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Abstract This paper studies for large frequency number k > 0 the existence andmultiplicity
of solutions of the semilinear problem

−Δu − k2u = Q(x)|u|p−2u in R
N , N ≥ 2.

The exponent p is subcritical, and the coefficient Q is continuous, nonnegative and satisfies
the condition

lim sup
|x |→∞

Q(x) < sup
x∈RN

Q(x).

In the limit k → ∞, sequences of solutions associated with ground states of a dual equation
are shown to concentrate, after rescaling, at global maximum points of the function Q.

Keywords Nonlinear Helmholtz equation · Concentration of solutions · Dual variational
method · Lusternik–Schnirelmann category
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1 Introduction and main results

The existence of solutions of semilinear elliptic PDEs on R
N , concentrating at single points

or on higher-dimensional sets, has a long history. In their pioneering papers, Floer andWein-
stein [18] and Rabinowitz [20] studied this question for positive solutions of the nonlinear
Schrödinger equation

− ε2Δu + V (x)u = Q(x)|u|p−2u in R
N , (1)
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in the case where Q ≡ 1 and assuming inf V > 0. Under the global condition

lim inf|x |→∞ V (x) > inf
x∈RN

V (x), (2)

it was proved in [20] that a ground state (i.e., positive least-energy solution) of (1) exists
for small ε > 0. In the limit ε → 0, Wang [24] showed that sequences of ground states
concentrate at a global minimum point x0 of V and converge, after rescaling, toward the
ground state of the limit problem

− Δu + V (x0)u = |u|p−2u in R
N . (3)

Extensions of these results were obtained by many authors, and the interested reader may
consult the monograph by Ambrosetti and Malchiodi [2] for a precise list of references.
Among the recent papers on this topic, let us point out the work of Byeon, Jeanjean and
Tanaka [8,9] where the right-hand side is replaced by a very broad class of autonomous
nonlinearities, and the paper by Bonheure and Van Schaftingen [6] in which V is allowed to
vanish at infinity and Q may have singularities.

In the present paper, we focus on the nonlinear Helmholtz equation

− Δu − k2u = Q(x)|u|p−2u in R
N , (4)

where Q ≥ 0 is a bounded function. Our aim is to investigate the existence of real-valued
solutions for k > 0 large, as well as their behavior as k → ∞. Setting ε = k−1 and

w = ε
2

p−2 u, we find thatw solves the problem (1) with V ≡ −1, and it is therefore natural to
ask, whether the concentration resultsmentioned above can also be obtained for this equation.
But when trying to adapt the previous methods to the present case, several obstacles appear.
First, the structure of the limit problem

− Δu − u = Q(x0)|u|p−2u in R
N (5)

is more complex than (3). In particular, all solutions of (5) change sign infinitely many times,
and no uniqueness result is known. Second, there is no direct variational formulation available
for the problems (4)–(5) and therefore no natural concept of ground state associated with
them. Nevertheless, we will show that variational arguments in the spirit of [20,24] can be
used to obtain existence and concentration results for solutions of the nonlinear Helmholtz
equation (4).

Our method relies on the dual variational framework established in the recent paper [17]
which consists in inverting the linear part and the nonlinearity.More precisely, setting ε = k−1

and Qε(x) = Q(εx), we look at the integral equation

|v|p′−2v = Q
1
p
ε R

(
Q

1
p
ε v

)
, (6)

where p′ = p
p−1 and where R denotes the real part of the Helmholtz resolvent operator.

The solutions of this equation are critical points of the so-called dual energy functional
Jε : L p′

(RN ) → R given by

Jε(v) = 1

p′

∫
RN

|v|p′
dx − 1

2

∫
RN

Q
1
p
ε vR

(
Q

1
p
ε v

)
dx .

Furthermore, every critical point v of Jε gives rise to a strong solution u of (4) with k = 1
ε
,

by setting

u(x) = k
2

p−2 R
(

Q
1
p
ε v

)
(kx), x ∈ R

N . (7)
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This correspondence allows us to define a notion of ground state for (4) as follows. If ε = 1
k

and v is a nontrivial critical point for Jε at the mountain pass level, the function u given by
(7) will be called a dual ground state of (4).

A motivation behind this definition is given by considering (4) on a bounded domain with
Dirichlet boundary condition. For this problem, Szulkin and Weth [23, Sect. 3] proved that
the ground state level for the direct functional is attained by a nontrivial critical point. In the
case where the linear operator −Δ − k2 is invertible, one can show that it is also a critical
point of the dual energy functional at the mountain pass level.

The firstmain result of this paper concerns the existence and concentration, up to rescaling,
of sequences of dual ground states.

Theorem 1.1 Let N ≥ 2, 2(N+1)
N−1 < p < 2N

N−2 (resp. 6 < p < ∞ if N = 2) and consider a
bounded continuous function Q ≥ 0 such that

Q∞ := lim sup
|x |→∞

Q(x) < Q0 := sup
x∈RN

Q(x). (8)

(i) There is k0 > 0 such that for all k > k0 the problem (4) admits a dual ground state.
(ii) Let (kn)n ⊂ (k0,∞) satisfy lim

n→∞ kn = ∞ and consider for each n, a dual ground state

un of

−Δu − k2nu = Q(x)|u|p−2u in R
N .

Then there is a maximum point x0 of Q, a dual ground state u0 of

− Δu − u = Q0|u|p−2u in R
N (9)

and a sequence (xn)n ⊂ R
N such that (up to a subsequence) lim

n→∞ xn = x0 and

k
− 2

p−2
n un

( ·
kn

+ xn

)
→ u0 in L p(RN ), as n → ∞.

For the Schrödinger equation (1) with V ≡ 1, Wang and Zeng [25] noticed that (8) plays the
same role as the Rabinowitz condition (2). As a consequence of Theorem 1.1, we see that
this condition also ensures the concentration, in the L p-sense, for (1) with V ≡ −1. To the
best of our knowledge, this is the first concentration result for semilinear problems where 0
lies in the interior of the essential spectrum of the linearization.

The proof of the above theorem is given in Sect. 3. It relies on the fact that, due to (8),
the dual energy functional satisfies the Palais–Smale condition at all levels strictly below
the least among all possible energy levels for the problem at infinity. In contrast to similar
problems where the dual method is used (see, e.g., [1]), we have no sign information about
the nonlocal term appearing in the dual energy functional, since the resolvent Helmholtz
operator is not positive definite. In order to handle this term, we derive a new energy estimate
(Lemma 2.4) for the nonlocal interaction between functions with disjoint support, which we
believe to be of independent interest. The proof of the L p-concentration in Part (ii) of the
above theorem is given in Theorem 3.5. The main ingredients are an energy comparison with
the limit problem (9) and a representation lemma for Palais–Smale sequences (Lemma 2.3)
in the spirit of and Benci and Cerami [3].

