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Abstract Given two circles contained in parallel planes, it is expectable that there does not
exist a doubly connected minimal surface bounded by both circles if these circles are either
laterally or vertically far away. In this paper, we give a quantitative estimate of this separation.
We also obtain bounds for the height of a Riemann minimal example in terms of a catenoid
with the same boundary radii and waist.
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1 Introduction and motivation of the results

If we dip a wire contour into a solution of a soapy water and then pull it out, the soap film
formed by the frame is a surface with the least possible area among all surfaces having the
same contour. The energy of the soap film is due to the forces of attraction between the
molecules (surface tension) and where the gravity is neglected (small wire contours). Thus
this energy is proportional to the area of the soap film. Mathematically, a surface that locally
minimizes the area has the property that its mean curvature is zero everywhere and it is called
a minimal surface.

In this paper, we are interested in the case that the wire contour is formed by two circles
C1 and C2 and it is motivated by the experiments that one can easily do with the soap
films framed by two circles. Firstly, we dip two coaxial circles C1 ∪ C2 in parallel planes
Π1 ∪ Π2,Ci ⊂ Πi , i = 1, 2. If C1 is sufficiently close to C2, the soap film obtained is
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1514 R. López

Fig. 1 left: A piece of a Riemann minimal example. right: the surface is obtained by the reflection across the
plane of equation z = 0 of the piece on the left side. Here a = 4 and b = 2

a catenoid, which is, besides the plane, the only rotational minimal surface. From early
works of Plateau, Goldschmidt and Lindelöf, it is known that after a critical value of the
vertical distance between the circles, the catenoid breaks into two disks [2,4,14]. In fact, and
depending on the distance h between the two circles, there are zero, one or two catenoids,
one of which is unstable in the latter case. For example, if C1 and C2 have the same radius
r , there exists h0 � 1.325r such that if h < h0, there are two catenoids spanning C1 and
C2 and only one is physically realizable; if h = h0 there is exactly one catenoid bounded by
C1 ∪ C2; and if h > h0, there is not a catenoid joining C1 with C2.

Once that we have formed a catenoid we now displace slightly the circles C1 and C2

sideways in a direction parallel to Πi without breaking the soap film. In such a case, we
go obtaining a family of minimal surfaces with the topology of an annulus, also called
in topology, a doubly connected surface. Shiffman proved in [17] that a minimal annulus
spanning two circles in parallel planes is, indeed, foliated by circles in parallel planes, that
is, the intersection of the surface with a parallel plane to Πi is a circle. This surface belongs
to a family of minimal surfaces discovered by Riemann in 1860s and called in the literature
a Riemann minimal example [15]. A Riemann minimal example is a surface with zero mean
curvature constructed by a uniparametric family of circles in parallel planes. See Fig. 1. Recall
here that Enneper proved that if a minimal surface is foliated by a uniparametric family of
circles, then the foliating planes must be parallel [1] and thus, the surface is rotational or it
is one of the Riemann minimal examples. More properties of these surfaces will appear in
Sect. 2.

After constructing a catenoid, and then a piece of a Riemann minimal example, we follow
by displacing C1 and C2 sideways by keeping the vertical distance h. If C1 and C2 are
sufficiently far, the surface breaks into two disks, namely the two disks bounded by each
circle Ci in Πi . If d denotes the lateral distance between the centers of C1 and C2, the above
experiments can summarize as follows. If d = 0, the surface is the catenoid. For d > 0
close to 0, we obtain a Riemann minimal example and if d is sufficiently big, the surface
leaves to be connected. It is a problem in classical theory of minimal surfaces to estimate
the value d1 = d1(r1, r2, h) such that no doubly connected minimal surface bounded by C1

and C2 exists for d > d1. The control of the number d1(h) appears as ‘Problem 33’ in [8].
A similar question can be considered for two Jordan curves Γ1 and Γ2 contained in Π1 and
Π2, respectively. We point out the main results related with this paper.

1. If there exists a connected minimal surface bounded by C1 ∪ C2, then the orthogonal
projection on a plane parallel to Πi of C1 and C2 must overlap [10]. This result is more
general, and it is known that if there exists a plane orthogonal to Π1 ∪ Π2 separating
C1 and C2, then C1 ∪C2 cannot bound a minimal surface of annulus type (see also [16]
when C1 and C2 are convex curves by using an argument with the touching principle of
minimal surfaces).
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2. Denote by δi the diameter of Γi . If there exists a (connected) minimal surface, then
h ≤ max{δ1, δ2} ([16]). In particular, the surface is contained in a vertical slab of width
max{δ1, δ2}. This generalizes previous works of Nitsche for doubly connected surfaces
[6].

