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Abstract We study the finiteness of range’s codimension for a class of non-globally hypoel-
liptic vector fields on a torus of dimension three. The linear dependence of certain interactions
of the coefficients is crucial. This condition is close to condition (P) of Nirenberg and Treves.
Certain obstructions of number-theoretical nature involving Liouville numbers also appear
in the results.
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1 Introduction and main results

Our purpose is to present non-globally hypoelliptic vector fields with finite-codimensional
range on a torus of dimension three. We recall that a vector field L on T

n � R
n/2πZn is a

linear operator on C∞(Tn)which satisfies the Leibniz rule. As in [2], we refer to the fact that
the codimension of LC∞(Tn) is finite by saying that L is strongly solvable in Tn, while we
say that L is globally hypoelliptic if the conditions μ ∈ D ′(Tn) and Lμ ∈ C∞(Tn) imply
that μ ∈ C∞(Tn).

The existence of non-globally hypoelliptic vector fields with finite-codimensional range
on T

2 is already known. In [2–4,8] it has been exhibited vector fields with this property.
The operators in [2] are of the form ∂t + ib(x, t)∂x , where (x, t) are the coordinates in T2

and the function b is real-valued and smooth. Since the Nirenberg–Treves condition (P) is
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necessary for the range to have finite codimension (see Corollary 26.4.8 from [11]), for each
x ∈ T

1 the function t �→ b(x, t) cannot change sign onT1;moreover, when the characteristic
set is the union of a finite number of one-dimensional orbits which are diffeomorphic to the
unit circle, the approach to study the range of this class of operators involves the order of
vanishing of b.

In [3,8] the operators are of the form ∂t + (a(x) + ib(x))∂x , while in [4] they are of the
form ∂t + (a(x, t)+ ib(x, t))∂x , where a and b are real-valued and smooth. For these vector
fields, in addition to the condition (P) of Nirenberg–Treves, certain relations between the
order of vanishing of a and b are connected to the study of range’s codimension.

In dimension three, let us start by considering the vector field ∂t + ib(x, t)∂x + (α+ iβ)∂y
on T

3
(x,y,t), where α and β are real numbers. Notice that we have added a constant part to

the vector field treated in [2]. When β �= 0, condition (P) of Nirenberg–Treves implies that
a necessary condition for the strong solvability is that the function t ∈ T

1 �→ ξb(x, t) + ηβ

does not change sign, for all x ∈ T
1 and ξ, η ∈ R. Hence, it follows from Lemma 3.1 of [6]

that the function bmust depend only on the variable x .The operator ∂t +ib(x)∂x +(α+iβ)∂y
on T

3
(x,y,t) is a particular form of

L = ∂t + (a1(x) + ib1(x))∂x + (a2(x) + ib2(x))∂y, (1)

where a j and b j are smooth real-valued functions on T1, j = 1, 2.
In this article, we study the strong solvability of (1).
The case in which a2 + ib2 = λ(a1 + ib1) (λ ∈ R) was treated in a recent work.1 In this

case, we have an operator of the form

L
.= ∂t + (a(x) + ib(x))(∂x + λ∂y).

When (a + ib)−1(0) = ∅, this operator is strongly solvable if and only if it is globally
hypoelliptic. Indeed, this result follows from [5] by considering 1

a+ibL . On the other hand,
when a+ ib is not identically zero, but vanishes at some point, then the operatorL is neither
strongly solvable nor globally hypoelliptic, since the distributions δ(x− x∗)⊗δ(y− y∗)⊗1t
belong to the kernel of the transpose operator tL , for all (x∗, y∗) ∈ (a1 + ib1)−1(0) × T

1,

and L (δ(x − x∗) ⊗ 1y ⊗ 1t ) = 0. Hence, a weaker notion of solvability was considered,
which is the closedness of the range. As in [7], when an operator has closed range we say
that it is globally solvable. For the global solvability, condition (P) is not necessary in general
(for instance, in [5] we have vector fields of tube type which are globally solvable but do not
satisfy condition (P); e.g., ∂t + i cos(t)∂y + i sin(t)∂x on T

3). Without assuming condition
(P), b may change sign between two consecutive zeros of a + ib. However, for the global
solvability ofL , b may change sign at most once between consecutive zeros; moreover, this
change of sign is connected with relations between the order of vanishing of a and b.

Following the historical aspects, the properties described in the second, third, and last
paragraph will also appear in our results. Indeed, the approach used in this article is inspired
by the results in dimension two, but mainly it is inspired by the new developments in higher
dimension mentioned in the paragraph above (see also [5,6]).

Certain necessary conditions for the solvability of L are derived from the results in dimen-
sion two. For instance, results of [3,7] imply that ∂t + (a1(x) + ib1(x))∂x is not globally
solvable when a1+ib1 does not vanish identically and a1+ib1 has a zero of infinite order. As
a consequence, by using partial Fourier series in the variable y, it follows that our operator L
[given by (1)] is not globally solvable in this case; hence, it is not strongly solvable. Since L is
trivially non-strongly solvable when a1+ ib1 vanishes identically, we may assume that either

1 Recentwork (not published yet) from the authorsA. P. Bergamasco, P. L.Dattori da Silva andR.B.Gonzalez.
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a1 + ib1 never vanishes or (a1 + ib1)−1(0) �= ∅ and a1 + ib1 has only zeros of finite order.
Only in this second case, we find non-globally hypoelliptic vector fields which are strongly
solvable, which makes this case the most interesting one. In fact, when a1 + ib1 never van-
ishes, L is strongly solvable (resp. globally hypoelliptic) if and only if L̃

.= (1/(a + ib))L
is strongly solvable (resp. globally hypoelliptic). From [5] we see that L̃ is strongly solvable
if and only if it is globally hypoelliptic.

Note that the condition (a1 + ib1)(x∗) = 0 implies that L(δ(x − x∗) ⊗ 1y ⊗ 1t ) = 0;
hence, L is not globally hypoelliptic on any neighborhood of {x∗} × T

1 × T
1.

Throughout this article, we will assume that (a1 + ib1)−1(0) �= ∅ and that a1 + ib1 has
only zeros of finite order.

We write

(a1 + ib1)
−1(0) = {x1 < x2 < · · · < xN } and xN+1

.= x1 + 2π.