The second main result in this paper is the following multiplicity result for (4) with k > 0
large. Here, M = {x ∈ R

N : Q(x) = Q0} denotes the set of maximum points of Q, and
for δ > 0 we let Mδ = {x ∈ R

N : dist(x, M) ≤ δ}. Also, for a closed subset Y of a metric
space X we denote by catX (Y ) the Lusternik–Schnirelmann category of Y with respect to
X , i.e., the least number of closed contractible sets in X which cover Y .
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Theorem 1.2 Let N ≥ 2, 2(N+1)
N−1 < p < 2N

N−2 (resp. 6 < p < ∞ if N = 2) and consider a
bounded and continuous function Q ≥ 0 satisfying (8). For every δ > 0, there exists k(δ) > 0
such that (4) has at least catMδ (M) nontrivial solutions for all k > k(δ).

In the case where Q∞ = 0, Palais–Smale sequences for the dual functional are relatively
compact and a mountain pass argument was used in [17] to obtain the existence of infinitely
many solutions. When Q∞ > 0, only Palais–Smale sequences below the least-energy level
at infinity are relatively compact. This loss of compactness has to be handled in order to
prove the existence of multiple solutions. Our proof uses topological arguments close to the
ones developed by Cingolani and Lazzo [11] for (1) (see also [12]) and based on ideas of
Benci, Cerami and Passaseo [4,5] for problems on bounded domains. The main point lies in
the construction of two maps whose composition is homotopic to the inclusion M ↪→ Mδ .
For more results concerning the multiplicity of solutions for small ε > 0 of the Schrödinger
equation (1) with inf V > 0, the interested reader may consult the recent paper by Cingolani
et al. [10] and the references therein.

The paper is organized as follows. In Sect. 2, we describe the dual variational framework
set up in [17] for the study of the problem (4) with fixed k and discuss the basic properties of
the associated Nehari manifold. Next, we establish a representation lemma for Palais–Smale
sequences of the dual energy functional in the case of constant Q. The section concludes
with the proof of the Palais–Smale condition for the dual energy functional on the Nehari
manifold below some limit energy level. A crucial element in the proof of this result is the
decay estimate given in Lemma 2.4, for the nonlocal interaction induced by the Helmholtz
resolvent operator. In Sect. 3, we start by proving that for small ε = k−1 > 0 the least-
energy level for critical points of the dual energy functional is attained (Proposition 3.3). As
a consequence of this, we obtain Part (i) in Theorem 1.1. In a second part, the concentration in
the limit ε = k−1 → 0 is established for sequences of ground states in the dual formulation
(Proposition 3.4), and this allows us to prove Part (ii) in Theorem 1.1. The last section, Sect. 4,
is devoted to the proof of Theorem 1.2.

2 The variational framework

2.1 Notation and preliminaries

Throughout the paper, we let N ≥ 2 and consider a nonnegative function Q ∈ L∞(RN ), Q 
≡
0. Setting 2∗ := 2(N+1)

N−1 and 2∗ := 2N
N−2 if N ≥ 3, resp. 2∗ := ∞ if N = 2,we fix an exponent

p ∈ (2∗, 2∗) and we let p′ = p
p−1 denote its conjugate exponent. For 1 ≤ q ≤ ∞, we write

‖ ·‖q instead of ‖ ·‖Lq (RN ) for the standard norm of the Lebesgue space Lq(RN ). In addition,
for r > 0 and x ∈ R

N , we denote by Br (x) the open ball in R
N of radius r centered at x ,

and let Br = Br (0).
With this notation, we consider for k > 0 the equation

− Δu − k2u = Q(x)|u|p−2u in R
N . (10)

Setting ε = k−1, uε(x) = ε
2

p−2 u(εx) and Qε(x) = Q(εx), x ∈ R
N , (10) can be rewritten

as

− Δuε − uε = Qε(x)|uε|p−2uε in R
N . (11)
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Consider the fundamental solution of the Helmholtz equation −Δu − u = δ0,

Φ(x) = i

4
(2π |x |) 2−N

2 H (1)
N−2
2

(|x |), x ∈ R
N \{0}, (12)

where H (1)
ν denotes the Hankel function of the first kind of order ν. As a consequence of

estimates by Kenig, Ruiz and Sogge [19], the operator R, defined on the Schwartz space
S(RN ) of rapidly decreasing functions by the convolution

R f = Re(Φ) ∗ f, f ∈ S(RN ),

has a continuous extension R : L p′
(RN ) → L p(RN ). Using this operator, we define the

C1-functional

Jε : L p′
(RN ) → R, Jε(v) := 1

p′

∫
RN

|v|p′
dx − 1

2

∫
RN

Q
1
p
ε vR

(
Q

1
p
ε v

)
dx

(for more details on the construction of R and Jε, see [17]). Every critical point of Jε

corresponds to a solution of (11) in the following way. A function v ∈ L p′
(RN ) satisfies

J ′
ε(v) = 0 if and only if it solves the integral equation

|v|p′−2v = Q
1
p
ε R

(
Q

1
p
ε v

)
.

Setting u = R(Q
1
p
ε v), it is equivalent to

u = R(Qε|u|p−2u) (13)

and since R is a right inverse for the Helmholtz operator −Δ − 1, it follows that u is a
strong solution of (11) (see [17, Lemma 4.3 and Theorem 4.4] concerning the regularity and

asymptotic behavior of u). Conversely, if u solves (13), then v = Q
1
p′
ε |u|p−2u is a critical

point of Jε. Notice that distinct critical points correspond to distinct solutions of (13) and
therefore of (11).

Let us recall some properties of the dual functional, obtained in [15–17]. Since p′ < 2
and since the kernel of the operator R is positive close to the origin, the geometry of the
functional Jε is of mountain pass type:

∃ α > 0 and ρ > 0 such that Jε(v) ≥ α > 0, ∀v ∈ L p′
(RN ) with ‖v‖p′ = ρ. (14)

∃ v0 ∈ L p′
(RN ) such that ‖v0‖p′ > ρ and Jε(v0) < 0. (15)

As a consequence, the Nehari set associated to Jε:

Nε := {v ∈ L p′ (
R

N
)

\{0} : J ′
ε(v)v = 0},

is not empty. More precisely, by (15), the set

U+
ε :=

{
v ∈ L p′ (

R
N
)

:
∫
RN

Q
1
p
ε vR

(
Q

1
p
ε v

)
dx > 0

}

is not empty and for each v ∈ U+
ε there is a unique tv > 0 such that tvv ∈ Nε holds. It is

given by

t2−p′
v =

∫
RN |v|p′

dx
∫
RN Q

1
p
ε vR

(
Q

1
p
ε v

)
dx

. (16)
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In addition, tv is the unique maximum point of t �→ Jε(tv), t ≥ 0. Using (14), we obtain in
particular

cε := inf
Nε

Jε = inf
v∈U+

ε

Jε(tvv) > 0.

