The invariance
of the limit circle case then yields dimN (λ) = 2n for all λ ∈ C. The converse of the stated
equivalence follows from the definition of the limit circle case. ��

For controllable system (Hν) we obtain from Theorem 3.8 the following result.

Corollary 3.9 Let W2(t) = W4(t) ≡ 0 on [a,∞). Suppose that ν ∈ R is such that
(LCν) holds and system (Hν) is completely controllable and nonoscillatory. Let Za(·, ν)

be an antiprincipal of (Hν) such that all its columns belong to L2
W . Then system (Hλ) is in

the limit circle case for all λ ∈ C.

Proof If system (Hν) is completely controllable and nonoscillatory, then its principal and
antiprincipal solutions Z p(·, ν) and Za(·, ν) are linearly independent. Therefore, if all
columns of Za(·, ν) belong to L2

W , then system (Hλ) is in the limit circle case for all λ ∈ C

by the last part of Theorem 3.8. ��
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In the scalar and uncontrollable case, i.e., for n = 1 and d∞(ν) = 1, the conclusion of
Theorem3.8 is trivial. On the other hand, in the scalar and controllable case, i.e., for n = 1 and
d∞(ν) = 0, the result in Theorem 3.8 or in Corollary 3.9 yields that the existence of a square
integrable solution of (Hν) always implies the square integrability of the principal solution
of this system. Especially, in the limit point case we obtain the following generalization of
[7, Theorem 2.13], see also equation (3.5) with m = n = 1.

Corollary 3.10 Let n = 1 and W2(t) = W4(t) ≡ 0 on [a,∞). Suppose that ν ∈ R is such
that (LCν) holds and system (Hν) is completely controllable, nonoscillatory, and in the limit
point case. If (Hν) possesses a square integrable solution, then it is its principal solution.

4 Non-limit circle case criterion

In this section we establish a non-limit circle criterion for system (Hλ), i.e., a sufficient
condition for the existence of a solution which does not belong to L2

W . The presented result
is new even in the controllable case and it generalizes one of the classical limit point criteria
for the second-order Sturm–Liouville differential equations in [30, Theorem 4.1], see also
[14] and [9, Theorem 11.6]. Here we assume that the weight matrixW(t) is block diagonal,
i.e., W2(t) ≡ 0 on [a,∞), which is enforced by the usedmethod, see Remark 4.2(ii) for more
details. We note that such system (Hλ) satisfies the limit circle invariance, since condition
(2.13) is trivially satisfied in this case. Also, system (Hλ) of this form is general enough
to include several important equations, such as equation (3.5), the Schrödinger system (for
W1(t) ≡ I and W4(t) ≡ 0), see Remark 4.2(iii) and, e.g., [5,13,27], or the Dirac system
(for W(t) ≡ I ). The latter system is, however, known to be in the limit point case, by [6,
Lemma 2.15].

Theorem 4.1 Let W2(t) ≡ 0 on [a,∞). If there exists ν ∈ R such that system (Hν) is
nonoscillatory, the Legendre condition (LCν) holds, and

lim
t→∞ �max

(∫ t

a

[
W 1/2

1 (τ )B(τ, ν) W 1/2
1 (τ )

]1/2
dτ

)
= ∞, (4.1)

then system (Hλ) is not in the limit circle case for any λ ∈ C. That is, for every λ ∈ C there
exists a solution z(·, λ) of (Hλ) such that z(·, λ) /∈ L2

W .

Proof The assumption W2(t) ≡ 0 on [a,∞) guarantees by (2.13) the invariance of the limit
circle case, which implies that it suffices to prove the existence of a non-square integrable
solution of (Hλ) for some λ ∈ C. We will show that system (Hν) is not in the limit circle
case, where ν is the value from the assumptions of the theorem. By contradiction, suppose
that all solutions of (Hν) belong to L2

W . First we note that for any 2n × n solution Z(·, ν) =(
z1(·, ν), . . . , zn(·, ν)

)
of (Hν) the matrix Z∗(t, ν)W(t) Z(t, ν) is positive semidefinite, so

that for i, j ∈ {1, . . . , n} we have
0 ≤ |z∗

i (t, ν)W(t) z j (t, ν)| ≤ [
z∗

i (t, ν)W(t) zi (t, ν) × z∗
j (t, ν)W(t) z j (t, ν)

]1/2
≤ 1

2

[
z∗

i (t, ν)W(t) zi (t, ν) + z∗
j (t, ν)W(t) z j (t, ν)