At each zero x
 ∈ (a1 + ib1)−1(0), we denote by n
 and m
 the order of vanishing of a
and b, respectively.

Asmentioned above, by using partial Fourier series in the variable y,wemay verify that L
is not strongly solvable if the vector field ∂t + (a1 + ib1)(x)∂x is not strongly solvable on T2.

Hence, results from [3,8] imply that L is not strongly solvable if there exists 
 ∈ {1, . . . , N }
such that either m
 = 1 or m
 ≥ 2 and m
 ≥ 2n
 − 1 (see Theorems 1.1, 2.2 and 3.1, and
Proposition 4.1 in [8]). Likewise, L is not strongly solvable if b1 changes sign between two
consecutive zeros of a1 + ib1.

Wewill verify that the linear dependence of b1 and a2b1−a1b2 (as functions belonging to
C∞(T1,R)) is crucial for the strong solvability of our operator L . In contrast with [5], this
linear dependence takes into account both the real and the imaginary part of the coefficients
of the operator.

Similar to what happens in [1,5–7,9,10,12], and many others, certain obstructions of
number-theoretical nature, such as Diophantine conditions, also appear. We recall that an
irrational numberα is said to be aLiouville number if there exists a sequence (pn, qn) ∈ Z×N

such that qn → ∞ and |pn − α/qn | < (qn)−n, for all n ∈ N.

We will prove the following description related to the strong solvability of (1):

Theorem 1 Let L be the operator given by (1) and assume that (a1 + ib1)−1(0) �= ∅. If L
is strongly solvable, then the following conditions hold:

(i) a1 + ib1 vanishes only of finite order; moreover, b1 does not change sign between two
consecutive zeros of a1 + ib1, and at each zero x
 ∈ (a1 + ib1)−1(0) = {x1 < x2 <

· · · < xN } we have 2 ≤ m
 < 2n
 − 1.
(ii) for each 
, either b2(x
) �= 0 or b2(x
) = 0 and a2(x
) is a non-Liouville irrational

number.
(iii) b1 and a2b1 − a1b2 are R-linearly dependent; moreover, a2b1 − a1b2 = λb1 with λ an

irrational number.

Under conditions above, L is strongly solvable provided λ is a non-Liouville irrational
number. In this case, we note that the range’s codimension of L is 1 + ∑N


=1 min{m
, n
}.
The proof of Theorem 1 is given in Sects. 2 and 3.

Example 1 For α ∈ R, it follows from Theorem 1 that the operator

∂t + i(1 − cos(x))∂x + (α + i sin(x))∂y

is strongly solvable on T
3 if and only if α is a non-Liouville irrational number.
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In contrast, for any α ∈ R, the operator of tube type

∂t + i(1 − cos(t))∂x + (α + i sin(t))∂y

is never even globally solvable onT3, since the functions 1−cos(t) and sin(t) areR−linearly
independent and the first of them has nonzero mean (see Theorem 1.1 of [5]).

Wemay also destroy the strong solvability of a vector field of tube type when we exchange
the dependence on the variable t by a dependence on the variable x .

Example 2 If α is a non-Liouville irrational number, then Theorem 1.3 of [5] implies that

∂t + (cos(t) + i cos2(t))∂x + α∂y (2)

is globally hypoelliptic. For this class of operators global hypoellipticity is equivalent to
strong solvability. Hence, operator (2) is strongly solvable. On the other hand, by Theorem 1
we see that the operator

∂t + (cos(x) + i cos2(x))∂x + α∂y

is not strongly solvable, since the order of vanishing at each zero does not satisfy condition
(i).

Notice also that, even in the case of constant coefficients, in general the assumption that the
constant λ [given in (iii)—Theorem 1] is a non-Liouville irrational number is not necessary
for the strong solvability of L . For instance, consider L = ∂t + i∂x + (α + iβ)∂y . For this L
we have λ = α. If α and β are Liouville numbers such that the vector (α, β) is not a Liouville
vector, then L is strongly solvable (see [1] for a construction of two Liouville numbers such
that the pair is not a Liouville vector). On the other hand, if α is a non-Liouville irrational
number, then L is strongly solvable.

The next results are other consequences of Theorem 1.

Corollary 1 Consider the operator

L = ∂t + (a1 + ib1)(x)∂x + a2(x)∂y

and assume that (a1+ ib1)−1(0) �= ∅. Then L is strongly solvable if and only if the following
conditions hold:

(i) a1 + ib1 vanishes only of finite order and at each zero x
 ∈ (a1 + ib1)−1(0) = {x1 <

x2 < · · · < xN }we have 2 ≤ m
 < 2n
−1,where m
 and n
 are the order of vanishing
of a1 and b1, respectively, at x
.

(ii) b1 does not change sign between two consecutive zeros of a1 + ib1, and a2 ≡ α, where
α is a non-Liouville irrational number.

For the next result, we consider the operator

L = ∂t + (a1 + ib1)(x)∂x + (α + iβ)∂y, α ∈ R, β ∈ R\{0}, (3)

and we assume that (a1 + ib1)−1(0) �= ∅ and that a1 + ib1 vanishes only of finite order.

Corollary 2 Consider the operator L given by (3). If L is strongly solvable, then a1 = γ b1,
with γ ∈ R such that α − γβ is an irrational number. Moreover, b1 does not change sign
between two consecutive zeros of a1 + ib1, and b1 vanishes only of finite order greater
than two. On the other hand, under conditions above, L is strongly solvable if α − γβ is a
non-Liouville irrational number.
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We point out that even operators with a very similar structure may diverge with respect to
the strong solvability.

Example 3 By Corollary 2 we see that the operator

∂t + (
√
2 + i) cos2(x)∂x + i

√
2∂y

is not strongly solvable, while the operator

∂t + (
√
2 + i) cos2(x)∂x + i

√
3∂y

is strongly solvable.

2 Necessary conditions

In this section, we establish necessary conditions for the strong solvability of operator (1),
which is given by

L = ∂t + (a1(x) + ib1(x))∂x + (a2(x) + ib2(x))∂y,

under the general assumptions that (a1 + ib1)−1(0) �= ∅ and that a1 + ib1 vanishes only of
finite order. Recall that, in this case, we arewriting (a1+ib1)−1(0) = {x1 < x2 < · · · < xN },
xN+1 = x1 + 2π, and we are denoting by n
 (respectively m
) the order of vanishing of a
(respectively b) at x
 ∈ (a1 + ib1)−1(0).