Moreover, for every v ∈ Nε we have cε ≤ Jε(v) =
(

1
p′ − 1

2

)
‖v‖p′

p′ . Hence, 0 is isolated

in the set {v ∈ L p′
(RN ) : J ′

ε(v)v = 0} and, as a consequence, the C1-submanifold Nε of
L p′

(RN ) is complete.
We recall that (vn)n ⊂ L p′

(RN ) is termed a Palais–Smale sequence, or a (PS)-sequence,
for Jε if (Jε(vn))n is bounded and J ′

ε(vn) → 0 as n → ∞. Also, for d > 0, we say that
(vn)n is a (PS)d -sequence for Jε if it is a (PS)-sequence and if Jε(vn) → d as n → ∞. The
following properties hold (see [16, Sect. 2]).

Lemma 2.1 Let (vn)n ⊂ L p′
(RN ) be a Palais–Smale sequence for Jε. Then (vn)n is bounded

and there exists v ∈ L p′
(RN ) such that J ′

ε(v) = 0 and, up to a subsequence, vn ⇀ v weakly
in L p′

(RN ) and Jε(v) ≤ lim inf
n→∞ Jε(vn).

Moreover, for every bounded and measurable set B ⊂ R
N , 1Bvn → 1Bv strongly in

L p′
(RN ).

As a consequence, we obtain the following characterization of the infimum cε of Jε over the
Nehari manifold Nε (see [16, Sect. 4]).

Lemma 2.2 (i) cε coincides with the mountain pass level, i.e.,

cε = inf
γ∈Γ

max
t∈[0,1] Jε(γ (t)), where

Γ =
{
γ ∈ C([0, 1], L p′

(RN )) : γ (0) = 0 and Jε(γ (1)) < 0
}

.

(ii) If cε is attained, then cε = min{Jε(v) : v ∈ L p′
(RN )\{0}, J ′

ε(v) = 0}.
(iii) If Qε is constant or Z

N -periodic, then cε is attained.

In view of the preceding results, we introduce the following terminology.
If v ∈ L p′

(RN )\{0} is a critical point for Jε at the mountain pass level, i.e., J ′
ε(v) = 0

and Jε(v) = cε, we call the function u given by

u(x) = k
2

p−2 R
(

Q
1
p
ε v

)
(kx), x ∈ R

N , (17)

where k = ε−1, a dual ground state of (10). More generally, if v is a nontrivial critical point
of Jε, the function u obtained from v by (17) will be called a dual bound state of (10).

2.2 Representation lemma and Palais–Smale condition

We now take a closer look at the Palais–Smale sequences of the functional Jε and first prove
a representation lemma in the case where the coefficient Q is a positive constant. A crucial
ingredient related to the nonlocal quadratic part of the energy functional is the nonvanishing
theorem proved in [17, Sect. 3].

For simplicity, and since the next result is independent of ε, we drop the subscript ε.
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Lemma 2.3 Suppose Q ≡ Q(0) > 0 on R
N . Consider for some d > 0 a (PS)d-sequence

(vn)n ⊂ L p′
(RN ) for J . Then there is an integer m ≥ 1, critical points w(1), . . . , w(m) of J

and sequences (x (1)
n )n, . . . , (x (m)

n )n ⊂ R
N such that (up to a subsequence)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥∥vn −
m∑

j=1

w( j)(· − x ( j)
n )

∥∥∥
p′ → 0 as n → ∞,

|x (i)
n − x ( j)

n | → ∞ as n → ∞, if i 
= j,
m∑

j=1

J (w( j)) = d.

(18)

Proof Since (vn)n is a (PS)d -sequence for J , it is bounded and there holds

lim
n→∞

∫
RN

Q
1
p vnR

(
Q

1
p vn

)
dx = 2p′

2 − p′ lim
n→∞

[
J (vn) − 1

p′ J ′(vn)vn

]
= 2p′d

2 − p′ > 0.

By the nonvanishing theorem [17, Theorem 3.1], there are R, ζ > 0 and a sequence (x (1)
n )n

such that, up to a subsequence,∫
BR(x (1)

n )

|vn |p′
dx ≥ ζ > 0 for all n.

Replacing (vn)n by the corresponding subsequence and setting v
(1)
n = vn(· + x (1)

n ), we
find that (v

(1)
n )n is also a (PS)d -sequence for J , since this functional is invariant under

translations. By Lemma 2.1, going to a further subsequence, we may assume v
(1)
n ⇀ w(1)

weakly, 1BR v
(1)
n → 1BR w(1) strongly in L p′

(RN ), and J (w(1)) ≤ lim
n→∞ J (v

(1)
n ) = d . These

last properties and the definition of v
(1)
n imply that w(1) is a nontrivial critical point of J .

If J (w(1)) = d , we obtain(
1

p′ − 1

2

)
‖w(1)‖p′

p′ = J (w(1)) − 1

2
J ′(w(1))w(1)

= d = lim
n→∞

[
J (vn) − 1

2
J ′(vn)vn

]
=

(
1

p′ − 1

2

)
lim

n→∞ ‖vn‖p′
p′ ,

i.e., v(1)
n → w(1) strongly in L p′

(RN ), and the lemma is proved.
Otherwise, J (w(1)) < d andwe set v(2)

n = v
(1)
n −w(1). Theweak convergence v

(1)
n ⇀ w(1)

then implies∫
RN

Q
1
p v(2)

n R
(

Q
1
p v(2)

n

)
dx =

∫
RN

Q
1
p v(1)

n R
(

Q
1
p v(1)

n

)
dx

−
∫
RN

Q
1
p w(1)R

(
Q

1
p w(1)

)
dx + o(1),

as n → ∞. Moreover, by the Brézis-Lieb Lemma [7],∫
RN

|v(2)
n |p′

dx =
∫
RN

|v(1)
n |p′

dx −
∫
RN

|w(1)|p′
dx + o(1), as n → ∞.

These properties and the translation invariance of J together give

J (v(2)
n ) = J (v(1)

n ) − J (w(1)) + o(1) = d − J (w(1)) + o(1), as n → ∞.
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Since by Lemma 2.1, 1Br v
(1)
n → 1Br w

(1) strongly in L p′
(RN ) for all r > 0, we find

1Br |v(2)
n |p′−2v(2)

n − 1Br |v(1)
n |p′−2v(1)

n + 1Br |w(1)|p′−2w(1) → 0 in L p(RN ), as n → ∞.

Furthermore, since
∣∣|a|q−1a − |b|q−1b

∣∣ ≤ 21−q |a − b|q for all a, b ∈ R and 0 < q < 1, it
follows that∫

RN \Br

∣∣∣|v(2)
n |p′−2v(2)

n − |v(1)
n |p′−2v(1)

n

∣∣∣p
dx ≤ 2(2−p′)p

∫
RN \Br

|w(1)|p′
dx → 0,

as r → ∞, uniformly in n. Combining these two facts, we arrive at the strong convergence

|v(2)
n |p′−2v(2)

n − |v(1)
n |p′−2v(1)

n + |w(1)|p′−2w(1) → 0 in L p(RN ), as n → ∞,

and therefore,

J ′(v(2)
n ) = J ′(v(1)

n ) − J ′(w(1)) + o(1) = o(1), as n → ∞.

