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Abstract So far most studies on mathematical models for microelectromechanical systems
are focused on the so-called small aspect ratio model which is a wave or beam equation with
a singular source term. It is formally derived by setting the aspect ratio equal to zero in a
more complex model involving a moving boundary. A rigorous justification of this derivation
is provided here when bending is taken into account.
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1 Introduction

An idealizedmicroelectromechanical system (MEMS) ismade of a rigid ground plate located
at height z = −1 and held at potential zero above which an elastic plate held at a constant
potential normalized to one is suspended, the latter being at height z = 0 at rest.Assuming that
there is no variation in one of the horizontal directions, the electromechanical response of the
devicemaybe described by the elastic deformationu = u(t, x) ≥ −1of the elasticmembrane
and the electrostatic potential ψ = ψ(t, x, z) between the two plates [31, Section 7.4]. The
evolution of the electrostatic potential is given by the rescaled Laplace equation
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ε2∂2x ψ(t, x, z) + ∂2z ψ(t, x, z) = 0 in �(u(t)), t > 0, (1.1)

in the domain

�(u(t)) := {(x, z) ∈ I × (−1,∞) : −1 < z < u(t, x)} , I := (−1, 1),

between the plates, supplemented with the boundary conditions

ψ(t, x, z) = 1 + z

1 + u(t, x)
on ∂�(u(t)), t > 0, (1.2)

while that of the deformation obeys a parabolic (if γ = 0) or hyperbolic (if γ > 0) equation

γ 2∂2t u(t, x) + ∂t u(t, x) + β∂4x u(t, x) − (τ + a‖∂x u(t)‖22
)
∂2x u(t, x)

= −λ
(
ε2|∂xψ(t, x, u(t, x))|2 + |∂zψ(t, x, u(t, x))|2) , t > 0, x ∈ I, (1.3)

supplemented with clamped boundary conditions

u(t,±1) = β∂x u(t,±1) = 0, t > 0, (1.4)

and initial conditions
(u, γ ∂t u)(0) = (u0, γ u1), x ∈ I. (1.5)

In (1.3), the terms corresponding to mechanical forces are β∂4x u, which accounts for plate
bending, and

(
τ + a‖∂x u‖22

)
∂2x u, which accounts for external stretching (τ > 0) and self-

stretching due tomoderately large oscillations (a > 0). The right-hand side of (1.3) describes
the electrostatic forces exerted on the elastic plate which are proportional to the square of the
trace of the (rescaled) gradient of the electrostatic potential on the elastic plate, the parameter
λ depending on the square of the applied voltage difference before scaling. Inertial forces are
accounted for by γ 2∂2t u in (1.3) with γ ≥ 0, and ∂t u is a damping term which governs the
dynamics in the damping dominated limit γ = 0. A very important parameter in (1.1)–(1.5)
is the aspect ratio ε > 0 which is proportional to the ratio height/length of the device. In
applications this ratio is usually very small and therefore often taken to be zero from the
outset in the mathematical analysis which has far-reaching consequences.

Indeed, setting ε = 0 allows one to solve explicitly (1.1)–(1.2) in terms of the deformation
u0 as

ψ0(t, x, z) = 1 + z

1 + u0(t, x)
, (x, z) ∈ �(u0(t)), t > 0.

Here, the subscript zero is used to indicate the formal limit ε → 0. Furthermore, setting
ε = 0 in (1.3) and using the previous formula for ψ0, we are led to the so-called small aspect
ratio model

γ 2∂2t u0 + ∂t u0 + β∂4x u0 − (τ + a‖∂x u0‖22
)
∂2x u0 = − λ

(1 + u0)2
, t >0, x ∈ I, (1.6)

supplemented with clamped boundary conditions (1.4) and initial conditions (1.5). This
model is studied in several works in recent years, among which we refer to [5,7–9,11–
14,16,17,19,22–29].

Take notice that the above computation is formal and a reliable use of the small aspect ratio
model (1.6) thus requires to justify it rigorously. Due to the intricate coupling between u and
ψ when ε > 0 this is by no means obvious. The aim of this paper is to put this approximation
on firm ground by providing a proof that solutions of (1.1)–(1.5) indeed converge to that of
(1.4)–(1.6) as ε → 0when bending and self-stretching of the plate are taken into account, that
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Vanishing aspect ratio limit for a fourth-order MEMS model 1539

is, when β > 0 and a ≥ 0. When these effects are not included, that is, when β = a = 0, this
issue is addressed in [18] for the stationary problem and in [10] for the evolution problem in
the damping dominated case γ = 0. It is proved in these settings that solutions to (1.1)–(1.5)
converge as ε → 0 to a solution to (1.4)–(1.6) in suitable topologies. To achieve this result
several difficulties are faced with some differences between the stationary and evolutionary
settings. In fact, the main difficulty arising in the study of (1.1)–(1.5) is the so-called pull-
in instability which manifests in the following ways. It corresponds to the nonexistence of
stationary solutions for values of λ exceeding a threshold value depending on ε. For the
evolution problem it corresponds to the occurrence of a finite time singularity for values of
λ larger than a critical value depending not only on ε, but also on the initial value (u0, γ u1)

in (1.5). The singularity becomes manifest in that the solution to (1.1)–(1.5) only exists on a
finite time interval [0, T ε

m) and satisfies

lim
t→T ε

m

min
x∈[−1,1] u(t, x) = −1,

see [20].

Remark 1.1 A close connection between the existence of a global classical solution to the
evolution problem and the existence of a weak stationary solution is well established for the
small aspect ratio model (1.6) where it is expected in general and proved in some cases that
the values of λ for which both exist coincide, see [11] and the references therein. A similar
connection was already uncovered for semilinear parabolic equations in a bounded domain
supplemented with homogeneous Dirichlet boundary conditions [4,32].

To overcome the aforementioned difficulties including the intricate dependence upon ε

and study the limiting behavior as ε → 0, one has to find a range of values of λ for which
stationary solutions exist for all sufficiently small values of ε, respectively, to derive a lower
bound on the maximal existence time T ε

m which does not depend on ε. This approach is used
in [10,18] when β = γ = a = 0, but can only be adapted here to the evolution problem.
Indeed, in contrast to [18], the construction of stationary solutions to (1.1)–(1.4) performed
in [21] for β > 0 and a ≥ 0 does not provide an interval (0,
) such that stationary solutions
exist for all λ ∈ (0,
) and ε small enough. We shall thus develop an alternative argument
in Sect. 3. The second obstacle met in the analysis of the vanishing aspect ratio limit is the
derivation of estimates on the solutions to (1.1)–(1.5) which are uniform with respect to ε

small enough and sufficient to pass to the limit in (1.1)–(1.2) and the right-hand side of (1.3).
According to the analysis performed in [10,18], a bound on u in W 2

q (I ) or L∞(0, T, W 2
q (I ))

for some q > 2 and T > 0 is sufficient. For the evolution problem this bound is derived
simultaneously with the aforementioned lower bound on the maximal existence time T ε

m.
For the stationary problem the situation is again completely different as the first part of the
analysis only provides a bound in H2(I ). Proceeding in the study of the limit ε → 0 requires
a different approach to handle the weaker regularity on u and is presented in Sect. 2. As in
[21] it is based on the observation that the same regularity of the right-hand side of (1.3) as
in [10,20] can be derived for less regular u. However, a more involved argument is required
here.

