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Abstract We prove the partial Hölder continuity of the local minimizers of non-autonomous
integral functionals of the type∫

Ω

Φ
((

Aαβ
i j (x, u)Diu

αDju
β
)1/2) dx,

where Φ is an Orlicz function satisfying both the Δ2 and ∇2 conditions and the function
A(x, s) = (

Aαβ
i j (x, s)

)
is uniformly elliptic, bounded and continuous. Assuming in addition

that the function A(x, s) = (
Aαβ
i j (x, s)

)
is Hölder continuous, we prove the partial Hölder

continuity also of the gradient of the local minimizers.
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1 Introduction

The aim of this paper is to establish the partial Hölder continuity of the local minimizers of
a class of integral functionals satisfying the so-called Φ- growth conditions. More precisely,
we consider functionals of the type

F(u,Ω) :=
∫

Ω

Φ
((

Aαβ
i j (x, u)Diu

αDju
β
)1/2) dx, (1.1)

whereΩ ⊂ R
n is a bounded domain, u : Ω → R

N , n, N ≥ 2 andΦ : [0,+∞) → [0,+∞)

is a strictly convex function of class C2 with Φ(0) = 0. In order to state and comment our
results precisely, we now introduce our hypotheses.

We assume that the function A(x, s) = (
Aαβ
i j (x, s)

) : Ω × R
N → R

nN is uniformly
continuous and satisfies, for some positive constants λ and Λ

λ|ξ |2 ≤ Aαβ
i j ξ iαξ

j
β , |Aαβ

i j (x, s)| ≤ Λ, (1.2)

for every (x, s, ξ) ∈ Ω ×R
N ×R

nN . Moreover, we shall assume that there exists a concave,
continuous, non-decreasing modulus of continuity ω : [0,∞) → [0, M), M > 0, with
ω(0) = 0 such that

|A(x, s1) − A(y, s2)| ≤ ω(|x − y| + |s1 − s2|), (1.3)

for every (x, y, s1, s2) ∈ Ω × Ω × R
N × R

N .
Concerning the function Φ : [0,+∞) → [0,+∞), we assume that it satisfies the so-

called Δ2 condition and ∇2 condition. Namely Φ and its Orlicz conjugate Φ∗ satisfy for
positive constant C1,Φ and C2,Φ that

Φ(2t) ≤ C1,ΦΦ(t) and Φ∗(2t) ≤ C2,ΦΦ∗(t) (1.4)

for all t > 0. Moreover, we shall assume that

tΦ ′(t) ∼ Φ(t) and tΦ
′′
(t) ∼ Φ ′(t). (1.5)

Here, it is worth mentioning that either of the relations of (1.5) implies nonnegativity of Φ ′.
For further needs, we observe that the conditions in (1.4) are equivalent to the existence

of two positive exponents 1 < p < q < +∞ such that

Φ(t)

t p
is increasing and

Φ(t)

tq
is decreasing, (1.6)

and also that (1.4) implies the existence of positive constants m and C for which

Φ(kt) ≤ CkmΦ(t) (1.7)

holds for any t > 0 and k ≥ 1.
We notice that from (1.4) and (1.2) it follows

Φ(|ξ |) ∼ Φ(‖ξ‖A), (1.8)

where we used the notation

‖ξ‖A = (〈A(x, s)ξ, ξ 〉)1/2 := (
Aαβ
i j (x, s)ξ iαξ

j
β

)1/2
.
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The model case we have in mind is∫
Ω

a(x, u)|Du|p logα(e + |Du|) dx, 1 < p ≤ n, α > 0,

with a(x, u) a bounded continuous and positive coefficient.
If Φ(t) = t p , our study trivially reduces to the classical setting of functionals satisfying

the so-called standard growth conditions. In this case, the regularity of minimizers has been
widely investigated over the last 50 years and a vast literature is available ( for an exhaustive
treatment we refer to the monographs [21,28]).

Our general growth assumptions become part of the setting of functionals
∫

Ω

f (x, u, Du) dx

with nonstandard growth conditions, i.e., with integrands f (x, s, z) such that

|z|p ≤ f (x, s, z) ≤ C(1 + |z|q), 1 < p ≤ q

introduced by Marcellini in the pioneeristic papers [30–32]. It is well known that, in this
case, the regularity of the minimizers depends on the distance between the growth and the
ellipticity exponents and that the dependence of the integrand on (x, u) can give substantial
difficulties since the Lavrentiev phenomenon may appear. Moreover, in the general vectorial
setting, only few contributions are available (see for example [1,9,10,16,17,35]), unless
some additional structure assumptions are imposed on the integrand f . We refer to [4] for
an overview and detailed references on this subject.
An intermediate case between the standard and the nonstandard growth conditions is the case
of the so-called p(x)-growth conditions, i.e.,

|z|p(x) ≤ f (x, s, z) ≤ C(1 + |z|p(x)),
where the function p(x) > 1 is continuous with a modulus of continuity that verifies suitable
assumptions. The study of the regularity of the local minimizers of such functionals started
with the paper by Zhykov ([38]), and then it waswidely investigated ( see for example [36,37]
and [2,3,6,14,15,18–20] for the case of integrands f = f (x, ξ)). More recently, in [19] the
Hölder continuity of functionals with integrand of the form

f (x, s, z) = |z|p(x)ϕ(|z|),
where

ϕ(|z|) ∼ log(e + |z|),
has been established. For p(x) constant, such functionals are a particular case of those
satisfying the so-called Φ-growth conditions, i.e.,

f (x, s, ξ) ∼ Φ(|ξ |)
that has been proposed by Marcellini in [32] and for which many contributions are available
([5,7,8,11,27,29,34]). Recently, Marcellini and Papi ([33]) proved the Lipschitz continuity
of the minimizers of autonomous functionals, i.e., depending only on the gradient variable,
with growth conditions general enough to cover the cases of almost linear and exponential
growth. Once the Lipschitz continuity is established, the Hölder continuity of the gradient of
the minimizers follows by classical arguments by the C1 regularity of the integrand.
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2150 F. Giannetti et al.

