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Abstract In this paper we consider a nonlinear higher-order viscoelastic inverse problem
with memory in the boundary. Under some suitable conditions on the coefficients, relaxation
function and initial data, we proved a blow-up result for the solution with positive initial
energy.
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1 Introduction

In this paper, we are concerned with the following higher-order viscoelastic inverse problem
of determining a pair of functions {u(x, t), f (t)}

utt + (−Δ)mu −
∫ t

0
g(t − τ)(−Δ)mu(τ )dτ − |u|p−2u = f (t)ω(x), x ∈ Ω, t > 0

(1.1)⎧⎨
⎩

∂ i u
∂νi (x, t) = 0, i = 0, 1, . . . , m − 2, x ∈ Γ0, t > 0

∂m u
∂νm = ∫ t

0 g(t − τ) ∂m u
∂νm (τ )dτ − a ∂m−1u

∂νm−1 , x ∈ Γ1, t > 0
(1.2)

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω (1.3)∫
Ω

u(x, t)ω(x)dx = 1, t > 0 (1.4)

whereΩ is a bounded domain of Rn(n ≥ 1)with smooth boundaryΓ0∪Γ1 = ∂Ω so that the

divergence theorem can be applied, ν is unit outward normal vector on ∂Ω , and ∂ i u
∂νi denotes
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the i-order normal derivation of u. Here m ≥ 1 is a natural number, and p > 2, a are real
positive numbers. Moreover, g(t) and ω(x) are functions satisfying specific conditions to be
enunciated later.

It is familiar that viscoelasticmaterials indicate natural damping,which is due to the special
property of these substances to keep memory of their past history. From the mathematical
point of view, these damping effects are modeled by integro-differential operators.

In several mathematical models we face higher-order partial differential equations. For
example it can be found in Fluid Dynamics, Mechanics, Biology, Electromagnetism, image
processing, where three-dimensional problems are represented on surfaces, for instance in the
case of thin geometries, modeled as membranes, plates or shells, depending on the structure
of the original domain. This leads to defining surface partial differential equations which
often involve high-order differential operators [3,15].

The problem of proving asymptotic stability and blow-up of solutions for the equations
with boundary conditions has recently attracted a lot of attention, and various results are
available (see [1,2,5,6,8,14,16,18,22] and references therein).

When m = 2, g(.) �= 0 and ω(x) = 0, the equation in (1.1) becomes the following
Petrovsky equation with memory term and nonlinear source term:

utt + Δ2u −
∫ t

0
g(t − s)Δ2u(s)ds = |u|p−2u, (x, t) ∈ Ω × R+. (1.5)

Tahamtani and Shahrouzi [22] prove the existence of weak solutions of equation (1.5) with
initial-boundary value conditions. Meanwhile, they show that there are solutions under some
conditions on initial data which blow up in finite time with nonpositive initial energy as well
as positive initial energy and give the life span estimates of solutions.

In [18], Shahrouzi studied the following fourth-order nonlinear wave equation with dis-
sipative boundary condition

utt + Δ[(a0 + a|Δu|m−2)Δu] − bΔut = g(x, t, u,Δu) + |u|p−2u, x ∈ Ω, t > 0

the author showed that there are solutions under some conditions on initial data which blow
up in finite time with positive initial energy.

On the other handwe less knowabout the global behavior of solutions for inverse problems;
the readers are referred to [4,7,9–13,17,19–21].

In elastography, the displacement field in the interior of tissue in response to an excitation
is measured using either ultrasound or magnetic resonance imaging (MRI). A viscoelastic
inverse problem is focused on solving the subsequent inverse problem of determining the
spatial distribution of the viscoelastic parameters of the tissue given the knowledge of the
displacement fields in its interior. Such problem is motivated by applications in biomechan-
ical imaging, where the material modulus distributions are used to detect and/or diagnose
cancerous tumors [23,26].