From now on we assume that

β > 0, τ ≥ 0, a ≥ 0, γ ≥ 0. (1.7)

For further use, given s > 0 and q ∈ [1,∞], we let W s
q,D(I ) be the subspace of the Sobolev

spaceW s
q (I ) consisting of functions satisfying the boundary conditions (1.4)whenevermean-

ingful, that is,
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W s
q,D(I ) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{
v ∈ W s

q (I ) : v(±1) = ∂xv(±1) = 0
}
, s > (q + 1)/q,

{
v ∈ W s

q (I ) : v(±1) = 0
}
, 1/q < s < (q + 1)/q,

W s
q (I ), s < 1/q,

and Hs
D(I ) := W s

2,D(I ). Also, for κ ∈ (0, 1), we define

Ss
q(κ) :=

{
v ∈ W s

q,D(I ) : v > −1 + κ in I and ‖v‖W s
q

<
1

κ

}
.

The first result deals with the vanishing aspect ratio limit for the stationary problem, and
the starting point is the existence result obtained in [21]. Let us first recall that (1.1)–(1.5)
has a variational structure and that stationary solutions are critical points of the total energy

Eε(v) := Em(v) − λEe,ε(v). (1.8)

In (1.8), the mechanical energy is defined by

Em(v) := β

2
‖∂2x v‖22 + 1

2

(
τ + a

2
‖∂xv‖22

)
‖∂xv‖22 (1.9)

and the electrostatic energy by

Ee,ε(v) :=
∫

�(v)

(
ε2|∂xψv|2 + |∂zψv|2

)
d(x, z), (1.10)

where �(v) := {(x, z) ∈ I × (−1,∞) : −1 < z < v(x)} and ψv denotes the solution to
the rescaled Laplace equation

ε2∂2x ψv + ∂2z ψv = 0 in �(v), ψv(x, z) = 1 + z

1 + v(x)
, (x, z) ∈ ∂�(v). (1.11)

Clearly,ψv depends on v in a nonlocal and nonlinearway.Observe that all the above quantities
are well defined for v ∈ H2(I ) satisfying v > −1 in [−1, 1]. It is easy to see that, setting
φ(x) := −(1 − x2)2 for x ∈ [−1, 1], there holds Eε(θφ) → −∞ as θ ↗ 1. Consequently,
Eε is not bounded from below. Nevertheless, stationary solutions can be constructed by a
constrained minimization approach. We recall the result obtained in [21].

Proposition 1.2 Let ε > 0 and � ∈ (2,∞). There are

• a function u�,ε ∈ H4
D(I ) satisfying −1 < u�,ε < 0 in I ,

• ψ�,ε ∈ H2(�(u�,ε)) satisfying ψ�,ε = ψu�,ε ,
• and λ�,ε > 0

such that (u�,ε, ψ�,ε) is a stationary solution to (1.1)–(1.4) with λ = λ�,ε . Moreover, both
u�,ε and ψ�,ε are even with respect to x. In addition,

Em(u�,ε) = min{Em(u) : u ∈ A�,ε}, (1.12)

where

A�,ε := {v ∈ H2
D(I ) : −1 < v ≤ 0 in I, v is even and Ee,ε(v) = �

}
. (1.13)
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Vanishing aspect ratio limit for a fourth-order MEMS model 1541

Given ε > 0 another approach to construct (a smooth branch of) stationary solutions
to (1.1)–(1.4) for small values of λ is based on the implicit function theorem [20]. These
solutions actually coincide with the ones from Proposition 1.2 having an electrostatic energy
Ee,ε(u�,ε) = � close to 2. Note, however, that Proposition 1.2 provides additional stationary
solutions with large electrostatic energies as one can show that λ�,ε → 0 as � → ∞, see
[21].

We may now state the convergence result for stationary solutions and thus provide a
rigorous justification of the stationary small aspect ratio limit.

Theorem 1.3 Let � ∈ (2,∞). There are a sequence (εk)k≥1 with εk → 0, κ� ∈ (0, 1),
u� ∈ S4

2 (κ�), and λ� > 0 such that

lim
k→∞

{|λ�,εk − λ�| + ‖u�,εk − u�‖H1
} = 0,

where u� is a solution to the (stationary) small aspect ratio model

β∂4x u� − (τ + a‖∂x u�‖22
)
∂2x u� = − λ�

(1 + u�)2
in I, u�(±1) = ∂x u�(±1) = 0,

(1.14)
satisfying

∫ 1

−1

dx

1 + u�(x)
= �.

In addition, u� is even, with

Em(u�) = min{Em(u) : u ∈ A�,0},
where

A�,0 :=
{
v ∈ H2

D(I ) : −1 < v ≤ 0 in I, v is even and
∫ 1

−1

dx

1 + v(x)
= �

}
,

and

lim
k→∞

∫

�(u�,εk )

{∣∣∣∣ψ�,εk (x, z) − 1 + z

1 + u�(x)

∣∣∣∣

2

+
∣∣∣∣∂zψ�,εk (x, z) − 1

1 + u�(x)

∣∣∣∣

2
}

d(x, z) = 0.

In fact, the convergence to zero of the sequence (∂zψ�,εk − 1/(1 + u�))k also holds true
in H1(�(u�,εk )).

A by-product of Theorem 1.3 is the existence of stationary solutions to the small aspect
ratio model (1.14) which are minimizers to a constrained variational problem. While the
latter seems to be new, the existence of solutions to (1.14) is already known, see [5,6,8,9,
11,14,19,25,28,29] where I is replaced by the unit ball of RN , N ≥ 1.

We next turn to the hyperbolic evolution problem, for which we shall establish the fol-
lowing convergence result.

Theorem 1.4 Let γ > 0 and λ > 0. Given 2α ∈ (0, 1/2) and κ ∈ (0, 1) let u0 = (u0, u1) ∈
H4+2α

D (I )× H2+2α
D (I ) with u0 ∈ S2+2α

2 (κ). For ε ∈ (0, 1) let (uε, ψε) be the unique solution
to (1.1)–(1.5) on the maximal interval of existence [0, T ε

m) with ψε := ψuε . There are T > 0
and κ0 ∈ (0, 1) such that T ε

m ≥ T and uε(t) ∈ S2+2α
2 (κ0) for all (t, ε) ∈ [0, T ] × (0, 1).

Moreover, for any α′ ∈ [0, α),

lim
ε→0

{

sup
t∈[0,T ]

‖uε(t) − u0(t)‖H2+2α′ + sup
t∈[0,T ]

‖∂t uε(t) − ∂t u0(t)‖H2α′

}

= 0,
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where

u0 ∈ W 2
1

(
0, T, H2α′

(I )
) ∩ C

([0, T ], H2+2α′
D (I )

) ∩ L1
(
0, T, H4+2α′

D (I )
)

is a strong solution to

γ 2∂2t u0 + ∂t u0 + β∂4x u0 − (τ + a‖∂x u0‖22
)

∂2x u0 = − λ

(1 + u0)2
in (0, T ) × I, (1.15)

supplemented with clamped boundary conditions

u0(t,±1) = ∂x u0(t,±1) = 0, t ∈ (0, T ) (1.16)

and initial conditions
(u0, ∂t u0)(0) = (u0, u1), x ∈ I. (1.17)

In addition,

lim
ε→0

∫

�(uε(t))

{∣
∣
∣
∣ψε(t, x, z) − 1 + z

1 + u0(t, x)

∣
∣
∣
∣
2

+
∣
∣
∣
∣∂zψε(t, x, z) − 1

1 + u0(t, x)

∣
∣
∣
∣
2
}

d(x, z) = 0

(1.18)
for all t ∈ [0, T ].