As we have already mentioned in the previous section, it follows from the results in
dimension two (see [3,8]), that the conditions given in item (i) in Theorem 1 are necessary
for the strong solvability of our operator L .

From now on we will deal with the new conditions which appear in (ii) and (iii) in
Theorem 1.

Lemma 2, Propositions 1, 2 and item (i) in Proposition 3 show the necessity of condition
(iii) in Theorem 1, while the necessity of item (ii) in Theorem 1 follows from Lemmas 1
and 3.

Before we proceed, we recall that L is globally solvable if and only if LC∞(T3) =
(ker t L)◦, where t L:D ′(T3) → D ′(T3) denotes the transpose operator of L . Moreover, L
is strongly solvable if and only if L is globally solvable and dim ker t L < ∞. Both this two
characterizations will be used throughout this article.

Lemma 1 If there exists 
 such that b2(x
) = 0 and a2(x
) is rational, then dim ker t L = ∞.

Proof Since a2(x
) is a rational number, there exists a (infinite) sequence ( jn, kn) ∈
Z
2\{(0, 0)} such that kn + jna2(x
) = 0, for all n. By using partial Fourier series in the

variables y and t, we may verify that the distributions

δ(x − x
) ⊗ ei jn y ⊗ eikn t

belong to ker t L , which implies that dim ker t L = ∞.

The proof that condition (ii) in Theorem 1 is necessary for the strong solvability of L will
be completed in the end of this section.

We now focus on the condition (iii), which is related to the linear dependence of b1 and
a2b1 − a1b2. We claim that L is not strongly solvable if b1 and a2b1 − a1b2 are R-linearly
independent functions.
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Lemma 2 Suppose that b1 and a2b1 − a1b2 are R-linearly independent. There exist an
interval (x
0 , x
0+1) and nonzero integers p and q such that qb1(x) + p(a2b1 − a1b2)(x)
changes sign on (x
0 , x
0+1). Moreover, we may choose p and q so that a2(xκ )p/q �= −1,
for κ = 
0, 
0 + 1.

Proof If b1 and a2b1 − a1b2 are linearly dependent on (x
, x
+1), then there exists λ
 ∈ R

such that (a2b1 − a1b2)(x) = λ
b1(x), for all x ∈ (x
, x
+1). Since b1 vanishes of finite
order at each x
, it follows that λ
 = λ j , for every j, 
 = 1, . . . , N . This implies that
b1 and a2b1 − a1b2 are linearly dependent on T

1. Hence, if they are linearly independent,
then there exists 
0 ∈ {1, . . . , N } such that they are linearly independent on (x
0 , x
0+1).

By applying the proof of Lemma 3.1 of [6] on the interval (x
0 , x
0+1), we obtain infinitely
many nonzero integers p �= q, which produce infinitely many rationals p/q, so that θ(x)

.=
qb1(x) + p(a2b1 − a1b2)(x) changes sign on (x
0 , x
0+1).

Proposition 1 Let p and q be nonzero integers such that θ(x)
.= qb1(x)+ p(a2b1−a1b2)(x)

changes sign only once on (x
0 , x
0+1). In this case we have dim ker t L = ∞.

Proof We will exhibit infinitely many linearly independent distributions in ker t L .

Assume that there is η ∈ (x
0 , x
0+1) such that θ ≥ 0 on (x
0 , η) and θ ≤ 0 on (η, x
0+1)

(the other case is analogous).
For x ∈ (x
0 , x
0+1), set

Θ(x) =
∫ x

η

(
θ(s)

a21(s) + b21(s)
+ i

(q + pa2(s))a1(s) + pb1(s)b2(s)

a21(s) + b21(s)

)

ds.

For each positive integer n, the function

ψn(x) =
{
exp{nΘ(x)}, x ∈ (x
0 , x
0+1)

0, x ∈ T
1\(x
0 , x
0+1)

belongs to L∞(T1) ⊂ D ′(T1). We will find distributions μn such that
(

ψn

a1 + ib1
− μn

)

(x) ⊗ e−in(py+qt) ∈ ker t L\{0} ⊂ D ′(T3). (4)

Note that since a1+ib1 vanishes only of finite order, wemay takeψn/(a1+ib1) ∈ D ′(T1)

so that (a1 + ib1)ψn/(a1 + ib1) = 1 and satisfying supp(ψn/(a1 + ib1)) ⊂ supp(ψn). By
defining ωn = ψ ′

n − inqψn/(a1 + ib1)− inp(a2 + ib2)ψn/(a1 + ib1)we obtain supp(ωn) ⊂
{x
0 , x
0+1}. Hence, there exist positive integers r
0 and r
0+1, and constants αm


0
and αm


0+1,

such that

ωn =
r
0∑

m=0

αm

0

δ(m)(x − x
0) +
r
0+1∑

m=0

αm

0+1δ

(m)(x − x
0+1).

Finally, we claim that we may take constants βm

0

and βm

0+1 such that the distribution

μn =
r
0∑

m=0

βm

0

δ(m)(x − x
0) +
r
0+1∑

m=0

βm

0+1δ

(m)(x − x
0+1)

satisfies ((a1 + ib1)μn)
′ − inqμn − inp(a2 + ib2)μn = ωn and, therefore, it satisfies (4).