We conclude that (v
(2)
n )n is a (PS)-sequence for J at level d − J (w(1)) > 0. Thus, the

nonvanishing theorem gives the existence of R1, ζ1 > 0 and of a sequence (yn)n ⊂ R
N such

that, going to a subsequence,∫
BR1 (yn)

|v(2)
n |p′

dx ≥ ζ1 > 0 for all n.

By Lemma 2.1, there is a critical point w(2) of J such that (taking a further subsequence)
v

(2)
n (· + yn) ⇀ w(2) weakly and 1Bv

(2)
n (· + yn) → 1Bw(2) strongly in L p′

(RN ), for all
bounded and measurable sets B ⊂ R

N . In particular, w(2) 
= 0 and since v
(2)
n ⇀ 0, we see

that |yn | → ∞ as n → ∞.
Setting x (2)

n = x (1)
n + yn , we obtain |x (2)

n − x (1)
n | → ∞ as n → ∞, and

vn −
(
w(1)(· − x (1)

n ) + w(2)(· − x (2)
n )

)
= v(2)

n (· + yn − x (2)
n ) − w(2)(· − x (2)

n ) ⇀ 0,

weakly in L p′
(RN ). In addition, the same arguments as before show that

J (w(2)) ≤ lim inf
n→∞ J (v(2)

n ) = d − J (w(1))

with equality if and only if v
(2)
n (· + yn) → w(2) strongly in L p′

(RN ). If the inequality is
strict, we can iterate the procedure. Since for every nontrivial critical point w of J we have
J (w) ≥ c = inf

N
J > 0, the iteration has to stop after finitely many steps, and we obtain the

desired result. ��
We now turn to investigate the Palais–Smale condition for Jε and first note that if Q(x) →

0 as |x | → ∞, it holds at every level, i.e., every Palais–Smale sequence has a convergent
subsequence (see [17, Sect. 5]). To treat the case where

Q∞ := lim sup
|x |→∞

Q(x) > 0, (19)

we consider the energy functional J∞ : L p′
(RN ) → R given by

J∞(v) = 1

p′

∫
RN

|v|p′
dx − 1

2

∫
RN

Q
1
p∞vR

(
Q

1
p∞v

)
dx, v ∈ L p′

(RN ).
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The corresponding Nehari manifold

N∞ := {v ∈ L p′
(RN )\{0} : J ′∞(v)v = 0},

has the same structure asNε and, since Q∞ is constant, Lemma2.2 implies that c∞ := inf
N∞

J∞
is attained and coincides with the least-energy level for nontrivial critical points of J∞. As
the last result in this section shows, the Palais–Smale condition holds for Jε on the Nehari
manifold Nε at every energy level strictly below c∞. The proof is inspired by the papers of
Cingolani and Lazzo [11,12]. A new feature here is the fact that the quadratic part of the
functional is nonlocal, and this induces a nonzero interaction between functions with disjoint
supports. In order to handle this, we first prove an estimate on this nonlocal interaction in
terms of the distance between the supports of the two functions. It is based on a decomposition
of the fundamental solution already introduced in [17, Sect. 3]. Having obtained the estimate,
we establish the Palais–Smale condition for Jε on Nε below the level c∞.

Lemma 2.4 There exists a constant C = C(N , p) > 0 such that for any R > 0, r ≥ 1 and
u, v ∈ L p′

(RN ) with supp(u) ⊂ BR and supp(v) ⊂ R
N \BR+r ,∣∣∣∣

∫
RN

uRv dx

∣∣∣∣ ≤ Cr−λp ‖u‖p′ ‖v‖p′ , where λp = N − 1

2
− N + 1

p
.

Proof Weprove the lemma for the nonlocal term
∫
RN vRu dx , whereR denotes the resolvent

operator given (for Schwartz functions) by the convolution with the kernel Φ in (12) (see
[17, Sect. 2] for more details). Since R is the real part of R and since u, v are real-valued,
this will imply the desired result. By density, it suffices to prove the estimate for Schwartz
functions. Let MR+r := R

N \BR+r and let u, v ∈ S(RN ) be such that supp(u) ⊂ BR and
supp(v) ⊂ MR+r . The symmetry of the operator R and Hölder’s inequality gives∣∣∣∣

∫
RN

uRv dx

∣∣∣∣ =
∣∣∣∣
∫
RN

vRu dx

∣∣∣∣ ≤ ‖v‖p′ ‖Φ ∗ u‖L p(MR+r ), (20)

and it remains to estimate the second factor on the right-hand side. For this, we decompose
Φ as follows. Fix ψ ∈ S(RN ) such that ψ̂ ∈ C∞

c (RN ) is radial, 0 ≤ ψ̂ ≤ 1, ψ̂(ξ) = 1 for
||ξ | − 1| ≤ 1

6 and ψ̂(ξ) = 0 for ||ξ | − 1| ≥ 1
4 . Writing Φ = Φ1 + Φ2 with

Φ1 := (2π)−
N
2 (ψ ∗ Φ), Φ2 := Φ − Φ1,

we recall the following estimates obtained in [15,17]:

|Φ1(x)| ≤ C0(1 + |x |) 1−N
2 for x ∈ R

N (21)

and |Φ2(x)| ≤ C0|x |−N for x 
= 0. (22)

Since the support of u is contained in BR , we find

‖Φ2 ∗ u‖L p(MR+r ) ≤
[∫

|x |≥R+r

(∫
|y|≤R

|Φ2(x − y)||u(y)| dy
)p

dx

] 1
p

≤
[∫

RN

(∫
|x−y|≥r

|Φ2(x − y)||u(y)| dy
)p

dx

] 1
p

= ‖(1Mr |Φ2|) ∗ |u| ‖p ≤ ‖1Mr Φ2‖ p
2
‖u‖p′ .
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Moreover, (22) gives

‖1Mr Φ2‖ p
2

≤ C0

(
ωN

∫ ∞

r
s N−1− N p

2 ds

) 2
p ≤ Cr− N (p−2)

p ≤ Cr−λp ,

since r ≥ 1, and therefore

‖Φ2 ∗ u‖L p(MR+r ) ≤ Cr−λp ‖u‖p′ . (23)

To prove the estimate for Φ1, let us fix a radial function φ ∈ S(RN ) such that φ̂ ∈ C∞
c (RN )

is radial, 0 ≤ φ̂ ≤ 1, φ̂(ξ) = 1 for ||ξ | − 1| ≤ 1
4 and φ̂(ξ) = 0 for ||ξ | − 1| ≥ 1

2 . Moreover,

let ũ := φ ∗ u ∈ S(RN ). We then have Φ1 ∗ u = (2π)− N
2 (Φ1 ∗ ũ), since Φ̂1φ̂ = Φ̂1 by

construction. We now write

Φ1 ∗ ũ =
[
1B r

2
Φ1

]
∗ ũ +

[
1M r

2
Φ1

]
∗ ũ

and let gr := [1B r
2
Φ1] ∗ φ. Since supp(u) ⊂ BR , we find as above

‖
[
1B r

2
Φ1

]
∗ ũ‖L p(MR+r ) = ‖gr ∗ u‖L p(MR+r ) ≤ ‖(1Mr |gr |) ∗ |u| ‖p ≤ ‖1Mr gr‖ p

2
‖u‖p′ .