It follows from Theorem 1.4 that the initial-value problem (1.15)–(1.17) has a solution u0

which exists at least on the time interval [0, T ], where T > 0 depends only on the parameters
from (1.7) and on α, ‖u0‖H4+2α

D
, ‖u1‖H2+2α

D
, and κ . Owing to the possibility of the occurrence

of a finite time singularity for u0 as alreadymentioned, the convergence stated in Theorem 1.4
is unlikely to extend to arbitrary time intervals in general.

Remark 1.5 If λ, a, ‖u0‖H4+2α
D

, and ‖u1‖H2+2α
D

are sufficiently small, then T can be chosen
arbitrarily large in the convergence result stated in Theorem 1.4.

Let us also point out that, for the evolution problem, it is the whole family (uε)ε∈(0,1)
which converges toward the solution to (1.15)–(1.17), in contrast to the stationary problem,
where the convergence only holds for a subsequence. This is due to the uniqueness of the
solution u0 to the limit problem (1.15)–(1.17).

The local well-posedness of (1.1)–(1.5) is established in [20] for a = 0, but the proof
extends to a > 0 as v �→ ‖∂xv‖22∂2x v is a locally Lipschitz continuous map from Hs+2(I )
to Hs(I ) for all s > 0. Concerning the small aspect ratio Eqs. (1.15)–(1.17), most avail-
able results are actually devoted to the situation where both bending and self-stretching are
neglected, that is, β = a = 0, see [12,16,17,22–24]. As far as we know, the well-posedness
of (1.15)–(1.17) including bending (β > 0) and clamped boundary conditions (1.16) is only
investigated in [7], when a ≥ 0 and the length of I is sufficiently small, and in [19] when
a = 0, but the proof of local well-posedness performed in [19] extends to the case a > 0. The
corresponding solution u0 has better regularity properties than stated inTheorem1.4 as shown
in the proof below. The dynamics of (1.15) was also studied with other boundary conditions,
namely, pinned boundary conditions u(t,±1) = ∂2x u(t,±1) = 0 in [7,13] and hinged or
Steklov boundary conditions u(t,±1) = ∂2x u(t,±1) − d∂x u(t,±1) = 0, d > 0, in [7].

The last result dealswith the parabolic version of (1.1)–(1.5) corresponding to the damping
dominated limit γ = 0 when inertial effects are neglected.

Theorem 1.6 Let γ = 0, a = 0, and λ > 0. Given 2α ∈ (0, 2) and κ ∈ (0, 1) let
u0 ∈ S2+2α

2 (κ). For ε ∈ (0, 1) let (uε, ψε) be the unique solution to (1.1)–(1.5) on the
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maximal interval of existence [0, T ε
m) with ψε := ψuε . There are T > 0 and κ0 ∈ (0, 1)

such that uε(t) ∈ S2+2α
2 (κ0) and T ε

m ≥ T for all (t, ε) ∈ [0, T ] × (0, 1). Moreover, for any
α′ ∈ [0, α),

lim
ε→0

sup
t∈[0,T ]

‖uε(t) − u0(t)‖H2+2α′ = 0,

where

u0 ∈ C1([0, T ], L2(I )
) ∩ C

([0, T ], H2+2α′
D (I )

)

is a strong solution to

∂t u0 + β∂4x u0 − τ∂2x u0 = − λ

(1 + u0)2
in (0, T ) × I, (1.19)

supplemented with clamped boundary conditions

u0(t,±1) = ∂x u0(t,±1) = 0, t ∈ (0, T ), (1.20)

and initial condition
u0(0) = u0, x ∈ I. (1.21)

In addition, the convergence properties (1.18) are still valid for all t ∈ [0, T ].
As before, the minimal existence time T > 0 depends only on the parameters from (1.7)

and on α, ‖u0‖H2+2α
D

, and κ . It can be taken arbitrarily large provided λ and ‖u0‖H2+2α
D

are
sufficiently small. The proof of Theorem 1.6 is similar to that of Theorem 1.4 and will thus
be omitted. We just mention that the local well-posedness of (1.1)–(1.5) for γ = 0 and
(1.19)–(1.21) is shown in [20] and [19], respectively. Qualitative results on the behavior of
solutions to (1.19)–(1.21) may be found in [26,27].

2 The rescaled Laplace equation

This section is devoted to the study of the stability of solutions to the elliptic problem (1.1)–
(1.2) as ε → 0 when the function u belongs to a suitable class. In fact, given a function
v ∈ Ss

q(κ) for some suitably chosen parameters q > 1, s ≥ 1, and κ ∈ (0, 1), we carefully
study the behavior of the solution ψv to (1.11) as ε → 0, paying special attention to the
dependence upon v with the aim of deriving eventually bounds that only depend on q , s, and
κ . As already mentioned such an analysis has already been performed in [10,18] for q > 2,
s = 2, and κ ∈ (0, 1), but it is not applicable for the proof of Theorem 1.3 for which we only
have an H2-estimate as a starting point. However, as we shall see below, bounds on ψv can
be derived when q = 2 and s ∈ (3/2, 2).

Proposition 2.1 Consider s ∈ (3/2, 2), ν ∈ (2 − s, 1/2), σ ∈ [0, 1/2), and κ ∈ (0, 1).
There is a positive constant Csg = Csg(s, ν, σ, κ) such that, given ε ∈ (0, 1) and v ∈ Ss

2(κ),
the corresponding solution ψv to (1.11) satisfies

‖ψv − bv‖L2(�(v)) +
∥∥∥∥∂zψv − 1

1 + v

∥∥∥∥
L2(�(v))

≤ Csg ε, (2.1)

∥∥∥∥∂x∂zψv + ∂xv

(1 + v)2

∥∥∥∥
L2(�(v))

+
∥∥∥∥gε(v) − 1

(1 + v)2

∥∥∥∥
Hσ

≤ Csg ε(1−2ν)/(3−2ν), (2.2)

∥∥∂2z ψv

∥∥
L2(�(v))

≤ Csg ε4(1−ν)/(3−2ν), (2.3)
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1544 P. Laurençot, C. Walker

where

gε(v)(x) := ε2|∂xψv(x, v(x))|2 + |∂zψv(x, v(x))|2 and bv(x, z) := 1 + z

1 + v(x)

for (x, z) ∈ �(v).

The remainder of this section is devoted to the proof of Proposition 2.1.
Let s ∈ (3/2, 2], κ ∈ (0, 1), and let v ∈ Ss

2(κ) be fixed. We denote the corresponding
solution to (1.11) by ψ = ψv and recall that ψ ∈ Hs(�(v)) by [21, Corollary 4.2]. As in
previous works, to handle the dependence of the domain on v, we map the domain�(v) onto
the rectangle � := (−1, 1) × (0, 1) with the help of the transformation

Tv(x, z) :=
(

x,
1 + z

1 + v(x)

)
, (x, v) ∈ �(v).