Another approach to the C1,α regularity of the minimizers of functionals with Φ-growth has
been used in [13], where a suitable decay estimate for the excess function of the gradient is
the key tool in the proof.
However, as far as we know, the Hölder continuity of the minimizers and of their gradients,
in the case of functionals with Φ-growth, has been proven only in the case of autonomous
integrands. The aim of this paper is to fill this gap, establishing the Hölder continuity of the
local minimizers of F(u,Ω), also in view of further applications. Actually, this is the first
step in the investigation of more general functionals, whose prototype is

∫
Ω

a(x, u)|Du|p(x)ϕ(|Du|),

for some bounded positive coefficient a(x, u). Here, we are going to prove the following

Theorem 1.1 Let Φ : [0,+∞) → [0,+∞) be a strictly convex function of class C2 with
Φ(0) = 0 satisfying (1.4) (equivalently (1.6)) and (1.5), and p > 1 a constant for which
(1.6) holds. Assume that A(x, s) = (

Aαβ
i j (x, s)

) : Ω × R
N → R

nN satisfies (1.2) and (1.3)

and let u ∈ W 1,Φ(Ω) be a local minimizer of F . Then there exists an open subset Ω0 ⊂ Ω

such that u ∈ C0,α(Ω0) for any α ∈ (0, 1). Moreover,

Ω\Ω0 ⊂ {x ∈ Ω ; lim inf
r→0

r p−n
∫
Br (x)

Φ(|Du|) dy > 0},

and dimH(Ω\Ω0) ≤ n − p.

Note that the interesting case is p ≤ n since, for p > n we get the Hölder continuity by the
first assumption in (1.6) and by the Sobolev embedding theorem.
It is well known that the regularity of the integrand with respect to the (x, u)-variable reflects
on the regularity of the minimizers. Also in our setting, when ω is Hölder continuous, we are
able to establish the following partial Hölder continuity result for the gradient of the local
minimizers.

Theorem 1.2 Let u ∈ W 1,Φ(Ω) be a local minimizer of F under all the assumptions in
Theorem 1.1 Assume moreover that (1.3) holds true for a Hölder continuous function ω.
Then u ∈ C1,ζ (Ω0) for some ζ ∈ (0, 1) and with Ω0 given in Theorem 1.1

Our proof relies on a comparison argument, introduced in [22,24]. Actually, we compare
in small balls the minimizer u of our functional with the minimizer v of a suitable “frozen”
one for which good decay estimates are available. The core of the proof consists in showing
that u and v are close enough, in an integral sense, to have that u shares with v the same
decay estimates. Here, with respect to the classical setting, new difficulties arise because
of the Φ-growth of the functional. We have to combine classical tools in the theory of the
regularity with new results for local minimizers of autonomous functionals with Φ-growth
and use the assumptions on the function Φ to obtain the decay estimates in the setting of
Lebesgue spaces. Then the results follow by the characterization of the Hölder continuous
function due to Campanato.

We conclude noting that the dependence on u of our energy densities prevents us to obtain
everywhere regularity, as it is shown already for the case Φ(t) = t p (see [28]).
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2 Preliminary results

In this section, we recall some standard definitions and collect several Lemmas that we shall
need to establish our main result.
We shall follow the usual convention and denote by c a general constant that may vary
on different occasions, even within the same line of estimates. Relevant dependencies on
parameters and special constants will be suitably emphasized using parentheses or subscripts.
All the norms we use onRn ,RN andRnN will be the standard euclidean ones and denoted by
|·| in all cases. In particular, formatrices ξ , η ∈ R

nN we use the notation 〈ξ, η〉 := trace(ξ T η)

for the usual inner product of ξ and η, and |ξ | := 〈ξ, ξ 〉 1
2 for the corresponding euclidean

norm.
In what follows, B(x, r) = Br (x) = {y ∈ R

n : |y− x | < r}will denote the ball centered
at x of radius r . The integral mean of a function u over the ball Br (x) will be denoted by

1

|Br (x)|
∫
Br (x)

u(y) dy =
∫
−

Br (x)
u(y) dy = (u)x,r .

We shall omit the dependence on the center when no confusion arises.
We recall that, if Ψ : [0,+∞) → [0,+∞) is a strictly convex function with Ψ (0) = 0,

the Orlicz space LΨ (Ω;RN ) consists of the measurable functions u : Ω → R
N such that∫

Ω

Ψ (|u|) dx < +∞

and, equipped with the Luxenburg norm,

||u||LΨ (Ω;RN ) = inf

{
λ > 0 :

∫
Ω

Ψ

( |u|
λ

)
dx ≤ 1

}

it becomes a Banach space. In addition, the Orlicz–Sobolev spaceW 1,Ψ (Ω;RN ) consists of
the functions u ∈ W 1,1(Ω;RN ) such that u, Du ∈ LΨ and is equipped with the norm

||u||W 1,Ψ (Ω;RN ) = ||u||LΨ (Ω;RN ) + ||Du||LΨ (Ω;RnN ).

The following Lemma will be useful for technical reasons and extends to general Orlicz
functions Lemma 2.1 in [25]. See also [28, Lemma 8.3 ].

