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Abstract This paper establishes removable singularity theorems for nonnegative continuous
solutions of quasilinear elliptic equations with nonlinear source or absorption terms when an
exceptional set is conditioned in terms of the regularity of Hausdorff measure and a uniform
Minkowski property. These weaker conditions enable us to consider some fractal sets as an
exceptional set.
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1 Introduction

This paper deals with the removability of singularities of nonnegative continuous solutions
of quasilinear elliptic equations with a nonlinear source term

− Δpu = uq (1.1)

and with a nonlinear absorption term

Δpu = uq , (1.2)
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42 K. Hirata, T. Ono

where Δpu = div(‖∇u‖p−2∇u) is the p-Laplacian of u on R
n with 1 < p < n and the

equations are understood in the weak sense. In particular, we are interested in establish-
ing removability theorems under an appropriate growth condition on solutions and a weak
assumption on an exceptional set.

In [14], Serrin has established removability theorems and regularity theorems for solutions
of second-order quasilinear elliptic equations. It should be noted that his results are applicable
to the above equations in only the case 0 < q ≤ p−1.Our study ismotivated by the following
special one of [14, Theorem 11].

Theorem A Let Ω be an open set in R
n and let E be a compact smooth manifold in Ω of

dimension m < n− p. Assume that 0 < q ≤ p−1. If u is a nonnegative continuous solution
of (1.1) or (1.2) in Ω\E satisfying growth condition

u(x) = O(d(x, E)(p−n+m)/(p−1)+δ) (1.3)

for some δ > 0, then u can be extended to the whole of Ω as a continuous solution.

There arise the following natural questions which complement and extend Theorem A:

(i) Can growth condition (1.3) be replaced by the weaker one

u(x) = o(d(x, E)(p−n+m)/(p−1)) ?

(ii) Is Theorem A true when q > p − 1 and E is a fractal set?

When E is a singleton, it is possible to obtain more detailed results. In fact, we know
the classification of a removable isolated singularity and the local behavior near an isolated
point of nonnegative continuous solutions of each Eqs. (1.1) and (1.2) with p − 1 < q <

n(p − 1)/(n − p). See Bidaut-Véron [1], Friedman and Véron [4] and Véron [17]. When
q ≥ n(p − 1)/(n − p), it is also known that any isolated point is removable for nonnegative
continuous solutions of (1.2). See Vázquez and Véron [16] and Véron [17]. Moreover, as
mentioned in [17], the last result can be extended to a singular set lying on a compact
smooth manifold of dimension m < n − p when q ≥ (n − m)(p − 1)/(n − m − p). It
seems that there are no removability results for continuous solutions of (1.1) and (1.2) with
p − 1 < q < (n − m)(p − 1)/(n − m − p), although Skrypnik [15] studied question (i) in
only the case q ≤ p − 1 using an argument not applied to question (ii). Thus the purpose of
this paper is to give answers to the above questions in the subcritical case. We prove that ifΩ
is an open set in Rn ; E is a compact subset of Ω of dimension m < n − p satisfying a weak
condition and 0 < q < (n − m)(p − 1)/(n − m − p), then E is removable for nonnegative
continuous solutions of each Eqs (1.1) and (1.2) in Ω\E satisfying the growth condition
in the above question. Results are obtained for equations of more general form than (1.1)
and (1.2) [see (2.1) and (2.2) below]. One of the difficulties in this problem is to show the
local boundedness of extended solutions of (1.1). We give a new iteration technique with the
help of the Wolff potential estimate established by Kilpeläinen and Malý [9,10]. Also, we
establish a removability theorem for p-subharmonic functions satisfying a growth condition
which is applied to show a result for (1.2). Finally, we note that the recent interesting results
by Bidaut-Véron [2] and Phuc and Verbitsky [12,13] concerning removable singularities for
(1.1) were established in the framework of entropy solutions and p-superharmonic functions,
so extended solutions do not necessarily belong to the appropriate Sobolev space. Thus, our
results do not follow from their’s and are more delicate.
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2 Notation and main results

Throughout this paper, we suppose that Ω is an open set in R
n (n ≥ 2); E is a compact

subset of Ω and 1 < p < n. The symbol C stands for an absolute positive constant whose
value is unimportant and may vary at each occurrence. If necessary, we write C1,C2, . . . to
specify them.

Let us consider quasilinear elliptic equations of the form

− divA(x,∇u) = B(x, u,∇u) (2.1)

and
divA(x,∇u) = B(x, u,∇u), (2.2)

where A : Ω × R
n → R

n and B : Ω × R × R
n → R satisfy nonlinear structure conditions

stated below. The notation ‖ · ‖ and 〈·, ·〉 stand for the Euclidean norm and inner product on
R
n , respectively. Let A : Ω × R

n → R
n be a Carathéodory function, that is, the mapping

x 	→ A(x, ξ) is measurable on Ω for every ξ ∈ R
n and the mapping ξ 	→ A(x, ξ) is

continuous on Rn for every x ∈ Ω . We always assume the following (A1)–(A3):

(A1) Coercivity and growth: there are positive constants c1 and c2 such that for all x ∈ Ω

and ξ ∈ R
n ,

〈A(x, ξ), ξ 〉 ≥ c1‖ξ‖p and ‖A(x, ξ)‖ ≤ c2‖ξ‖p−1.

(A2) Monotonicity: for all x ∈ Ω and ξ1, ξ2 ∈ R
n satisfying ξ1 �= ξ2,

〈A(x, ξ1) − A(x, ξ2), ξ1 − ξ2〉 > 0.

(A3) Homogeneity: if λ ∈ R\{0}, then for all x ∈ Ω and ξ ∈ R
n ,

A(x, λξ) = λ|λ|p−2A(x, ξ).

Let q be a positive constant and let B : Ω × R × R
n → R be a Borel function satisfying

(B1) Sign: if t ≥ 0, then B(x, t, ξ) ≥ 0 for all x ∈ Ω and ξ ∈ R
n .

(B2) Growth for (2.1): there is a positive constant c3 such that for all x ∈ Ω , t ∈ R and
ξ ∈ R

n ,

|B(x, t, ξ)| ≤ c3(1 + |t |q).
The constant q in (B2) need not be p − 1, and its range is restricted in terms of the fractal
dimension of an exceptional set E . When we discuss (2.2), we assume the following growth
condition instead of (B2):

(B2′) Growth for (2.2): there exists b ∈ L∞
loc(R) such that for all x ∈ Ω , t ∈ R and

ξ ∈ R
n ,

|B(x, t, ξ)| ≤ b(t).