We then define

�(x, η) = �v(x, η) := ψ ◦ T −1
v (x, η) − η = ψ(x,−1 + η(1 + v(x))) − η, (2.4)

for (x, η) ∈ �, and recall that � ∈ Hσ (�) for each σ < s and ∂η� ∈ H1(�) according
to [21, Proposition 4.1]. As a consequence of (1.11) we realize that � solves the Dirichlet
problem

Lv� = fv in �, � = 0 on ∂�, (2.5)

the operator Lv and the function fv being given by

Lvw := ε2∂2x w − 2ε2ηV (x) ∂x∂ηw +
[

1

(1 + v(x))2
+ ε2η2V (x)2

]
∂2ηw

+ ε2η
(
V (x)2 − ∂x V (x)

)
∂ηw

(2.6)

and
fv(x, η) := ε2η

(
∂x V (x) − V (x)2

)
, (2.7)

with
V := ∂x ln (1 + v) = ∂xv/(1 + v). (2.8)

We now prove some useful identities involving �.

Lemma 2.2 We set � := ∂η�(., 1) ∈ H1/2(I ). Then V ∈ Hs−1(I ) and �2 ∈ H2−s(I ) with

ε2
∥∥∂x� − ηV ∂η�

∥∥2
L2(�)

+
∥∥∥∥

∂η�

1 + v

∥∥∥∥

2

L2(�)

= ε2
∫

�

V (� + η)
(
∂x� − ηV ∂η�

)
d(x, η)

− ε2
∫

�

ηV 2� d(x, η), (2.9)

and

Q2 := ε2
∥∥∥∂x∂η� − ηV ∂2η�

∥∥∥
2

L2(�)
+
∥∥∥∥∥

∂2η�

1 + v

∥∥∥∥∥

2

L2(�)

= ε2
(R∗

1 + R∗
2

)
, (2.10)

where

R∗
1 := 1

2
〈∂x V, �2〉Hs−2,H2−s +

∫

�

V
(
∂x∂η� − ηV ∂2η�

)
∂η� d(x, η), (2.11)

R∗
2 := 〈∂x V, �〉Hs−2,H2−s −

∫

�

ηV 2∂2η� d(x, η). (2.12)
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Proof It first follows from the continuity of pointwise multiplication (see [1, Theorem 4.1
& Remark 4.2(d)])

H1/2(I ) · H1/2(I ) −→ Hσ (I ), 0 ≤ σ < 1/2,

that �2 belongs to Hσ (I ) for all σ ∈ [0, 1/2) and in particular to H2−s(I ).
Step 1 To prove (2.9) and (2.10) we first consider the case where v is more regular, namely
we assume that v ∈ H3(I ) in addition to being in Ss

2(κ), so that � ∈ H2(�) by [10,
Proposition 5]. We then multiply (2.5) by � and integrate over �. Using Green’s formula
and the boundary condition � = 0 on ∂�, we obtain

ε2
∥∥∂x� − ηV ∂η�

∥∥2
L2(�)

+
∥
∥∥
∥

∂η�

1 + v

∥
∥∥
∥

2

L2(�)

= ε2
∫

�

η(V 2 − ∂x V )�
(
1 − ∂η�

)
d(x, η).

Moreover,

−
∫

�

η�∂x V d(x, η) =
∫

�

ηV ∂x� d(x, η)

and, employing Green’s formula twice,
∫

�

η�∂η� ∂x V d(x, η) = −1

2

∫

�

�2∂x V d(x, η) =
∫

�

V �∂x� d(x, η).

Combining the above identities leads us to

ε2
∥∥∂x� − ηV ∂η�

∥∥2
L2(�)

+
∥∥∥∥

∂η�

1 + v

∥∥∥∥

2

L2(�)

= ε2
∫

�

V �
(
∂x� − ηV ∂η�

)
d(x, η)

+ ε2
∫

�

ηV (∂x� + V �) d(x, η).

We finally use once more the homogeneous Dirichlet boundary conditions of � and Green’s
formula to prove that

∫

�

ηV 2� d(x, η) = 2
∫

�

ηV 2� d(x, η) −
∫

�

ηV 2� d(x, η)

= −
∫

�

η2V 2∂η� d(x, η) −
∫

�

ηV 2� d(x, η)

and complete the proof of (2.9).
We next infer from [21, Eqs. (4.14)–(4.16)] that

Q2 = ε2
∥∥∥∂x∂η� − ηV ∂2η�

∥∥∥
2

L2(�)
+
∥∥∥∥∥

∂2η�

1 + v

∥∥∥∥∥

2

L2(�)

= ε2 (R1 + R2),

with

R1 :=
∫

�

η
(
∂x V − V 2) ∂η� ∂2η� d(x, η),

R2 :=
∫

�

η
(
∂x V − V 2) ∂2η� d(x, η).
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Arguing as in the derivation of [21, Eq. (4.17)], a first use of Green’s formula gives

R1 = 1

2

∫

�

η∂x V ∂η

[
(∂η�)2

]
d(x, η) −

∫

�

ηV 2∂η�∂2η� d(x, η)

= 1

2

∫ 1

−1
�2∂x V dx − 1

2

∫

�

∂x V (∂η�)2 d(x, η) −
∫

�

ηV 2∂η�∂2η� d(x, η).

Since the homogeneous Dirichlet boundary conditions on � entail that ∂η�(±1, η) = 0
for η ∈ (0, 1), we use once more Green’s formula to transform the second integral on the
right-hand side of the above identity and thus obtain

R1 = 1

2

∫ 1

−1
�2∂x V dx +

∫

�

V ∂η�∂x∂η� d(x, η) −
∫

�

ηV 2∂η�∂2η� d(x, η).

Therefore R1 coincides with R∗
1. Finally, note that

R2 =
∫

�

∂x V ∂η

(
η∂η�

)
d(x, η) −

∫

�

∂x V ∂η� d(x, η) −
∫

�

ηV 2∂2η� d(x, η)

=
∫ 1

−1
∂x V

[
η∂η�

]η=1

η=0
dx −

∫ 1

−1
∂x V [�(x, 1) − �(x, 0)] dx −

∫

�

ηV 2∂2η� d(x, η)

=
∫ 1

−1
�∂x V dx −

∫

�

ηV 2∂2η� d(x, η),

so that R2 = R∗
2 as claimed.

Step 2 Finally, extending the validity of (2.9) and (2.10) to functions v belonging only to
Ss
2(κ) is done by an approximation argument as in [21, Section 4] to which we refer. ��

Proof of Proposition 2.1 On the one hand, one easily checks that the functions η �→ −η and
η �→ 1 − η solve (2.5) in � with −η ≤ �(x, η) = 0 ≤ 1 − η for all (x, η) ∈ ∂�. We then
deduce from the comparison principle that

− η ≤ �(x, η) ≤ 1 − η, (x, η) ∈ �. (2.13)

On the other hand, Hs(I ) is continuously embedded in C1([−1, 1]) and Hs−1(I ) is an
algebra since s > 3/2. Thus, as v ∈ Ss

2(κ), there is c1(κ) > 0 depending only on s and κ

such that
‖v‖C1([−1,1]) + ‖V ‖∞ + ‖V ‖Hs−1 ≤ c1(κ). (2.14)

It now follows from (2.9), (2.13), (2.14), and the Cauchy–Schwarz inequality that

ε2
∥∥∂x� − ηV ∂η�

∥∥2
L2(�)

+
∥∥∥∥

∂η�

1 + v

∥∥∥∥

2

L2(�)

≤ ε2

2

∫

�

(
∂x� − ηV ∂η�

)2 d(x, η) + ε2

2

∫

�

V 2 [(� + η)2 − 2η�
]
d(x, η)

≤ ε2

2

∥∥∂x� − ηV ∂η�
∥∥2

L2(�)
+ ε2 ‖V ‖22

≤ ε2

2

∥∥∂x� − ηV ∂η�
∥∥2

L2(�)
+ c1(κ)2ε2.