Using (21) and the fact that φ ∈ S(RN ), we may estimate

‖1Mr gr‖
p
2
p
2

≤ C
p
2
0

∫
|x |≥r

(∫
|y|≤ r

2

|φ(x − y)| dy
) p

2
dx

≤ C
∫

|x |≥r

(∫
|y|≤ r

2

|x − y|−m dy
) p

2
dx ≤ C |B r

2
| p
2

∫
|x |≥r

(
|x | − r

2

)− mp
2
dx

= Cr
(N−m)p

2 +N
∫

|z|≥1

(
|z| − 1

2

)− mp
2

dz = Cr
(N−m)p

2 +N ,

where C is independent of r and where m may be fixed so large that (m−N )p
2 − N ≥ λp . As

a consequence of [17, Proposition 3.3], we have moreover

‖
[
1M r

2
Φ1

]
∗ ũ‖L p(MR+r ) ≤ ‖

[
1M r

2
Φ1

]
∗ ũ‖p ≤ Cr−λp ‖ũ‖p′ ≤ Cr−λp ‖u‖p′

and we conclude that

‖Φ1 ∗ u‖L p(MR+r ) ≤ Cr−λp ‖u‖p′ . (24)

Combining (20), (23) and (24) yields the claim. ��
Lemma 2.5 Let ε > 0 and assume Q∞ > 0 and cε < c∞. Then Jε satisfies the Palais–
Smale condition on Nε at every level below c∞, i.e., every sequence (vn)n ⊂ Nε such that
Jε(vn) → d < c∞ and (Jε|Nε )

′(vn) → 0 as n → ∞ has a convergent subsequence.

Proof First note that by assumption, {v ∈ Nε : Jε(v) < c∞} is not empty. If d < cε , there is
nothing to prove. Let therefore cε ≤ d < c∞ and consider a (PS)d -sequence (vn)n for Jε|Nε .
Since Nε is a natural constraint and a C1-manifold, we find that (vn)n is a (PS)d -sequence
for the unconstrained functional Jε. Using Lemma 2.1, we obtain that (up to a subsequence)
vn ⇀ v and 1BR vn → 1BR v in L p′

(RN ) for all R > 0, where v ∈ L p′
(RN ) is a critical point

of Jε with Jε(v) ≤ d . In order to conclude that vn → v strongly in L p′
(RN ), it suffices to

show that

∀ ζ > 0, ∃ R > 0 such that
∫

|x |>R
|vn |p′

dx < ζ, ∀ n. (25)
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As a first step, we claim that this holds true in annular regions, in the following sense:

∀ η > 0 and ∀ R > 0, ∃ r > R such that lim inf
n→∞

∫
r<|x |<2r

|vn |p′
dx < η. (26)

Suppose not, then we find η0, R0 > 0 with the property that for every m > R0 there is
n0 = n0(m) such that

∫
m<|x |<2m |vn |p′

dx ≥ η0 for all n ≥ n0. Without loss of generality,
we assume that n0(m + 1) ≥ n0(m) for all m. Hence, for every � ∈ N there is N0 = N0(�)

such that

∫
RN

|vn |p′
dx ≥

�−1∑
k=0

∫
2k ([R0]+1)<|x |<2k+1([R0]+1)

|vn |p′
dx ≥ �η0, ∀ n ≥ N0.

Letting � → ∞, we obtain a contradiction to the fact that (vn)n is bounded and this gives
(26).

We now prove (25) by contradiction. Assuming that it does not hold, we find ζ0 > 0 and
a subsequence (vnk )k such that

∫
|x |>k

|vnk |p′
dx ≥ ζ0, ∀ k. (27)

Fix 0 < η < min{1, ( ζ0
3C1

)p′ }, where C1 = 2C(N , p)‖Q‖
2
p∞ max{1, sup

k∈N
‖vnk ‖2p′ }, the con-

stant C(N , p) being chosen such that Lemma 2.4 holds and ‖Rv‖p ≤ C(N , p)‖v‖p′ for all
u ∈ L p′

(RN ). By definition of Q∞ and since ε > 0 is fixed, there exists R(η) > 0 such that

Qε(x) ≤ Q∞ + η for all |x | ≥ R(η).

Also, from (26), we can find r > max{R(η), η
− 1

λp } and a subsequence, still denoted by
(vnk )k , such that ∫

r<|x |<2r
|vnk |p′

dx < η for all k.

Setting wnk := 1{|x |≥2r}vnk we can write for all k,

∣∣∣J ′
ε(vnk )wnk − J ′

ε(wnk )wnk

∣∣∣ =
∣∣∣
∫

|x |<r
Q

1
p
ε vnk R

(
Q

1
p
ε wnk

)
dx

+
∫

r<|x |<2r
Q

1
p
ε vnk R

(
Q

1
p
ε wnk

)
dx

∣∣∣
≤ C(N , p)r−λp ‖Q‖

2
p∞‖vnk ‖2p′

+ C(N , p)‖Q‖
2
p∞‖vnk ‖p′

(∫
r<|x |<2r

|vnk |p′
dx

) 1
p′

≤ C1η
1
p′ ,

using Lemma 2.4. In addition, by (27) and the definition of wnk , there holds∫
RN

|wnk |p′
dx ≥ ζ0 for all k ≥ 2r.
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Recalling our choice of η, we know thatC1η
1
p′ <

ζ0
3 andwe find some k0 = k0(r, η, ζ0) ≥ 2r

such that∫
RN

Q
1
p
ε wnk R

(
Q

1
p
ε wnk

)
dx =

∫
RN

|wnk |p′
dx − J ′

ε(vnk )wnk

+ [J ′
ε(vnk )wnk − J ′

ε(wnk )wnk ]
≥

∫
RN

|wnk |p′
dx − |J ′

ε(vnk )wnk | − C1η
1
p′

≥ ζ0

2
, for all k ≥ k0,

(28)

since J ′
ε(vnk )wnk → 0 as k → ∞. We note also that, since vnk ∈ Nε , there holds

∫
RN

|wnk |p′
dx ≤

∫
RN

|vnk |p′
dx =

(
1

p′ − 1

2

)−1

Jε(vnk ). (29)

For k ≥ k0, let now w̃k :=
(

Qε

Q∞

) 1
p
wnk and notice that |w̃k | ≤

(
1 + η

Q∞

) 1
p |wnk |.

In view of (28), there is t∞k > 0 for which t∞k w̃k ∈ N∞ and there holds

(t∞k )2−p′ ≤
(
1 + η

Q∞

)p′−1 ∫
RN |wnk |p′

dx

∫
RN Q

1
p
ε wnk R

(
Q

1
p
ε wnk

)
dx

≤
(
1 + η

Q∞

)p′−1

⎛
⎜⎜⎝1 + |J ′

ε(vnk )wnk | + C1η
1
p′

∫
RN Q

1
p
ε wnk R

(
Q

1
p
ε wnk

)
dx

⎞
⎟⎟⎠

≤
(
1 + η

Q∞

)p′−1
⎛
⎝1 + 2|J ′

ε(vnk )wnk | + 2C1η
1
p′

ζ0

⎞
⎠ .