Prototypes of Eqs. (2.1) and (2.2) are quasilinear elliptic equations of Lane–Emden type

−Δpu = |u|q−1u and Δpu = |u|q−1u

and Δpu = eu . We say that u is a (weak) solution of (2.1) in Ω if it belongs to W 1,p
loc (Ω) ∩

L∞
loc(Ω) and satisfies (2.1) in Ω in the weak sense: for all φ ∈ C∞

0 (Ω),∫
Ω

〈A(x,∇u(x)),∇φ(x)〉 dx =
∫

Ω

B(x, u(x),∇u(x))φ(x) dx .
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44 K. Hirata, T. Ono

A (weak) solution of (2.2) in Ω is defined in a similar manner. If u is a nonnegative solution
of (2.1) [resp. (2.2)] in Ω\E , then (B2) [resp. (B2′)] implies B(·, u,∇u) ∈ L∞

loc(Ω\E). It
follows from [11, Theorem 4.11] that u has a continuous representative on Ω\E . Therefore
we only consider continuous solutions of (2.1) and (2.2).

Let us consider the following exceptional set E . The Euclidean distance from a point
x ∈ R

n to E is denoted by d(x, E). For r > 0, we write

E(r) := {x ∈ R
n : d(x, E) < r}.

Also, B(x, r) stands for the open ball of center x and radius r . Them-dimensional Hausdorff
measure and the n-dimensional Lebesgue measure of a set A are denoted, respectively, by
Hm(A) and |A|. When m = 0, H0 is interpreted as the counting measure. Let m be a real
number such that 0 ≤ m < n. We say that a compact set E is a Lipschitz set of dimension
m if there exist positive constants r0 and C0 ≥ 1 such that for all x ∈ E , 0 < r < r0 and
0 < R < r0,

1

C0
rm ≤ Hm(E ∩ B(x, r)) ≤ C0r

m (2.3)

and
|E(r) ∩ B(x, R)| ≤ C0r

n−m Rm . (2.4)

If only (2.4) is satisfied, then we call E a uniform Minkowski set of dimension m. Examples
of Lipschitz sets will be given in Sect. 7.

Our main results are as follows. The first one is for Eq. (2.1).

Theorem 2.1 Let 0 ≤ m < n − p and let E be a uniform Minkowski set in Ω of dimension
m. If

0 < q <
(n − m)(p − 1)

n − m − p
, (2.5)

then E is removable for nonnegative continuous solutions of (2.1) in Ω\E satisfying the
growth condition: at each y ∈ E,

u(x) = o(d(x, E)(p−n+m)/(p−1)) as x → y. (2.6)

For Eq. (2.2), we have the following.

Theorem 2.2 Let 0 ≤ m < n − p and let E be a Lipschitz set in Ω of dimension m. Then E
is removable for nonnegative continuous solutions of (2.2) in Ω\E satisfying (2.6) at each
y ∈ E.

Remark 2.3 Note fromVázquez andVéron [16, Lemma1.3] that any nonnegative continuous
solution of (1.2) satisfies

u(x) ≤ Cd(x, E)−p/(q−p+1) near E,

because its proof is independent of the shape of E . Thus if q > (n−m)(p−1)/(n−m− p),
then (2.6) is always satisfied for such solutions, and hence the above removability result holds
without any growth condition.

The rest of this paper is organized as follows. In Sect. 3, we collect several known results
from nonlinear potential theory and basic estimates for the Wolff potential which are used
in the subsequent sections. Proofs of Theorems 2.1 and 2.2 are given in Sects. 4 and 5,
respectively. In Sect. 7, we show that some fractal sets are Lipschitz sets.
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3 Preliminary material

We start with the definition of super/subsolutions of

− divA(x,∇u) = 0. (3.1)

A function u ∈ W 1,p
loc (Ω) is called a supersolution of (3.1) in Ω if the inequality

∫
Ω

〈A(x,∇u(x)),∇φ(x)〉 dx ≥ 0

holds for all nonnegative functions φ ∈ C∞
0 (Ω). If −u is a supersolution of (3.1) in Ω , then

we call u a subsolution of (3.1) in Ω . A continuous function h ∈ W 1,p
loc (Ω) is said to be

A-harmonic on Ω if the equality
∫

Ω

〈A(x,∇h(x)),∇φ(x)〉 dx = 0

holds for all φ ∈ C∞
0 (Ω). Rather than arguing in the framework of super/subsolutions, it

is convenient to introduce the notion of A-super/A-subharmonicity. A function u : Ω →
(−∞,+∞] is called A-superharmonic on Ω if u �≡ +∞ on each component of Ω , if u is
lower semicontinuous on Ω and if for each open set ω with ω ⊂ Ω and each continuous
function h on ω which is A-harmonic on ω, the inequality u ≥ h on ∂ω implies u ≥ h
on ω. Also, a function u : Ω → [−∞,+∞) is called A-subharmonic on Ω if −u is
A-superharmonic on Ω . Note that the class of A-superharmonic functions is closed under
a positive scalar multiplication λu (λ > 0), a constant addition u + C and the minimum
operation min{u, v}. A substantial difference between supersolutions and A-superharmonic
functions is that u ∈ W 1,p

loc (Ω) or not. Indeed, the following facts can be found in [5,
Corollaries 7.18, 7.20, 7.21 and Theorem 7.22].

Lemma 3.1 The following statements hold.

(i) If u is a supersolution of (3.1) in Ω , then there exists an A-superharmonic function v

on Ω such that v = u almost everywhere on Ω .
(ii) Let u be anA-superharmonic function onΩ . If u ∈ W 1,p

loc (Ω), then u is a supersolution
of (3.1) in Ω .

(iii) Let u be anA-superharmonic function on Ω . If u is locally bounded above on Ω , then
u ∈ W 1,p

loc (Ω) and u is a supersolution of (3.1) in Ω .
(iv) If u is A-superharmonic on Ω , then

u(x) = ess lim inf
y→x

u(y)

for each x ∈ Ω .