Indeed, the constants must satisfy the following: for κ = 
0, 
0 + 1, 0 < m < rκ , and with
Cm
n

.= (−1)n
(m
n

)
,
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αrκ
κ = βrκ

κ (Crκ
1 (a1 + ib1)

′(xκ ) − inq − inpCrκ
0 (a2 + ib2)(xκ ))

= βrκ
κ

[
Crκ
1 a′

1(xκ ) + npb2(xκ )
] + iβrκ

κ

[
Crκ
1 b′

1(xκ ) − n(q + pa2(xκ ))
]
, (5)

αm
κ = βm

κ (Cm
1 (a1 + ib1)

′(xκ ) − inq − inpCm
0 (a2 + ib2)(xκ ))

+
rκ∑

j=m+1

β j
κ

[
C j

j−m+1(a1 + ib1)
( j−m+1)(xκ ) − inpC j

j−m(a2 + ib2)
( j−m)(xκ )

]

= βm
κ

[
Cm
1 a

′
1(xκ ) + npb2(xκ )

] + iβm
κ

[
Cm
1 b

′
1(xκ ) − n(q + pa2(xκ ))

]

+
rκ∑

j=m+1

β j
κ

[
C j

j−m+1(a1 + ib1)
( j−m+1)(xκ ) − inpC j

j−m(a2 + ib2)
( j−m)(xκ )

]
,

(6)

and

α0
κ = −β0

κ in(q + p(a2 + ib2)(xκ )) − inp
rκ∑

j=1

β j
κC

j
j (a2 + ib2)

( j)(xκ ). (7)

By Lemma 1, we may assume that either b2(xκ ) �= 0 or b2(xκ ) = 0 and a2(xκ ) /∈ Q.

Hence, for n large enough, we may solve Eqs. (5), (6), and (7) above.
Since the distributions given in (4) are linearly independent, it follows that

dim ker t L = ∞.

The existence of the integers p and q such that qb1(x)+ p(a2b1 −a1b2)(x) changes sign
between consecutive zeros of a1+ ib1 was crucial to show that the dimension of the kernel of
t L is not finite. Although dim ker t L = ∞, the range of L might be closed. Indeed, there exist
situations where L is globally solvable (closed range) and, for all ( j, k) ∈ Z

2\{(0, 0)}, the
function kb1(x) + j (a2b1 − a1b2)(x) changes sign (but at most once) between consecutive
zeros of a1 + ib1 (see Remark 1 in the end of Sect. 3).

The next result shows that the range of L may not be closed when there exist integers p
and q such that qb1(x) + p(a2b1 − a1b2)(x) changes sign twice or more.

Proposition 2 Let p and q be nonzero integers such that θ(x)
.= qb1(x)+ p(a2b1−a1b2)(x)

changes sign twice (or more) on (x
0 , x
0+1). Suppose also that a2(xκ )p/q �= −1 and that
2 ≤ mκ < 2nκ − 1, for κ = 
0, 
0 + 1. In this case, L is not globally solvable.

Proof With the information that θ changes sign at least twice on (x
0 , x
0+1), we will con-
struct a function f ∈ (ker t L)◦\LC∞(T3), which will be given in the form

f (x, y, t) =
∞∑

n=1

f̂ (x, np, nq)ein(py+qt). (8)

Each Fourier coefficient f̂ (·, np, nq) will be given in C∞
c ((x
0 , x
0+1)).

Notice that θ = qb1 + p(a2b1 − a1b2) vanishes at xκ , κ = 
0, 
0 + 1. Moreover, since
q + pa2(xκ ) �= 0 (by hypothesis), the order of vanishing of θ at xκ , oκ , satisfies oκ ≤ mκ .

Since o
0 < ∞, we have θ > 0 or θ < 0 on (x
0 , x
0 + δ), with δ > 0 sufficiently small.
Without loss of generality, we may assume that θ > 0 on (x
0 , x
0 + δ).

The assumption that θ changes sign at least twice implies that there exist ξ1 and ξ2 such
that x
0 + δ < ξ1 < ξ2 < x
0+1, θ(ξ1) < 0 and θ(ξ2) > 0.

Set σ = inf{x ∈ (ξ1, ξ2); θ(s) ≥ 0, s ∈ (x, ξ2)} and take ψ1 ∈ C∞
c ((σ, ξ2)) so that

θ > 0 on suppψ1, ψ1 ≥ 0 and
∫ x
0+1
x
0

ψ1(x)dx = 1.
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We now choose η < σ so that θ(η) < 0 and
∫ x
η

θ(s)/(a21 + b21)(s)ds > 0, for all
x ∈ suppψ1. For δ > 0 sufficiently small we also have θ < 0 on (η, η + δ). Take ψ2 ∈
C∞
c ((η, η + δ)) so that ψ2 ≥ 0 and

∫ x
0+1
x
0

ψ2(x)dx = 1.

Set ξ0
.= sup suppψ2, M

.= − ∫ η+δ

ξ0
θ(s)/(a21 + b21)(s)ds > 0, and

dn
.= −

∫ x
0+1

x
0

ψ2(x) exp

{

n
∫ x

η

θ(s)

a21(s) + b21(s)
ds

}

dx,

and define

f̂ (x, np, nq)

= (a1 + ib1)(x) exp

{

−nM − in
∫ x

η

qa1(s) + p(a1a2 + b1b2)(s)

a21(s) + b21(s)
ds

}

×
[

ψ2(x) + dnψ1(x) exp

{

−n
∫ x

η

θ(s)

a21(s) + b21(s)
ds

}]

,

for all n ∈ N. Note that supp f̂ (·, np, nq) ⊂ (x
0 , x
0+1).

Since

|dn | ≤ exp

{

n
∫ inf suppψ2

η

θ(s)

a21(s) + b21(s)
ds

}

< 1

and, for all x ∈ suppψ1,

exp

{

−n
∫ x

η

θ(s)

a21(s) + b21(s)
ds

}

< 1,

it follows that f̂ (·, np, nq) decays rapidly, thanks to e−nM . Thus, f given by (8) belongs to
C∞(T3). Moreover, for all μ ∈ ker t L we have

〈μ̂(·,−np,−nq), f̂ (·, np, nq)〉

= Cne
−nM

∫ x
0+1

x
0

(

ψ2(x) exp

{

n
∫ x

η

θ(s)

a21(s) + b21(s)
ds

}

+ dnψ1(x)

)

dx = 0,

for all n ∈ N. Hence f ∈ (ker t L)◦.
Finally, if there exists u ∈ C∞(T3) such that Lu = f, then

f̂ (x, np, nq) = (a1 + ib1)(x)∂x û(x, j, k) + in [kq + p(a2 + ib2)(x)] û(x, j, k), (9)

for all x ∈ T
1, which implies that

f̂ (x, np, nq)

(a1 + ib1)(x)
= ∂x û(x, np, nq) + n [θ(x) + i(qa1(x) + p(a1a2 + b1b2)(x))]

a21(x) + b21(x)
û(x, np, nq),

for all x ∈ (x
0 , x
0+1) and n ∈ N.