Consequently, the above estimate and (29) together give for all k ≥ k0,

c∞ ≤ J∞(t∞k w̃k)

≤
(

1

p′ − 1

2

)
(t∞k )p′

(
1 + η

Q∞

)p′−1 ∫
RN

|wnk |p′
dx

≤
(
1 + η

Q∞

) 2(p′−1)
2−p′

⎛
⎝1 + 2|J ′

ε(vnk )wnk | + 2C1η
1
p′

ζ0

⎞
⎠

p′
2−p′

Jε(vnk ).

Letting k → ∞, we find

c∞ ≤
(
1 + η

Q∞

) 2(p′−1)
2−p′

⎛
⎝1 + 2C1η

1
p′

ζ0

⎞
⎠

p′
2−p′

d,

and letting η → 0 we obtain

c∞ ≤ d,
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which contradicts the assumption d < c∞ and proves (25). From this, we deduce the strong
convergence vn → v in L p′

(RN ) and the assertion follows. ��
Remark 2.6 Under the stronger assumption Q∞ = lim|x |→∞ Q(x), the proof of the preceding

result simplifies. Indeed, having extracted a weakly converging subsequence and a critical
point v of Jε, the sequence wn = vn − v can be shown to be a Palais–Smale sequence for
J∞ at a level lying strictly below c∞. The representation lemma (Lemma 2.3) can then be
used to conclude that wn → 0 strongly in L p′

(RN ).

3 Existence and concentration of dual ground states

In this and the next section, we work under the following assumptions on Q.

(Q0) Q is continuous, bounded and Q ≥ 0 on R
N ;

(Q1) Q∞ := lim sup
|x |→∞

Q(x) < Q0 := sup
x∈RN

Q(x).

Consider the functional

J0(v) := 1

p′

∫
RN

|v|p′
dx − 1

2

∫
RN

Q
1
p
0 vR

(
Q

1
p
0 v

)
dx, v ∈ L p′

(RN )

and the corresponding Nehari manifold

N0 := {v ∈ L p′
(RN )\{0} : J ′

0(v)v = 0},
associated to the limit problem

− Δu − u = Q0|u|p−2u, x ∈ R
N . (30)

Lemma 2.2 implies that the level c0 := inf
N0

J0 is attained and coincides with the least-energy

level, i.e.,

c0 = inf{J0(v) : v ∈ L p′
(RN ), v 
= 0 and J ′

0(v) = 0}.
Our first goal will be to show, comparing the energy level cε with c0, that for small ε > 0, cε

is attained. For this, let us denote the set of maximum points of Q by

M := {x ∈ R
N : Q(x) = Q0}.

Notice that M 
= ∅, since (Q0) and (Q1) are assumed. We start by studying the projection
on the Nehari manifold of truncations of translated and rescaled ground states of J0. Take a
cutoff function η ∈ C∞

c (RN ), 0 ≤ η ≤ 1, such that η ≡ 1 in B1(0) and η ≡ 0 in R
N \B2(0).

For y ∈ M, ε > 0 we let

ϕε,y(x) := η(εx − y) w(x − ε−1y), (31)

where w ∈ L p′
(RN ) is some fixed least-energy critical point of J0.

Lemma 3.1 There is ε∗ > 0 such that for all 0 < ε ≤ ε∗, y ∈ M, a unique tε,y > 0
satisfying tε,yϕε,y ∈ Nε exists. Moreover,

lim
ε→0+ Jε(tε,yϕε,y) = c0, uniformly for y ∈ M.
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Proof We start by remarking that Q(y + ε·)η(ε·)w → Q0w in L p′
(RN ) as ε → 0+,

uniformly with respect to y ∈ M , since M is compact and Q is continuous by assumption.
Consequently, as ε → 0+,∫
RN

Q
1
p
ε ϕε,yR

(
Q

1
p
ε ϕε,y

)
dx =

∫
RN

Q
1
p (y + εz)η(εz)w(z)R

(
Q

1
p (y + ε·)η(ε·)w

)
(z) dz

−→
∫
RN

Q
1
p
0 wR

(
Q

1
p
0 w

)
dz =

(
1

p′ − 1

2

)−1

c0 > 0,

uniformly for y ∈ M . Therefore, ϕε,y ∈ U+
ε for all y ∈ M and ε > 0 small enough, which

shows the first assertion with tε,y given by (16). In addition, for all y ∈ M ,

∫
RN

|ϕε,y |p′
dx =

∫
RN

|η(εz)w(z)|p′
dz →

∫
RN

|w|p′
dz =

(
1

p′ − 1

2

)−1

c0, as ε → 0+.

As a consequence, tε,y → 1 as ε → 0+, uniformly for y ∈ M , and we obtain
Jε(tε,yϕε,y) → c0 as ε → 0+, uniformly for y ∈ M . The second assertion follows. ��
Lemma 3.2 For all ε > 0 there holds cε ≥ c0. Moreover, lim

ε→0+ cε = c0.

Proof Consider vε ∈ Nε and set v0 :=
(

Qε

Q0

) 1
p
vε . Notice that |v0| ≤ |vε| a.e. on R

N . Since

vε ∈ U+
ε , we find∫

RN
Q

1
p
0 v0R

(
Q

1
p
0 v0

)
dx =

∫
RN

Q
1
p
ε vεR

(
Q

1
p
ε vε

)
dx > 0,

i.e., v0 ∈ U+
0 . Hence, with

t2−p′
ε =

∫
RN |v0|p′

dx
∫
RN Q

1
p
0 v0R

(
Q

1
p
0 v0

)
dx

≤
∫
RN |vε|p′

dx
∫
RN Q

1
p
ε vεR

(
Q

1
p
ε vε

)
dx

= 1,

it follows that tεv0 ∈ N0, and we obtain

c0 ≤ J0(tεv0) =
(

1

p′ − 1

2

)
t p′
ε

∫
RN

|v0|p′
dx ≤

(
1

p′ − 1

2

) ∫
RN

|vε|p′
dx = Jε(vε).

Since vε ∈ Nε was arbitrarily chosen, we conclude that cε = inf
Nε

Jε ≥ c0. On the other hand,

Lemma 3.1 gives for y ∈ M, cε ≤ Jε(tε,yϕε,y) → c0 as ε → 0+. Hence, lim
ε→0+ cε = c0 and

the lemma is proven. ��
Proposition 3.3 There is ε0 > 0 such that for all ε < ε0 the least-energy level cε is attained.