We have thus shown that

ε2
∥∥∂x� − ηV ∂η�

∥∥2
L2(�)

+
∥∥∥∥

∂η�

1 + v

∥∥∥∥

2

L2(�)

≤ c(κ)ε2. (2.15)

123



Vanishing aspect ratio limit for a fourth-order MEMS model 1547

We next estimateR∗
1. Fix ν ∈ (2− s, 1/2). Then continuity of pointwise multiplication (see

[1, Theorem 4.1 & Remark 4.2(d)])

H1/2(I ) · H ν(I ) −→ H2−s(I )

and (2.14) imply that
∣
∣
∣〈∂x V, �2〉Hs−2,H2−s

∣
∣
∣ ≤ ‖∂x V ‖Hs−2‖�2‖H2−s

≤ c‖V ‖Hs−1 ‖�‖H1/2‖�‖Hν ≤ c(κ)‖�‖H1/2‖�‖Hν .

We next use the continuity of the trace from Hσ (�) in Hσ−1/2(∂�) for all σ ∈ (1/2, 1] and
the fact that the complex interpolation space [L2(�), H1(�)]σ coincides with Hσ (�) (up
to equivalent norms) to estimate � and obtain

‖�‖H1/2 ≤ c‖∂η�‖H1(�), ‖�‖Hσ−1/2 ≤ c‖∂η�‖Hσ (�) ≤ c‖∂η�‖σ
H1(�)

‖∂η�‖1−σ
L2(�).

(2.16)

Combining the above estimate with (2.16) for σ = (2ν + 1)/2 gives
∣
∣〈∂x V, �2〉Hs−2,H2−s

∣
∣ ≤ c(κ)‖∂η�‖(2ν+3)/2

H1(�)
‖∂η�‖(1−2ν)/2

L2(�) .

Since ε ∈ (0, 1) and v ∈ Ss
2(κ) we further infer from (2.14), (2.15), and the definition (2.10)

of Q that
∣∣〈∂x V, �2〉Hs−2,H2−s

∣∣ ≤ c(κ)
(
‖∂x∂η�‖(2ν+3)/2

L2(�) + ‖∂2η�‖(2ν+3)/2
L2(�)

)
‖∂η�‖(1−2ν)/2

L2(�)

+ c(κ)‖∂η�‖2L2(�)

≤ c(κ)‖∂x∂η� − ηV ∂2η�‖(2ν+3)/2
L2(�)

∥∥∥∥
∂η�

1 + v

∥∥∥∥

(1−2ν)/2

L2(�)

+ c(κ)
(
‖ηV ∂2η�‖(2ν+3)/2

L2(�) + ‖∂2η�‖(2ν+3)/2
L2(�)

) ∥∥∥∥
∂η�

1 + v

∥∥∥∥

(1−2ν)/2

L2(�)

+ c(κ)

∥∥∥∥
∂η�

1 + v

∥∥∥∥

2

L2(�)

≤ c(κ)

⎛

⎝‖∂x∂η� − ηV ∂2η�‖(2ν+3)/2
L2(�) +

∥∥∥∥∥
∂2η�

1 + v

∥∥∥∥∥

(2ν+3)/2

L2(�)

⎞

⎠ ε(1−2ν)/2

+ c(κ)ε2

≤ c(κ)

(
Q

ε

)(2ν+3)/2

ε(1−2ν)/2 + c(κ)ε2,

hence ∣∣〈∂x V, �2〉Hs−2,H2−s

∣∣ ≤ c(κ)ε−1−2ν Q(2ν+3)/2 + c(κ)ε2. (2.17)

It also follows from (2.14), (2.15), the definition (2.10) of Q, and the Cauchy–Schwarz
inequality that
∣∣∣∣

∫

�

V
(
∂x∂η� − ηV ∂2η�

)
∂η� d(x, η)

∣∣∣∣ ≤ ‖∂xv‖∞
∥∥∥∂x∂η� − ηV ∂2η�

∥∥∥
L2(�)

∥∥∥∥
∂η�

1 + v

∥∥∥∥
L2(�)

≤ c(κ)Q.
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Combining (2.11), (2.17), and the above estimate, we end up with

|R∗
1| ≤ c(κ)

[
ε−1−2ν Q(2ν+3)/2 + Q + ε2

]
. (2.18)

We next turn to R∗
2 and first deduce from (2.14) and (2.16) (with σ = (2ν + 1)/2) that
∣
∣〈∂x V, �〉Hs−2,H2−s

∣
∣ ≤ ‖∂x V ‖Hs−2‖�‖H2−s ≤ c(κ)‖�‖Hν

≤ c(κ)‖∂η�‖(2ν+1)/2
H1(�)

‖∂η�‖(1−2ν)/2
L2(�) .

Arguing as in the proof of (2.17) leads us to
∣
∣〈∂x V, �〉Hs−2,H2−s

∣
∣ ≤ c(κ)ε−2ν Q(2ν+1)/2 + c(κ)ε. (2.19)

In addition, it follows from (2.14), the definition (2.10) of Q, and the Cauchy–Schwarz
inequality

∣
∣∣
∣

∫

�

ηV 2∂2η� d(x, η)

∣
∣∣
∣ ≤ ‖V ‖∞‖∂xv‖∞

∥
∥
∥
∥
∥

∂2η�

1 + v

∥
∥
∥
∥
∥

L2(�)

≤ c(κ)Q,

which gives, together with (2.19),

|R∗
2| ≤ c(κ)

[
ε−2ν Q(2ν+1)/2 + Q + ε

]
. (2.20)

We now infer from (2.10), (2.18), and (2.20) that

Q2 ≤ c(κ)
[
ε1−2ν Q(2ν+3)/2 + ε2−2ν Q(2ν+1)/2 + ε2Q + ε3 + ε4

]

and further deduce from Young’s inequality (using 2ν + 3 < 4 and ε ∈ (0, 1)) that

Q2 ≤ Q2

2
+ c(κ)

[
ε8(1−ν)/(3−2ν) + ε3 + ε4

]
≤ Q2

2
+ c(κ)ε8(1−ν)/(3−2ν).

