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1 Introduction

In abstract terms, the firstCousin problemcan be formulated as follows. Let X be a topological
space and let F be a sheaf on X . Let � ⊆ X be open and let M = {�i : i ∈ I } be an open
covering of �. Suppose that ϕi, j ∈ �(�i ∩ � j ,F), i, j ∈ I , are given sections such that

ϕi, j + ϕ j,k + ϕk,i = 0 on �i ∩ � j ∩ �k,

for all i, j, k ∈ I . Are there ϕi ∈ �(�i ,F), i ∈ I , such that

ϕi, j = ϕ j − ϕi on �i ∩ � j ,

for all i, j ∈ I? For X = C
d and F the sheaf of holomorphic functions the Cousin problem

is solvable if � is a Stein open set, as follows from the celebrated Oka–Cartan theorem.
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This problem was very important for the development of the modern theory of functions of
several complex variables and led to the use of sheaf cohomology in that area. We refer to
[14] for a clear exposition of the problem. Since every open set inRd has a system of complex
neighborhoods consisting of Stein open sets, it follows that the Cousin problem is solvable
for X = R

d and F the sheaf of real analytic functions (where � is now an arbitrary open
set). Petzsche announced in [28] the solution to the Cousin problem for quasianalytic classes
in connection with the construction of sheaves of infrahyperfunctions, but his article on the
subject seems not to have appeared.

The aim of this paper is to show that the Cousin problem is in fact solvable for spaces of
quasianalytic functions. We shall also give sufficient conditions on a locally convex space F
such that the Cousin problem is solvable in spaces of F-valued quasianalytic functions. We
mention that in a forthcoming paper [9] the authors will apply the vector-valued results from
this article to construct sheaves of differential algebras in which the spaces of infrahyper-
functions of class {Mp} [16] are embedded in such a way that the ordinary multiplication of
ultradifferentiable functions of class {Mp} is preserved. Notice that for Mp = p!, one obtains
a differential algebra that contains the space of all hyperfunctions and in which the multipli-
cation of real analytic functions coincides with their pointwise product. The construction of
such algebras and embeddings has been an important and long-standing open question in the
nonlinear theory of generalized functions.

The analysis of the Cousin problem requires the study of topological properties of the
spaces of quasianalytic functions. The space of real analytic functions has been thoroughly
investigated in the literature and its locally convex structure is by now well understood; see
[3,12,13,23] for the scalar-valued case and [2,4,11,21] for the vector-valued case. This is
much less the case for other spaces of quasianalytic functions, although some work has been
done [3,7,22,30]. The first part of this article is devoted to studying various useful topological
properties of spaces of vector-valued quasianalytic functions (defined via weight sequences
[18]). Even in the scalar-valued case, some of the results we discuss here appear to be new;
for example, we will establish that the spaces of quasianalytic functions of Roumieu type
are ultrabornological (PLN )-spaces, a fact that is crucial for us to solve the Cousin problem
in this case and that, to the best of our knowledge, remained unnoticed in the literature for
general open subsets of Rd (see Remark 3.3).

The plan of the paper is as follows. Section 2 explains some basic material on locally
convex spaces that we shall need later. In Sect. 3, we prove that the spaces of quasiana-
lytic functions of Roumieu type are ultrabornological with the aid of Hörmander’s support
theorem for quasianalytic functionals [15,16]. A generalization of Komatsu’s first structure
theorem for quasianalytic functionals is discussed in Sect. 4. This result enables us to give an
explicit system of seminorms generating the topology on the quasianalytic function spaces
of Roumieu type; such a projective topological description plays an important role in the
analysis of the vector-valued case. We study vector-valued quasianalytic functions in Sect. 5,
we closely follow there Komatsu’s approach from [19]; in order to discuss their topological
properties, we make use of the dual interpolation estimate for the space of real analytic func-
tions [3] and a deep result of Domański on the ε-product of (PLS)-spaces [11]. The Cousin
problem is solved in Sect. 6. Our proof is based on duality theory and the vanishing of the
Proj1-functor for ultrabornological (PLS)-spaces. The result is extended to the vector-valued
case by using the topological properties obtained in Sect. 5.

We are indebted to the authors of [3,11], as many of our proofs below rely on their results.
In particular, Domański’s work on the ε-product of (PLS)-spaces was very inspiring to us.
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2 Projective and inductive spectra of locally convex spaces

In this preliminary section, we collect some useful background material on projective and
inductive spectra of locally convex spaces that will be used in the next sections. Of particular
importance for us is the characterization of ultrabornological (PLS)-spaces due to Vogt and
Wengenroth [34] that we state below.

Throughout this article every locally convex space (from now on abbreviated as l.c.s.)
is assumed to be Hausdorff. Given a l.c.s. X we write X ′ for its topological dual. Unless
otherwise stated, we endow X ′ with the strong topology. A projective spectrum is a sequence
X = (Xn, ι

n
n+1)n∈N consisting of vector spaces Xn and linear mappings ιnn+1 : Xn+1 → Xn .

Set

Proj0 X = lim←−
n∈N

Xn

and denote by ιk , k ∈ N, the canonical mapping of Proj0 X into Xk . Define

Proj1 X =
∏

n∈N
Xn/B(X ),

where

B(X ) = {(xn) ∈
∏

n∈N
Xn : ∃(yn) ∈

∏

n∈N
Xn with xn = yn − ιnn+1(yn+1), ∀n ∈ N}.

This definition is due to Palamodov [27] and coincides with his original definition in terms
of homological algebra (see [35, Sect. 3.1]). Let

0 X Y Z 0

be an exact sequence (in the category of projective spectra) and suppose that Proj1 X = 0,
then

0 Proj0 X Proj0 Y Proj0 Z 0

is again exact.
A projective spectrum of l.c.s. is a projective spectrum X = (Xn, ι

n
n+1)n consisting of

l.c.s. Xn and continuous linking mappings ιnn+1. The spectrum X is called reduced if the
mappings ιk have dense range for each k ∈ N.

An inductive spectrum of l.c.s. is a sequence X = (Xn, σ
n
n+1)n∈N of l.c.s. Xn and linear

continuous mappings σ n
n+1 : Xn → Xn+1. The spectrum X is called injective if σ n

n+1 is
injective for each n ∈ N. Set

X = lim−→
n∈N

Xn .

Denote by σk , k ∈ N, the canonical mapping of Xk into X . The inductive spectrum X is
called regular (α-regular, resp.) if X is Hausdorff and for every bounded set B in X there is
k ∈ N and a bounded set A in Xk such that σk(A) = B (there is a - not necessarily bounded
- set A in Xk such that σk(A) = B).

Let X = (Xn, ι
n
n+1)n∈N be a projective spectrum of l.c.s. and set X = lim←− Xn . One

defines its dual inductive spectrum as X ∗ = (X ′
n,

t ιnn+1)n∈N. If X is reduced, we have
X ′ ∼= lim−→ X ′

n as vector spaces [20, p. 290]. If, additionally, the spaces Xn are semireflexive,
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the above isomorphism also holds topologically [20, pp. 294 and 300]. Similarly, let X =
(Xn, σ

n
n+1)n∈N be an inductive spectrum of l.c.s. and set X = lim−→ Xn . We define its dual

projective spectrum asX ∗ = (X ′
n,

tσ n
n+1)n∈N. We always have X ′ ∼= lim←− X ′

n as vector spaces
[20, p. 290]. If, moreover, the spectrum X is regular the above isomorphism also holds
topologically.