In the absence of relaxation function, Tahamtani and Shahrouzi [20,21] investigated global
behavior of solutions to some class of inverse source problems. In [20], they studied the global
in time behavior of solutions for an inverse problem of determining a pair of functions {u, f }
satisfying the equation

utt + Δ2u − |u|pu + a(x, t, u,∇u,Δu) = f (t)ω(x), x ∈ Ω, t > 0,

the initial conditions

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,
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the boundary conditions

u(x, t) = ∂νu(x, t) = 0, x ∈ ∂Ω, t > 0,

and the overdetermination condition∫
Ω

u(x, t)ω(x)dx = 1, t > 0,

also, the asymptotic stability result has been established with the opposite sign of power-type
nonlinearities.

Later, in [21], Tahamtani and Shahrouzi considered

utt + Δ2u − α1Δu + α2ut + α3|u|pu + b(x, t, u,∇u,Δu) = f (t)ω(x), x ∈ Ω, t > 0,

u(x, t) = 0, Δu = −c0∂νu(x, t), x ∈ Γ, t > 0,

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,∫
Ω

u(x, t)ω(x)dx = φ(t), t > 0.

They showed that the solutions of this problem under some suitable conditions are stable
if α1, α2 are large enough, α3 ≥ 0 and φ(t) tends to zero as time goes to infinity and also
established a blow-up result, if α3 < 0 and φ(t) = k be a constant. Their approaches
are based on the Lyapunov function and perturbed energy method for stability result and
concavity argument for blow-up result.

Shahrouzi [19] investigated the asymptotic behavior of solutions for the following vis-
coelastic inverse problem

utt + Δ2u −
∫ t

0
g(t − τ)Δ2u(τ )dτ − a1Δu + a2ut = f (t)ω(x), x ∈ Ω, t > 0,

{
u(x, t) = 0, x ∈ Γ0, t > 0

Δu(x, t) = ∫ t
0 g(t − τ)Δu(τ )dτ − a3|∇u|p∇u, x ∈ Γ1, t > 0

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,∫
Ω

u(x, t)ω(x)dx = φ(t), t > 0,

Heobtained sufficient conditions on relaxation function and initial data forwhich the solutions
of problem are asymptotically stable when the integral overdetermination tends to zero as
time goes to infinity.

Recently, when ω(x) = 0 and with homogeneous Dirichlet boundary conditions, the
following initial-boundary value problem was investigated in [24]:

utt + (−Δ)mu −
∫ t

0
g(t − τ)(−Δ)mu(τ )dτ = |u|p−2u, x ∈ Ω, t > 0

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω

∂ i u

∂νi
(x, t) = 0, i = 0, 1, . . . , m − 1, x ∈ ∂Ω, t > 0.

Ye proved the existence of global weak solutions by using the Galerkin method. Moreover,
he showed that under some suitable conditions on relaxation function and the positive initial
energy as well as nonpositive initial energy, the solution blows up in a finite time and the life
span estimates of solutions are also given (see also [25]).

Motivated by the aforementionedworks, we consider in this paper the blow-up of solutions
for problem (1.1)–(1.4). We show that if we take initial data in the appropriate domain, then
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solutions of (1.1)–(1.4) blow up in a finite time. Our approaches are based on the modified
concavity argument method.

2 Preliminaries and main results

In this section, we present some material needed in the proof of our main results. Throughout
this paper all the functions considered are real-valued. We adopt the usual notations and
convention. Let Hm(Ω) denote the Sobolev space with the usual scalar products and norm.
Hm
0 (Ω) denotes the closure in Hm(Ω) of C∞

0 (Ω). For simplicity of notations, hereafter we
denote by ‖.‖q the Lq -norm overΩ . In particular, the L2-norm is denoted ‖.‖ inΩ and ‖.‖Γi

in Γi ; we write equivalent norm ‖Dm .‖ instead of Hm(Ω) norm ‖.‖Hm (Ω) and ‖Dm .‖Γi in
Γi , where D denotes the gradient operator, that is D. = ∇. = ( ∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xn
). Moreover,