Recalling (2.15) we have thus established that

∥∥∂x� − ηV ∂η�
∥∥

L2(�)
+ 1

ε

∥∥∥∥
∂η�

1 + v

∥∥∥∥
L2(�)

≤ c(κ), (2.21)

∥∥∥∂x∂η� − ηV ∂2η�

∥∥∥
L2(�)

+ 1

ε

∥∥∥∥∥
∂2η�

1 + v

∥∥∥∥∥
L2(�)

≤ c(κ)ε(1−2ν)/(3−2ν), (2.22)

with 1 − 2ν > 0. Several consequences can be derived from (2.21)–(2.22). First, it readily
follows from the boundary condition �(x, 0) = 0 for all x ∈ I that

�(x, η) =
∫ η

0
∂η�(x, ξ) dξ, (x, η) ∈ �,

which, together with (2.21), gives

‖�‖L2(�) ≤ ‖∂η�‖L2(�) ≤ c(κ)ε. (2.23)

Another straightforward consequence of (2.14), (2.21), (2.22), and the continuity (2.16) of
the trace operator is

‖�‖H1/2 ≤ c
∥∥∂η�

∥∥
H1(�)

≤ c(κ)ε(1−2ν)/(3−2ν). (2.24)
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Now, owing to the relationship (2.4) between � and ψ , we realize that, for (x, z) ∈ �(v)

and η = (1 + z)/(1 + v(x)),

∂zψ(x, z) − 1

1 + v(x)
= ∂η�(x, η)

1 + v(x)
,

∂x∂zψ(x, z) + ∂xv(x)

(1 + v(x))2
= ∂x∂η�(x, η) − ηV (x)∂2η�(x, η) − V (x)∂η�(x, η)

1 + v(x)
,

∂2z ψ(x, z) = ∂2η�(x, η)

(1 + v(x))2
.

Combining these formulas with (2.21)–(2.23) leads to (2.1), the first part of (2.2), and (2.3).
As for the second part of (2.2) we first recall that, thanks to (1.11), there holdsψ(x, v(x)) = 1
for x ∈ I from which we deduce that ∂xψ(x, v(x)) = −∂xv(x)∂zψ(x, v(x)), x ∈ I . Thus

gε(v) =
(

1

(1 + v)2
+ ε2V 2

)
(1 + �)2 = 1

(1 + v)2
+ �(2 + �)

(1 + v)2
+ ε2V 2(1 + �)2.

Given σ ∈ [0, 1/2), continuity of pointwise multiplication (see [1, Theorem 4.1 &
Remark 4.2(d)])

H1/2(I ) · H1/2(I ) −→ H (1+2σ)/4(I ), Hs−1(I ) · H (1+2σ)/4(I ) −→ Hσ (I )

and (2.14) entail that
∥∥∥∥gε(v) − 1

(1 + v)2

∥∥∥∥
Hσ

≤
∥∥∥∥

1

(1 + v)2

∥∥∥∥
Hs−1

‖�(2 + �)‖H (1+2σ)/4

+ ε2‖V 2‖Hs−1‖(1 + �)2‖H (1+2σ)/4

≤ c(κ)‖�‖H1/2‖2 + �‖H1/2 + c(κ)ε2 ‖1 + �‖2H1/2 .

Therefore, thanks to (2.24),
∥∥∥∥gε(v) − 1

(1 + v)2

∥∥∥∥
Hσ

≤ c(κ)ε(1−2ν)/(3−2ν),

which completes the proof of (2.2). ��

Remark 2.3 As mentioned before, estimates similar to (2.21) and (2.22) have already been
derived in [10,18] when v is more regular, namely v ∈ S2

q (κ) for some q > 2 and κ . The
estimates obtained therein are better in the sense that they involve higher powers of ε. A
rough explanation for this discrepancy is that we use several times Green’s formula in the
proof of Proposition 2.1 to handle less regular functions v. This procedure somewhat mixes
the x-derivative and η-derivative which do not decay in the same way with respect to ε and
results in the weaker estimates (2.21) and (2.22).

3 Small aspect ratio limit: the stationary case

Fix � > 2. Starting from the outcome of Proposition 1.2 the first step of the proof of
Theorem 1.3 is to establish bounds on (λ�,ε, u�,ε, ψ�,ε) which do not depend on ε small
enough.
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Lemma 3.1 There are C1 > 0, κ0 ∈ (0, 1), and ε0 > 0 such that, for ε ∈ (0, ε0),

− 1 + κ0 ≤ u�,ε(x) ≤ 0, x ∈ [−1, 1], (3.1)

λ�,ε + ‖u�,ε‖H2 ≤ 1

κ0
, (3.2)

0 ≤ � −
∫ 1

−1

dx

1 + u�,ε(x)
≤ C1ε

2. (3.3)

Proof Setting

K1 := {v ∈ H1
D(I ) : −1 < v ≤ 0 in I

}
,

we recall that Ee,ε ∈ C(K1) by [21, Proposition 2.7] and satisfies
∫ 1

−1

dx

1 + v
≤ Ee,ε(v) ≤

∫ 1

−1

(
1 + ε2|∂xv|2) dx

1 + v
, v ∈ K1, (3.4)

see [21, Lemma 2.8]. Introducing φ(x) := −(1 − x2)2, x ∈ I , it readily follows from
the continuity of Ee,ε and (3.4) that θ �→ Ee,ε(θφ) continuously maps (0, 1) in (2,∞).
Consequently, there is θ�,ε ∈ (0, 1) such that Ee,ε(θ�,εφ) = � and thus θ�,εφ belongs to the
set A�,ε introduced in (1.13). The variational characterization (1.12) of u�,ε then entails

Em(u�,ε) ≤ Em(θ�,εφ) ≤ Em(φ). (3.5)

Furthermore, it follows from [20, Equation (6.12)] that there are ε0 > 0 and 
 > 0 such that
(1.1)–(1.4) has no stationary solution for λ > 
 and ε ∈ (0, ε0). Consequently, λ�,ε ∈ (0,
]
for ε ∈ (0, ε0) which, together with (3.5), gives (3.2).

Next, since u�,ε ∈ A�,ε , we infer from Proposition 1.2, (3.2), and [21, Lemma 3.3] that

0 = max[−1,1] u�,ε ≥ min[−1,1] u�,ε ≥ −1 + κ2
0

�(2κ0 + �)2
,

whence (3.1) by making κ0 smaller, if necessary.
Finally, using again that u�,ε ∈ A�,ε , we deduce from (3.1), (3.2), and (3.4) that

0 ≤ � −
∫ 1

−1

dx

1 + u�,ε

≤ ε2
∫ 1

−1

|∂x u�,ε|2
1 + u�,ε

dx ≤ ε2

κ0
‖∂x u�,ε‖22 ≤ ε2

κ3
0

,

which completes the proof. ��
Thanks to the just derived bounds and the analysis performed in Sect. 2 we are in a position

to prove Theorem 1.3.