These facts are also noteworthy matters when we define the Riesz measure associated
with an A-superharmonic function. Following the book [5, pp. 381–382] and [9], we recall
the definition of the Riesz measure. Let u be anA-superharmonic function on Ω and k ∈ N.
Then, the truncated function uk := min{u, k} belongs to W 1,p

loc (Ω) and {∇uk} converges
almost everywhere on Ω as k → ∞. The very weak gradient of u is defined by

Du := lim
k→∞ ∇uk .
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Then Du ∈ L p−1
loc (Ω) by [5, Theorem 7.46]. Moreover, by [5, Theorem 21.2], there exists

a unique Radon measure μ on Ω such that − divA(x, Du) = μ in Ω in the sense of
distributions, i.e., for all φ ∈ C∞

0 (Ω),∫
Ω

〈A(x, Du(x)),∇φ(x)〉 dx =
∫

Ω

φ dμ.

This measure μ is called the Riesz measure associated with u.
Also, we need the Wolff potential estimate for A-superharmonic functions. Let μ be a

Radon measure on Ω . TheWolff potential of μ is defined by

Wμ
1,p(x, r) :=

∫ r

0

(
μ(B(x, t))

tn−p

)1/(p−1) dt

t
,

whenever B(x, r) ⊂ Ω . The following important estimate has been established by Kilpeläi-
nen and Malý [10, Theorem 1.6].

Lemma 3.2 Let u be a nonnegative A-superharmonic function on B(x0, 3r) and let μ be
the Riesz measure associated with u. Then there exists a constant C > 1 depending only on
p, n and the structural constants c1 and c2 such that

1

C
Wμ

1,p(x0, r) ≤ u(x0) ≤ C

{
inf

B(x0,r)
u + Wμ

1,p(x0, 2r)

}
.

The following lemma is a consequence of [10, Theorem 4.20].

Lemma 3.3 Let u be an A-superharmonic function on Ω and let μ be the Riesz measure
associated with u. If ω is an open subset of Ω with μ(ω) = 0, then u is real valued and
continuous on ω.

In order to obtain a growth estimate near E of the Wolff potential, we need the following
lemma which was proved in [6, Lemma 2.2].

Lemma 3.4 Let 0 ≤ m < n and let E be a uniform Minkowski set of dimension m. If
m − n < λ < 0, then there exists a positive constant C depending only on C0, λ, m and n
such that for all x ∈ E, 0 < r < r0 and 0 < R < r0,∫

E(r)∩B(x,R)

d(y, E)λ dy ≤ Crλ+n−m Rm .

Lemma 3.2 and the next basic estimate play crucial roles in the proof of Theorem 2.1.

Lemma 3.5 Assume that 0 ≤ m < n− p and E is a uniformMinkowski set of dimension m.
Let m − n < λ < 0, let 0 < r < r0/3 and let B(x, r) ⊂ E(r0/3). If μ is a Radon measure
on B(x, r) for which there is a constant C1 > 0 such that for all 0 < t < r ,

μ(B(x, t)) ≤ C1

∫
B(x,t)

d(y, E)λ dy,

then

Wμ
1,p(x, r) ≤

⎧⎪⎪⎨
⎪⎪⎩

Cd(x, E)(λ+p)/(p−1) if λ < −p,

C

(
1 + log+ 1

d(x, E)

)
if λ = −p,

C if λ > −p,

(3.2)

where C is a constant depending only on C1, λ, p, r0, C0 and n.
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Removable sets for continuous solutions of quasilinear… 47

Proof If 0 < t ≤ d(x, E)/2, then we have for all y ∈ B(x, t),

1

2
d(x, E) ≤ d(y, E) ≤ 2d(x, E),

and so

μ(B(x, t)) ≤ Cd(x, E)λtn .

Therefore, for any pair (x, r) satisfying d(x, E) ≥ 2r , we get

Wμ
1,p(x, r) ≤ Cd(x, E)λ/(p−1)

∫ d(x,E)/2

0
t p/(p−1) dt

t

≤ Cd(x, E)(λ+p)/(p−1),

and so (3.2) holds for such an (x, r). Let us consider the other (x, r). If d(x, E)/2 < t < r ,
then B(x, t) ⊂ B(x∗, 3t) for some x∗ ∈ E . From Lemma 3.4 with r = R = 3t , we get

μ(B(x, t)) ≤ C
∫
B(x∗,3t)

d(y, E)λ dy ≤ Ctλ+n .

Therefore

Wμ
1,p(x, r) ≤ C

(
d(x, E)λ/(p−1)

∫ d(x,E)/2

0
t p/(p−1) dt

t
+

∫ r

d(x,E)/2
t (λ+p)/(p−1) dt

t

)

≤ C

(
d(x, E)(λ+p)/(p−1) +

∫ r

d(x,E)/2
t (λ+p)/(p−1) dt

t

)
.

Since the last integral is dominated by

⎧⎪⎪⎨
⎪⎪⎩

Cd(x, E)(λ+p)/(p−1) if (λ + p)/(p − 1) < 0,

log
r0

d(x, E)
if (λ + p)/(p − 1) = 0,

Cr (λ+p)/(p−1)
0 if (λ + p)/(p − 1) > 0

with some positive constant C depending only on λ and p, we obtain the required
estimate. ��

Lemma 3.6 Assume that 0 ≤ m < n − p and E is a Lipschitz set of dimension m. Then
there exists a constant C > 1 depending only on m, p, n, r0, C0 and Hm(E) such that for
any pair x ∈ E(r0/3)\E and r > 3d(x, E),

1

C
d(x, E)(p−n+m)/(p−1) ≤ WHm |E

1,p (x, r) ≤ Cd(x, E)(p−n+m)/(p−1). (3.3)

Proof Let x ∈ E(r0/3)\E and let r > 3d(x, E). Take x∗ ∈ E so that ‖x − x∗‖ = d(x, E).
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We first show the second inequality in (3.3). Since B(x, t)∩ E ⊂ B(x∗, 2t)∩ E , we have
by (2.3)

WHm |E
1,p (x, r) =

∫ r

d(x,E)

(Hm(B(x, t) ∩ E)

tn−p

)1/(p−1) dt

t

≤ C
∫ min{r,r0/2}

d(x,E)

t (p−n+m)/(p−1) dt

t

+ Hm(E)1/(p−1)
∫ r

min{r,r0/2}
t (p−n)/(p−1) dt

t

≤ Cd(x, E)(p−n+m)/(p−1) + CHm(E)1/(p−1)r (p−n)/(p−1)
0 .

Since E is compact, the standard finite covering argument shows thatHm(E) is finite. There-
fore, the last quantity is bounded by a constant multiple of d(x, E)(p−n+m)/(p−1).