A l.c.s. X is called a (PLS)-space ((PLN )-space, resp.) if X = lim←− Xn with (Xn)n∈N a
projective spectrum of (DFS)-spaces ((DFN )-spaces). A l.c.s. X is said to be an (LFS)-
space ((LFN )-space, resp.) if X = lim−→ Xn with (Xn)n∈N an injective inductive spectrum
consisting of (FS)-spaces ((FN )-spaces). The hereditary properties of nuclearity imply
that (PLN )-spaces are nuclear [33, Proposition 50.1]. Vogt and Wengenroth characterized
ultrabornological (PLS)-spaces in the following way:

Proposition 2.1 [34, Theorm 3.3, Theorm 3.5] Let X = (Xn, ι
n
n+1)n∈N be a reduced

projective spectrum of (DFS)-spaces and set X = lim←− Xn. Then, the following statements
are equivalent:

(i) Proj1 X = 0.
(ii) X is ultrabornological.
(iii) X ∗ is α-regular.
(iv) X ∗ is regular.

3 Spaces of quasianalytic functions and their duals

We now discuss some topological properties of the spaces of quasianalytic functions. We
work with ultradifferentiability as defined in [18].

Let (Mp)p∈N be a sequence of positive real numbers and define mp := Mp/Mp−1,
p ∈ Z+. We call Mp a weight sequence if M0 = 1 and lim p→∞ mp = ∞. We make use of
the following conditions:

(M.1) M2
p ≤ Mp−1Mp+1, p ≥ 1,

(M.2)′ Mp+1 ≤ AH p+1Mp , p ∈ N, for some A, H ≥ 1,

(QA)

∞∑

p=1

1

mp
= ∞.

For α ∈ N
d we write Mα = M|α|. The associated function of Mp is defined as

M(t) = sup
p∈N

log
t p

Mp
, t > 0,

and M(0) = 0. We extend M to C
d as M(z) = M(|z|), z ∈ C

d . As usual [18], the
relation Mp ⊂ Np between two weight sequences means that there are C, h > 0 such
that Mp ≤ ChpNp, p ∈ N. The stronger relation Mp ≺ Np means that the latter inequality
remains valid for every h > 0 and a suitable C = Ch > 0.

Let K be a regular compact set in Rd , that is, int K = K . For h > 0 we write EMp,h(K )

for the Banach space of all ϕ ∈ C∞(K ) such that

‖ϕ‖K ,h := sup
α∈Nd

sup
x∈K

|ϕ(α)(x)|
h|α|Mα

< ∞.

For an open set � in R
d we define
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E(Mp)(�) = lim←−
K��

lim←−
h→0+

EMp,h(K ), E{Mp}(�) = lim←−
K��

lim−→
h→∞

EMp,h(K ).

The elements of their dual spaces E ′(Mp)(�) and E ′{Mp}(�) are called quasianalytic func-
tionals of class (Mp) or Beurling type in � and quasianalytic functionals of class {Mp} or
Roumieu type in �, respectively. Notice that E{p!}(�) is precisely the space A(�) of real
analytic functions in �, while A′(�) is that of analytic functionals in �.

In the sequel, we shall write ∗ instead of (Mp) or {Mp} if we want to treat both cases
simultaneously. In addition, we shall often first state assertions for the (Mp)-case followed
in parenthesis by the corresponding statements for the {Mp}-case.

We also need the ensuing assumption on Mp:

(N A) p! ≺ Mp

in the Beurling case and

(NE) p! ⊂ Mp

in the Roumieu case. Conditions (N A) and (NE) guarantee that the space of entire functions
is dense in E∗(�) [16, Proposition 3.2] 1. Hence for �′ ⊆ � and two weight sequences
Mp with Np ⊂ Mp we may identify E ′(Mp)(�′)(E ′{Mp}(�′)) with a vector subspace of
E ′(Np)(�)(E ′{Np}(�)). If Np ≺ Mp we have that E ′(Mp)(�′) ⊂ E ′{Np}(�). In particular, we
always have E ′∗(�′) ⊆ A′(�).

Unless otherwise explicitly stated, Mp will always stand for a weight sequence satisfying
(M.1), (M.2)′, (QA), and (N A) in the Beurling case or (NE) in the Roumieu case.

Next, we discuss the notion of support for quasianalytic functionals. For a compact set K
in R

d , we define the space of germs of ultradifferentiable functions on K as

E∗[K ] = lim−→
K��

E∗(�).

The elements of the dual spaces E ′∗[K ] are called local quasianalytic functionals of class
(Mp) or Beurling type (of class {Mp} or Roumieu type) on K . Let N (K ) be a fundamental
system of open neighborhoods of K . Clearly,

E∗[K ] ∼= lim−→
�∈N (K )

E∗(�)

as locally convex spaces. Notice that E(Mp)[K ] is a (LFN )-space while E{Mp}[K ] is a
(DFN )-space, as follows from [18, Theorm 2.6]. Moreover, since

E∗(�) ∼= lim←−
K��

E∗[K ] (3.1)

as l.c.s. for � open, and E∗(�) is dense in each E∗[K ], we have the isomorphism of vector
spaces

E ′∗(�) ∼= lim−→
K��

E ′∗[K ].

If ∗ = {Mp}, the isomorphism is in fact topological because each E∗[K ] is reflexive.
Let f ∈ E ′∗(�), where � is open. A compact set K � � is said to be a ∗-carrier of f

if f ∈ E ′∗[K ]. It is well known that for every f ∈ A′(�) there is a smallest compact set

1 Hörmander actually only considers the Roumieu case but his proof can easily be adapted to cover the
Beurling case as well.
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K � � among the {p!}-carriers of f , called the support of f and denoted by suppA′ f .
This essentially follows from the cohomology of the sheaf of germs of analytic functions
(see, e.g., [26]). An elementary proof based on the properties of the Poisson transform of
analytic functionals is provided in [17, Sect. 9.1]. See [24] for a proof by means of the heat
kernel method. Hörmander noticed that a similar result holds for quasianalytic functionals
of Roumieu type [16, Cor. 3.5]. More precisely, he showed that for every f ∈ E ′{Mp}(�)

there is a smallest compact set among the {Mp}-carriers of f and that this set coincides with
suppA′ f . The corresponding statement for the Beurling case was shown in [15, Theorm
4.11] 2. For future reference, we collect these facts in the following proposition.

Proposition 3.1 ([15,16]) Let � ⊆ R
d be open. For every f ∈ E ′∗(�) the set suppA′ f is

the smallest compact set of � among the ∗-carriers of f .
It follows from [18, Theorem 2.6] that E(Mp)(�) is a (FN )-space, while E{Mp}(�) is a

(PLN )-space, as follows from the projective representation (3.1). In the next proposition we
establish a topological property of E{Mp}(�) that shall be crucial for the rest of this work.

Proposition 3.2 Let� ⊆ R
d be open. The space E{Mp}(�) is an ultrabornological (PLN )-

space.

Proof Let (Kn)n∈N be an exhaustion by compact subsets of �. The projective spectrum
X = (E{Mp}[Kn])n∈N (with canonical linking mappings) consists of (DFN )-spaces and is
reduced. Moreover, we have the following isomorphism of l.c.s.