Proof of Theorem 1.3 Owing to the compact embedding of H2(I ) in Hs(I ), s ∈ [1, 2), and
in C1([−1, 1]), we infer from Lemma 3.1 that there are a sequence (εk)k≥1 with εk → 0,
λ� ∈ [0, 1/κ0], and u� ∈ H2

D(I ) such that

u�,εk ⇀ u� in H2(I ) (3.6)

and
lim

k→∞
{|λ�,εk − λ�| + ‖u�,εk − u�‖Hs + ‖u�,εk − u�‖C1([−1,1])

} = 0 (3.7)

for any s ∈ [1, 2). It readily follows from (3.1), (3.3), and (3.7) that

− 1 + κ0 ≤ u�(x) ≤ 0, x ∈ I, and
∫ 1

−1

dx

1 + u�(x)
= �. (3.8)
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Now, fix s ∈ (3/2, 2) and ν ∈ (2 − s, 1/2). According to (3.1) and (3.2), u�,εk belongs to
Ss
2(κ0) and we infer from Proposition 2.1, (3.1), and (3.8) that, for σ ∈ [0, 1/2),
∥
∥
∥
∥gεk (u�,εk ) − 1

(1 + u�)2

∥
∥
∥
∥

Hσ

≤
∥
∥
∥
∥gεk (u�,εk ) − 1

(1 + u�,εk )
2

∥
∥
∥
∥

Hσ

+
∥
∥
∥
∥

1

(1 + u�,εk )
2 − 1

(1 + u�)2

∥
∥
∥
∥

Hσ

≤ c(κ0)ε
(1−2ν)/(3−2ν)
k +

∥
∥
∥
∥
(2 + u� + u�,εk )(u� − u�,εk )

(1 + u�,εk )
2(1 + u�)2

∥
∥
∥
∥

Hσ

≤ c(κ0)
[
ε
(1−2ν)/(3−2ν)
k + ‖u� − u�,εk ‖H1

]
.

We then deduce from (3.7) that

lim
k→∞

∥
∥
∥
∥gεk (u�,εk ) − 1

(1 + u�)2

∥
∥
∥
∥

Hσ

= 0 (3.9)

for all σ ∈ [0, 1/2). Thanks to (3.7) and (3.9) it is now straightforward to pass to the limit
as εk → 0 in the equation solved by u�,εk and conclude that u� is a weak solution in H2

D(I )
to (1.14). However, since the right-hand side of (1.14) belongs to H2

D(I ), classical elliptic
regularity results entail that u� belongs to H4

D(I ) and is a classical solution to (1.14).
To check the minimizing property of u�, we consider v ∈ A�,0 and observe that the

function ϑ �→ Ee,ε(ϑv) continuously maps (0, 1] onto (2, Ee,ε(v)], while � ≤ Ee,ε(v) for
ε > 0 according to (3.4). Consequently, there is ϑ�,ε ∈ (0, 1] such that Ee,ε(ϑ�,εv) = �, that
is, ϑ�,εv ∈ A�,ε . Recalling (1.12) gives

Em(u�,ε) ≤ Em(ϑ�,εv) ≤ Em(v).

We then use the lower semicontinuity of Em and (3.6) to conclude that Em(u�) ≤ Em(v). This
inequality being valid for all v ∈ A�,0, we have thus proved that u� is a minimizer of Em on
A�,0.

Finally the stated convergence properties ofψ�,εk readily follow from Proposition 2.1 and
(3.7). ��

4 Small aspect ratio limit: the evolutionary case

We next focus on the vanishing aspect ratio limit for the evolution problem (1.1)–(1.5). As
pointed out in the introduction, the proof of the parabolic case γ = 0 stated in Theorem 1.6 is
similar to (actually, simpler than) the hyperbolic case γ > 0. We thus only treat the latter and
may assumewithout loss of generality that γ = 1. As a first step we recall the well-posedness
of (1.1)–(1.5) which is established in [20]. Let 2α ∈ (0, 1/2) and consider the Hilbert space
Hα := H2+2α

D (I ) × H2α
D (I ) and the (unbounded) linear operator Aα on Hα with domain

D(Aα) := H4+2α
D (I ) × H2+2α

D (I ) defined by

Aαw :=
⎛

⎝
0 −w1

β∂4x w0 − τ∂2x w0 w1

⎞

⎠ , w = (w0, w1) ∈ D(Aα).

According to [2, Chapter V] and [3] the operator Aα generates a strongly continuous group
(e−tAα )t∈R onHα and [15] entails that the damping term provides an exponential decay, that
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is, there are Mα > 0 and ω > 0 such that

‖e−tAα‖L(Hα) ≤ Mαe
−ωt , t ≥ 0. (4.1)

Let ε, λ > 0, a ≥ 0, and fix κ ∈ (0, 1). Consider u0 := (u0, u1) ∈ D(Aα) such that

u0 ∈ S2+2α
2 (κ) and ‖u1‖H2α <

1

κ
. (4.2)

By [20, Corollary 3.4] there is a unique solution (uε, ψε) with ψε = ψuε to (1.1)–(1.5)
defined on the maximal interval of existence [0, T ε

m) satisfying

uε := (uε, ∂t uε) ∈ C([0, T ε
m),Hα), min

x∈[−1,1] uε(t, x) > −1, t ∈ [0, T ε
m),

and

uε(t) = e−tAα u0 +
∫ t

0
e−(t−s)Aα Fε(uε(s)) ds, t ∈ [0, T ε

m), (4.3)

where

Fε(w) :=
(

0
−λ gε(w

0) + a‖∂xw
0‖22 ∂2x w0

)
, w ∈ Hα. (4.4)

After this preparation let us begin the study of the behavior as ε → 0 by noticing that,
setting κ0 := κ/2 ∈ (0, 1/2), the continuity properties of uε and (4.2) ensure that

T ε := sup
{

t ∈ [0, T ε
m) : uε(s) ∈ S2+α

2 (κ0) and ‖∂t uε(s)‖H2α < 1/κ0 for s ∈ [0, t]
}

> 0.

(4.5)
Thanks to the continuity of the embeddings of H2+2α(I ) in W 2

q (I ) for some q > 2 and in
W 1∞(I ) (the latter with embedding constant denoted by cI ), the definition of T ε guarantees
that there is a positive constant K1 depending only on κ and α such that, for all ε ∈ (0, 1),

−1 + κ0 ≤ uε(t, x) ≤ cI

κ0
, (t, x) ∈ [0, T ε) × [−1, 1], (4.6)

‖uε(t)‖W 2
q (I ) + ‖uε(t)‖W 1∞(I ) ≤ K1, t ∈ [0, T ε). (4.7)

The next step of the proof is to show that T ε (and thus also T ε
m) does not collapse to zero

as ε → 0, so that the solutions (uε, ψε)ε∈(0,1) have a common interval of existence.

Lemma 4.1 (i) There is T > 0 depending only on λ, α, a, κ , and ‖u0‖D(Aα) such that
T ε ≥ T for all ε ∈ (0, 1).