Proof By Lemma 3.2 and Condition (Q1), there is ε0 > 0 such that cε < c∞ for all
0 < ε < ε0. For such ε, using the fact that Nε is a C1-submanifold of L p′

(RN ), we obtain
from Ekeland’s variational principle [14, Theorem 3.1] the existence of a Palais–Smale
sequence for Jε on Nε, at level cε, and Lemma 2.5 concludes the proof. ��
Setting k0 = ε−1

0 , the assertion (i) in Theorem 1.1 from the Introduction is a direct conse-
quence of the above result. Our next goal is to examine the behavior of critical points of Jε

in the limit ε → 0+.
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Proposition 3.4 Let (εn)n ⊂ (0,∞) satisfy εn → 0 as n → ∞. Consider for each n some
vn ∈ Nεn and assume that Jεn (vn) → c0 as n → ∞. Then, there is x0 ∈ M, a critical point
w0 of J0 at level c0 and a sequence (yn)n ⊂ R

N such that (up to a subsequence)

εn yn → x0 and ‖vn(· + yn) − w0‖p′ → 0 as n → ∞.

Proof For each n ∈ N, set v0,n :=
(

Qεn
Q0

) 1
p
vn . It follows that |v0,n| ≤ |vn | a.e. on R

N and

that

∫
RN

Q
1
p
0 v0,nR

(
Q

1
p
0 v0,n

)
dx =

∫
RN

Q
1
p
εn vnR

(
Q

1
p
εn vn

)
dx > 0.

Therefore, setting

t2−p′
0,n =

∫
RN |v0,n |p′

dx
∫
RN Q

1
p
0 v0,nR

(
Q

1
p
0 v0,n

)
dx

we find that tn,0v0,n ∈ N0 and 0 < t0,n ≤ 1. As a consequence, we can write

c0 ≤ J0(t0,nv0,n) =
(

1

p′ − 1

2

)
t20,n

∫
RN

Q
1
p
0 v0,nR

(
Q

1
p
0 v0,n

)
dx

=
(

1

p′ − 1

2

)
t20,n

∫
RN

Q
1
p
εn vnR

(
Q

1
p
εn vn

)
dx

= t20,n Jεn (vn) ≤ Jεn (vn) → c0, as n → ∞.

In particular, we find

lim
n→∞ t0,n = 1,

and (t0,nv0,n)n ⊂ N0 is thus aminimizing sequence for J0 onN0. Using Ekeland’s variational
principle [14] and the fact thatN0 is a natural constraint, we obtain the existence of a (PS)c0 -
sequence (wn)n ⊂ L p′

(RN ) for J0 with the property that ‖v0,n − wn‖p′ → 0, as n → ∞.
By Lemma 2.3, there exists a critical pointw0 for J0 at level c0 and a sequence (yn)n ⊂ R

N

such that (up to a subsequence) ‖wn(· + yn) − w0‖p′ → 0, as n → ∞. Therefore,

v0,n(· + yn) → w0 strongly in L p′
(RN ), as n → ∞.

We now claim that (εn yn)n is bounded. Suppose by contradiction that some subsequence
(which we still call (εn yn)n) has the property lim

n→∞ |εn yn | = ∞. We distinguish two cases.

(1) If Q∞ = 0, then Q(εn · +εn yn) → 0, as n → ∞, holds uniformly on bounded sets of
R

N . From the definition of v0,n , we infer that v0,n(· + yn) ⇀ 0 and therefore w0 = 0, in
contradiction to J0(w0) = c0 > 0. Hence, (εn yn)n is bounded in this case.
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(2) If Q∞ > 0 instead, Fatou’s lemma and the strong convergence v0,n(· + yn) → w0

together imply

c0 = lim
n→∞ Jεn (vn) = lim

n→∞

(
1

p′ − 1

2

) ∫
RN

|vn |p′
dx

= lim
n→∞

(
1

p′ − 1

2

) ∫
RN

|vn(x + yn)|p′
dx

= lim inf
n→∞

(
1

p′ − 1

2

) ∫
RN

(
Q0

Q(εn x + εn yn)

)p′−1

|v0,n(x + yn)|p′
dx

≥
(

1

p′ − 1

2

) ∫
RN

(
Q0

Q∞

)p′−1

|w0|p′
dx

=
(

Q0

Q∞

)p′−1

c0,

and this contradicts (Q1). Therefore, (εn yn)n is a bounded sequence, and wemay assume
(going to a subsequence) that εn yn → x0 ∈ R

N . Since Q(εn x + εn yn) → Q(x0), as
n → ∞, uniformly on bounded sets, the argument of Case (1) above gives Q(x0) > 0
and, using the Dominated Convergence Theorem, we see that Q(x0) = Q0, since the
following holds.

c0 = lim
n→∞ Jεn (vn) = lim

n→∞

(
1

p′ − 1

2

) ∫
RN

|vn |p′
dx

= lim
n→∞

(
1

p′ − 1

2

) ∫
RN

(
Q0

Q(εn x + εn yn)

)p′−1

|v0,n(x + yn)|p′
dx

=
(

1

p′ − 1

2

) ∫
RN

(
Q0

Q(x0)

)p′−1

|w0|p′
dx

=
(

Q0

Q(x0)

)p′−1

c0.

Going back to the original sequence we obtain

vn(· + yn) =
(

Q0

Q(εn · +εn yn)

) 1
p

v0,n(· + yn) →
(

Q0

Q(x0)

) 1
p

w0 = w0, as n → ∞,

strongly in L p′
(RN ), using again the Dominated Convergence Theorem. The proof is

complete. ��

In the next result, we prove the assertion (ii) in Theorem 1.1 from the Introduction. For the
reader’s convenience, let us recall its formulation.

Theorem 3.5 Let k0 := ε−1
0 > 0, where ε0 > 0 is given by Proposition 3.3. For every

sequence (kn)n ⊂ (k0,∞) satisfying kn → ∞ as n → ∞, and every sequence (un)n such
that un is a dual ground state of

−Δu − knu = Q(x)|u|p−2u in R
N ,
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there is x0 ∈ M, a dual ground state u0 of (30) and a sequence (xn)n ⊂ R
N such that (up to

a subsequence) lim
n→∞ xn = x0 and

k
− 2

p−2
n un

( ·
kn

+ xn

)
→ u0 in L p(RN ), as n → ∞.

Proof For each n, the dual ground state un can be represented as

un(x) = k
2

p−2
n R

(
Q

1
p
εn vn

)
(kn x), x ∈ R

N ,

where εn = k−1
n and vn ∈ L p′

(RN ) is a least-energy critical point of Jεn , i.e., J ′
εn

(vn) = 0
and Jεn (vn) = cεn . By Lemma 3.2 and Proposition 3.4, there is x0 ∈ M and a sequence
(yn)n ⊂ R

N such that, as n → ∞, xn := εn yn → x0 and, going to a subsequence,
vn(· + yn) → w0 in L p′

(RN ) for some least-energy critical point w0 of J0. Since for
x ∈ R

N ,

k
− 2

p−2
n un

(
x

kn
+ xn

)
= R

(
Q

1
p
εn vn

)
(x + yn) = R

(
Q

1
p
εn (· + yn)vn(· + yn)

)
(x),

we obtain, using the continuity ofR and the pointwise convergence Qεn (x + yn) → Q(x0) =
Q0 as n → ∞ for all x ∈ R

N , the strong convergence

k
− 2

p−2
n un

(
x

kn
+ xn

)
→ R

(
Q

1
p
0 w0

)
in L p(RN ).