For x ∈ (x
0 , x
0+1), set

En(x) = exp

{

n
∫ x

η

θ(s) + i[qa1(s) + p(a1a2 + b1b2)(s)]
a21(s) + b21(s)

ds

}

.
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We may write û(x, np, nq) = wn(x) + vn(x), where

wn(x) = CnE−n(x), Cn ∈ C,

and

vn(x) = E−n(x)
∫ x

x
0

En(x
′) f̂ (x ′, np, nq)/(a1 + ib1)(x

′)dx ′.

Since q + pa2(x
0) �= 0, it follows from (9) that û(x
0 , np, nq) = 0. We also have
vn(x
0) = 0, since supp f̂ (·, np, nq) ⊂ (x
0 , x
0+1). On the other hand,

|wn(x)| = |Cn | exp
{

−n
∫ x

η

θ(s)

a21(s) + b21(s)
ds

}

and the conditions θ > 0 on a neighborhood of x
0 , o
0 ≤ m
0 and 2 ≤ m
0 < 2n
0 − 1
imply that limx→x+


0
wn(x) = ∞, provided Cn �= 0. Hence, we must have Cn = 0.

Finally, with

Kn = exp

{

−nM − n
∫ η+δ

η

θ(s)

a21(s) + b21(s)
ds

}

we have

|û(η + δ, np, nq)| = Kn

∫ η+δ

x
0

ψ2(x
′) exp

{

n
∫ x ′

η

θ(s)

a21(s) + b21(s)
ds

}

dx ′

≥ exp

{

n

(

−
∫ η+δ

η

+
∫ η+δ

ξ0

+
∫ ξ0

η

)
θ(s)

a21(s) + b21(s)
ds

}

= 1,

where we recall that ξ0 = sup suppψ2.

We have a contradiction, since û(·, np, nq) must decay rapidly.

Lemma 2 and Propositions 1 and 2 imply that L is not strongly solvable when b1 and
a2b1 − a1b2 are R-linearly independent.

Next proposition implies that L is not strongly solvable if there exists a rational number
λ such that a2b1 − a1b2 = λb1. This completes the proof that condition (iii) in Theorem 1
is necessary for the strong solvability of L .

Proposition 3 Let L be given by (1). Suppose that (a1 + ib1)−1(0) �= ∅ and that a1 + ib1
vanishes only of finite order.Write (a1+ib1)−1(0) = {x1 < · · · < xN }and let n
 (respectively
m
) be the order of vanishing of a1 (respectively b1) at x
, 
 = 1, . . . , N . Assume that either
b2(x
) �= 0 or b2(x
) = 0 and a2(x
) is an irrational number, for each 
 = 1, . . . , N .

(i) If a2b1 − a1b2 = λb1, with λ ∈ Q, then dim ker t L = ∞.

(ii) Suppose that a2b1 − a1b2 = λb1, with λ an irrational number. In addition, assume
2 ≤ m
 < 2n
 − 1, for each 
 = 1, . . . , N and suppose that b1 does not change sign
between two consecutive zeros of a1 + ib1. Under these conditions, dim ker t L < ∞;
moreover, a distribution μ belongs to ker t L if and only if

μ = (K0/(a1 + ib1)) ⊗ 1y ⊗ 1t +
N∑


=1

r
−1∑

m=0

K
mδ(m)(x − x
) ⊗ 1y ⊗ 1t ,

where r
 = min{m
, n
} and K0, K
m, m = 0, . . . , r
 − 1 are constants.
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Proof (i) If a2b1 − a1b2 = λb1, with λ = p/q (p ∈ Z, q ∈ N), then for ξ
 be fixed in
(x
, x
+1) (
 ∈ {1, . . . , N }) and for n ∈ N, set

ψn(x) =
⎧
⎨

⎩

exp

{

in
∫ x
ξ


a1(s)(qa2(s)−p)+qb1(s)b2(s)
a21 (s)+b21(s)

ds

}

, x ∈ (x
, x
+1)

0, x ∈ T
1\(x
, x
+1).

Since either b2(x
) �= 0 or a2(x
) is an irrational number, we may proceed as before [see
arguments between Eqs. (4) and (7)] to verify that there exists a unique μn ∈ D ′(T1), such
that

(
ψn

a1 + ib1
− μn

)

(x) ⊗ ein(qy−pt)

belongs to ker t L\{0}. Therefore, dim ker t L = ∞.

(ii) Assume now that a2b1 − a1b2 = λb1, with λ an irrational number.

Given μ ∈ ker t L , we use partial Fourier series in the variables y and t to write

μ =
∑

( j,k)∈Z2

μ̂(x, j, k) ⊗ ei( j y+kt).

It follows that t Lμ = 0 if and only if

∂x ((a1 + ib1)(x)μ̂(x, j, k)) + i(k + j (a2 + ib2)(x))μ̂(x, j, k) = 0, (10)

for all ( j, k) ∈ Z
2. Define ν jk = (a1 + ib1)μ̂(·, j, k). On each (x
, x
+1), 
 = 1, . . . , N ,

we have
ν jk

a1+ib1
= μ̂(·, j, k). Hence

∂xν jk + i(k + j (a2 + ib2))
ν jk

a1 + ib1
= 0,

which implies that

exp

{∫ x

ξ


i(k + j (a2 + ib2))

(a1 + ib1)(s)
ds

}

ν jk = C

jk on (x
, x
+1),

where ξ
 ∈ (x
, x
+1) is fixed and C

jk is a constant.

Since b1 does not change sign, 2 ≤ m
 < 2n
 − 1 and 2 ≤ m
+1 < 2n
+1 − 1, the
function

exp

{∫ x

ξ


i(k + j (a2 + ib2))

(a1 + ib1)(s)
ds

}

= exp

{∫ x

ξ


(k + λ j)b1(s) + i[a1(s)(k + ja2(s)) + jb1(s)b2(s)]
(a21 + b21)(s)

ds

}

is flat at either x
 or x
+1 provided ( j, k) �= (0, 0) (recall that λ is an irrational number).
Hence, for ( j, k) �= (0, 0) we have C


jk = 0 and (a1 + ib1)μ̂(·, j, k) = 0 on each (x
, x
+1),

which implies that supp μ̂(·, j, k) ⊂ (a1 + ib1)−1(0).