E{Mp}(�) ∼= lim←−
n∈N

E{Mp}[Kn],

which gives that E{Mp}(�) is a (PLN )-space as alreadymentioned above. ByProposition 2.1,
it suffices to show that X ∗ is α-regular. We have

E ′{Mp}(�) ∼= lim−→
n∈N

E ′{Mp}[Kn]

as locally convex spaces. Let B ⊂ E ′{Mp}(�) be bounded. A classical result of Martineau
shows that A(�) is an ultrabornological (PLN )-space [23, Theorm 1.2, Proposition 1.9].
Since the inclusion mapping E ′{Mp}(�) → A′(�) is continuous, Proposition 2.1 implies that
B ⊂ A′[Kn] for some n ∈ N. The result now follows from Proposition 3.1. ��
Remark 3.3 For � convex, Proposition 3.2 is due to Rösner [30]. To the best of our knowl-
edge, the result was not yet known for general � .

4 Structure theorem for quasianalytic functionals

The purpose of this section is to generalize Komatsu’s first structure theorem [18, Theorm
8.1] for non-quasianalytic ultradistributions to quasianalytic functionals. As an application,
we shall give an explicit system of seminorms generating the topology of the space E {Mp}(�)

(cf. [19, Proposition 3.5]). The latter result is indispensable for the treatment of vector-valued
quasianalytic functions of Roumieu type in the next section. The analysis of the Beurling
case is similar to that given in [18], but we include details for the sake of completeness. The
Roumieu case requires more elaborate arguments.

2 The authors work there with the notion of ultradifferentiability defined via weight functions as in [6], but
their proofs can also be adapted to the present setting.
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Proposition 4.1 Let � ⊆ R
d be open. For every bounded set B in E ′(Mp)(�), there are a

compact set K � � and measures μα( f ) ∈ C ′(K ), α ∈ N
d , f ∈ B, such that

sup
f ∈B

sup
α∈Nd

‖μα( f )‖C ′(K )Mα

h|α| < ∞

for some h > 0 and

f =
∑

α∈Nd

(μα( f ))(α), f ∈ B.

Proof Let (Kn)n∈N be an exhaustion by regular compact subsets of �. We write Xn for the
space of all ϕ ∈ C∞(Kn) such that

sup
x∈Kn

n|α||ϕ(α)(x)|
Mα

→ 0, as |α| → ∞;

endowed with the norm ‖ ‖Kn ,1/n it becomes a Banach space. Clearly, E(Mp)(�) = lim←− Xn

as locally convex spaces. Since E(Mp)(�) is a Fréchet space, the set B is equicontinuous and,
by the Hahn–Banach theorem, it can be extended to an equicontinuous set B̃ in X ′

n for some

n ∈ N. Set K = Kn and define Yn as the space of all tuples (ϕα)α ∈ C(K )N
d
such that

n|α|‖ϕα‖C(K )

Mα

→ 0, as |α| → ∞;
endowed with the norm

sup
α∈Nd

n|α|‖ϕα‖C(K )

Mα

it becomes a Banach space. The mapping ι1 : Xn → Yn : ϕ → (ϕ(α))α is an injective
linear topological homomorphism. Next, write U for the disjoint union of Nd copies of K .
It becomes a locally compact space with the disjoint union topology. Notice that C0(U ) can
be topologically identified with the Banach space of all tuples (ϕα)α ∈ C(K )N

d
such that

‖ϕα‖C(K ) → 0, as |α| → ∞,

endowed with the norm

sup
α∈Nd

‖ϕα‖C(K ).

Hence the mapping ι2 : Yn → C0(U ) : (ϕα)α → (n|α|ϕα/Mα)α is an injective linear
topological homomorphism. We set ι = ι2 ◦ ι1 : Xn → C0(U ) and write ρ : ι(Xn) → Xn

for the continuous linear mapping such that ρ ◦ ι = id. The Hahn–Banach theorem implies
that the set {g ◦ ρ : g ∈ B̃} can be extended to an equicontinuous subset of C ′

0(U ). By the
Riesz representation theorem there are Borel measures μ̃α(g) ∈ C ′(K ), α ∈ N

d , g ∈ B̃,
such that

sup
g∈B̃

∑

α∈Nd

‖μ̃α(g)‖C ′(K ) < ∞,

and

g =
∑

α∈Nd

μ̃α(g) ◦ ι, g ∈ B̃.
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Denote by f̃ the extension of f ∈ B to B̃. It is then clear that the measures μα( f ) =
(−n)|α|μ̃α( f̃ )/Mα satisfy all requirements. ��

Our strategy to deal with the structure of Roumieu quasianalytic functionals is to reduce
the problem to the Beurling case. For it, we employ the Fourier–Laplace transform and a
support splitting theorem due to Hörmander [16, Theorm 5.1]. We need some preparation.

The supporting function [26, Sect. 1.8] of a convex compact set K of Rd is defined as

hK (ξ) := sup
x∈K

Re(ξ · x), ξ ∈ C
d .

For λ > 0 we writeOMp,λ

K for the Banach space of all entire functions F ∈ O(Cd) such that

sup
ξ∈Cd

|F(ξ)|e−hK (ξ)−M(ξ/λ) < ∞.

Given a convex open set � in R
d , we define

O(Mp)

� = lim−→
K��

lim−→
λ→0+

OMp,λ

K , O{Mp}
� = lim−→

K��

lim←−
λ→∞

OMp,λ

K .

Let f ∈ E ′∗(�), its Fourier–Laplace transform is defined as

F( f )(ξ) = f̂ (ξ) = 〈 f (x), e−iξ ·x 〉, ξ ∈ C
d .

It is known that F : E ′∗(�) → O∗
� is a linear topological isomorphism (see, e.g., [15,32]).

Next, we discuss Hörmander’s splitting theorem. We give a short proof using Proposi-
tion 3.1. Let K1 and K2 be compact sets in Rd with K1 ⊆ K2. We write ιK1,K2 : E∗[K2] →
E∗[K1] for the canonical restriction mapping. Its transpose is the canonical inclusion map-
ping E ′∗[K1] → E ′∗[K2]. We shall identify f ∈ E ′∗[K1] with its image under the mapping
t ιK1,K2 .

Proposition 4.2 Let K1 and K2 be compact sets in Rd . The sequence

0 E ′{Mp}[K1 ∩ K2] E ′{Mp}[K1] × E ′{Mp}[K2] E ′{Mp}[K1 ∪ K2] 0
S T

is topologically exact, where S( f ) = ( f, f ) and T ( f1, f2) = f2 − f1. Moreover, for every
bounded set B ⊂ E ′{Mp}[K1 ∪ K2] there are bounded sets B j ⊂ E ′{Mp}[K j ], j = 1, 2, such
that T (B1, B2) = B.

Proof In view of the open mapping theorem, it suffices to show that the sequence is alge-
braically exact. The injectivity of S is clear while the equality Im S = ker T follows from
Proposition 3.1. Notice that the transpose of T may be identified with the mapping

E{Mp}[K1 ∪ K2] → E{Mp}[K1] × E{Mp}[K2] : ϕ → (−ιK1,K1∪K2(ϕ), ιK2,K1∪K2(ϕ)).

The mapping T is surjective since the above mapping is injective and has closed range.
Indeed, the injectivity is clear while the closed range property follows from the fact that the
range is equal to the kernel of the continuous mapping

E{Mp}[K1] × E{Mp}[K2] → E{Mp}[K1 ∩ K2] : (ϕ1, ϕ2) → ιK1∩K2,K1(ϕ1) + ιK1∩K2,K2(ϕ2).