Setting u0 = R(Q
1
p
0 w0), the properties J0(w0) = c0 and J ′

0(w0) = 0 imply that u0 is a dual
ground state solution of (30) and this concludes the proof. ��
Remark 3.6 (i) The conclusion of the preceding theorem holds more generally for every

sequence of dual bound states. Indeed, in view of Proposition 3.4 it is enough to

have un(x) = k
2

p−2
n R(Q

1
p
εn vn)(kn x), where vn is a critical point of Jεn , and to require

Jεn (vn) → c0 as n → ∞.
(ii) Elliptic estimates imply that the convergence toward u0 holds inW 2,q(RN ) for all 2N

N−1 <

q < ∞. In particular, the convergence holds in L∞(RN ) and since u0 ∈ W 2,p(RN ) we
find that for every δ > 0 there is Rδ > 0 such that for large n,

k
− 2

p−2
n |un(x)| < δ for all |x − xn | ≥ Rδ

kn
,

whereas k
− 2

p−2
n ‖un‖∞ → ‖u0‖∞ > 0 as n → ∞. In addition, if x̃n denotes any global

maximum point of |un |, then x̃n → x0 as n → ∞.

4 Multiplicity of dual bound states

Asbefore,weworkunder the assumptions (Q0) and (Q1) and let M denote the set ofmaximum
points of Q. In addition, for δ > 0 we consider the closed neighborhood Mδ := {x ∈ R

N :
dist(x, M) ≤ δ} of M .

The purpose of this section is to prove the multiplicity result stated in the Introduction,
relating the number of solutions of (10) and the topology of M . We recall it for the reader’s
convenience.
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Theorem 4.1 Suppose (Q0) and (Q1) holds. For every δ > 0, there exists k(δ) > 0 such
that the problem (10) has at least catMδ (M) distinct dual bound states for all k > k(δ).

To prove this result, we shall construct two maps whose composition is homotopic to the
inclusion M ↪→ Mδ . We start by introducing some notation.

For fixed δ > 0, we consider the family of rescaled barycenter type maps

βε : L p′
(RN )\{0} → R

N , ε > 0,

given as follows. Let ρ > 0 be such that Mδ ⊂ Bρ(0) and define Ξ : R
N → R

N by

Ξ(x) =
{

x if |x | < ρ
ρx
|x | if |x | ≥ ρ.

For v ∈ L p′
(RN )\{0}, we set

βε(v) := 1

‖v‖p′
p′

∫
RN

Ξ(εx)|v(x)|p′
dx .

Moreover, as in the previous section, we consider for ε > 0 and y ∈ Mδ the function ϕε,y ∈
L p′

(RN ) defined by (31), where η ∈ C∞
c (RN ) is a cutoff function satisfying 0 ≤ η ≤ 1

in R
N , η ≡ 1 in B1(0) and η ≡ 0 in R

N \B2(0), and where w ∈ L p′
(RN ) is any fixed

least-energy critical point of J0.
We note that, due to the compactness of Mδ , the following holds uniformly in y ∈ Mδ .

lim
ε→0+ βε(ϕε,y) = lim

ε→0+

∫
RN Ξ(y + εz)η(εz)|w(z)|p′

dz∫
RN η(εz)|w(z)|p′ dz

= Ξ(y) = y. (32)

Before proving the main result in this section, we need the following preparatory lemma.

Lemma 4.2 Let δ > 0 and let ν : (0,∞) → (0,∞) satisfy lim
ε→0+ ν(ε) = 0 and ν(ε) >

cε − c0 for all ε > 0. Considering the sublevel set

Σε := {v ∈ Nε : Jε(v) ≤ c0 + ν(ε)},
we have

lim
ε→0+ sup

v∈Σε

inf
y∈M δ

2

|βε(v) − y| = 0.

Proof Notice that Σε 
= ∅, since cε < c0 + ν(ε) by assumption. Let (εn)n ⊂ (0,∞) be any
sequence such that εn → 0 as n → ∞, and choose for each n some vn ∈ Σεn such that

inf
y∈M δ

2

|βεn (vn) − y| ≥ sup
v∈Σεn

inf
y∈M δ

2

|βεn (v) − y| − 1

n
. (33)

By Proposition 3.4, there is x0 ∈ M , a least-energy critical point w0 of J0 and a sequence
(yn)n ⊂ R

N such that, up to a subsequence, εn yn → x0 and vn(· + yn) → w0 in L p′
(RN ),

as n → ∞. Therefore, similar to (32) we obtain

βεn (vn) =
∫
RN Ξ(εn x + εn yn)|vn(x + yn)|p′

dx∫
RN |vn(x + yn)|p′ dx

→ Ξ(x0) = x0, as n → ∞.
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From (33), we deduce that (up to a subsequence) sup
v∈Σεn

inf
y∈M δ

2

|βεn (v) − y| → 0 as n → ∞.

Since the sequence (εn)n was arbitrarily chosen, the conclusion follows by a contradiction
argument. ��
Proof of Theorem 4.1 Let δ > 0. According to Lemma 3.1, Lemma 3.2 and the assumption
(Q1), we can find ε̄ > 0 and a function ν : (0,∞) → (0,∞) such that ν(ε) > cε − c0 for
all ε > 0, ν(ε) → 0 as ε → 0+ and Jε(tε,yϕε,y) < c0 + ν(ε) < c∞, for all y ∈ M and all
0 < ε < ε̄. Moreover, let us assume without loss of generality that, for every 0 < ε < ε̄, the
level c0 + ν(ε) is not critical for Jε.

Consider for 0 < ε < ε̄ the set Σε given in Lemma 4.2. Then tε,yϕε,y ∈ Σε and there
exists ε1 ≤ ε̄ such that for all 0 < ε < ε1,

sup
v∈Σε

inf
y∈M δ

2

|βε(v) − y| <
δ

2
. (34)

In particular, βε(Σε) ⊂ Mδ and by (32) the map y �→ βε(ϕε,y) = βε(tε,yϕε,y) is homotopic
to the inclusion M ↪→ Mδ in Mδ . Therefore, [12, Lemma 2.2] gives catΣε (Σε) ≥ catMδ (M)

for all 0 < ε < ε1.
Since Nε is a complete C1-manifold and since by Lemma 2.5, Jε satisfies the Palais–

Smale condition onΣε, the Lusternik–Schnirelmann theory for C1-manifolds from [21] (see
also [13,22]) ensures the existence of at least catMδ (M) distinct critical points of Jε for all
0 < ε < ε1.

The transformation (17) gives for each critical point of Jε a dual bound state of (10) with
k = ε−1 and, since distinct critical points correspond to distinct bound states, the theorem
follows by setting k(δ) = ε−1

1 . ��
Remark 4.3 According to Remark 3.6(i), the solutions given by Theorem 4.1 concentrate as
k → ∞ in the sense of Theorem 3.5.
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