]
, (4.2)

on [a,∞) by the inequality of the arithmetic and geometric means. Thus, the assumption
that the solutions z1(·, ν), . . . , zn(·, ν) belong to L2

W implies that∫ ∞

a
‖Z∗(t, ν)W(t) Z(t, ν)‖σ dt < ∞. (4.3)
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Since the Legendre condition (LCν) holds and system (Hν) is nonoscillatory, there exists
a maximal antiprincipal solution Za(·, ν) := Z [max]

a (·, ν) of (Hν), i.e., det X [max]
a (t, ν) �= 0

for all t ∈ [c,∞) with some c ∈ [a,∞) large enough. From the definition of the spectral
norm, the factW4(t) ≥ 0on [a,∞), the blockdiagonal formofW(t), and inequalities (2.1)(i),
(2.1)(iii), and (4.3) we obtain∫ ∞

a

∥∥∥W 1/2
1 (t) Xa(t, ν)

∥∥∥2
σ
dt

=
∫ ∞

a

∥∥X∗
a(t, ν) W1(t) Xa(t, ν)

∥∥
σ
dt

≤
∫ ∞

a

∥∥X∗
a(t, ν) W1(t) Xa(t, ν) + U∗

a (t, ν) W4(t) Ua(t, ν)
∥∥

σ
dt

=
∫ ∞

a

∥∥Z∗
a(t, ν)W(t) Za(t, ν)

∥∥
σ
dt < ∞. (4.4)

Now let t ∈ [c,∞) and denote the rows of X−1
a (t, ν) as ξ1(t), . . . , ξn(t). Then it follows

from (2.16) that the diagonal elements of X−1
a (t, ν)B(t, ν) X∗−1

a (t, ν), i.e., the functions
ξi (t)B(t, ν) ξ∗

i (t), satisfy ∫ ∞

c
ξi (t)B(t, ν) ξ∗

i (t) dt < ∞.

Since condition (LCν) implies the positive semidefiniteness of X−1
a (t, ν)B(t, ν) X∗−1

a (t, ν),
we obtain similarly as in (4.2) the estimate

|ξi (t)B(t, λ) ξ∗
j (t)| ≤ 1

2

[
ξi (t)B(t, ν)ξ∗

i (t) + ξ j (t)B(t, ν) ξ∗
j (t, ν)

]
for all i, j = 1, ..., n.

This implies in addition to (2.16) that∫ ∞

c

∥∥X−1
a (t, ν)B(t, ν) X∗−1

a (t, ν)
∥∥

σ
dt < ∞. (4.5)

Consequently for any t ≥ c we have

�max

(∫ t

c

[
W 1/2

1 (τ ) B(τ, ν) W 1/2
1 (τ )

]1/2
dτ

)
(2.1)(i)=

∥∥∥∥
∫ t

c

[
W 1/2

1 (τ ) B(τ, ν) W 1/2
1 (τ )

]1/2
dτ

∥∥∥∥
σ

≤
∫ t

c

∥∥∥∥
[
W 1/2

1 (τ ) B(τ, ν) W 1/2
1 (τ )

]1/2∥∥∥∥
σ

dτ
(2.1)(i i)=

∫ t

c

∥∥∥W 1/2
1 (τ ) B(τ, ν) W 1/2

1 (τ )

∥∥∥1/2
σ

dτ

=
∫ t

c

∥∥∥W 1/2
1 (τ ) Xa(τ, ν) X−1

a (τ, ν) B(τ, ν) X∗−1
a (τ, ν) X∗

a(τ, ν) W 1/2
1 (τ )

∥∥∥1/2
σ

dτ

≤
∫ t

c

(∥∥∥W 1/2
1 (τ ) Xa(τ, ν)

∥∥∥
σ

∥∥∥X−1
a (τ, ν) B(τ, ν) X∗−1

a (τ, ν)

∥∥∥
σ

∥∥∥X∗
a(τ, ν) W 1/2

1 (τ )

∥∥∥
σ

)1/2
dτ

=
∫ t

c

(∥∥∥W 1/2
1 (τ ) Xa(τ, ν)

∥∥∥2
σ

)1/2 (∥∥∥X−1
a (τ, ν) B(τ, ν) X∗−1

a (τ, ν)

∥∥∥
σ

)1/2
dτ

≤ 1

2

∫ t

c

(∥∥∥W 1/2
1 (τ ) Xa(τ, ν)