The second part follows from the general fact that for an exact sequence of Fréchet spaces

0 −→ X −→ Y
T−→ Z −→ 0

with X an (FS)-space it holds that for every bounded set B ⊂ Z there is a bounded set
A ⊂ Y such that T (A) = B [25, Lemma 26.13]. ��
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We write R for the family of positive real sequences (r j ) j∈N with r0 = 1 which increase
(not necessarily strictly) to infinity. This set is partially ordered and directed by the relation
r j � s j , which means that there is a j0 ∈ N such that r j ≤ s j for all j ≥ j0. Let Mp

be a weight sequence with associated function M and let r j ∈ R. We denote by Mr j the
associated function of the sequence Mp

∏p
j=0 r j . We need three technical lemmas.

Lemma 4.3 Let Mp be a weight sequence satisfying (M.1), (M.2)′, and (QA). Then, for
every r j ∈ R there is r ′

j ∈ R with r ′
j ≤ r j , j ∈ N, such that the sequence Mp

∏p
j=0 r

′
j also

satisfies (M.1), (M.2)′, and (QA).

Proof Set k0 = 1 and

k j = 1 +
⎛

⎝
j∑

p=1

1

mp

⎞

⎠
1/2

, j ≥ 1.

The sequence r ′
j ∈ R with r ′

0 = 1 and

r ′
j = min

(
r j , 2

j , k j
)

, j ≥ 1,

satisfies all requirements. ��
Lemma 4.4 [8, Lemma 4.5] Let Mp be a weight sequence satisfying (M.1) and (M.2)′
and let g : [0,∞) → [0,∞). Then, g(t) = O(eM(t/λ)) for all λ > 0 if and only if
g(t) = O(eMr j (t)) for some r j ∈ R.

Lemma 4.5 Let � ⊆ R
d be open. For every bounded set B in E ′{Mp}(�) there is a weight

sequence Np with Mp ≺ Np satisfying (M.1), (M.2)′, and (QA) such that B is contained
and bounded in E ′(Np)(�).

Proof STEP 1: � is convex. From the above remarks on the Fourier–Laplace transform, it
follows that there is a convex compact set K ⊆ � such that

sup
f ∈B

sup
ξ∈Cd

| f̂ (ξ)|e−hK (ξ)−M(ξ/λ) < ∞

for all λ > 0. Applying Lemma 4.4 to the function

g(t) = sup
f ∈B

sup
|ξ |=t

| f̂ (ξ)|e−hK (ξ), t ≥ 0,

we find a sequence r j ∈ R such that

sup
f ∈B

sup
ξ∈Cd

| f̂ (ξ)|e−hK (ξ)−Mr j (ξ)
< ∞.

By Lemma 4.3, we may assume without loss of generality that the sequence Np :=
Mp

∏p
j=0 r j satisfies (M.1), (M.2)′, and (QA). The result now follows from the fact that

F : E ′(Np)(�) → O(Np)

� is a topological isomorphism.
STEP 2: � is arbitrary. By Propositions 2.1 and 3.2, there is K � � such that B is

contained and bounded in E ′{Mp}[K ]. Let K1, . . . , KN , N ∈ N, be convex compact sets in �

such that K ⊆ ⋃N
j=1 K j . Using Proposition 4.2 and a simple induction argument, we find

bounded sets Bj ⊂ E ′{Mp}[K j ], j = 1, . . . N , such that B = B1 + · · · + BN . The result now
follows from the first step and Lemma 4.3. ��
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Remark 4.6 The technique of reducing the case of arbitrary open sets to open convex sets as
in Lemma 4.5 is due to Heinrich and Meise [15].

Propositions 4.1 and Lemma 4.5 immediately yield the analog of Komatsu’s first structure
theorem in the Roumieu case.

Proposition 4.7 Let � ⊆ R
d be open. For every bounded set B in E ′{Mp}(�), there are a

compact set K � � and measures μα( f ) ∈ C ′(K ), α ∈ N
d , f ∈ B, such that

sup
f ∈B

sup
α∈Nd

‖μα( f )‖C ′(K )Mα

h|α| < ∞

for all h > 0 and

f =
∑

α∈Nd

(μα( f ))(α), f ∈ B.

Proposition 4.8 Let � ⊆ R
d be open. A function ϕ ∈ C∞(�) belongs to E{Mp}(�) if and

only if

‖ϕ‖K ,r j := sup
α∈Nd

sup
x∈K

|ϕ(α)(x)|
Mα

∏|α|
j=0 r j

< ∞

for all K � � and r j ∈ R. Moreover, the topology of E{Mp}(�) is generated by the system
of seminorms ‖ ‖K ,r j .

Proof The first part follows from [19, Lemma 3.4], we thus only have to check the topological
assertion. Clearly, every seminorm ‖ ‖K ,r j acts continuously on E{Mp}(�). Conversely, let p
be a continuous seminorm on E{Mp}(�). There is a bounded set B ⊂ E ′{Mp}(�) such that

p(ϕ) ≤ sup
f ∈B

|〈 f, ϕ〉|, ϕ ∈ E{Mp}(�).

Proposition 4.7 implies that there are a compact set K � � and measures μα( f ) ∈ C ′(K ),
α ∈ N

d , f ∈ B, such that

sup
f ∈B

sup
α∈Nd

‖μα( f )‖C ′(K )Mα

h|α| < ∞

for all h > 0 and

f =
∑

α∈Nd

(μα( f ))(α), f ∈ B.

Hence,

sup
f ∈B

|〈 f, ϕ〉| ≤ sup
f ∈B

∑

α∈Nd

‖μα( f )‖C ′(K )‖ϕ(α)‖C(K ),

and the result follows once again from [19, Lemma 3.4]. ��
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5 Vector-valued quasianalytic functions

We now turn our attention to spaces of vector-valued quasianalytic functions and their topo-
logical properties. Our first goal is to derive a tensor product representation of these spaces.

Given two l.c.s. X andY we denote by L(X, Y ) the space of all continuous linearmappings
from X into Y . We write Lβ(X, Y ) (Lc(X, Y ), resp.) if we want to indicate that we endow
L(X, Y ) with the strong topology (topology of uniform convergence on balanced convex
compact sets). We use the same notation for indicating the topology on X ′. Recall that if we
merely write X ′ we implicitly endow it with the strong topology. For t = β, c we denote
by Lε(X ′

t , Y ) the space L(X ′
t , Y ) endowed with the topology of uniform convergence on

equicontinuous subsets of X ′.
Following Schwartz [31] andKomatsu [19], we denote by XεY (the ε-product of X and Y )

the space of all bilinear functionals on X ′
c ×Y ′

c which are hypocontinuous with respect to the
equicontinuous subsets of X ′ and Y ′. We endow it with the topology of uniform convergence
on products of equicontinuous subsets of X ′ and Y ′. As pointed out in [19, p. 657], we have
the following canonical isomorphisms of l.c.s.

XεY ∼= Lε

(
X ′
c, Y

) ∼= Lε

(
Y ′
c, X

)
.

The tensor product X ⊗ Y is canonically embedded into XεY via (x ⊗ y)(x ′, y′) =
〈x ′, x〉〈y′, y〉. Clearly, the induced topology on X ⊗ Y is the ε-topology. Given continuous
linear mappings T1 : X1 → Y1 and T2 : X2 → Y2, we write T1εT2 : X1εX2 → Y1εY2 for
the continuous linear mapping given by

T1εT2(
)
(
y′
1, y

′
2

) = 

(t T1y′

1,
t T2y

′
2

)
, y′

j ∈ Y ′
j , j = 1, 2.