Next, we show the first inequality in (3.3). If t > 2d(x, E), then B(x∗, t/2) ⊂ B(x, t).
Therefore

WHm |E
1,p (x, r) ≥

∫ 3d(x,E)

2d(x,E)

(Hm(B(x, t) ∩ E)

tn−p

)1/(p−1) dt

t

≥ 1

C

∫ 3d(x,E)

2d(x,E)

t (p−n+m)/(p−1) dt

t

≥ 1

C
d(x, E)(p−n+m)/(p−1).

Thus the lemma is proved. ��
Lemma 3.7 Assume that 0 ≤ m < n − p and E is a Lipschitz set of dimension m. Let ω

be a bounded open set in R
n containing E. Then there exists a positive A-superharmonic

function g on R
n satisfying

− divA(x, Dg) = Hm |E in R
n (3.4)

in the sense of distributions and

1

C2
d(x, E)(p−n+m)/(p−1) ≤ g(x) ≤ C2d(x, E)(p−n+m)/(p−1) (3.5)

for all x ∈ ω\E and some constant C2 > 1.

Proof The existence of positive A-superharmonic functions g satisfying (3.4) was proved
by Kilpeläinen [8, Theorem 2.10]. Fix r > 3 diamω and take an open ball B in R

n so that
B(x, 3r) ⊂ B for all x ∈ ω. Let x ∈ ω\E . By Lemma 3.2, we have

1

C
WHm |E

1,p (x, r) ≤ g(x) ≤ C

{
inf

B(x,r)
g + WHm |E

1,p (x, 2r)

}
.

Since B(x, r)\ω �= ∅ and g is continuous on Rn\E by Lemma 3.3, we have

inf
B(x,r)

g ≤ inf
B(x,r)\ω g ≤ sup

B(x,r)\ω
g ≤ sup

B\ω
g ≤ C < ∞.

Hence, if x ∈ E(r0/3)\E , then (3.5) follows from Lemma 3.6. Also, the minimum principle
and the continuity yield

0 < min
∂ω

g = min
ω

g ≤ max
ω\E(r0/3)

g < ∞.
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Removable sets for continuous solutions of quasilinear… 49

Since r0/3 ≤ d(x, E) ≤ diamω for all x ∈ ω\E(r0/3), we see that (3.5) is true for
x ∈ ω\E(r0/3). This completes the proof. ��

The following lemma was proved in [11, Lemma 2.117].

Lemma 3.8 Let u be a nonnegative supersolution of (3.1) in B(x0, 4r) and let η ∈
C∞
0 (B(x0, r)) be a nonnegative function satisfying ‖∇η‖ ≤ C3/r for some constant C3.

Then there exists a positive constant C depending only on C3, c1, c2, p and n such that

∫
B(x0,r)

‖∇u‖p−1ηp−1‖∇η‖ dx ≤ Crn−p
(

inf
B(x0,r/2)

u

)p−1

.

Finally, we make some remarks on an exceptional set E . Let E be a uniform Minkowski
set of dimension m. From (2.4), we see that the m-dimensional upper Minkowski content of
E defined by

Mm(E) := lim sup
r→0+

|E(r)|
rn−m

is finite. It is known that the m-dimensional Hausdorff measure of E is not greater than
CMm(E) for some positive constant C depending only on m and n. Therefore, if 0 ≤ m ≤
n − p, then the p-capacity of E is zero (see [5, Theorem 2.27]). Since [5, Theorem 7.35]
states that a compact set of p-capacity zero is removable for nonnegative A-superharmonic
functions, we have the following lemma.

Lemma 3.9 Let 0 ≤ m ≤ n− p. If E is a uniform Minkowski set in Ω of dimension m, then
E is removable for nonnegative A-superharmonic functions on Ω\E.

Moreover, for the Riesz measure associated with an A-super/A-subharmonic function,
we get the following lemma.

Lemma 3.10 Let 0 ≤ m ≤ n − p, let E be a uniform Minkowski set in Ω of dimension
m and let u be an A-super/A-subharmonic function on Ω with the Riesz measure μ. If
u ∈ W 1,p

loc (Ω), then μ(E) = 0.

Proof Let r > 0 be small. Take η ∈ C∞
0 (E(r)) so that 0 ≤ η ≤ 1 and ‖∇η‖ ≤ C/r on E(r)

and η = 1 on E . By (A1) and the Hölder inequality, we have

μ(E) ≤
∫
E(r)

η dμ = ±
∫
E(r)

〈A(x,∇u(x)),∇η(x)〉 dx

≤ c2

∫
E(r)

‖∇u‖p−1‖∇η‖ dx

≤ c2

(∫
E(r)

‖∇u‖p dx

)(p−1)/p(∫
E(r)

‖∇η‖p dx

)1/p

.

Since ∫
E(r)

‖∇η‖p dx ≤ Cr−p|E(r)| ≤ Cr−p+n−m ≤ C,

we obtain from ‖∇u‖ ∈ L p
loc(Ω) that μ(E) = 0 after r → 0 in the above inequality. ��
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4 Proof of Theorem 2.1

In order to give the proof of Theorem 2.1, we prepare two crucial lemmas.

Lemma 4.1 Assumptions on m, q and E are the same as in Theorem 2.1. Let u be a nonneg-
ative solution of (2.1) in Ω\E satisfying growth condition (2.6) at each y ∈ E. Then there
exists a nonnegative A-superharmonic function u on Ω such that u = u almost everywhere
on Ω\E and∫

Ω

〈A(x, Du(x)),∇φ(x)〉 dx =
∫

Ω\E
B(x, u(x),∇u(x))φ(x) dx

=
∫

Ω

B(x, u(x), Du(x))φ(x) dx (4.1)

for all φ ∈ C∞
0 (Ω). In particular, the Riesz measure associated with u is given by

dμ(x) = B(x, u(x), Du(x)) dx

on Borel subsets of Ω .

Proof The nonnegativity of u and (B1) imply that u is a supersolution of (3.1) in Ω\E . By
Lemmas 3.1(i) and 3.9, there is a nonnegative A-superharmonic function u on Ω such that
u = u almost everywhere on Ω\E . Consider the truncated function uk := min{u, k} for
k ∈ N, which is locally bounded and A-superharmonic on Ω and so is a supersolution of
(3.1) in Ω by Lemma 3.1(iii). Then

Du = lim
k→∞ ∇uk = ∇u a.e. on Ω\E . (4.2)

Letμk be the Riesz measure associated with uk . Note from [9, Remark 2.2] thatμk converges
weakly to the Riesz measure μ associated with u, i.e., for all φ ∈ C∞

0 (Ω),

lim
k→∞

∫
Ω

φ dμk =
∫

Ω

φ dμ.