(ii) There is δ > 0 depending only on α and κ such that T ε = T ε
m = ∞ for all ε ∈ (0, 1)

provided (λ, a, ‖Aαu0‖Hα ) ∈ (0, δ) × [0, δ)2.
Furthermore, there is K2 > 0 depending only on κ and α such that

‖gε(uε(t))‖H2α ≤ K2, t ∈ [0, T ε). (4.8)

Proof Let ε ∈ (0, 1) and t ∈ [0, T ε). Since 2α ∈ (0, 1/2) and uε(t) ∈ S2+2α
2 (κ0) ⊂

S(3+4α)/2
2 (κ0) we infer from Proposition 2.1 (with s = (3 + 4α)/2 and σ = 2α), (4.6), and

(4.7) that

‖gε(uε(t))‖H2α ≤
∥∥∥∥gε(uε(t)) − 1

(1 + uε(t))2

∥∥∥∥
H2α

+
∥∥∥∥

1

(1 + uε(t))2

∥∥∥∥
H2α

≤ Csg + C

∥∥∥∥
1

(1 + uε(t))2

∥∥∥∥
W 1∞

≤ K3 (4.9)
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for some positive constant K3 depending only κ and α, hence

‖Fε(uε(t))‖Hα
≤ (λ + a) K3, t ∈ [0, T ε), (4.10)

with a possibly larger constant K3, but still depending only on α and κ . Recalling that

e−tAα u0 − u0 = −
∫ t

0
e−sAαAαu0 ds, t ≥ 0,

it follows from (4.1), (4.3), and (4.10) that, for t ∈ [0, T ε),

∥
∥uε(t) − u0

∥
∥
Hα

≤
∥
∥
∥e−tAα u0 − u0

∥
∥
∥
Hα

+
∫ t

0

∥
∥
∥e−(t−s)Aα Fε(uε(s))

∥
∥
∥
Hα

ds

≤ Mα

ω

(
1 − e−ωt ) (‖Aαu0‖Hα + (λ + a)K3

)
. (4.11)

Combining this estimate with (4.2) further gives

uε(t, x) = u0(x) + uε(t, x) − u0(x) ≥ −1 + κ − ‖uε(t) − u0‖∞
≥ −1 + κ − cI ‖uε(t) − u0‖Hα

≥ −1 + κ − MαcI

ω

(
1 − e−ωt ) (‖Aαu0‖Hα + (λ + a)K3

)
, (4.12)

for (t, x) ∈ [0, T ε) × [−1, 1].
On the one hand, if T is chosen such that

Mα

ω

(
1 − e−ωT

) (‖Aαu0‖Hα + (λ + a)K3
)

< min

{
2 − √

2

κ
,

κ

2cI

}

,

then we deduce from (4.11) and (4.12) that, for t ∈ [0, T ),

‖uε(t)‖Hα =
√

‖uε(t)‖2H2+2α + ‖∂t uε(t)‖2H2α <
1

κ0
,

while

uε(t, x) > −1 + κ − κ

2
= −1 + κ0, x ∈ [−1, 1].

Consequently, uε(t) ∈ S2+2α
2 (κ0) and ‖∂t uε(t)‖H2α < 1/κ0 for all t ∈ [0, T ). We have thus

shown that T ε ≥ T and completed the proof of the first statement of Lemma 4.1.
On the other hand, let δ > 0 be such that

Mα

ω
(1 + 2K3) δ < min

{
2 − √

2

κ
,

κ

2cI

}

,

and assume that λ ∈ (0, δ), a ∈ [0, δ), and ‖Aαu0‖Hα ∈ [0, δ). Arguing as above we realize
that, for all t ∈ [0, T ε), there hold

uε(t) ∈ S2+2α
2 (κ0) and ‖∂t uε(t)‖H2α <

1

κ0
,

which entails that T ε = ∞ and also that T ε
m = ∞ as claimed in the second statement of

Lemma 4.1. Recalling (4.9) completes the proof of Lemma 4.1. ��
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Proof of Theorem 1.4 According to Lemma 4.1

T 0 := inf
ε∈(0,1)

T ε > 0.

Fix T ∈ (0, T 0). Recalling the definition (4.5) of T ε , we realize that

the family (uε)ε∈(0,1) is bounded in C1 ([0, T ], H2α(I )
)

and in C
([0, T ], H2+2α(I )

)
.

(4.13)
Also, since

∂2t uε = −∂t uε − β∂4x uε + (τ + a‖∂x uε‖22
)
∂2x uε − λgε(uε) a.e. in (0, T ) × I

according to (1.3) and [20, Corollary 3.4], we infer from (4.8) and (4.13) that

the family (∂t uε)ε∈(0,1) is bounded in C1 ([0, T ], H2α−2(I )
)

and in C
([0, T ], H2α(I )

)
.

(4.14)

Thus, given 2α′ ∈ (0, 2α), it follows from the compactness of the embeddings of H2+2α(I )
in H2+2α′

(I ) and in W 1∞(I ), that of H2α(I ) in H2α′
(I ), and the Arzelà–Ascoli theorem that

there are a function

u0 ∈ C
([0, T ], H2+2α′

(I )
) ∩ C1([0, T ], H2α′

(I )
)

and a sequence (εk)k≥1 of positive real numbers with εk → 0 such that

lim
k→∞

{

sup
t∈[0,T ]

‖uεk (t) − u0(t)‖H2+2α′ + sup
t∈[0,T ]

‖uεk (t) − u0(t)‖W 1∞

}

= 0,

lim
k→∞ sup

t∈[0,T ]
‖∂t uεk (t) − ∂t u0(t)‖H2α′ = 0.

(4.15)

In particular,

lim
k→∞ sup

t∈[0,T ]
‖uεk (t) − u0(t)‖Hα′ = 0 with u0 := (u0, ∂t u0). (4.16)

A first consequence of (4.6) and (4.15) is

− 1 + κ0 ≤ u0(t, x) ≤ cI

κ0
, (t, x) ∈ [0, T ] × [−1, 1]. (4.17)

It also readily follows from Proposition 2.1 (with s = 2 − α, ν = 2α, and σ = 2α′), (4.6),
(4.15), and (4.17) that

sup
t∈[0,T ]

∥
∥
∥∥gεk (uεk (t)) − 1

(1 + u0(t))2

∥
∥
∥∥

H2α′ ≤ Csg ε
(1−4α)/(3−4α)
k

+ C sup
t∈[0,T ]

∥
∥
∥
∥

1

(1 + uεk (t))
2 − 1

(1 + u0(t))2

∥
∥
∥
∥

W 1∞

with right-hand side converging to zero as k → ∞, hence

Fεk (uεk ) −→ F0(u0) :=
⎛

⎝
0

− λ

(1 + u0)2
+ a‖∂x u0‖22 ∂2x u0

⎞

⎠ in C([0, T ],Hα′).
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We are then in a position to pass to the limit as εk → 0 in (4.3) and deduce from (4.16) and
the above convergence that

u0(t) = e−tAα′ u0 +
∫ t

0
e−(t−s)Aα′ F0(u0(s)) ds, t ∈ [0, T ]. (4.18)

In other words, u0 is a mild solution in Hα′ to

∂t u0 + Aα′u0 = F0(u0), t ∈ (0, T ], u0(0) = u0. (4.19)

Furthermore,Hα′ is reflexive and F0 is a locally Lipschitz continuousmap from S2+2α′
2 (κ0)×

H2α′
(I ) into itself. Thus, since u0 ∈ D(Aα′), we infer from [30, Theorem 6.1.6] that u0 is

actually a strong solution to (4.19), that is, u0 ∈ L1(0, T, D(Aα′)) is differentiable a.e. with
∂t u0 = (∂t u0, ∂

2
t u0) ∈ L1(0, T,Hα′). Therefore, u0 is a strong solution to (1.15)–(1.17).

Finally, the stated convergence of the sequence (ψεk )k readily follows from (2.1) and (4.16).
In fact, we have so far proved Theorem 1.3 only for a sequence (εk)k≥1. However, the

strong solution u0 to (1.15)–(1.17) is unique, see [19] for a proofwhen a = 0which extends to
the case a > 0. This ensures that the whole family (uε)ε∈(0,1) converges, thereby completing
the proof of Theorem 1.3. ��
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