123



On certain non-hypoelliptic vector fields with finite… 71

Thus, for ( j, k) �= (0, 0) we have

μ̂(x, j, k) =
N∑


=1

r̃
∑

m=0

β
m
jk δ(m)(x − x
), β
m

jk ∈ C,

where r̃
 is a positive integer.
By using (10) we will show that all the constants β
m

jk are zero. Indeed, as above [see
Eqs. (5)–(7)], (10) implies that, for each 
 be fixed, and for 0 < m < r̃
, we have

0 = β

r̃

jk

(
Cr̃

1 (a1 + ib1)

′(x
) + ik + i jCr̃

0 (a2 + ib2)(x
)

)

= β

r̃

jk i(k + j (a2 + ib2)(x
)),

0 = β
m
jk

(
Cm
1 (a1 + ib1)

′(x
) + i(k + jCm
0 (a2 + ib2)(x
))

)

+
r̃
∑

n=m+1

β
n
jk

[
Cn
n−m+1(a1 + ib1)

(n−m+1)(x
) + i jCn
n−m(a2 + ib2)

(n−m)(x
)
]
,

and

0 = β
0
jk i(k + j (a2 + ib2)(x
)) + i j

r̃
∑

n=1

β
n
jkC

n
n (a2 + ib2)

(n)(x
).

Equations above imply that all the constants β
m
jk are zero, since either b2(x
) �= 0 or

a2(x
) is an irrational number, for each 
 ∈ {1, . . . , N }.
Hence, μ̂(·, j, k) = 0, for all ( j, k) ∈ Z

2\{(0, 0)}.
Finally, since μ̂(·, 0, 0) satisfies ∂x ((a1 + ib1)(x)μ̂(x, 0, 0)) = 0, it follows that (a1 +

ib1)(x)μ̂(x, 0, 0) = K0. In particular,

μ = (K0/(a1 + ib1)) ⊗ 1y ⊗ 1t +
N∑


=1

r
−1∑

m=0

K
mδ(m)(x − x
) ⊗ 1y ⊗ 1t ,

with r
 = min{m
, n
}.
Therefore, ker t L = span{(1/(a1 + ib1)) ⊗ 1y ⊗ 1t , δ(m)(x − x
) ⊗ 1y ⊗ 1t , 0 ≤ m <

r
, 
 = 1, . . . , N } and dim ker t L = 1 + ∑N

=1 r
 < ∞.

Our next result completes the proof that condition (ii) in Theorem 1 is necessary for the
strong solvability of L .

Lemma 3 Under the assumptions in item (i i)-Proposition 3, the operator L is not globally
solvable if there exists 
 ∈ {1, . . . , N } such that both b2(x
) = 0 and a2(x
) is a Liouville
irrational number.

Proof If a2(x
) is a Liouville irrational number, then there exists ( jn, kn) ∈ Z
2\{(0, 0)} such

that | jn | + |kn | ≥ n and |kn + jna2(x
)| < (| jn | + |kn |)−n, for all n ∈ N. Since the sequence
(| jn | + |kn |)−n/2 decays rapidly,

f (x, y, t) =
∞∑

n=1

(| jn | + |kn |)−n/2ei( jn y+knt)

belongs to C∞(T3). Moreover, Proposition 3 implies that f ∈ (ker t L)◦.
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If u ∈ C∞(T3) and Lu = f, then

(| jn | + |kn |)−n/2

= (a1 + ib1)(x)∂x (û(x, jn, kn)) + i(kn + jn(a2 + ib2)(x))û(x, jn, kn),

for all n ∈ N and for all x ∈ T
1. In particular,

i(kn + jna2(x
))û(x
, jn, kn) = (| jn | + |kn |)−n/2.

Hence

|û(x
, jn, kn)| ≥ (| jn | + |kn |)n/2.

Since the sequence (| jn |+ |kn |)n/2 does not decay rapidly, there is no u ∈ C∞(T3) such that
Lu = f. Therefore, L is not globally solvable (in particular, L is not strongly solvable).

The proof that conditions (i)–(iii) in Theorem 1 are necessary for the strong solvability of
L is complete.

3 Sufficient conditions

This section is devoted to prove that conditions given in Theorem 1 imply that L , given by
(1), is strongly solvable.

Under the assumptions (i)–(iii) in Theorem 1, Proposition 3 implies that dim ker t L < ∞.

To complete the proof of Theorem 1 we must show that L is globally solvable, that is,
LC∞(T3) = (ker t L)◦.

We begin with a result about solvability modulo functions which are flat along (a1 +
ib1)−1(0) × T

2. By following the same line as Lemma 2.1 of [7], we obtain:

Lemma 4 Consider the operator L given by (1). Suppose that a1 + ib1 vanishes only of
finite order and (a1 + ib1)−1(0) = {x1 < · · · < xN } �= ∅. If 2 ≤ m
 < 2n
 − 1 and either
b2(x
) �= 0 or a2(x
) is a non-Liouville irrational number, then given f ∈ (ker t L)◦ there
exists u ∈ C∞(T3) such that Lu − f is flat along (a1 + ib1)−1(0) × T

2.

Proof As in [7], it is enough to find u smooth in a neighborhood of {x0} × T
2 such that

Lu − f is flat along {x0} × T
2, for each x0 ∈ (a1 + ib1)−1(0).

Denote by n and m the order of vanishing of a1 and b1, respectively, at x0. Set r =
min{m, n} ≥ 2. By using formal Taylor series in a neighborhoodΩ = (x0 −ε, x0 +ε)×T

2,

we may write

a1 + ib1 � (a1r + ib1r )(x − x0)
r + (a1r+1 + ib1r+1)(x − x0)

r+1 + · · ·
a2 + ib2 � (a20 + ib20) + (a21 + ib21)(x − x0) + · · ·

u � u0(y, t) + u1(y, t)(x − x0) + u2(y, t)(x − x0)
2 + · · ·

f � f0(y, t) + f1(y, t)(x − x0) + f2(y, t)(x − x0)
2 + · · · .