Lemma 2.1 Let Φ ∈ C2([0,+∞) be a nonnegative function satisfying assumptions (1.4)
and (1.5). There exists a constant C1 such that

∫ 1

0
(1 − t)Φ ′′(|tξ + (1 − t)η|)dt ≥ C1Φ

′′(|ξ | + |η|). (2.1)

Proof For t ∈ [0, 1], let us write ξt = tξ + (1 − t)η. We treat the two cases |ξ | ≥ |η| and
|ξ | ≤ |η| separately.
Case (i) |ξ | ≥ |η|.
For t ∈ (3/4, 1), we see that

|ξt | ≥ t |ξ | − (1 − t)|η| ≥ 3

4
|ξ | − 1

4
|η| ≥ 1

2
|ξ | ≥ 1

4
(|ξ | + |η|).

On the other hand

|ξt | ≤ t |ξ | + (1 − t)|η| ≤ |ξ | + |η|.
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Therefore, by using assumption (1.5), the Δ2-condition and the monotonicity of Φ, we have

Φ ′′(|ξt |) ∼ 1

|ξt |2 Φ(|ξt |) ≥ 1

(|ξ | + |η|)2 Φ
(1
4
(|ξ | + |η|)

)

≥ c
1

(|ξ | + |η|)2 Φ(|ξ | + |η|) ∼ Φ ′′(|ξ | + |η|),

and so ∫ 1

0
(1 − t)Φ ′′(|ξt |)dt ≥ c

∫ 1

3/4
(1 − t)Φ ′′(|ξ | + |η|)dt = C2Φ

′′(|ξ | + |η|),

for some C2.

Case (ii) |ξ | ≤ |η|.
For t ∈ (0, 1/4), we observe that

|ξt | ≥ (1 − t)|η| − t |ξ | ≥ 3

4
|η| − 1

4
|ξ | ≥ 1

2
|η| ≥ 1

4
(|ξ | + |η|)

holds. Hence, arguing as we did above, we see that
∫ 1

0
(1 − t)Φ ′′(|ξt |)dt ≥

∫ 1/4

0
c(1 − t)Φ ′′(|ξ | + |η|)dt ≥ C3Φ

′′(|ξ | + |η|),

for some C3. Now, taking C1 = min{C2,C3} and recalling that t ∈ (0, 1), we get the
assertion. ��

Let us introduce the following auxiliary function

VΦ(ξ) :=
(Φ ′(|ξ |)

|ξ |
)1/2

ξ, (2.2)

and recall the followingLemma,whose proof is a direct consequence of Lemma3 andLemma
21 in [11].

Lemma 2.2 For every ξ, η ∈ R
nN , we have that

|VΦ(ξ)|2 ∼ Φ(|ξ |)
and

|VΦ(ξ) − VΦ(η)|2 ∼ |ξ − η|2Φ ′′(|ξ | + |η|).
The following lemma finds an important application in the so-called hole-filling method.

Its proof can be found for example in [28, Lemma 6.1] .

Lemma 2.3 Let h : [r, R0] → R be a nonnegative bounded function and 0 < ϑ < 1,
A, B ≥ 0 and m > 0. Assume that

h(s) ≤ ϑh(t) + A

(t − s)m
+ B,

for all r ≤ s < t ≤ R0. Then

h(r) ≤ cA

(R0 − r)m
+ cB,

where c = c(ϑ,m) > 0.
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Now, let us recall the Sobolev–Poincaré inequality for Orlicz–Sobolev functions (see for
example [11, Theorem 7]).

Theorem 2.4 Let Φ satisfy (1.4). Further, let Q ∈ R
n be some cube with side length R and

let ω ∈ L∞(Q) with ω ≥ 0 and
∫
Q ω(x)dx = 1. Then there exists 0 < θ < 1, which only

depends on the constants in (1.4) and Rn‖ω‖∞, such that for all v ∈ W 1,Φ(Q) it holds
∫
−

Q
Φ

( |v − 〈v〉ω|
R

)
dx ≤ K

(∫
−

Q

(
Φ(|Dv|))θdx

)1/θ

,

where 〈v〉ω := ∫
Q v(x)ω(x)dx.

From the above theorem (with BR instead of Q), we get the following corollaries.

Corollary 2.5 Le Φ be as above, and let D be a subset of BR of positive measure. Then
there exist a constant K1 = K1(Φ, D) > 0 and θ ∈ (0, 1) such that the following inequality
holds for every v ∈ W 1,Φ(BR) with v ≡ 0 on D

∫
−

BR

Φ

( |v|
R

)
dx ≤ K1

(∫
−

BR

(
Φ(|Dv|))θdx

)1/θ

. (2.3)

Proof Choosing ω so that ω = 0 on BR\D and applying Theorem 2.4, we get the assertion.
��

Corollary 2.6 Le Φ be as above. Then there exists 0 < θ < 1, which only depends on the
Δ2 constants of Φ and Φ∗, such that for all v ∈ W 1,Φ

0 (BR) the following inequality holds
∫
−

BR

Φ

( |v|
R

)
dx ≤ K2

(∫
−

BR

(
Φ(|Dv|))θdx

)1/θ

. (2.4)

Proof Extending v, Dv as 0 outside BR and using Theorem 2.4 on B2R , we see that∫
−

B2R
Φ

( |v − 〈v〉ω|
R

)
dx ≤ K

(∫
−

B2R

(
Φ(|Dv|))θdx

)1/θ

,

where

〈v〉ω :=
∫
B2R

v(x)ω(x)dx .

Let us choose ω so that ω = 0 on BR , then 〈v〉ω = 0. So, we have
∫
−

B2R
Φ

( |v|
R

)
dx ≤ K

(∫
−

B2R

(
Φ(|Dv|))θdx

)1/θ

.

Now, remembering that v, Dv = 0 outside BR and that Φ(0) = 0, we get the assertion with
suitably changed constant K . ��
The higher integrability of the minimizers of the functional F(u,Ω) has been widely inves-
tigated. We recall the following result due to Diening and Ettwein [11, Theorem 9].