We show that μ(E) = 0. Let ε > 0. By the compactness of E and growth condition (2.6),
there is a positive constant r such that E(10r) ⊂ Ω and

u(x) ≤ εd(x, E)(p−n+m)/(p−1) for all x ∈ E(2r)\E . (4.3)

Let z ∈ E . We take η ∈ C∞
0 (B(z, 2r)) such that 0 ≤ η ≤ 1 and ‖∇η‖ ≤ C/r on B(z, 2r)

and η = 1 on B(z, r). Then, by (A1) and Lemma 3.8,

μk(B(z, r)) ≤
∫
B(z,2r)

ηp dμk =
∫
B(z,2r)

〈A(x,∇uk(x)),∇η(x)p〉 dx

≤ pc2

∫
B(z,2r)

‖∇uk‖p−1ηp−1‖∇η‖ dx

≤ Crn−p
(

inf
B(z,r)

uk

)p−1

.

From (4.3), we get

μk(B(z, r)) ≤ Crn−p · (εr (p−n+m)/(p−1))p−1 ≤ Cε p−1rm . (4.4)

Consider the covering {B(z, r/5)}z∈E of E(r/10). By the compactness and the basic covering
lemma,we find N -points z j in E such that {B(z j , r/5)}Nj=1 aremutually disjoint and E(r/10)

123



Removable sets for continuous solutions of quasilinear… 51

is covered by {B(z j , r)}Nj=1. Since all the B(z j , r/5) is contained in E(r),we have N ≤ Cr−m

by (2.4). This, together with (4.4), yields

μk(E(r/10)) ≤
N∑
j=1

μk(B(z j , r)) ≤ Cε p−1.

Now, we take ψ ∈ C∞
0 (E(r/10)) such that 0 ≤ ψ ≤ 1 on E(r/10) and ψ = 1 on E . The

weak convergence μk → μ implies that

μ(E) ≤
∫

ψ dμ = lim
k→∞

∫
ψ dμk ≤ lim inf

k→∞ μk(E(r/10)) ≤ Cε p−1.

Hence we obtain μ(E) = 0 as required.
Finally, we show (4.1). As mentioned in the first paragraph, u is an A-superharmonic

function on Ω with the associated Riesz measure μ. Since u is a solution of (2.1) in Ω\E ,
it follows from (4.2) that for all φ ∈ C∞

0 (Ω\E),∫
Ω\E

〈A(x, Du(x)),∇φ(x)〉 dx =
∫

Ω\E
〈A(x,∇u(x)),∇φ(x)〉 dx

=
∫

Ω\E
B(x, u(x),∇u(x))φ(x) dx .

The uniqueness of the Riesz measure μ implies that dμ = B(·, u,∇u) dx on Borel subsets
of Ω\E . This and μ(E) = |E | = 0 yield that for all φ ∈ C∞

0 (Ω),∫
Ω

〈A(x, Du(x)),∇φ(x)〉 dx =
∫

Ω

φ dμ =
∫

Ω\E
φ dμ

=
∫

Ω\E
B(x, u(x),∇u(x))φ(x) dx

=
∫

Ω

B(x, u(x), Du(x))φ(x) dx .

This completes the proof. ��
To show the local boundedness of u obtained in Lemma 4.1, we need an elementary lemma

concerning the width of E(r).

Lemma 4.2 Let E be a compact set inRn with no interior and let ρ > 0. Then there exists a
positive constant ρ0 depending only on E and ρ such that B(z, ρ)\E(ρ0) �= ∅ for all z ∈ E.

Proof Suppose to the contrary that for each k ∈ N there is zk ∈ E such that B(zk, ρ) ⊂
E(1/k). Taking a subsequence if necessary, we may assume that {zk} converges to z0 ∈ E .
Then we see that there is kρ ∈ N such that B(z0, ρ/2) ⊂ B(zk, ρ) for all k ≥ kρ . This
implies that B(z0, ρ/2) ⊂ ⋂

k≥kρ
E(1/k) = E , which contradicts that E has no interior. ��

Lemma 4.3 Let E be a compact set in R
n with no interior and let ρ > 0. Then there exists

a positive constant ρ1 depending only on E and ρ such that B(x, 2ρ)\E(ρ1) �= ∅ for all
z ∈ E and x ∈ B(z, ρ).

Proof Let ρ1 := min{ρ0, ρ}, where ρ0 is the constant in Lemma 4.2. If d(x, E) ≥ ρ, then
x ∈ B(x, 2ρ)\E(ρ1). If d(x, E) < ρ, then we take x∗ ∈ E with ‖x∗ − x‖ = d(x, E). Then
B(x∗, ρ)\E(ρ0) �= ∅ by Lemma 4.2, and so B(x, 2ρ)\E(ρ1) �= ∅. Thus the lemma follows.

��
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Lemma 4.4 Assumptions on m, q and E are the same as in Theorem 2.1. Let u be a nonneg-
ative solution of (2.1) in Ω\E satisfying growth condition (2.6) at each y ∈ E and let u be a
nonnegative A-superharmonic function on Ω obtained in Lemma 4.1. Then u ∈ L∞(E(r))
for some r > 0.

Proof We first consider the case

p − 1 < q <
(n − m)(p − 1)

n − m − p
.

Let N be the smallest natural number satisfying

N ≥
log

p(p − 1)

(n − m)(p − 1) − q(n − m − p)

log
q

p − 1

,

which is equivalent to

(p − n + m)

(
q

p − 1

)N

+ p

(
q

p − 1

)N−1

+ · · · + p

(
q

p − 1

)
+ p ≥ 0.

Define finitely many numbers by

λ1 := (p − n + m)
q

p − 1

and for k = 2, . . . , N + 1,

λk := (p − n + m)

(
q

p − 1

)k

+ p

(
q

p − 1

)k−1

+ · · · + p

(
q

p − 1

)
.

The case N = 1 needs only the final step of the following iteration argument, so we
consider the case N > 1. In below, we note that

λk + p

p − 1
q = λk+1 (k = 1, . . . , N )

and

λ1 < λ2 < · · · < λN−1 < −p ≤ λN .