Dm . = Δ j . if m = 2 j and Dm . = DΔ j . if m = 2 j + 1.
We sometimes use the Young’s inequality

ab ≤ βaq + C(β, q)bq ′
, a, b ≥ 0, β > 0,

1

q
+ 1

q ′ = 1, (2.1)

where θ = θ(Ω, n) and C(β, q) = 1
q ′ (βq)

− q′
q are constants. We recall the trace Sobolev

embedding

H1
Γ0

(Ω) ↪→ Lq(Γ1) for 2 ≤ q <
2(n − 1)

n − 2

where

H1
Γ0

(Ω) = {u ∈ H1(Ω) : u|Γ0 = 0}
and the embedding inequality

‖u‖q,Γ1 ≤ Bq‖∇u‖2, (2.2)

where Bq is the optimal constant.
The following lemma was introduced in [9]; it will be used in Sect. 3 in order to prove the

blow-up result.

Lemma 1 Let μ > 0, c1 > 0. Assume that ψ(t) is a twice differentiable positive function
such that

ψ
′′
ψ − (1 + μ)[ψ ′ ]2 ≥ −2c1ψψ ′, (2.3)

for all t ≥ 0. If

ψ(0) > 0 and ψ ′(0) − 2c1μ
−1ψ(0) > 0, (2.4)

then

ψ(t) → +∞ as t → t1 ≤ t2 = 1

2c1
log

μψ ′(0)
−2c1ψ(0) + μψ ′(0)

. (2.5)

To prove our main result, we make the following assumptions

(A1) ω ∈ H2m(Ω) ∩ H2m−1
0 (Ω) ∩ L p(Ω),

∫
Ω

ω2(x)dx = 1
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(A2) g(t) ≥ 0, g′(t) ≤ λg(t)

(A3) 1 −
∫ ∞

0
e−λt g(t)dt = l > 0

We consider the following problem by substituting u(x, t) = eλtv(x, t) in (1.1)–(1.4):

vt t + (−Δ)mv + λ2v + 2λvt −
∫ t

0
e−λ(t−τ)g(t − τ)dτ = eλ(p−2)t |v|p−2v

+ e−λt f (t)ω(x), (x, t) ∈ Ω × R+ (2.6)⎧⎨
⎩

∂ i v
∂νi (x, t) = 0, i = 0, 1, . . . , m − 2, x ∈ Γ0, t > 0

∂mv
∂νm = ∫ t

0 e−λ(t−τ)g(t − τ) ∂mv
∂νm (τ )dτ − a ∂m−1v

∂νm−1 , x ∈ Γ1, t > 0
(2.7)

v(x, 0) = u0(x), vt (x, 0) = u1(x) + λu0(x), x ∈ Ω (2.8)∫
Ω

v(x, t)ω(x)dx = e−λt . t ∈ R+ (2.9)

Multiplying equation (2.6) by ω(x) and using (A1) we obtain

f (t) = eλt ((−Δ)mv, ω) − eλt
∫ t

0
e−λ(t−τ)g(t − τ)((−Δ)mv(τ), ω)dτ

− eλ(p−1)t (|v|p−2v, ω). (2.10)

Adapting the idea of Prilepko et.al [17] the key observation is that problem (2.6)–(2.9) is
equivalent to problem (2.6)–(2.8) in which the unknown function f (t) in (2.6) is replaced
by (2.10) (the value of the parameter λ will be prescribed later).

Once the unknown function f (t) is eliminated, the standard theory of nonlinear hyperbolic
equations also becomes applicable to deduce the local existence of solutions.