∥∥∥2
σ

+
∥∥∥X−1

a (τ, ν) B(τ, ν) X∗−1
a (τ, ν)

∥∥∥
σ

)
dτ, (4.6)

where we used also the submultiplicative property of ‖·‖σ and the inequality of arithmetic
and geometric means. But as t → ∞ in (4.6) we obtain that the right-hand side of (4.6) tends
to a finite limit, by (4.4) and (4.5). This is a contradiction with (4.1), and hence system (Hν)
possesses at least one solution z(·, ν) /∈ L2

W . The proof is complete. ��
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Remark 4.2 (i) In the previous proofwe utilized themaximal antiprincipal solution Za(·, ν),
which has Xa(t, ν) eventually invertible. Nevertheless, the same arguments can be used
when Za(·, ν) is any antiprincipal solution of (Hν). In this case we replace X−1

a (·, ν)

by X†
a(·, ν) and use the identities

Xa(t, ν) X†
a(t, ν)B(t, ν) = B(t, ν) = B∗(t, ν) = B∗(t, ν)X†∗

a (t, ν) X∗
a(t, ν)

on [c,∞), see [24, Lemma 2] and [35, Theorem 4.2], where c ∈ [a,∞) is such that
Ker Xa(t, ν) is constant on [c,∞).

(ii) The block diagonal structure of W(t) is required to guarantee the validity of inequal-
ity (4.4), which is crucial in the proof of the convergence of (4.6). In the general case
we have∫ ∞

a
z∗(t, λ)W(t) z(t, λ) dt =

∫ ∞

a

[
x∗(t, λ) W1(t) x(t, λ) + u∗(t, λ) W4(t) u(t, λ)

+ 2 re
(
x∗(t, λ) W2(t) u(t, λ)

)]
dt

and this integral may be convergent even if
∫ ∞

a x∗(t, λ) W1(t) x(t, λ) dt is divergent.

Indeed, consider system (Hλ) with H(t) ≡
(
0 1
1 0

)
and the weight matrix W(t) =

e−2t
(
cosh t − sinh t
− sinh t cosh t

)
≥ 0 for t ∈ [0,∞). For λ = 0 the principal and antiprincipal

solutions are z p(t, 0) = (e−t ,− e−t )� and za(t, 0) = (et , et )�. Since
∫ ∞

0
z∗

p(t, 0)W(t) z p(t, 0) dt =
∫ ∞

0
2 e−4t (cosh t + sinh t) dt =

∫ ∞

0
2 e−3t dt = 2/3,

∫ ∞

0
z∗

a(t, 0)W(t) za(t, 0) dt =
∫ ∞

0
2 (cosh t − sinh t) dt =

∫ ∞

0
2 e−t dt = 2,

and condition (2.13) is trivially satisfied for ν = 0, this system is in the limit circle case
for all λ ∈ C. But in contrast with (4.4) we have∫ ∞

0
x∗

a (t, 0) W1(t) xa(t, 0) dt =
∫ ∞

0
cosh t dt = ∞.

(iii) For the second-order Sturm–Liouville differential equation, i.e., equation (3.5) with
m = n = 1, Theorem 4.1 reduces to the limit point criterion in [30, Theorem 4.1]
mentioned at the beginning of this section. In particular, condition (4.1) has the form

∫ ∞

a

√
W (t)

P1(t)
dt = ∞.

On the other hand, for the second-order vector-valued Sturm–Liouville equations, i.e.,
for (3.5)withm = 1 andn ≥ 2,Theorem4.1 yields a new result, inwhich condition (4.1)
reads as

lim
t→∞ �max

(∫ t

a

[
W 1/2(τ ) P−1

m (τ ) W 1/2(τ )
]1/2

dτ

)
= ∞.

But, surprisingly, the criterion in Theorem 4.1 is not applicable when m ≥ 2, because
in that case assumption (4.1) is not satisfied, as W 1/2

1 (t)B(t, ν) W 1/2
1 (t) ≡ 0 on [a,∞)

by (3.6). This fact also shows that condition (4.1) is not necessary for the existence of
a non-square integrable solution. For completeness we note that condition (4.1) for (3.5)
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can be satisfied only when the right-hand side of (3.5) is replaced by the expression
λ W (t) y(m−1)(t, λ). ��

Now we provide several examples illustrating the result of Theorem 4.1. In the first
example we consider a 4 × 4 controllable system with constant coefficients satisfying the
assumptions of Theorem4.1 and show that there exist atmost two linearly independent square
integrable solutions for any λ ∈ C. This observation opens the question if it is possible to
state Theorem 4.1 as a limit point criterion analogously to the case of the second-order
Sturm–Liouville equation.