The restriction of T1εT2 to X1 ⊗ X2 is equal to the tensor product of the mappings T1 and
T2.

If X and Y are complete and if either X or Y has the weak approximation property, in
particular, if either X or Y is nuclear, we have XεY = X⊗̂εY as locally convex spaces [19,
Proposition 1.4]. As usual, if either X or Y is nuclear, we write X⊗̂Y := X⊗̂εY = X⊗̂πY .

We now introduce spaces of vector-valued quasianalytic functions. Let � ⊆ R
d be open

and let F be a locally convex space. We write E(Mp)(�; F) (E{Mp}(�; F)) for the space of
all ϕ ∈ C∞(�; F) such that, for each continuous seminorm q on F , K � �, and h > 0
(r j ∈ R),

qK ,h(ϕ) := sup
α∈Nd

sup
x∈K

q(ϕ(α)(x))

h|α|Mα
< ∞

⎛

⎝qK ,r j (ϕ) := sup
α∈Nd

sup
x∈K

q(ϕ(α)(x))

Mα
∏|α|

j=0 r j
< ∞

⎞

⎠ .

We endow it with the locally convex topology generated by the system of seminorms qK ,h

(qK ,r j ). Notice that, in view of [19, Lemma 3.4], E{Mp}(�; F) coincides with the set of all
ϕ ∈ C∞(�; F) such that for each continuous seminorm q on F and K � � there is h > 0
such that qK ,h(ϕ) < ∞.

Proposition 5.1 Let � ⊆ R
d be open and let F be a sequentially complete locally convex

space. Then, E∗(�; F) coincides with the space of all functions ϕ : � → F such that
〈y′,ϕ(·)〉 ∈ E∗(�) for all y′ ∈ F ′. Moreover, we have the following canonical isomorphism
of l.c.s.

E∗(�; F) ∼= E∗(�)εF,

and, if F is complete,

E∗(�; F) ∼= E∗(�)εF ∼= E∗(�)⊗̂F.
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The proof of Proposition 5.1 is based on the following criterium due to Komatsu.

Lemma 5.2 [19, Lemma 1.12] Let � be a σ -compact metrizable locally compact space, let
X be a space consisting of continuous scalar-valued functions on � equipped with a locally
convex topology that is semi-Montel and stronger than the topology of uniform convergence
on compact subsets of�, and let F be a sequentially complete locally convex space. Suppose
that the sequential closure in X ′

c of the set of functionals represented by measures with
compact support in � is equal to X ′. Then, XεF ∼= L(F ′

c, X) may be identified with the
space of all ϕ : � → F such that 〈y′,ϕ(·)〉 ∈ X for all y′ ∈ F ′.

Lemma 5.3 Let � ⊆ R
d be open. The sequential closure in E ′∗

β (�) of the linear span of the
set {δx : x ∈ �} is equal to E ′∗(�).

Proof Beurling case: The sequential closure of a subset in a (DFS)-space is equal to its
closure (cf. [5, Proposition 8.5.28]). Therefore, it suffices to show that the linear span of

the set {δx : x ∈ �} is dense in E ′(Mp)

β (�), but this follows at once from the Hahn–Banach

theorem and the fact that the space E(Mp)(�) is reflexive.
Roumieu case: Let (�n)n∈N be an exhaustion by relatively compact open subsets of �.

We have E ′{Mp}
β (�) = lim−→ E ′{Mp}

β [�n] as locally convex spaces. Let n ∈ N be arbitrary. The

condition (QA) implies that an element ϕ ∈ E{Mp}[�n] is equal to zero if and only if one
(and hence all) of its representatives vanishes on �n . Hence, by the Hahn–Banach theorem
and the fact that the space E{Mp}[�n] is reflexive, we obtain that the linear span of the set

{δx : x ∈ �n} is dense in E ′{Mp}
β [�n]. Since the latter space is a Fréchet space, we actually

have that for each f ∈ E ′{Mp}[�n] there is a sequence ( f j ) j∈N ⊂ span{δx : x ∈ �n} ⊂
span{δx : x ∈ �} such that f j → f , as j → ∞, in E ′{Mp}

β [�n] and, thus, in E ′{Mp}
β (�). ��

Proof of Proposition 5.1 With the aid of Lemma 5.3, the proof now becomes identical to
that of [19, Theorm 3.10]. We repeat the argument for the sake of completeness. We only
show the Roumieu case, the Beurling case is similar. Clearly, ϕ ∈ E{Mp}(�; F) implies that
〈y′,ϕ(·)〉 ∈ E{Mp}(�) for all y′ ∈ F ′. Conversely, let ϕ : � → F be a function having the
latter property. In particular, it holds that 〈y′,ϕ(·)〉 ∈ C∞(�) for all y′ ∈ F ′ and, thus, by a
well-known result, that ϕ ∈ C∞(�; F) and

〈y′,ϕ(·)〉(α) = 〈y′,ϕ(α)(·)〉, y′ ∈ F ′, α ∈ N
d . (5.1)

Hence, by Proposition 4.8, we obtain that for each K � � and r j ∈ R the set

{
ϕ(α)(x)

Mα

∏|α|
j=0 r j

: x ∈ K , α ∈ N
d

}

is weakly bounded in F . By Mackey’s theorem the set is bounded in F , which precisely
means that ϕ ∈ E{Mp}(�; F). This shows the first part of the proposition. By Lemmas 5.2
and 5.3, we therefore have E{Mp}(�; F) ∼= E{Mp}(�)εF as vector spaces. We now show that
this isomorphism also holds topologically. Let K � �, r j ∈ R, and let q be an arbitrary
continuous seminorm on F . Define A to be the polar set of the ‖ ‖K ,r j -unit ball in E{Mp}(�)

and B to be the polar set of the q-unit ball in F . Hence, by (5.1) and the bipolar theorem,

123



Solution to the first Cousin problem for vector-valued... 1995

sup{|〈 f, 〈y′,ϕ(·)〉〉| : f ∈ A, y′ ∈ B} = sup{‖〈y′,ϕ(·)〉‖K ,r j : y′ ∈ B}

= sup

{
|〈y′,ϕ(α)(x)〉|
Mα

∏|α|
j=0 r j

: y′ ∈ B, x ∈ K , α ∈ N
d

}

= qK ,r j (ϕ).

In view of Proposition 4.8, this shows that the above isomorphism indeed holds topologically.
The last part follows from the fact that the space E{Mp}(�) is nuclear. ��

Next, we are interested in the topological properties of the spaces E∗(�; F). We start with
a discussion about the ε-product of (PLS)-spaces. Let X = lim←− Xn be a (PLN )-space with
(Xn)n∈N a reduced projective spectrum of (DFN )-spaces and let Y = lim←− Yn be a (PLS)-
space with (Yn)n∈N a reduced projective spectrum of (DFS)-spaces. First notice that, by
[19, Proposition 1.5], we have the following isomorphism of l.c.s.

XεY ∼= lim←−
n∈N

XnεYn .