The energy associated with problem (2.6)–(2.8) is given by

Eλ(t) = eλ(p−2)t

p
‖v‖p

p − 1

2

(
‖vt‖2 + λ2‖v‖2 +

(
1 −

∫ t

0
g1(s)ds

)
‖Dmv‖2

+ (g1 ∗ Dmv)(t) + a‖Dm−1v‖2Γ1

)
, (2.11)

where

g1(s) = e−λs g(s), (g1 ∗ v)(t) =
∫ t

0
g1(t − s)‖v(t) − v(s)‖2ds.

Now we are in a position to state a local existence of solutions for (2.6)–(2.8):

Theorem 1 (Local existence) Assume that (A1)–(A3) hold. If

u0 ∈ Hm−1
0 (Ω) ∩ H2m(Ω) ∩ L p(Ω), u1 ∈ L2(Ω),

∫
Ω

u0(x, t)ω(x)dx = 1

then there exists T > 0 such that problem (2.6)–(2.8) has a unique local solution u(t) which
satisfies

u ∈ C([0, T ); Hm−1
0 (Ω)), ut ∈ C([0, T ); L2(Ω)).

We conclude this section by stating the blow-up result as follows.
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Theorem 2 Under the conditions of Theorem 1, we assume

‖u0‖ > 0, Eλ(0) ≥ D1

4λ
+ 2D2

p + 4
, (2.12)

where

D1 = (5λ2
4

+ λ2

l

)‖Dmω‖2 + λ

p
(

p−4
p−1

)p−1 ‖ω‖p
p, (2.13)

D2 = (
1 + 12

lp

)‖Dmω‖2 + 1

p
(

p−4
2p−2

)p−1 ‖ω‖p
p. (2.14)

If λ ≥ max{c, l+4(1−l)2

4l } for a positive constant c, and

a ≤ lp

2B2
2 (p + 8)

,

∫ +∞

0
g1(s)ds ≤ p2 + 4p − 8c

p(p + 4)
, p ≥ max

{
4,

√
16 + 32c − 4

2

}
,

then there exists a finite time t1 ∈ [0, T ) such that the solution of problem (1.1)–(1.4) blows
up in a finite time, that is

‖u(t)‖ → +∞ as t → t1. (2.15)

3 Blow-up

In this section we are going to prove that for appropriate initial data some of the solutions
blow up in a finite time. To prove the blow-up result (Theorem 2) for certain solutions with
positive initial energy, we need the following lemma for problem (2.6)–(2.9).

Lemma 2 Let the conditions of Theorem 1 are satisfied and λ ≥ max{c, l+4(1−l)2

4l } for a
positive constant c. Then

Eλ(t) ≥ Eλ(0) − 1

4λ
D1,

Proof A multiplication of equation (2.6) by vt and integrating over Ω gives

d

dt
Eλ(t) ≥ 2λ‖vt‖2 + λ(p − 2)

p
eλ(p−2)t‖v‖p

p + λe−2λt f (t), (3.1)

where condition (A2) has been used.
Plugging definition of f (t), (2.10), into (3.1) we obtain

d

dt
Eλ(t) ≥ 2λ‖vt‖2 + λ(p − 2)

p
eλ(p−2)t‖v‖p

p + λe−λt (Dmv, Dmω)

− λe−λt
∫ t

0
g1(t − τ)(Dmv(τ), Dmω)dτ − λeλ(p−3)t (|v|p−2v, ω). (3.2)

And so

d

dt
Eλ(t) − 2λEλ(t) ≥ 3λ‖vt‖2 + λ(p − 4)

p
eλ(p−2)t‖v‖p

p + λ3‖v‖2 + aλ‖Dm−1v‖2Γ1

+ λ
(
1 −

∫ t

0
g1(s)ds

)‖Dmv‖2 + λ(g1 ∗ Dmv)(t) + λe−λt (Dmv, Dmω)
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− λe−λt
∫ t

0
g1(t − τ)(Dmv(τ), Dmω)dτ − λeλ(p−3)t (|v|p−2v, ω).