Example 4.3 Let [a,∞) = [0,∞) and consider the system

(Hλ) with A(t) ≡ 0, B(t) ≡ diag{p, q}, C(t) ≡ diag{r, s}, W(t) = diag{1, 1, 1, 0},
(4.7)

where p, r , s are nonnegative and q > 0. Then W 1/2
1 (t)B(t, λ) W 1/2

1 (t) = B(t, λ) =
diag{p + λ, q} and condition (4.1) is satisfied with ν = 0, because

lim
t→∞ �max

(∫ t

0

[
W 1/2

1 (τ )B(τ, 0) W 1/2
1 (τ )

]1/2
dτ

)
= lim

t→∞ �max

(∫ t

0

(√
p 0

0
√

q

)
dτ

)

= lim
t→∞max{√p,

√
q} t = ∞.

Assume first that λ /∈ {−p, r, s}. Then system (4.7) corresponds to the pair of equations

y′′
1 (t, λ) = (p + λ)(r − λ) y1(t, λ), y′′

2 (t, λ) = q(s − λ) y2(t, λ),

and the functions

z1,2(t, λ) =

⎛
⎜⎜⎜⎝
e±√

(p+λ)(r−λ) t

0
±√

(p+λ)(r−λ)
p+λ

e±√
(p+λ)(r−λ) t

0

⎞
⎟⎟⎟⎠ , z3,4(t, λ) =

⎛
⎜⎜⎜⎝
0
e±√

q(s−λ) t

0

±
√

s−λ
q e±√

q(s−λ) t

⎞
⎟⎟⎟⎠

form its fundamental system of solutions. For λ = −p the linearly independent solutions of
(4.7) are

z1(t, −p) =

⎛
⎜⎜⎝
0
0
1
0

⎞
⎟⎟⎠ , z2(t, −p) =

⎛
⎜⎜⎝
1
0
(r + p) t
0

⎞
⎟⎟⎠ , z3,4(t, −p) =

⎛
⎜⎜⎜⎝
0
e±√

q(s+p) t

0

±
√

s+p
q e±√

q(s+p) t

⎞
⎟⎟⎟⎠ .

Similar situation occurs for λ ∈ {r, s}. These calculations show that system (4.7) is nonoscil-
latory for all λ ∈ [−p, r ]∩(−∞, s]. Therefore, the assumptions of Theorem 4.1 are satisfied
with ν = 0 and it follows that system (4.7) possesses at least one non-square integrable solu-
tion for allλ ∈ C. This fact can be verified directly, because z1(·, λ) /∈ L2

W whenλ ∈ (−p, r),
and z1(·, λ), z2(·, λ) /∈ L2

W when λ ∈ (−∞,−p] ∪ [r,∞). Similarly, for λ ∈ (−∞, s) we
have z3(·, λ) /∈ L2

W and forλ ∈ [s,∞)weobtain z3(·, λ), z4(·, λ) /∈ L2
W . Hence there exist at

most two linearly independent square integrable solutions of system (4.7), i.e., dimN (λ) ≤ 2
for all λ ∈ R. Moreover, system (4.7) is in the limit point case for all λ ∈ C\R. This fact
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follows from the calculation of the limiting matrix radius R+(λ) for the fundamental matrix
	I (t, λ). Indeed, for λ ∈ C\R the second 4 × 2 block of 	I (t, λ) is

Z̃ I (t, λ) =
(
diag

{√
p+λ
r−λ

sinh
√

(p + λ)(r − λ) t,
√

q
s−λ

sinh
√

q(s − λ) t
}

diag
{
cosh

√
(p + λ)(r − λ) t, cosh

√
q(s − λ) t

}
)

,

and the value R+(λ) = 0 is obtained by the formulas in Sect. 2.2. ��
Now we consider system (Hλ), which is not controllable. We show that condition (4.1)

does not guarantee the limit point case for system (Hλ), which justifies the fact that the result
in Theorem 4.1 is “only” a non-limit circle case criterion, similarly to [2, Theorem 13].