Moreover, as the ε-product of two (DFS)-spaces is again a (DFS)-space [1, Proposition 4.3]
and XεY = X⊗̂Y is dense in each XnεYn = Xn⊗̂Yn , XεY is a (PLS)-space which can be
represented as the projective limit of the reduced spectrum (XnεYn)n∈N of (DFS)-spaces. It
is highly desirable to find conditions on X and Y which ensure that XεY is ultrabornological.
Domański [11] achieved this by making use of the so-called dual interpolation estimates
for (PLS)-spaces. These were introduced in [3] and can be viewed as abstract Phragmén-
Lindelöf conditions. Let us discuss the precise definition.

Let X = lim←− Xn be a (PLS)-space with (Xn)n∈N a projective spectrum of (DFS)-spaces.
Suppose that the Xn are given by

Xn = lim−→
N∈N

Xn,N

with (Xn,N , ‖ ‖n,N ) Banach spaces. We say that X has the dual interpolation estimate for
small theta if

∀n ∃m ≥ n ∀k ≥ m ∃N ∀M ≥ N ∃θ0 ∈ (0, 1) ∀θ ∈ (0, θ0) ∃K ≥ M ∃C > 0 ∀x ′ ∈ X ′
n :

‖x ′‖∗
m,M ≤ C

(
‖x ′‖∗

k,K

)1−θ (
‖x ′‖∗

n,N

)θ
.

It is known that the dual interpolation estimate for small theta implies that the space is
ultrabornological [35, Theorm 3.2.18]. Moreover, by using [3, Proposition 1.1], one can
readily check that a (DFS)-space X satisfies the dual interpolation estimate for small theta
if and only if X ′ satisfies Vogt’s condition (DN ) (see [25, p. 368] for the definition). The
following proposition of Bonet and Domański is very important for us.

Proposition 5.4 [3, Cor. 2.2] Let � ⊆ R
d be open. The space A(�) satisfies the dual

interpolation estimate for small theta.

Proposition 5.5 Let � ⊆ R
d be open.

(i) If F is a Fréchet space, then E(Mp)(�; F) is a Fréchet space.
(ii) If F is a (DFS)-space such that F ′ satisfies (DN ), then E{Mp}(�; F) is an ultra-

bornological (PLS)-space.

The proof of Proposition 5.5(i) is easy, one just has to combine Proposition 5.1 with the
fact that the ε-product of two Fréchet spaces is again a Fréchet space. For Proposition 5.5(i i),
we use the following result due to Domański.
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Proposition 5.6 [11, Theorm 5.6] Let X be a (PLN )-space and F a (PLS)-space. Suppose
that both X and F satisfy the dual interpolation estimate for small theta. Then, XεF is an
ultrabornological (PLS)-space.

Remark 5.7 Domański showed the above result under the additional assumption that the
space X is so-called deeply reduced. By [29, Proposition 8] this assumption is superfluous.
Moreover, based on results of Domański, Piszczek was able to show that the (PLS)-space
XεF also satisfies the dual interpolation estimate for small theta [29, Theorm 9].

Remark 5.8 The space A(�; F) is ultrabornological for any (PLS)-space F satisfiying the
dual interpolation estimate for small theta, as immediately follows fromPropositions 5.1, 5.4,
and 5.6.

Proof of Proposition 5.5(ii) We use the same technique as in Proposition 3.2. Therefore, we
first give a representation of the dual of E{Mp}(�; F). Let (Kn)n∈N be an exhaustion by
compact subsets of �. By Proposition 5.1, [19, Proposition 1.5], and [19, Proposition 2.3],
we have the following isomorphisms of l.c.s.

E ′{Mp}(�; F) ∼=
(
E{Mp}(�)⊗̂F

)′ ∼=
(
lim←−
n∈N

E{Mp}[Kn]⊗̂F

)′
∼= lim−→

n∈N
Lβ

(
E{Mp}[Kn], F ′) .

Let K � R
d . Using the isomorphism L(E{Mp}[K ], F ′) ∼= L(F, E ′{Mp}[K ]) and the Pták

closed graph theorem, one deduces

L
(
E{Mp}[K ], F ′)

∼= {f ∈ L
(
E{Mp}

(
R
d
)

, F ′) : y ◦ f ∈ E ′{Mp}[K ], ∀y ∈ F}, (5.2)

as vector spaces. By Proposition 2.1, it suffices to show that the inductive spectrum
(
Lβ

(
E{Mp}[Kn], F ′))

n∈N
is α-regular. Let B ⊂ E ′{Mp}(�; F) be bounded. Since the canonical inclusion mapping
E ′{Mp}(�; F) → A′(�; F) is continuous, Remark 5.8 implies that B ⊂ L(A[Kn], F ′) for
some n ∈ N. Hence, by (5.2) and Proposition 3.1, we obtain that B ⊂ L(E{Mp}[Kn], F ′). ��

6 The Cousin problem

We are ready to solve the Cousin problem for quasianalytic functions.

6.1 Scalar-valued case

It is natural to formulate the Cousin problem in the language of cohomology groups with
coefficients in a sheaf. We therefore start with a brief discussion of the basic notions from
this theory. For a detailed exposition, we refer to [26, Chap. 4].

Let X be a topological space and letF be a sheaf on X . We denote by�(U,F) the sections
of F on an open setU of X . LetM = {Ui : i ∈ I } be a collection of open subsets of X . We
write

Ui0,...,i p = Ui0 ∩ · · · ∩Uip , p ∈ N, i0, . . . , i p ∈ I.
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We define C p(M,F), p ∈ N, as the set consisting of collections ϕ = (ϕi0,...,i p ) ∈∏
(i0,...,i p)∈I p+1 �(Ui0,...,i p ,F)which are antisymmetricwith respect to the indices i0, . . . , i p .

For ϕ ∈ C p(M,F), we define δpϕ ∈ C p+1(M,F) as

(δpϕ)i0,...,i p+1 =
p+1∑

j=0

(−1) jϕi0,...,î j ,...i p+1|Ui0,...,i p+1
, i0, . . . , i p+1 ∈ I,

where, as usual, the hat mark on î j means that the index i j is omitted. Since δp+1 ◦ δp = 0,
we have the complex

0 C0(M,F) C1(M,F) C2(M,F) · · · .
δ0 δ1 δ2

(6.1)

Define Z p(M,F) = ker δp , B p(M,F) = Im δp−1 (B0(M,F) = {0}), and
H p(M,F) = Z p(M,F)/B p(M,F), p ∈ N,

that is, the p-th cohomology group of the complex (6.1).
Let I ′ ⊆ I and set M′ = {Ui : i ∈ I ′}. By restricting the indices of an element of

C p(M,F) to I ′, we can naturally define the restrictionmappingC p(M,F) → C p(M′,F).
We write C p(M,M′,F) for the kernel of this mapping and define H p(M,M′,F) to be
the p-th cohomology group of the complex

0 C0(M,M′,F) C1(M,M′,F) C2(M,M′,F) · · · .
δ0 δ1 δ2

We have the following complex of short exact sequences

0 0 0

0 C0(M,M′,F) C0(M,F) C0(M′,F) 0

0 C1(M,M′,F) C1(M,F) C1(M′,F) 0

...
...

...

which yields the long exact sequence of cohomology groups [26, Theorm B.2.1]

0 H0(M,M′,F) H0(M,F) H0(M′,F)

H1(M,M′,F) H1(M,F) H1(M′,F)

H2(M,M′,F) · · · .
(6.2)

We can now formulate the main theorem of this subsection. We write E∗ for the sheaf of
ultradifferentiable functions of class ∗ on R

d .
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Theorem 6.1 Let � ⊆ R
d be open and let M = {�i : i ∈ I } be an open covering of �.