Theorem 2.7 Let u ∈ W 1,Φ(Ω) be a localminimizer ofF . Then there exists δ0 > 0 such that
for all δ ∈ [0, δ0) we have

(
Φ(|Du|))1+δ ∈ L1

loc(Ω). Moreover, for some positive constant
C for all Br (y) with B2r (y) ⊂ Ω and all δ ∈ [0, δ0), it holds that∫

−
Br (y)

Φ(|Du|)1+δdx ≤ C

(∫
−

B2r (y)
Φ(|Du|)dx

)1+δ

. (2.5)
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In order to employ the comparison argument needed to establish our main results, we
consider the so-called frozen functionalF0 defined for x0 ∈ Ω and 0 < R < dist(x0, ∂Ω)/2,
as follows

F0(w) :=
∫
BR(x0)

Φ(‖Dw(x)‖A0)dx, (2.6)

where

‖ξ‖A0 = (
Aαβ
i j (x0, (u)R)ξ iαξ

j
β

)1/2
.

Let v be a minimizer of F0 in the class

u + W 1,Φ
0 (BR) :=

{
w ∈ W 1,Φ

0 (BR) : w − u ∈ W 1,Φ
0 (BR)

}
.

We shall need also the following higher integrability result up to boundary, whose proof
is analogous to that of [19, Theorem 3.4]. We give it for the reader’s convenience.

Theorem 2.8 Let u ∈ W 1,Φ(Ω) be a minimizer of the functional F(u,Ω) and let v be a
local minimizer of the functional F0(w) in the class u + W 1,Φ

0 (BR). Then there exists a
positive constant C such that

∫
−

BR

Φ(|Dv|)1+δ dx ≤ C

(∫
−

BR

Φ(|Dv|) dx
)1+δ

+ C
∫
−

BR

Φ(|Du|)1+δ dx,

for every 0 < δ < δ0, where δ0 is given by Theorem 2.7

Proof Consider the function

w(x) =
{

v(x) if x ∈ BR

u(x) if x ∈ B2R\BR
(2.7)

Let x1 ∈ BR and let B2ρ(x1) ⊂ BR . By Theorem 3.1 in [13], we have that there exists a
constant C > 0 such that∫

−
Bρ(x1)

Φ(|Dv|) dx ≤ C
∫
−

B2ρ(x1)
Φ

(∣∣∣∣v − (v)x1,2ρ

ρ

∣∣∣∣
)

dx

Hence, by the Poincaré inequality of Theorem 2.4, also

∫
−

Bρ(x1)
Φ(|Dv|) dx ≤ C

(∫
−

B2ρ(x1)
Φ(|Dv|)ϑ dx

)ϑ

for someϑ ∈ (0, 1). The higher integrability in this case immediately follows by the so-called
reverse Hölder inequality with increasing supports due to Giaquinta–Modica [24] (see also
[28, p.203, Theorem 6.6] or [26, p.299, Theorem 3]).

Note that by the minimality of v, assumption (1.2) and the equivalence in (1.8), we get

λ

∫
BR

Φ(|Dv|) dx ≤ C
∫
BR

Φ(||Dv||A0) dx ≤ C
∫
BR

Φ(||Du||A0) dx

≤ C(Λ)

∫
BR

Φ(|Du|) dx

and so ∫
BR

Φ(|Dv|) dx ≤ C(λ,Λ)

∫
BR

Φ(|Du|) dx, (2.8)
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i.e., v is a quasi-minimizer of the functional
∫
BR

Φ(|Dw|) dx .
Suppose now that B2ρ(x1) ⊂ B2R with x1 ∈ ∂BR and fix ρ ≤ t < s ≤ 2ρ.
Consider a cut-off function η ∈ C∞

0 (Bs(x1)), such that η ≡ 1 on Bt (x1) and |Dη| ≤ 2
s−t .

By the minimality of v, using g = v − η(v − u) as a test function, we obtain∫
Bt∩BR

Φ(|Dv|) dx ≤
∫
Bs∩BR

Φ(|Dv|) dx ≤ c
∫
Bs∩BR

Φ(|Dg|) dx

= c
∫
Bs∩BR

Φ(|(1 − η)Dv + ηDu + Dη(u − v)|) dx

The properties of η, the Δ2 condition of Φ and (1.7) yield for some positive constant m∫
Bt (x1)∩BR

Φ(|Dv|) dx ≤ c
∫

(Bs (x1)\Bt (x1))∩BR

Φ(|Dv|)dx

+ c
∫

(Bs (x1)\Bt (x1))∩BR

Φ

(∣∣∣∣u − v

s − t

∣∣∣∣
)
dx

+ c
∫
Bs (x1)∩BR

Φ(|Du|)dx

≤ c
∫

(Bs (x1)\Bt (x1))∩BR

Φ(|Dv|)dx

+ cρm

(s − t)m

∫
(Bs (x1)\Bt (x1))∩BR

Φ

(∣∣∣∣u − v

ρ

∣∣∣∣
)
dx

+ c
∫
Bs (x1)∩BR

Φ(|Du|) dx . (2.9)

Now filling the hole, i.e., adding the quantity

c
∫
Bt (x1)∩BR

Φ (|Dv|) dx

to both sides of (2.9) and dividing the obtained inequality by c + 1, we can apply Lemma
2.3, thus getting

∫
Bρ(x1)∩BR

Φ(|Dv|) dx ≤ c
∫
B2ρ(x1)∩BR

Φ

(∣∣∣∣u − v

ρ

∣∣∣∣
)

dx + c
∫
B2ρ(x1)∩BR

Φ(|Du|) dx

= c
∫
B2ρ(x1)∩BR

Φ

(∣∣∣∣u − w

ρ

∣∣∣∣
)

dx + c
∫
B2ρ(x1)∩BR

Φ(|Du|) dx,

where in the last equality we used that w = v on BR . It follows that∫
Bρ(x1)

Φ(|Dw|) dx =
∫
Bρ(x1)∩BR

Φ(|Dv|) dx +
∫
Bρ(x1)\BR

Φ(|Du|) dx

≤ c
∫
B2ρ(x1)

Φ

(∣∣∣∣u − w

ρ

∣∣∣∣
)

dx + c
∫
B2ρ(x1)

Φ(|Du|) dx .