Let z ∈ E . In view of (2.6), we take 0 < r1 < min{1, r0/6} such that B(z, 4r1) ⊂ E(r0/3)∩
Ω and

u(x) ≤ d(x, E)(p−n+m)/(p−1) for all x ∈ B(z, 3r1), (4.5)

and define rk+1 := rk/4 inductively. Then

B(x, 3rk+1) ⊂ B(z, rk) for all x ∈ B(z, rk+1). (4.6)

Let x ∈ B(z, r1). Taking Lemma 4.1 into account, we consider the Wolff potential
Wμ

1,p(x, 2r1) with dμ = B(·, u, Du) dx . By Lemmas 3.2, 4.3 and (4.5), we have

u(x) ≤ C

{
inf

B(x,r1)
u + Wμ

1,p(x, 2r1)

}
≤ C{1 + Wμ

1,p(x, 2r1)}, (4.7)

123



Removable sets for continuous solutions of quasilinear… 53

where the last constant C may depend on r1. Since

B(y, u(y), Du(y)) ≤ c3{1 + u(y)q}
≤ Cd(y, E)λ1 for all y ∈ B(x, 2r1) (4.8)

by (B2) and (4.5), it follows from Lemma 3.5 that

Wμ
1,p(x, 2r1) ≤ Cd(x, E)(λ1+p)/(p−1),

and so
u(x) ≤ Cd(x, E)(λ1+p)/(p−1) (4.9)

by (4.7). This is true for all x ∈ B(z, r1). Next, we let x ∈ B(z, r2). Noting (4.6), we apply
Lemma 3.2 on B(x, 3r2). As in (4.7), we have

u(x) ≤ C{1 + Wμ
1,p(x, 2r2)},

where a constant C may depend on r2. Also, by (B2) and (4.9), we have

B(y, u(y), Du(y)) ≤ Cd(y, E)λ2 for all y ∈ B(x, 2r2).

Therefore Lemma 3.5 gives

u(x) ≤ Cd(x, E)(λ2+p)/(p−1).

This is true for all x ∈ B(z, r2). Repeating this process N − 1 times, we obtain

u(x) ≤ Cd(x, E)(λN−1+p)/(p−1) for all x ∈ B(z, rN−1),

which implies that if x ∈ B(z, rN ), then

B(y, u(y), Du(y)) ≤ Cd(y, E)λN for all y ∈ B(x, 2rN ).

Since λN ≥ −p, it follows from Lemma 3.5 that for all x ∈ B(z, rN ),

u(x) ≤
⎧⎨
⎩
C

(
1 + log+ 1

d(x, E)

)
if λN = −p,

C if λN > −p.

If λN = −p, then we apply Lemma 3.5 one more time to obtain the boundedness of u on
B(z, rN+1).

We have proved that if z ∈ E , then u ≤ C on B(z, rN+1) for some constantC independent
of z. Therefore we now get the boundedness of u on E(rN+1) in the case q > p − 1.

Next, we consider the case 0 < q ≤ p − 1. Take Q ∈ R with

p − 1 < Q <
(n − m)(p − 1)

n − m − p
.

With the same notation as above, we see that d(x, E)−a ≤ Cd(x, E)−b for all x ∈ B(z, 4r1)
if 0 ≤ a ≤ b. Thus (4.8) holds for

λ1 := (p − n + m)
Q

p − 1
,

and the later estimates also hold for

λk := (p − n + m)

(
Q

p − 1

)k

+ p

(
Q

p − 1

)k−1

+ · · · + p

(
Q

p − 1

)
.
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Therefore we can obtain the boundedness of u in this case as well. Thus the lemma is proved.
��

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1 Let u be a nonnegative continuous solution of (2.1) inΩ\E satisfying
growth condition (2.6) at each y ∈ E . Let u be a nonnegative A-superharmonic function on
Ω obtained in Lemma 4.1. Then u ∈ W 1,p

loc (Ω) ∩ L∞
loc(Ω) by Lemmas 3.1(iii) and 4.4, and

we have Du = ∇u. Thus u is a solution of (2.1) inΩ . As stated in Sect. 2, u has a continuous
representative, so we may assume that u is continuous on Ω . Then u = u on Ω\E . This
completes the proof. ��

5 Proof of Theorem 2.2

This section gives the proof of Theorem 2.2. It should be noted that we cannot apply the
known removability theorem forA-super/A-subharmonic functions (Lemma3.9) to solutions
of (2.2) in the first step of the proof, although the proof for case (2.1) was started from the
use of that theorem (see the proof of Lemma 4.1). To overcome this, we need a removability
theorem for A-subharmonic functions fitting in our question.

Theorem 5.1 Let 0 ≤ m < n − p and let E be a Lipschitz set in Ω of dimension m. If u is
an A-subharmonic function on Ω\E satisfying at each y ∈ E,

lim sup
x→y

d(x, E)(n−p−m)/(p−1)u(x) ≤ 0, (5.1)

then u can be extended to the whole of Ω as an A-subharmonic function.

Proof Let ω be a bounded open set such that E ⊂ ω and ω ⊂ Ω . For this ω, we take a
positive A-superharmonic function g on R

n with the properties in Lemma 3.7. Let ε > 0.
By (5.1), (3.5) and the finite covering argument, we find rε > 0 such that E(rε) ⊂ ω and

u(x) ≤ εg(x) for all x ∈ E(rε)\E . (5.2)

Taking Lemma 3.9 into account, it suffices to prove that u is bounded above on ω\E . To this
end, noting that u is upper semicontinuous on ∂ω, we let

γ := max{max
∂ω

u, 0} and v := u − γ.