(3.3)

Now, by using the Young’s inequality, the terms on the right-hand side of (3.3) can be
estimated as follows

λe−λt |(Dmv, Dmω)| ≤ l

4
‖Dmv‖2 + λ2

l
e−λt‖Dmω‖2, (3.4)

λeλ(p−3)t |(|v|p−2v, ω)| ≤ λ(p − 4)

p
eλ(p−2)t‖v‖p

p + λe−2λt

p[ p−4
p−1 ]p−1

‖ω‖p
p, (3.5)

where we take

a = e
(p−1)(p−2)

p t‖v‖p−1
p , b = e

−2λt
p ‖ω‖p, q = p

p − 1
, q ′ = p,

with β = p−4
p in the Young’s inequality (2.1).

Also there exists a positive constant c such that

λe−λt
∫ t

0
g1(t − τ)(Dmv(τ), Dmω)dτ ≤ (1 − l)2‖Dmv‖2 + c(g1 ∗ Dmv)(t)

+ 5λ2

4
e−2λt‖Dmω‖2, (3.6)

Taking into account estimates (3.4)–(3.6) in relation with (3.3), we get

d

dt
Eλ(t) − 2λEλ(t) ≥ 3λ‖vt‖2 + aλ‖Dm−1v‖2Γ1

+ (λ − c)(g1 ∗ Dmv)(t)

+ (
λl − l

4
− (1 − l)2

)‖Dmv‖2 − e−2λt D1, (3.7)

where D1 satisfies (2.13).

At this point if we choose λ ≥ max{c, l+4(1−l)2

4l }, then we end up with

d

dt
Eλ(t) ≥ 2λEλ(t) − e−2λt D1, (3.8)

by integrating (3.8) between 0 and t , we observe that

Eλ(t) ≥ Eλ(0) − 1

4λ
D1, ∀t ≥ 0, (3.9)

and proof of Lemma 2 is complete.

Proof of Theorem 2 To obtain the blow-up result, the choice of the following functional is
standard (see [9])

ψ(t) = ‖v(t)‖2, (3.10)

then

ψ ′(t) = 2(v, vt ), (3.11)

ψ ′′(t) = 2(v, vt t ) + 2‖vt‖2. (3.12)
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A multiplication of equation (2.6) by v and integrating over Ω gives

(vt t , v) = −2λ(vt , v) − λ2‖v‖2 − (
1 −

∫ t

0
g1(s)ds

)‖Dmv‖2 − a‖Dm−1v‖2Γ1

+
∫

Ω

Dmv

∫ t

0
g1(t − τ)(Dmv(τ) − Dmv)dτdx + eλ(p−2)t‖v‖p

p + e−2λt f (t).

(3.13)

By virtue of trace embedding inequality (2.2), it is easy to see that

(vt t , v) ≥ −2λ(vt , v) − λ2‖v‖2 − (
1 −

∫ t

0
g1(s)ds + aB2

2

)‖Dmv‖2 + eλ(p−2)t‖v‖p
p

+
∫

Ω

Dmv

∫ t

0
g1(t − τ)(Dmv(τ) − Dmv)dτdx + e−2λt f (t). (3.14)

Consequently, from definition of Eλ(t) we get

(vt t , v) ≥
(
2 + p

2

)
Eλ(t) − 2λ(vt , v) + p − 4

2p
eλ(p−2)t‖v‖p

p − a
(
1 + p

4

)
‖Dm−1v‖2Γ1

+ λ2 p

4
‖v‖2 +

(
1 + p

4

)
(g1 ∗ Dmv)(t) −

(
1 −

∫ t

0
g1(s)ds + aB2

2

)
‖Dmv‖2

+
(
1 + p

4

) (
1 −

∫ t

0
g1(s)ds

)‖Dmv‖2 +
(
1 + p

4

)
‖vt‖2

+
∫

Ω

Dmv

∫ t

0
g1(t − τ)(Dmv(τ) − Dmv)dτdx + e−2λt f (t). (3.15)