By the definition of w, we have that u − w = 0 on B2R\BR and therefore on B2ρ(x1)\BR .
Hence, we can use the Sobolev imbedding inequality at (2.3), thus getting

∫
−

Bρ(x1)
Φ(|Dw|) dx ≤ c

(∫
−

B2ρ(x1)
Φ(|Du − Dw|)ϑ dx

) 1
ϑ

+ c
∫
−

B2ρ(x1)
Φ(|Du|) dx,
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for some 0 < ϑ < 1. Hence,

∫
−

Bρ(x1)
Φ(|Dw|) dx ≤ c

(∫
−

B2ρ(x1)
Φ(|Dw|)ϑ dx

) 1
ϑ

+ c
∫
−

B2ρ(x1)
Φ(|Du|) dx .

Since, thanks to Theorem 2.7, we have that there exists δ0 such that Φ(|Du|)1+δ ∈ L1
loc(Ω)

for every δ < δ0, by virtue of reverse Hölder inequality with increasing supports due to
Giaquinta–Modica [24] , we have that Φ(|Dw|)1+γ ∈ L1(Bρ(x1)) for every γ < δ < δ0
and then Φ(|Dv|)1+γ ∈ L1(Bρ(x1) ∩ BR), for every γ < δ0. The conclusion follows by a
simple covering argument. ��

Next theoremhas been proven in [13] for a localminimizer of the functional
∫

Φ(|Du|)dx .
Since ‖ · ‖A0 gives a norm which is equivalent to the standard norm on R

nN , by suitable
modifications of constants depending on the largest and the smallest eigenvalues of the
matrix A0 = (Aαβ

i j (x0, (u)R)), we can see that it holds for F0(u) = ∫
Φ(‖Du‖A0)dx .

Theorem 2.9 Let v be a local minimizer of the functionalF0(w) = ∫
Φ(‖Dw‖A0)dx. Then

there exist an exponent σ ∈ (0, 1) and a positive constant C such that
∫
−

Bρ

∣∣VΦ(Dv) − (
VΦ(Dv)

)
ρ

∣∣2 dx ≤ C
(ρ

r

)σ
∫
−

Br

∣∣VΦ(Dv) − (
VΦ(Dv)

)
r

∣∣2 dx

and

sup
Bρ

Φ(|Dv|) ≤ C
∫
−

Br
Φ(|Dv|) dx,

for every balls Bρ ⊂ Br ⊆ BR.

3 The proof of Theorem 1.1

This section is devoted to the proof of the partial Hölder continuity of the local minimizers
of the functional F(u,Ω) stated in Theorem 1.1

Proof of Theorem 1.1 Let v be a minimizer of F0 in the class u + W 1,Φ
0 (BR). By using the

minimality of u, since v is an admissible test function, we estimateF0(u)−F0(v) as follows.

F0(u) − F0(v) =F0(u) − F(u) + F(u) − F(v) + F(v) − F0(v)

≤F0(u) − F(u) + F(v) − F0(v), (3.1)

By the definition of F0 and by virtue of assumption (1.3), we get

F(v) − F0(v) =
∫
BR

(
Φ(‖Dv‖A) − Φ(‖Dv‖A0)

)
dx

=
∫
BR

( ∫ 1

0

d

dt
Φ(t‖Dv‖A − (1 − t)‖Dv‖A0)dt

)
dx

=
∫
BR

( ∫ 1

0
Φ ′(t‖Dv‖A − (1 − t)‖Dv‖A0)

(‖Dv‖A − ‖Dv‖A0

)
dt

)
dx
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≤ C
∫
BR

Φ ′(|Dv|)ω1/2(|x − x0| + |v − (u)R |)|Dv|dx

≤ C
∫
BR

Φ ′(|Dv|)ω1/2(|x − x0| + |v − u| + |u − (u)R |)dx (3.2)

where we used the monotonicity ofΦ ′, the second assumption in (1.2), theΔ2-condition and
the first equivalence in (1.5). By virtue of Theorem 2.8, we have that there exists δ0 > 0 such
that Φ(|Dv|)1+δ ∈ L1(BR) for every δ < δ0 and so, the Hölder’s inequality with exponents
1 + δ and 1+δ

δ
implies

∫
BR

Φ(|Dv|)ω1/2(|x − x0| + |v − u| + |u − (u)R |)dx

≤ Rn
(∫
−

BR

ω(1+δ)/2δdx
)δ/(1+δ)(∫

−
BR

(
Φ(|Dv|)1+δdx

)1/1+δ

. (3.3)

Combining (3.2) and (3.3), we obtain

F(v) − F0(v) ≤ Rn
(∫
−

BR

ω(1+δ)/2δdx
)δ/(1+δ)(∫

−
BR

(
Φ(|Dv|)1+δdx

)1/1+δ

. (3.4)

Using the estimate of Theorem 2.8 in the right-hand side of previous inequality, then the
estimate of Theorem 2.7 to bound the term involving the gradient of u and the minimality of
v, we obtain

F(v) − F0(v)