Then v is A-subharmonic on Ω\E satisfying v ≤ u on Ω\E and

v ≤ 0 on ∂ω. (5.3)

By (5.2), we have v ≤ εg on E(rε)\E . Since v ≤ 0 ≤ εg on ∂ω by (5.3) and εg is A-
superharmonic on R

n , it follows from the comparison principle that v ≤ εg on ω\E(rε).
Therefore v ≤ εg on ω\E . Since g is finite on ω\E by (3.5), we obtain v ≤ 0 on ω\E after
ε → 0. Hence u ≤ γ on ω\E . Thus the theorem is proved. ��

Corollary 5.2 Let 0 ≤ m < n − p and let E be a Lipschitz set in Ω of dimension m. If u
is an A-harmonic function on Ω\E satisfying growth condition (2.6) at each y ∈ E, then u
can be extended to the whole of Ω as an A-harmonic function.
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Proof of Theorem 2.2 Let u be a nonnegative continuous solution of (2.2) inΩ\E satisfying
growth condition (2.6) at each y ∈ E . Since u is a continuous subsolution of (3.1) inΩ\E by
(B1), we see from Lemma 3.1(i), (iv) that u isA-subharmonic on Ω\E . Theorem 5.1 shows
that u has a nonnegativeA-subharmonic extension u toΩ . Moreover, Lemma 3.1(iii) and the
upper semicontinuity imply that u ∈ W 1,p

loc (Ω) ∩ L∞
loc(Ω), which is also continuous on Ω as

stated in Sect. 2. By Lemma 4.1, we haveμ(E) = 0, whereμ is the Riesz measure associated
with u. By the same reasoning as at the end of the proof of Lemma 4.1, we conclude that u
is a solution of (2.2) in Ω . ��

6 On the case m = n− p

This section gives comments on the case m = n − p. In this case, we can obtain

1

C
log

min{r, r0}
d(x, E)

≤ WHm |E
1,p (x, r) ≤ C log

min{r, r0}
d(x, E)

instead of (3.3). Then a function g in Lemma 3.7 can be estimated like

1

C

(
1 + log+ 1

d(x, E)

)
≤ g(x) ≤ C

(
1 + log+ 1

d(x, E)

)

for all x ∈ ω\E , where log+ t = max{0, log t}. Therefore we obtain the following theorem
corresponding to Theorem 5.1 by the same argument.

Theorem 6.1 Let E be aLipschitz set inΩ of dimensionm = n−p. If u is anA-subharmonic
function on Ω\E satisfying at each y ∈ E,

lim sup
x→y

u(x)

− log d(x, E)
≤ 0,

then u can be extended to the whole of Ω as an A-subharmonic function.

This yields the following theorem corresponding to Theorem 2.2.

Theorem 6.2 Let E be a Lipschitz set in Ω of dimension m = n − p. Then E is removable
for nonnegative continuous solutions of (2.2) in Ω\E satisfying the growth condition: at
each y ∈ E,

u(x) = o(− log d(x, E)) as x → y. (6.1)

For equation −Δpu = eu , we could not obtain a result corresponding to Theorem 2.1
under condition (6.1) in the casem = n− p because it is difficult to show that the associated
Riesz measure does not charge on E without assuming u ∈ W 1,p

loc (Ω).

Theorem 6.3 Let E be a uniform Minkowski set in Ω of dimension m = n − p. Then
E is removable for nonnegative continuous solutions of − divA(x,∇u) = eu in Ω\E
satisfying u ∈ W 1,p

loc (Ω) and (6.1) at each y ∈ E.

Proof By Lemmas 3.9 and 3.10, u has a nonnegative A-superharmonic extension u to Ω

and the associated Riesz measure μ satisfies μ(E) = 0. Therefore dμ(x) = eu(x) dx on
Borel subsets of Ω , which implies that u satisfies − divA(x,∇u) = eu in Ω in the weak
sense. Then (6.1) and Lemma 3.5 with λ = −1 give Wμ

1,p(x, r) ≤ C . Thus we get u ∈
L∞
loc(Ω) from Lemma 3.2. This concludes that u is a nonnegative continuous solution of

− divA(x,∇u) = eu in Ω such that u = u on Ω\E . ��

123



56 K. Hirata, T. Ono

7 Examples of Lipschitz sets

Wesay that E is aLipschitzmanifold inRn of dimensionm ∈ N if for each x ∈ E there exist an
open neighborhoodU of x inRn , an open set V inRn and a bi-Lipschitzmappingφ : U → V
such that φ(E ∩U ) = R

m
0 ∩ V , where Rm

0 := {(x1, . . . , xn) ∈ R
n : xm+1 = · · · = xn = 0}.

It is easy to see that a compact Lipschitz manifold of dimension m is a Lipschitz set of
dimension m.

There are nontrivial examples including fractal sets. Let us recall the definition of self-
similar sets and some known facts. A mapping ψ : Rn → R

n is said to be a similarity with
ratio c > 0 if it satisfies for any x, y ∈ R

n ,

‖ψ(x) − ψ(y)‖ = c‖x − y‖.
Let N ∈ N. It is known that given a family of N -similarities � = {ψ1, . . . , ψN } with the
same ratio c < 1, there exists a unique nonempty compact set E in R

n such that

E = ψ1(E) ∪ · · · ∪ ψN (E). (7.1)

See Falconer [3] and Hutchinson [7] for details and generalizations. This set E is called
self-similar with respect to �. By the Moran-Hutchinson theorem, the Hausdorff dimension
of the self-similar set E with respect to � is given by

dimH E = log N

− log c
,

if � satisfies the following open set condition. Moreover, 0 < Hm(E) < ∞ with m =
log N/(− log c).

Definition 7.1 We say that� = {ψ1, . . . , ψN } satisfies the open set condition (with an open
set V ) if there exists a nonempty bounded open set V in R

n such that

(V1) ψ1(V ) ∪ · · · ∪ ψN (V ) ⊂ V ,
(V2) ψi (V ) ∩ ψ j (V ) = ∅ whenever i �= j .

As is well known, there is no inclusion between V and the self-similar set E , but we have
E ⊂ V .

Theorem 7.2 Let � = {ψ1, . . . , ψN } be a family of N-similarities on Rn with the common
ratio 0 < c < 1 satisfying the open set condition. Then the self-similar set E with respect to
� is a Lipschitz set of dimension m = log N/(− log c).

From this theorem, we can see that the Cantor set, the Cantor dust, the Sierpinski triangle,
the von Koch curve, etc., known as typical examples of self-similar sets are Lipschitz sets
with appropriate dimensions.

To prove Theorem 7.2, we prepare several lemmas. In what follows, we suppose that
� = {ψ1, . . . , ψN } is a family of N -similarities on R

n with the common ratio 0 < c < 1.
For k ∈ N, let

�k := {(i1, . . . , ik) : 1 ≤ i j ≤ N (1 ≤ j ≤ k)}.
Lemma 7.3 Let E be the self-similar set with respect to� and let K be a nonempty compact
set in R

n satisfying ψ1(K ) ∪ · · · ∪ ψN (K ) ⊂ K. Then

∞⋂
j=1

⋃
(i1,...,i j )∈� j

ψi1 ◦ · · · ◦ ψi j (K ) = E .
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Moreover, we have for all j ∈ N,⋃
(i1,...,i j )∈� j

ψi1 ◦ · · · ◦ ψi j (E) = E .