Then, H1(M, E∗) = 0. Explicitly, this means that the sequence

0 E∗(�)
∏

i∈I E∗(�i ) Z1(M, E∗) 0δ

(6.3)

is exact, where

Z1(M, E∗) = {(ϕi, j ) ∈
∏

i, j∈I
E∗(�i, j ) : ϕi, j + ϕ j,k + ϕk,i = 0 on �i, j,k, ∀i, j, k ∈ I },

and

δ = δ0 :
∏

i∈I
E∗(�i ) → Z1(M, E∗) : (ϕi ) → ((ϕ j − ϕi )|�i, j ).

We shall prove this theorem in several steps.

Lemma 6.2 Let Mp be a weight sequence satisfying (M.1), (M.2)′, and p! ≺ Mp. Then,
for every r j ∈ R there is r ′

j ∈ R with r ′
j ≤ r j , j ∈ N, such that the sequence Mp/

∏p
j=0 r

′
j

also satisfies (M.1), (M.2)′, and p! ≺ Mp.

Proof Using [19, Lemma 3.4], we first find k j ∈ R such that p! ⊂ Mp/
∏p

j=0 k j . The
sequence r ′

j ∈ R with r ′
0 = r ′

1 = 1 and

r ′
j = min

(
r j ,

m j

m j−1
r ′
j−1,

√
k j

)
, j ≥ 2,

satisfies all requirements. ��
Proposition 6.3 Let K1 and K2 be compact sets in Rd . The sequence

0 E∗[K1 ∪ K2] E∗[K1] × E∗[K2] E∗[K1 ∩ K2] 0

is exact.

Proof We only need to show the surjectivity of the mapping

E∗[K1] × E∗[K2] → E∗[K1 ∩ K2] : (ϕ1, ϕ2) → ϕ2 − ϕ1,

the rest is clear.
Roumieu case: The transpose of the above mapping is given by

E ′∗[K1 ∩ K2] → E ′∗[K1] × E ′∗[K2] : f → (− f, f ).

The result is therefore a consequence of the fact that this mapping is injective and has closed
range, as follows from Proposition 3.1.

Beurling case: Let ϕ ∈ E(Mp)[K1 ∩ K2]. By [19, Lemma 3.4], there is r j ∈ R such that

ϕ ∈ E{Mp/
∏p

j=0 r j }[K1 ∩ K2]. By Lemma 6.2, we may assume without loss of generality
that Mp/

∏p
j=0 r j satisfies (M.1), (M.2)′, and p! ≺ Mp . The result now follows from the

Roumieu case. ��
Proof of Theorem 6.1 STEP 1: I = {1, 2}. Let (� j,n)n∈N be an exhaustion by relatively
compact open subsets of � j , j = 1, 2. Define the following projective spectra

X = (E∗[�1,n ∪ �2,n ])n∈N, Y = (E∗[�1,n ] × E∗[�2,n ])n∈N, Z = (E∗[�1,n ∩ �2,n ])n∈N.

By Proposition 6.3, we have the following exact sequence of projective spectra
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0 X Y Z 0.

Since

Proj0 X ∼= E∗(�1 ∪ �2), Proj0 Y ∼= E∗(�1) × E∗(�2), Proj0 Z ∼= E∗(�1 ∩ �2),

it suffices to show that Proj1 X = 0.
Beurling case: The spectrum X is equivalent (in the sense of [35, Def. 3.1.6]) to the

spectrum X0 = (E(Mp)(�1,n ∪ �2,n))n∈N. Hence, by [35, Proposition 3.1.7], we have
Proj1 X ∼= Proj1 X0. Since the spectrum X0 consists of Fréchet spaces and is reduced,
the Mittag-Leffler lemma (see, e.g., [18, Lemma 1.3], [35, Theorm 3.2.1]) implies that
Proj1 X0 = 0.
Roumieu case: Immediate consequence of Propositions 2.1 and 3.2.
STEP 2: I is finite. This can be shown by using the first step and an induction argument

(for details see the second step in the proof of [26, Theorm 2.3.1]).
STEP 3: I is arbitrary. Since every open set of Rd is second countable, we may assume

without loss of generality that I is countable (set I = N) and that �i � � for all i ∈ N.
Define the following projective spectra

X =
(
E∗

(
n⋃

i=0

�i

))

n∈N
, Y =

(
n∏

i=0

E∗(�i )

)

n∈N
, Z = (Z1(Mn, E∗))n∈N, (6.4)

whereMn = {�i : i = 0, . . . , n}. By the second step, we have the following exact sequence
of projective spectra

0 X Y Z 0.
(6.5)

Since

Proj0 X ∼= E∗(�), Proj0 Y ∼=
∏

i∈N
E∗(�i ), Proj0 Z ∼= Z1(M, E∗),

it is enough to verify that Proj1 X = 0.
Beurling case: Since the spectrum X consists of Fréchet spaces and is reduced, it follows

again from the Mittag–Leffler lemma.
Roumieu case: The spectrumX is equivalent to the spectrumX0 = (E{Mp}[⋃n

i=0 �i ])n∈N.
By Propositions 2.1 and 3.2, we have Proj1 X ∼= Proj1 X0 = 0. ��
Remark 6.4 It is worth comparing Theorem 6.1 with Hörmander’s work [16] in the Roumieu
case. Since Proposition 6.3 in this case follows directly from Hörmander’s support theorem
(Proposition 3.1), one may say that it is implicitly contained in his work. By merely com-
binatorial means, one easily deduces from Proposition 6.3 that given finitely many compact
sets K1, K2, . . . , Kn in R

d and germs of quasianalytic functions ϕi, j ∈ E{Mp}[Ki ∩ K j ],
subject to the co-cycle conditions ϕi, j + ϕ j,k + ϕk,i = 0, there are germs ϕi ∈ E{Mp}[Ki ]
such that ϕi, j = ϕ j − ϕi . In the passage to open sets and (finite or infinite) open coverings,
the essential ingredients for Theorem 6.1 are then Propositions 2.1 and 3.2.

Next, we discuss the topological exactness of the sequence (6.3). We endow
∏ E∗(�i )

with the product topology and Z1(M, E∗) with the relative topology induced by
∏ E∗(�i, j )

(endowed with the product topology). Notice that Z1(M, E∗) is a closed subspace of∏ E∗(�i, j ) and that the mapping δ is continuous.

Proposition 6.5 The sequence (6.3) is topologically exact if I is countable.
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In the Roumieu case, we need the ensuing lemmas.

Lemma 6.6 Let X be a topological space and let F be a sheaf on X. Suppose that
H1(M,F) = 0 for all finite open coverings M. Then, H p(M,F) = 0 for all p ≥ 1
and all finite open coverings M.

Proof We use induction on N = |M|. The case N = 1 is clear. Suppose that the result holds
for N . LetM = {�i : i = 0, . . . , N } be an arbitrary open covering and defineM′ = {�i :
i = 0, . . . , N −1}. Using the induction hypothesis, we obtain H p(M′,F) = 0 for all p ≥ 1.
Hence, the long exact sequence of cohomology groups (6.2) implies that H p(M,F) ∼=
H p(M,M′,F) for all p ≥ 2. A straightforward calculation yields C p(M,M′,F) ∼=
C p−1(M̃,F) for all p ≥ 1, where M̃ = {�i ∩ �n : i = 0, . . . , N − 1}. Therefore, we
have H p(M,F) ∼= H p(M,M′,F) ∼= H p−1(M̃,F) = 0, for all p ≥ 2, where in the last
inequality we have used the induction hypothesis. ��
Lemma 6.7 Let

0 X0 X1 · · · XN 0
d0 d1 dN−1

be an exact sequence of ultrabornological (PLS)-spaces. Then, the sequence is automatically
topologically exact and ker d j is an ultrabornological (PLS)-space for each j = 0, . . . , N−
1.