Taking into account definition of unknown function (2.10) and trace embedding inequality
(2.3), we obtain

(vt t , v) ≥
(
2 + p

2

)
Eλ(t) − 2λ(vt , v) + p − 4

2p
eλ(p−2)t‖v‖p

p +
(
1 + p

4

)
‖vt‖2

+ λ2 p

4
‖v‖2 +

(
1 + p

4

)
(g1 ∗ Dmv)(t) + ( lp

4
− aB2

2

(
2 + p

4

))‖Dmv‖2

+
∫

Ω

Dmv

∫ t

0
g1(t − τ)(Dmv(τ) − Dmv)dτdx

+ e−λt ((−Δ)mv, ω) − e−λt
∫ t

0
g1(t − τ)((−Δ)mv(τ), ω)dτ

− eλ(p−3)t (|v|p−2v, ω). (3.16)

To estimate the terms on the right-hand side of (3.16), we start with the memory term. Using
Cauchy–Schwartz inequality and the Young’s inequality, we get

∣∣∣∣
∫

Ω

Dmv

∫ t

0
g1(t − τ)(Dmv(τ) − Dmv)dτdx

∣∣∣∣ ≤ lp

24
‖Dmv‖2 + c

lp
(g1 ∗ Dmv)(t),

(3.17)

e−λt |((−Δ)mv, ω)| ≤ lp

24
‖Dmv‖2 + 6e−2λt

lp
‖Dmω‖2, (3.18)

e−λt |
∫ t

0
g1(t − τ)((−Δ)mv(τ), ω)dτ | ≤ lp

24
‖Dmv‖2 + c

lp
(g1 ∗ Dmv)(t)
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+
(
1 + 6

lp

)
e−2λt‖Dmω‖2, (3.19)

eλ(p−3)t |(|v|p−2v, ω)| ≤ p − 4

2p
eλ(p−2)t‖v‖p

p + e−2λt

p(
p−4
2p−2 )p−1

‖ω‖p
p. (3.20)

Substituting (3.17)–(3.20) into (3.16) gives

(vt t , v) ≥
(
2 + p

2

)
Eλ(t) +

(
1 + p

4

)
‖vt‖2 +

(
lp

8
− aB2

2

(
2 + p

4

))
‖Dmv‖2 − 2λ(vt , v)

+
(
1 + p

4
− 2c

lp

)
(g1 ∗ Dmv)(t) − e−2λt D2, (3.21)

where D2 satisfies (2.14).
At this point we choose

a ≤ lp

2B2
2 (p + 8)

,

∫ +∞

0
g1(s)ds ≤ p2 + 4p − 8c

p(p + 4)
, p ≥ max

{
4,

√
16 + 32c − 4

2

}
.

This implies that

(vt t , v) ≥
(
2 + p

2

)
Eλ(t) − 2λ(vt , v) +

(
1 + p

4

)
‖vt‖2 − e−2λt D2. (3.22)

Hence from (3.12) we have

ψ ′′(t) ≥ (p + 4)Eλ(t) − 4λ(vt , v) + 4
(
1 + p

8

)
‖vt‖2 − 2D2. (3.23)

To this end, by substituting (3.10),(3.11) in (3.23), using Lemma 2 and (2.13) we arrive at

ψ ′′(t) ≥ −2λψ ′(t) + 4
(
1 + p

8

)
‖vt‖2,

finally we get

ψ(t)ψ ′′(t) ≥
(
1 + p

8

)
[ψ ′(t)]2 − 2λψ(t)ψ ′(t).

Hence we see that the hypotheses of Lemma 1 are fulfilled with μ = p
8 , c1 = λ, and the

conclusion of Lemma 1 gives us that some solutions of problem (2.6)–(2.9) blow up in a
finite time and since this system is equivalent to (1.1)–(1.4), the proof is complete.
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