Proof The first statement is found in Falconer’s book [3, Theorem 9.1]. The second statement
can be proved by (7.1) and induction. ��
Lemma 7.4 Suppose that � = {ψ1, . . . , ψN } satisfies the open set condition with an open
set V . Let j ∈ N. Then {ψi1 ◦ · · · ◦ ψi j (V ) : (i1, . . . , i j ) ∈ � j } is mutually disjoint.
Proof This follows from (V2). See Hutchinson [7, p. 736]. ��

For a countable set A, we denote by �A the number of elements in A.

Lemma 7.5 Suppose that � = {ψ1, . . . , ψN } satisfies the open set condition with an open
set V . Let � ∈ N and let B be an open ball with c� < diam B ≤ c�−1. Then there exists a
positive constant C depending only on c, V and n such that for any k ≥ � and 0 ≤ r ≤ c�−1,

�{(i1, . . . , ik) ∈ �k : [ψi1 ◦ · · · ◦ ψik (V )](r) ∩ B �= ∅} ≤ CNk−�.

Proof Let 0 < r ≤ c�−1. For simplicity, we write

�B
j := {(i1, . . . , i j ) ∈ � j : [ψi1 ◦ · · · ◦ ψi j (V )](r) ∩ B �= ∅}.

Let k ≥ �. Since ψi (V ) ⊂ V for any i ∈ {1, . . . , N } by (V1) and the continuity of ψi , it
follows that for each (i1, . . . , ik) ∈ �k ,

ψi1 ◦ · · · ◦ ψik (V ) ⊂ ψi1 ◦ · · · ◦ ψi� (V ).

Therefore

��B
k ≤ �{(i1, . . . , ik) ∈ �k : (i1, . . . , i�) ∈ �B

� } ≤ Nk−� · ��B
� .

To obtain the required estimate, it suffices to show that ��B
� ≤ C . Take an open ball B1 ⊂ V

and let ρ be its radius. Let (i1, . . . , i�) ∈ �B
� . Then ψi1 ◦ · · · ◦ ψi� (B1) is the ball of radius

c�ρ contained in ψi1 ◦ · · · ◦ ψi� (V ). Also, ψi1 ◦ · · · ◦ ψi� (V ) is contained in the ball B2 with
the same center as B of radius 3c�−1 + c� diam V , because [ψi1 ◦ · · · ◦ ψi� (V )](r) ∩ B �= ∅
and

diam[ψi1 ◦ · · · ◦ ψi� (V )](r) ≤ diamψi1 ◦ · · · ◦ ψi� (V ) + 2r

≤ c� diam V + 2c�−1.

Since {ψi1 ◦ · · · ◦ ψi� (B1) : (i1, . . . , i�) ∈ ��} is mutually disjoint by Lemma 7.4, we have

∑
(i1,...,i�)∈�B

�

|ψi1 ◦ · · · ◦ ψi� (B1)| ≤
∣∣∣∣

⋃
(i1,...,i�)∈�B

�

ψi1 ◦ · · · ◦ ψi� (B1)

∣∣∣∣ ≤ |B2|,

and so

��B
� ≤

(
3c−1 + diam V

ρ

)n

.

Thus the lemma is proved. ��
Let us prove Theorem 7.2.
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Proof of Theorem 7.2 First, we show (2.4). Let 0 < r, R < 1 and x ∈ E . If R ≤ r , then

|E(r) ∩ B(x, R)| = |B(x, R)| = an R
n ≤ anr

n−m Rm,

where an := |B(0, 1)|. Consider the case r < R. Take k, � ∈ N with ck < r ≤ ck−1 and
c� < R ≤ c�−1. Then k ≥ �. Let V be a nonempty bounded open set appearing in the open
set condition. Then ψ1(V ) ∪ · · · ∪ ψN (V ) ⊂ V by (V1) and the continuity of ψi . Since

E(r) ⊂
⋃

(i1,...,ik )∈�k

[ψi1 ◦ · · · ◦ ψik (V )](r)

by Lemma 7.3 and∣∣[ψi1 ◦ · · · ◦ ψik (V )](r)∣∣ ≤ an(diamψi1 ◦ · · · ◦ ψik (V ) + r)n

= an(c
k diam V + r)n

≤ an(diam V + 1)nrn,

it follows from Lemma 7.5 that

|E(r) ∩ B(x, R)| ≤
∑

(i1,...,ik )∈�k

∣∣[ψi1 ◦ · · · ◦ ψik (V )](r) ∩ B(x, R)
∣∣

≤ CNk−�rn ≤ Crn−m Rm,

where the last inequality is by c−m = N .
Next, we show upper bound estimate in (2.3). Let 0 < r < 1/2 and x ∈ E . Take j ∈ N

with c j < 2r ≤ c j−1. Then, by Lemma 7.3,

Hm(E ∩ B(x, r)) ≤
∑

(i1,...,i j )∈� j

Hm(ψi1 ◦ · · · ◦ ψi j (E) ∩ B(x, r)).

Since E ⊂ V , it follows from Lemma 7.5 that

�{(i1, . . . , i j ) ∈ � j : ψi1 ◦ · · · ◦ ψi j (E) ∩ B(x, r) �= ∅} ≤ C,

and Hm(ψi1 ◦ · · · ◦ ψi j (E)) = cmjHm(E) for (i1, . . . , i j ) ∈ � j . Therefore

Hm(E ∩ B(x, r)) ≤ CcmjHm(E) ≤ CrmHm(E).

Finally, we show lower bound estimate in (2.3). Let 0 < r < diam E . Take � ∈ N with
c� diam E < r ≤ c�−1 diam E . Let x ∈ E . By Lemma 7.3, there exists (i1, . . . , i�) ∈ ��

such that

x ∈ ψi1 ◦ · · · ◦ ψi� (E) ⊂ E

and

diamψi1 ◦ · · · ◦ ψi� (E) = c� diam E < r.

These imply E ∩ B(x, r) ⊃ ψi1 ◦ · · · ◦ ψi� (E). Therefore

Hm(E ∩ B(x, r)) ≥ Hm(ψi1 ◦ · · · ◦ ψi� (E)) = cm�Hm(E)

≥
(

cr

diam E

)m

Hm(E).

Thus the lower bound estimate in (2.3) holds. The proof is complete. ��
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