Proof Since every (PLS)-space X has a strict ordered web, De Wilde’s open mapping
theorem [25, Theorm 24.30] implies that any linear continuous surjective mapping X → Y ,
with Y ultrabornological, is a topological homomorphism. Moreover, a closed subspace A
of an ultrabornological (PLS)-space X is ultrabornological if and only if X/A is complete
[10, Cor. 1.4]. Combining these two facts, we obtain the desired result. ��
Proof of Proposition 6.5 In the Beurling case, the statement is a consequence of the open
mapping theorem for Fréchet spaces.We now consider the Roumieu case. Since the countable
product of (PLS)-spaces is a (PLS)-space and a closed subspace of a (PLS)-space is again
a (PLS)-space, the spaces appearing in (6.3) are all (PLS)-spaces. We divide the proof into
two steps.

STEP1: I is finite. Suppose I = {0, . . . , N } for some N ∈ N. Theorem6.1 andLemma6.6
imply that the sequence

0 E∗(�)
∏N

i=0 E∗(�i ) C1(M, E∗) · · · CN (M, E∗) 0

is exact. Notice that C p(M, E∗) is isomorphic to a finite product of spaces of the form
E∗(�i0,...,i p ), 0 ≤ i0 < i1 < · · · < i p ≤ N . We endow it with the product topology. In
such a way the linking mappings in the above sequence become continuous. Moreover, since
a finite product of ultrabornological spaces is again an ultrabornological space, the result
follows from Proposition 3.2 and Lemma 6.7.

STEP 2: I is countable (set I = N). Consider the projective spectra defined in (6.4).
By the first step we know that the complex (6.5) consists of topologically exact sequences.
Since every (PLS)-space X has a strict ordered web and Proj1 X = 0 (see the third step in
the proof of Theorem 6.1), [35, Theorm 3.3] implies that the mapping δ appearing in (6.3)
is a topological homomorphism. As the countable product of ultrabornological spaces is
again an ultrabornological space and the quotient of an ultrabornological space with a closed
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subspace is again ultrabornological, we obtain that Z1(M, E{Mp}) is an ultrabornological
(PLS)-space from Proposition 3.2. Furthermore, it implies that ker δ is ultrabornological
(cf. the proof of Lemma 6.7). Hence E∗(�) → ∏

i∈N E∗(�i ) is a topological embedding by
De Wilde’s open mapping theorem. ��
6.2 Vector-valued case

We now address the Cousin problem for spaces of F-valued quasianalytic functions for
suitable l.c.s. F . We write E∗(· ; F) for the sheaf of F-valued ultradifferentiable functions of
class ∗ on R

d .

Theorem 6.8 Let � ⊆ R
d be open, let M = {�i : i ∈ I } be an open covering of �, and

let F be a locally convex space. Then, H1(M, E∗(· ; F)) = 0 in the following cases:

(i) For ∗ = (Mp) and F a Fréchet space,
(ii) for ∗ = {Mp} and F a (DFS)-space such that F ′ satisfies (DN ),
(iii) for ∗ = {p!} and F a (PLS)-space satisfying the dual interpolation estimate for small

theta.

We shall need the following lemma in the proof of the Roumieu case.

Lemma 6.9 [11, Proposition 4.5] Let

0 X Y Z 0
S T

be a topologically exact sequence of (PLS)-spaces and let F be a (PLS)-space. Suppose
that X is a (PLN )-space and that the (PLS)-space XεF is ultrabornological. Then, the
sequence

0 XεF Y εF ZεF 0
Sε idF T ε idF

is exact.

Proof of Theorem 6.8 As in the scalar-valued case, the vanishing of the first cohomology
group H1(M, E∗(· ; F)) means that

0 E∗(�; F)
∏

i∈I E∗(�i ; F) Z1(M, E∗(·, F)) 0
δF

is exact, where

Z1(M,E∗(·, F)) = {(ϕi, j ) ∈
∏

i, j∈I
E∗(�i, j ; F) : ϕi, j + ϕ j,k + ϕk,i = 0 on �i, j,k , ∀i, j, k ∈ I },

and

δF =
∏

i∈I
E∗(�i ; F) → Z1(M, E∗(·, F)) : (ϕi ) → ((ϕ j − ϕi )|�i, j ).

Wemay assume that I is countable. Furthermore, we only need to show that δF is surjective,
the rest is clear. Notice that we have the following isomorphisms of l.c.s.

E∗(�; F) ∼= E∗(�)εF,
∏

i∈I
E∗(�i ; F) ∼=

(
∏

i∈I
E∗(�i )

)
εF,

Z1 (M, E∗(·, F)
) ∼= Z1 (M, E∗) εF. (6.6)
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The first two isomorphisms are consequences of Proposition 5.1 and [19, Proposition 1.5].
We now show the third one. Since the ε-product of two injective linear topological homo-
morphisms is again an injective linear topological homomorphism, the space Z1(M, E∗)εF
is topologically isomorphic to a subspace X of

⎛

⎝
∏

i, j∈I
E∗(�i, j )

⎞

⎠ εF ∼=
∏

i, j∈I
E∗(�i, j ; F).

Let us now prove that X = Z1(M, E∗(· ; F)). Let (ϕi, j ) ∈ X . Employing the representation
Z1(M, E∗)εF ∼= L(F ′

c, Z
1(M, E∗)) we obtain that

(〈y′,ϕi, j (·)〉) ∈ Z1(M, E∗), y′ ∈ F ′,

and, thus,

0 = 〈y′, ϕi, j (x)〉 + 〈y′, ϕ j,k (x)〉 + 〈y′, ϕk,i (x)〉 = 〈y′,ϕi, j (x) + ϕ j,k (x) + ϕk,i (x)〉,

for all y′ ∈ F ′, x ∈ �i, j,k , i, j, k ∈ I . This implies that (ϕi, j ) ∈ Z1(M, E∗(· ; F)). The
converse inclusion can be shown similarly. Finally, notice that δF = δε idF .

(i): By the hereditary properties of nuclearity, we have that the spaces
∏

i∈I E(Mp)(�i )

and Z1(M, E(Mp)) are nuclear Fréchet spaces. Hence, by (6.6), we may represent δF as a
tensor product of mappings,

δF = δ⊗̂ idF :
(

∏

i∈I
E(Mp)(�i )

)
⊗̂F → Z1(M, E(Mp))⊗̂F.

The result now follows from the solution to the scalar-valued Cousin problem (Theorem 6.1)
and the following well-known fact: Given two surjective continuous linear mappings T1 :
X1 → Y1 and T2 : X2 → Y2 between Fréchet spaces, the mapping

T1⊗̂πT2 : X1⊗̂π X2 → Y1⊗̂πY2

is also surjective.
(i i) and (i i i): In viewof Lemma6.9 this follows directly fromProposition 5.5 (Remark 5.8

in the real analytic case) and Proposition 6.5. ��
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