It follows that Lu − f is flat along {x0} × T
2 if and only if

∂t u j (y, t) +
j∑

k=0

(a2k + ib2k)∂yu j−k(y, t) = f j (y, t), j = 0, . . . , r − 1, (11)
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and, for j ≥ r, f j (y, t) =

∂t u j (y, t) +
j∑

k=0

(a2k + ib2k)∂yu j−k(y, t) +
j∑

k=r

(a1k + ib1k)( j − k + 1)u j−k+1(y, t)

(12)

For each j = 0, . . . , r − 1, the distribution δ( j)(x − x0) ⊗ 1y ⊗ 1t belongs to ker t L .

Thus,

f̂ j (0, 0) = (2π)−2
∫ 2π

0

∫ 2π

0
( j !)−1∂

j
x f (x0, y, t)dydt

= (2π)−2( j !)−1(−1) j
〈
δ( j)(x − x0) ⊗ 1y ⊗ 1t , f

〉
= 0.

Moreover, since either b20 �= 0 or a20 is a non-Liouville irrational number, we may find
smooth functions u j (y, t) satisfying Eq. (11) in T

2, for j = 0, . . . , r − 1.
Note that, for any constant C j ∈ C, u j + C j is still a solution.
The next equation is

∂t ur (y, t) + (a20 + ib20)∂yur (y, t)

= fr (y, t) −
r∑

k=1

(a2k + ib2k)∂yur−k(y, t) − (a1r + ib1r )(u1(y, t) + C1).

In order to obtain a smooth solution ur in T
2, it is enough to take C1 = f̂r (0, 0)/(a1r +

ib1r ) − û1(0, 0).
Proceeding in a similar way we may solve all the Eq. (12).

Proposition 4 Suppose that a1 + ib1 vanishes only of finite order and (a1 + ib1)−1(0) =
{x1 < · · · < xN } �= ∅. Assume that 2 ≤ m
 < 2n
 − 1 and either b2(x
) �= 0 or a2(x
) is
a non-Liouville irrational number, for each 
 = 1, . . . , N . Moreover, assume that b1 do not
change sign and a2b1 − a1b2 = λb1, with λ a non-Liouville irrational number. In this case,
if L is given by (1), then for each f ∈ (ker t L)◦ which is flat along (a1 + ib1)−1(0) × T

2

there exists u ∈ C∞(T3) such that Lu = f.

Proof For each f belonging to (ker t L)◦ and flat along (a1 + ib1)−1(0) × T
2, in order to

find u belonging to C∞(T3) such that Lu = f, we use partial Fourier series in the variables
y and t so that it is enough to find a rapid decreasing sequence of smooth functions û(·, j, k)
which satisfy the equations

(a1 + ib1)(x)∂x û(x, j, k) + i(k + j (a2 + ib2)(x))û(x, j, k) = f̂ (x, j, k), (13)

for ( j, k) ∈ Z
2 and x ∈ T

1.

When ( j, k) = (0, 0), we have the equation

∂x û(x, 0, 0) = f̂ (x, 0, 0)/(a1 + ib1)(x).

Since 1/(a1+ib1)(x)⊗1y⊗1t belongs to ker t L ,we have
∫ 2π
0 f̂ (x, 0, 0)/(a1+ib1)(x)dx =

0. Hence

û(x, 0, 0) =
∫ 2π

0
f̂ (x ′, 0, 0)/(a1 + ib1)(x

′)dx ′

is a smooth solution.
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For ( j, k) ∈ Z
2\{(0, 0)}, it is enough to find a sequence of smooth solutions û(·, j, k)

on each interval (x
, x
+1), such that each û(·, j, k) is flat at {x
, x
+1} and such that the
sequence û(·, j, k) decays rapidly on (x
, x
+1).

On each (x
, x
+1), Eq. (13) becomes

f̂ (x, j, k)/(a1 + ib1)(x)

= ∂x û(x, j, k) + (k + λj)b1(x) + i(ka1(x) + j (a1a2 + b1b2)(x))

a21(x) + b21(x)
û(x, j, k), (14)

where, by hypothesis, λ is a non-Liouville irrational number.
Without loss of generality, we may assume that b1 ≥ 0 on (x
, x
+1).

For x ∈ (x
, x
+1) set

θ jk(x) = (k + λj)b1(x) + i(ka1(x) + j (a1a2 + b1b2)(x))

a21(x) + b21(x)
.

If ( j, k) is such that k + λj > 0, we choose

û(x, j, k) =
∫ x

x


exp

{

−
∫ x

x ′
θ jk(s)ds

}
f̂ (x ′, j, k)

(a1 + ib1)(x ′)
dx ′ (15)

as a smooth solution of (14) on (x
, x
+1). Since f is flat along {x
} × T
2, for each n ∈ N

there exists Cn > 0, which does not depend on ( j, k), such that

|û(x, j, k)| ≤ Cn(x − x
)
n .

In particular, û(·, j, k) is flat at x
.Wewill see that it is also flat at x
+1. For h > 0 sufficiently
small we have

û(x
+1 − h, j, k) =
∫ x
+1−2h

x


exp

{

−
∫ x
+1−h

x ′
θ jk(s)ds

}
f̂ (x ′, j, k)

(a1 + ib1)(x ′)
dx ′

+
∫ x
+1−h

x
+1−2h
exp

{

−
∫ x
+1−h

x ′
θ jk(s)ds

}
f̂ (x ′, j, k)

(a1 + ib1)(x ′)
dx ′. (16)

The first integral satisfies
∣
∣
∣
∣
∣

∫ x
+1−2h

x


exp

{

−
∫ x
+1−h

x ′
θ jk(s)ds

}
f̂ (x ′, j, k)

(a1 + ib1)(x ′)
dx ′

∣
∣
∣
∣
∣

≤ ‖ f̂ (·, j, k)/(a1 + ib1)‖∞
∫ x
+1−2h

x


exp

{

−
∫ x
+1−h

x
+1−2h

(k + λj)b1(s)

a21(s) + b21(s)
ds

}

dx ′.