≤ CRn
(∫
−

BR

ω(1+δ)/2δdx
)δ/(1+δ)

[(∫
−

BR

(Φ(|Du|)(1+δ)dx
)1/(1+δ) +

∫
−

BR

Φ(|Dv|) dx
]

≤ CRn
(∫
−

BR

ω(1+δ)/2δdx
)δ/(1+δ)

∫
−

B2R
Φ(|Du|) dx

≤ C
(∫
−

BR

ω(1+δ)/2δ(|x − x0| + |u − v| + |u − (u)R |)dx
)δ/(1+δ)

∫
B2R

Φ(|Du|) dx .
(3.5)

Similarly, we have

F0(u) − F(u) ≤C
(∫
−

BR

ω(1+δ)/2δ(|x − x0| + |u − (u)R |)dx
)δ/(1+δ)

∫
B2R

Φ(|Du|) dx .
(3.6)

Inserting (3.5) and (3.6) in (3.1), we get

F0(u) − F0(v) ≤C
(∫
−

BR

ω(1+δ)/2δ(|x − x0| + |v − u|

+ |u − (u)R |)dx
)δ/(1+δ)

∫
B2R

Φ(|Du|) dx . (3.7)
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Without loss of generality, we can assume that δ ≤ 1 so that (1 + δ)/2δ ≥ 1. Now, we
observe that∫

−
BR

ω(1+δ)/2δ(|x − x0| + |(u)R − u| + |u − v|)dx

≤ C
∫
−

BR

ω(R + |(u)R − u| + |u − v|)dx

≤ Cω

(
R + CR

(∫
−

BR

|Du|p dx
) 1

p + CR

(∫
−

BR

|Dv|p dx
) 1

p
)

≤ Cω

(
R + CR

(∫
−

BR

Φ(|Du|) dx
) 1

p + CR

(∫
−

BR

Φ(|Dv|) dx
) 1

p
)

≤ Cω

(
R + C

(
Rp−n

∫
BR

Φ(|Du|) dx
) 1

p
)

, (3.8)

where we used that ω is a bounded concave function, Jensen’s inequality, the Sobolev–
Poincaré inequality, the assumption (1.6) and the minimality of v. Inserting estimate (3.8) in
(3.7), we get

F0(u) − F0(v) ≤ Cω
δ

1+δ

(
R + C

(
Rp−n

∫
BR

Φ(|Du|) dx
) 1

p
) ∫

B2R
Φ(|Du|) dx . (3.9)

Now, we claim that

F0(u) − F0(v) ≥
∫
BR

|Du − Dv|2Φ ′′(|Du| + |Dv|)dx . (3.10)

Put

g(ξ) := Φ(‖ξ‖A0) so that F0(w) :=
∫
BR

g(Dw)dx .

Since v is a minimizer of F0 with v|∂BR = u|∂BR , then v satisfies the Euler–Lagrange
equation of F0, namely

∫
BR

Dξ iα
g(Dv)Dαϕidx = 0, ∀ϕ ∈ W 1,Φ

0 (BR).

So we have ∫
BR

Dξ iα
g(Dv)

(
Dαu

i − Dαvi
)
dx = 0. (3.11)

On the other hand, Taylor’s theorem yields

F0(u) − F0(v) =
∫
BR

Dξ iα
g(Dv)

(
Dαu

i − Dαvi
)
dx

+
∫
BR

dx
∫ 1

0
(1 − t)D

ξ
j
β

Dξ iα
g(t Du

+ (1 − t)Dv)
(
Dαu

i − Dαvi
)(
Dβu

j − Dβv j )dt. (3.12)
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Using (3.11) in (3.12), we obtain

F0(u) − F0(v) =
∫
BR

dx
∫ 1

0
(1 − t)D

ξ
j
β

Dξ iα
g(t Du

+ (1 − t)Dv)
(
Dαu

i − Dαvi
)(
Dβu

j − Dβv j )dt. (3.13)

Now, let us calculate DDg.

D
ξ
j
β

Dξ iα
g(ξ) =D

ξ
j
β

Dξ iα
Φ(‖ξ‖A0) = D

ξ
j
β

(
Φ ′(‖ξ‖A0)Dξ iα

(‖ξ‖A0)
)

=D
ξ
j
β

(
(A0)

αγ

ik ξ kγ

‖ξ‖A0

Φ ′(‖ξ‖A0)

)

=Φ ′(‖ξ‖A0)

‖ξ‖A0

(
(A0)

αβ
i j − (A0)

αγ

ik ξ kγ

‖ξ‖A0

(A0)
βδ
jl ξ

l
δ

‖ξ‖A0

)

+ Φ ′′(‖ξ‖A0)
(A0)

αγ

ik ξ kγ

‖ξ‖A0

(A0)
βδ
jl ξ

l
δ

‖ξ‖A0

,

where we used the notation (A0)
αγ

ik = Aαγ

ik (x0, (u)R). So, we have

D
ξ
j
β

Dξ iα
g(ξ)ηiαη

j
β =Φ ′(‖ξ‖A0)

‖ξ‖A0

(
‖η‖2A0

−
〈

ξ

‖ξ‖A0

, η

〉2
A0

)

+ Φ ′′(‖ξ‖A0)

〈
ξ

‖ξ‖A0

, η

〉2
A0

=: (∗), (3.14)

where we used the notation 〈ξ, η〉A0 = (A0)
αβ
i j ξ iαη

j
β .

We can estimate the above quantity as follows:

Case (i)
〈

ξ
‖ξ‖A0 , η

〉2
A0

≤ 1
2‖η‖2A0

.

For this case, by the assumptions on Φ, we have

(∗) ≥ Φ ′(‖ξ‖A0)

‖ξ‖A0

1

2
‖η‖2A0

∼ Φ ′′(‖ξ‖A0)‖η‖2A0
.