Example 4.4 Motivated by [36, Example 7.4], let us consider system (Hλ) with

A(t) ≡ diag{0, 0, 1}, B(t) ≡ diag{1 + t2, 0, 0}, C(t) = diag{−2/(1 + t2)2, 0, 0},
W1(t) ≡ diag{1, 0, 0}, W2(t) = W4(t) ≡ 0, t ∈ [a,∞) = [0,∞).

This system is not controllable for λ = 0with d∞(0) = d0[0,∞) = 2. Since the assumptions
of Theorem 4.1 are satisfied with ν = 0, the system possesses at least one non-square
integrable solution for any λ ∈ C. The corresponding minimal and maximal principal and
antiprincipal solutions are

Z [min]
p (t, 0) =

(
diag{t, 0, 0}
diag{1/(1 + t2), 1, e−t }

)
, Z [min]

a (t, 0) =
(
diag{t2 − 1, 0, 0}
diag{2t/(1 + t2), 1, e−t }

)
,

Z [max]
p (t, 0) =

(
diag{t, 1, et }
diag{1/(1 + t2), 0, 0}

)
, Z [max]

a (t, 0) =
(
diag{t2 − 1, 1, et }
diag{2t/(1 + t2), 0, 0}

)
.

Then the first column of each of the above solutions does not belong to L2
W , so that the

invariance of the limit circle case implies that (Hλ) is not in the limit circle case for every
λ ∈ C. Moreover, in this case there exist four linearly independent square integrable solutions
– the second and third columns of the solutions Z [max]

p (·, 0) and Z [min]
a (·, 0).

In addition, we obtain a similar conclusion also for the choice of W1(t) ≡ diag{0, 1, 0},
although condition (4.1) does not hold in this case. Finally, we note that system (Hλ) is in
the limit circle case, e.g., when W1(t) ≡ 0 and W4(t) ≡ diag{0, 0, 1}, ��

In the last example we show that the Legendre condition required in Theorem 4.1 is not
necessary for the existence of a non-square integrable solution. This condition is used in the
proof for the existence of an antiprincipal solution, as well as for the correct formulation of
condition (4.1).

Example 4.5 Let [a,∞) = [0,∞) and let the coefficients of system (Hλ) be given as

A(t) ≡ 0, B(t) ≡
(
0 p
p q

)
, C(t) ≡ diag{0, s}, W1(t) ≡

(
1 1
1 1

)
, W4(t) ≡ diag{0, 1},

where p, q , s are positive. For λ = 0 we get the fundamental system of solutions

z1,2(t, 0) =

⎛
⎜⎜⎝

(p/q) e±√
qs t

e±√
qs t

0
±√

s/q e±√
qs t

⎞
⎟⎟⎠ , z3(t, 0) =

⎛
⎜⎜⎝

pt
0

−q/p
1

⎞
⎟⎟⎠ , z4(t, 0) =

⎛
⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ ,

which implies that the system is nonoscillatory. Moreover, one observes that only z2(·, 0) ∈
L2
W , which means that we have at least one solution not in L2

W for all λ ∈ C, according to
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the invariance of the limit circle case. Nevertheless, the assumptions of Theorem 4.1 are not
fulfilled, because the matrix B(t, 0) = B(t) is indefinite. ��

Finally, from Theorem 4.1 we obtain the following oscillation criterion for system (Hλ).

Corollary 4.6 Let W2(t) ≡ 0 on [a,∞). If system (Hλ) is in the limit circle case for some
(and hence for all) λ ∈ C and there exists ν ∈ R such that conditions (LCν) and (4.1) are
satisfied, then system (Hν) is oscillatory.

Remark 4.7 If in addition to W2(t) ≡ 0 we also have W4(t) ≡ 0 on [a,∞), then B(t, ν) =
B(t), which yields the independence of conditions (LCν) and (4.1) on ν ∈ R. In this special
case we obtain from Corollary 4.6 the following statement. If system (Hλ) is in the limit
circle case for some (and hence for all) λ ∈ C and

B(t) ≥ 0 t ∈ [a,∞), lim
t→∞ �max

(∫ t

a

[
W 1/2

1 (τ ) B(τ ) W 1/2
1 (τ )

]1/2
dτ

)
= ∞,

then (Hλ) is oscillatory for all λ ∈ R. This can be regarded as a criterion for the invariance of
the limit-circle-oscillatory behavior (usually denoted by “LCO”) for system (Hλ), compare
with [50, Theorem 7.3.1] for equation (3.5) with m = n = 1.
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