Moreover, since 2 ≤ m
+1 < 2n
+1 − 1, for s near x
+1 we may write b1/(a21 + b21)(s) =
(x
+1 − s)−ρβ(s), where ρ ≥ 2 and 0 < r ≤ β(s). Hence

∫ x
+1−2h

x


exp

{

−
∫ x
+1−h

x
+1−2h

(k + λj)b1(s)

a21(s) + b21(s)
ds

}

dx ′

≤ |x
+1 − x
| exp
{−(k + λj)r

ρ − 1

(
2ρ−1 − 1

2ρ−1hρ−1

)}

≤ |x
+1 − x
| (ρ − 1)2ρ−1hρ−1

(k + λj)r(2ρ−1 − 1)
(17)
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and, since λ is a non-Liouville irrational number, there exist constants C > 0 and γ > 0,
which do not depend on ( j, k), such that

‖ f̂ (·, j, k)/(a1 + ib1)‖∞
∫ x
+1−2h

x


exp

{

−
∫ x
+1−h

x
+1−2h

(k + λj)b1(s)

a21(s) + b21(s)
ds

}

dx ′

≤ C‖ f̂ (·, j, k)/(a1 + ib1)‖∞(| j | + |k|)γ hρ−1. (18)

For the second integral in (16), since f is flat along {x
+1} × T
2, for each n ∈ N there

exists Cn > 0 (which does not depend on ( j, k)) such that
∣
∣
∣
∣
∣

∫ x
+1−h

x
+1−2h
exp

{

−
∫ x
+1−h

x ′
θ jk(s)ds

}
f̂ (x ′, j, k)

(a1 + ib1)(x ′)
dx ′

∣
∣
∣
∣
∣

(19)

≤
∫ x
+1−h

x
+1−2h

∣
∣
∣
∣
∣

f̂ (x ′, j, k)
(a1 + ib1)(x ′)

∣
∣
∣
∣
∣
dx ′ ≤ Cnh

n . (20)

It follows from (17) and (20) that each û(·, j, k) is flat at x
+1. Moreover, the rapid
decaying of f̂ (·, j, k)/(a1 + ib1) and since λ is a non-Liouville irrational number, estimates
(18) and (19) imply that, for each nonnegative integerm,we may find a constant C > 0 such
that

(| j | + |k|)m |û(x, j, k)| ≤ C,

for all x ∈ (x
, x
+1) and for all ( j, k) ∈ Z
2 such that k + λj > 0.

Proceeding in a similar way, we verify that each derivative ∂nx û(·, j, k) satisfies a similar
estimate. Hence, the sequence û(·, j, k) given by (15) decays rapidly on (x
, x
+1).

Finally, for ( j, k) such that k + λj < 0, we choose

û(x, j, k) = −
∫ x
+1

x
exp

{

−
∫ x

x ′
θ jk(s)ds

}
f̂ (x ′, j, k)

(a1 + ib1)(x ′)
dx ′

as a smooth solution of (14) on (x
, x
+1).

Proceeding as above, we verify that each û(·, j, k) is flat at {x
, x
+1} and the sequence
û(·, j, k) decays rapidly on (x
, x
+1).

Since 
 ∈ {1, . . . , N } was arbitrary fixed, the proof is complete.

Summarizing, Proposition 3, Lemma 4 and Proposition 4 imply that L is strongly solvable
under the conditions given in Theorem 1. Moreover, Proposition 3 implies that the codimen-
sion of the range is 1 + ∑N


=1 min{m
, n
}. The proof of Theorem 1 is then complete.

Remark 1 Proposition 4 still hods true if we allow b1 changing sign at most once between
two consecutive zeros of a1+ ib1. Indeed, without loss of generality, assume that there exists
η ∈ (x
, x
+1) such that b1 ≥ 0 on (x
, η) and b1 ≤ 0 on (η, x
+1).

For the indexes ( j, k) such that k + λ j > 0, we define the solution û(x, j, k) as (15), and
for the indexes ( j, k) such that k + λj < 0, we define the solution û(x, j, k) as

û(x, j, k) =
∫ x

η

exp

{

−
∫ x

x ′
θ jk(s)ds

}
f̂ (x ′, j, k)

(a1 + ib1)(x ′)
dx ′, (21)

for x ∈ (x
, x
+1), where we recall that

θ jk(x) = (k + λj)b1(x) + i(ka1(x) + j (a1a2 + b1b2)(x))

a21(x) + b21(x)
.
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Proceeding as in the proof of Proposition 4 we see that the solutions given by (21) are flat
at {x
, x
+1} and we also see that this sequence decays rapidly.

These arguments will also imply that the solutions given by (15) are flat at x
. To see that
these solutions are flat at x
+1 and to see that this sequence of solutions also decays rapidly,
the following will be useful: since b1 ≥ 0 on (x
, η) and b1 ≤ 0 on (η, x
+1), the identity

∣
∣
∣
∣exp

{∫ x

η

θ jk(s)ds

}∣
∣
∣
∣ = exp

{

(k + λ j)
∫ x

η

b1
a21 + b21

(s)ds

}

(22)

implies that, for all k + λ j > 0, function (22) is bounded in (x
, x
+1). Furthermore, since
2 ≤ mσ < 2nσ − 1, for σ = 
, 
 + 1, we have that the function

ψ jk(x)
.=

{
exp

{∫ x
η

θ jk(s)ds
}

, if x ∈ (x
, x
+1)

0, if x ∈ T
1\(x
, x
+1)

is flat at both x
 and x
+1. Hence, ψ jk and also ψ jk/(a1 + ib1) belong to C∞(T1). Simple
calculations show that (ψ jk/(a1 + ib1))(x)e−i( j y+kt) belongs to ker tL; hence,

∫ x
+1

x


exp

{∫ x

η

θ jk(s)ds

}
f̂ (x, j, k)

(a1 + ib1)(x)
dx = 0,

for all k+λ j > 0. In particular, we can rewrite each solution û(·, j, k) in the following form

û(x, j, k) = −
∫ x
+1

x
exp

{

−
∫ x

x ′
θ jk(s)ds

}
f̂ (x ′, j, k)

(a1 + ib1)(x ′)
dx ′,

for x ∈ (x
, x
+1). By using this expression and proceeding as in the proof of Proposition 4,
we can show that, for k + λj > 0, û(·, j, k) is flat at x
+1 and that this sequence of solutions
decays rapidly.

Together with Lemma 4 this result gives globally solvable vector fields with infinite
codimensional range. For instance, L = ∂t + (sin3(x) + i sin3(2x))∂x + √

2∂y .
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