Case (ii)
〈

ξ
‖ξ‖A0 , η

〉2
A0

≥ 1
2‖η‖2A0

.

Since the first term of (∗) is always nonnegative, it is nothing to see

(∗) ≥ 1

2
Φ ′′(‖ξ‖A0)‖η‖2A0

.

So, we always have

D
ξ
j
β

Dξ iα
g(ξ)ηiαη

j
β ≥ cΦ ′′(‖ξ‖A0)‖η‖2A0

, (3.15)

for some positive constant c.
From (3.13) and (3.15), we deduce that

F0(u) − F0(v) ≥
∫
BR

dx
∫ 1

0
(1 − t)Φ ′′(‖t Du + (1 − t)Dv)‖A0)dt‖Du − Dv‖2A0

,

(3.16)
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and so, using Lemma 2.1 in the right-hand side of the above estimate, we get (3.10).
Combining (3.9) and (3.10), we have∫

BR

|Du − Dv|2Φ ′′(|Du| + |Dv|)dx ≤ F0(u) − F0(v)

≤ Cω̃
(
R + C

(
Rp−n

∫
BR

Φ(|Du|) dx
) 1

p ) ∫
B2R

Φ(|Du|) dx (3.17)

where, in the last line, we put ω̃ = ω
δ

1+δ . On the other hand, recalling the properties of the
function VΦ of Lemma 2.2, for every ρ ≤ R, we have∫

Bρ

Φ(|Du|) dx ≤C
∫
Bρ

|VΦ(|Du|)|2 dx

≤C
∫
Bρ

|VΦ(|Du|) − VΦ(|Dv|)|2 dx + C
∫
Bρ

|VΦ(|Dv|)|2 dx

≤C
∫
Bρ

|Du − Dv|2Φ ′′(|Du| + |Dv|) dx + C
∫
Bρ

Φ(|Dv|) dx

≤Cω̃

(
R + C

(
Rp−n

∫
BR

Φ(|Du|) dx
) 1

p
) ∫

B2R
Φ(|Du|) dx

+ C
∫
Bρ

Φ(|Dv|) dx,

where we used estimate (3.17). Using the second inequality in Theorem 2.9 to estimate the
last term in the previous inequality, we get

∫
Bρ

Φ(|Du|) dx ≤Cω̃

(
2R + C

(
(2R)p−n

∫
B2R

Φ(|Du|) dx
) 1

p
) ∫

B2R
Φ(|Du|) dx

+ Cρn sup
Bρ

Φ(|Dv|)

≤Cω̃

(
2R + C

(
(2R)p−n

∫
B2R

Φ(|Du|) dx
) 1

p
) ∫

B2R
Φ(|Du|) dx

+ C
( ρ

R

)n ∫
BR

Φ(|Dv|) dx

≤C
[( ρ

2R

)n + ω̃ (2R

+C

(
(2R)p−n

∫
B2R

Φ(|Du|) dx
) 1

p
)] ∫

B2R
Φ(|Du|) dx,

where, in the last line, we used again the minimality of v. Putting r = 2R, we have for any
0 < ρ < r < dist(x0, ∂Ω)

∫
Bρ

Φ(|Du|) dx ≤ C0

[(ρ

r

)n + ω̃

(
r + C1

(
r p−n

∫
Br

Φ(|Du|) dx
) 1

p
)] ∫

Br
Φ(|Du|) dx,

(3.18)

for some positive constants C0 and C1.
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Now, by a standard iteration argument we get the partial regularity of u as follows.
In (3.18), let ρ = τr for some τ ∈ (0, 1) which will be determined later. Then we have

∫
Bτr

Φ(|Du|) dx ≤C0

[
τ n + ω̃

(
r + C1

(
r p−n

∫
Br

Φ(|Du|) dx
) 1

p
)]∫

Br
Φ(|Du|) dx

Dividing both sides of the above estimate by (τr)n−p , we get

(τr)p−n
∫
Bτr

Φ(|Du|) dx

≤ C0

[
τ p + τ p−nω̃

(
r + C1

(
r p−n

∫
Br

Φ(|Du|) dx
) 1

p
)]

r p−n
∫
Br

Φ(|Du|) dx

≤ C0τ
p

[
1 + τ−nω̃

(
r + C1

(
r p−n

∫
Br

Φ(|Du|) dx
) 1

p
)]

r p−n
∫
Br

Φ(|Du|) dx

For any α ∈ (0, 1), choosing τ ∈ (0, 1) so that C0τ
p−pα ≤ 1/2, we obtain

(τr)p−n
∫
Bτr

Φ(|Du|) dx

≤ 1

2
τ pα

[
1 + τ−nω̃

(
r + C1

(
r p−n

∫
Br

Φ(|Du|) dx
) 1

p
)]

r p−n
∫
Br

Φ(|Du|) dx .
(3.19)

For such τ , there exist positive constants ε0 and r0 such that

τ−nω̃(r0 + C1ε
1/p
0 ) ≤ 1,

and assume that for some r ∈ (0, r0)

r p−n
∫
Br

Φ(|Du|) dx ≤ ε0 (3.20)

holds. Then, for such r we have

(τr)p−n
∫
Bτr

Φ(|Du|) dx ≤ 1

2
τ pα[1 + 1]r p−n

∫
Br

Φ(|Du|) dx ≤ ε0. (3.21)

From (3.21) we have ∫
Bτr

Φ(|Du|) dx ≤ τ n−p+pα
∫
Br

Φ(|Du|) dx .

On the other hand, (3.21) allows us to repeat the above procedure for τr, τ 2r, τ 3r, . . . and so
we obtain, for any k ∈ N,

∫
B

τk r

Φ(|Du|) dx ≤ (τ k)n−p+pα
∫
Br

Φ(|Du|) dx .

Thus, we have

ρ−n+p−pα
∫
Bρ

Φ(|Du|) dx ≤ C (3.22)

123



2162 F. Giannetti et al.

and so, for every ρ < r ,

ρ−n+p−pα
∫
Bρ

|Du|p dx ≤ C (3.23)

under assumption (3.20).
Now, if we set

Ω0 := {x ∈ Ω; lim inf
r→0

r p−n
∫
Br

Φ(|Du|) dx = 0},

we deduce that u ∈ C0,α(Ω0) by virtue of Morrey’s theorem (see for example [23, Theorem
5.7]). By the continuity of the integral, we have that Ω0 is an open set and, by well-known
property of Hausdorff measure that dimH(Ω\Ω0) < n − p. ��

4 Proof of Theorem 1.2

In this section, we shall prove that u ∈ C1,γ
loc (Ω0) under an Hölder continuity assumption on

ω. Indeed we are ready to give the

Proof of Theorem 1.2 In the following, we assume Hölder continuity of ω, i.e., ω satisfies

ω(t) ≤ Ctθ (4.1)

for some θ ∈ (0, 1). As before, we shall denote by u a local minimizer of F(u,Ω) and by v

the unique minimizer of F0(v, BR) such that v = u on ∂BR .
Let B2R ⊂ Ω0 and 0 < ρ < R

2 , and observe that

∫
Bρ

∣∣VΦ(Du) − (
VΦ(Du)

)
ρ

∣∣2 dx ≤ C
∫
Bρ

∣∣VΦ(Du) − VΦ(Dv)|2 dx

+C
∫
Bρ

∣∣VΦ(Dv) − (
V (Dv)

)
ρ

∣∣2 dx

≤ C
∫
Bρ

|VΦ(Du) − VΦ(Dv)|2 dx

+Cρn
( ρ

R

)σ
∫
−

BR

∣∣VΦ(Dv) − (
VΦ(Dv)

)
R

∣∣2 dx

≤ C
∫
Bρ

|VΦ(Du) − VΦ(Dv)
∣∣2 dx +

Cρn
( ρ

R

)σ
∫
−

BR

Φ(|Dv|) dx

≤ C
∫
Bρ

|VΦ(Du) − VΦ(Dv)|2 dx

+Cρn
( ρ

R

)σ
∫
−

BR

Φ(|Du|) dx, (4.2)

where we used the decay estimate for VΦ(Dv) given by the first estimate of Theorem 2.9,
assumption (1.6) and the minimality of v.
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From (3.17), (3.22) and assumption (4.1) we see also that for any α ∈ (0, 1)
∫
BR

|Du − Dv|2Φ ′′(|Du| + |Dv|)dx ≤ C(R + Rα)θδ/(δ+1)
∫
B2R

Φ(|Du|) dx

≤ CRαθδ/(δ+1)
∫
B2R

Φ(|Du|) dx, (4.3)

for every 0 < δ < δ0, where δ0 is defined in Theorem 2.7
By virtue of Lemma 2.2 and the estimate in (4.3),
we have that∫

Bρ

|VΦ(Du) − VΦ(Dv)|2 dx ≤ c
∫
Bρ

|Du − Dv|2Φ ′′(|Du| + |Dv|) dx

≤ CRαθδ/(δ+1)
∫
B2R

Φ(|Du|) dx .

Therefore, inserting previous estimate in (4.2), we obtain
∫
Bρ

∣∣VΦ(Du) − (
VΦ(Du)

)
ρ

∣∣2 dx ≤ CRαθδ/(δ+1)
∫
B2R

Φ(|Du|) dx

+ρn
( ρ

R

)σ
∫
−

BR

Φ(|Du|) dx

≤ C
(
Rαθδ/(δ+1)+n + ρn

( ρ

R

)σ ) ∫
−

B2R
Φ(|Du|) dx

≤ C
(
Rαθδ/(δ+1)+n + ρn

( ρ

R

)σ )
Rp(α−1), (4.4)

where we used again the decay estimate at (3.22). Since previous estimate holds true for

every ρ < R
2 , we may choose ρ = Rγ+1

2 with γ = αθδ
(δ+1)(n+σ)

to obtain

∫
Bρ

∣∣VΦ(Du) − (
VΦ(Du)

)
ρ

∣∣2 dx ≤ C
(
Rαθδ/(δ+1)+n

)
Rp(α−1) = CRαθδ/(δ+1)+n+p(α−1)

≤ Cρ
1

γ+1 (αθδ/(δ+1)+n+p(α−1)) = Cρ
n+ 1

γ+1 (δαθ/(δ+1)−γ n+p(α−1))
.

Here, by the choice of γ , we have

δ

δ + 1
αθ − γ n + p(α − 1) = δ

δ + 1
αθ − αθδ

(δ + 1)(n + σ)
n + p(α − 1)

= δ

δ + 1
αθ

(
1 − n

n + σ

)
+ p(α − 1),

that is positive for α ∈ (0, 1) sufficiently close to 1. Therefore, we can conclude that
∫
Bρ

∣∣VΦ(Du) − (
V (Du)

)
ρ

∣∣2 dx ≤ Cρn+ν

for some ν > 0. So, the Hölder continuity of VΦ(Du) follows by the Campanato’s theorem
(see [28, Theorem 2.9]). On the other hand, VΦ : RnN → R

nN is invertible and, as shown in
[12, Lemma 2.10], V−1

Φ is of classC0,γ for some γ ∈ (0, 1) depending only on the properties
of Φ. Thus, we see that u ∈ C1,ζ (Ω0), where ζ = γ ν ∈ (0, 1). ��
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