3. For a doubly connected minimal surface we have:

h ≤
√

(δ1 + δ2)
2

4
− d2

2
. (1)

See [7]. Inequality (1) is generalized in [13] for surfaces in R
n without requiring that Γ1

and Γ2 lie in parallel hyperplanes.
4. There does not exist a doubly connected minimal surface if Γ1 and Γ2 lie in different

components of the cone x2 + y2 < z2 sinh2 τ , where τ is the unique positive solution of
cosh τ − τ sinh τ = 0: see [13], extending previous results of Hildebrandt [3].

Motivated by these results, we pose the next two problems:

1. Problem 1. By moving C1 and C2 sideways along a fix direction, can we displace
C1 exactly until just before the orthogonal projection of C1 onto Π2 is tangent to C2

obtaining during this displacement a Riemann minimal example?
2. Problem 2. Determine a function M(r1, r2, d) such that the curves Γ1 and Γ2 cannot

bound a doubly connected minimal surface whenever h > M(r1, r2, d). This appears as
‘Theorem’ in [12].

In Sect. 2 we will give a universal bound for the overlapping distance of the circles C1

and C2 in such a way that if this distance is bigger than this bound, then there does not exist
a doubly connected minimal surface spanning C1 ∪C2 (Theorem 1). This result generalizes
for two Jordan curves in parallel planes. In Sect. 3 we compare the height of a piece of a
Riemann minimal example bounded by two circles with the one of a catenoid with the same
boundary radii and waist. Finally in Sect. 4, numerical results are presented that will indicate
the approximation of the proposed estimate. Motivated by the experiments, the calculations
fix the radii of the circles as well as the vertical distance.

2 The Riemann minimal examples

We review the description of the Riemann minimal examples. Here, we follow [11]. Let
(x, y, z) be the standard coordinates in Euclidean space R3, where (x, y) indicate the hori-
zontal coordinates and z is the vertical direction. Let Π be the plane of equation z = 0. A
Riemann minimal example S foliated by circles in parallel horizontal planes is parametrized
as X (u, θ) = (c(u), 0, u) + r(u)(cos θ, sin θ, 0), where (c(u), 0, u)), u ∈ I ⊂ R, is the
planar curve of centers of the circles. The minimality of S writes as

−rr ′′ + 1 + r ′2 + c′2 + (2c′r ′ − rc′′) cos θ = 0

for all u ∈ I and θ ∈ R. Hence, we have two differential equations, namely

2c′r ′ − rc′′ = 0, −rr ′′ + 1 + r ′2 + c′2 = 0.

We point out that c is not a constant function because on the contrary S would be a catenoid
(a solution of rr ′′ = 1+r ′2). Since c′ �= 0, the first equation gives c′ = λr2 for some positive
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constant λ and it follows that the second equation is −rr ′′ + 1+ r ′2 + λ2r4 = 0. After some
manipulations, there exists μ ∈ R such that

r ′ = ±
√

λ2r4 + 2μr2 − 1. (2)

By changing the variable u by the parameter radius r , the parametrization of S is

X (u, θ) =
(∫ u λt2 dt√

λ2t4 + 2μt2 − 1
, 0,

∫ u dt√
λ2t4 + 2μt2 − 1

)
+ u (cos θ, sin θ, 0) .

Let

a2 = μ + √
λ2 + μ2

λ2
, b2 = −μ + √

λ2 + μ2

λ2
.

Up to reversing the values of a2 and b2 if necessary, each circle of the foliation of radius u
(u ≥ b) at height z(u) is characterized in terms of elliptic integrals by

c(u) =
∫ u

b

t2 dt√
Δ

, z(u) =
∫ u

b

ab dt√
Δ

, (3)

where

Δ = (t2 + a2)(t2 − b2), 0 < b ≤ a.

The parametrization of S is

X (u, θ) =
(∫ u

b

t2 dt√
Δ

, 0,
∫ u

b

ab dt√
Δ

)
+ u(cos θ, sin θ, 0), (4)

where u ≥ b and θ ∈ R. The parametrization (4) is obtained when we choose the positive
branch of the square root in (2) and correspondswith the part of the surface above the planeΠ .
In the half-space z ≤ 0, the choice in (2) is the negative branch, and the surface parametrizes
as

Y (u, θ) = −
(∫ u

b

t2 dt√
Δ

, 0,
∫ u

b

ab dt√
Δ

)
+ u(cos θ, sin θ, 0). (5)

Denote by R = R(a, b) the Riemann minimal example parametrized by (4) and (5). Some
properties of R are:

1. The intersection of R(a, b) with the plane Π is the circle of the foliation of minimum
radius r = b, called the waist of R(a, b). See Fig. 2.

Fig. 2 A Riemann minimal surface bounded by the circles C1 ∪C2. We indicate by h and d the vertical and
the lateral distance between C1 and C2. The circle of the foliation of minimum radius is the waist
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2. The surface is symmetric about the origin of coordinates and by a homothety, we have
λR(a, b) = Rλa,λb for λ > 0.

3. The surface lies in a horizontal slab −z0 < z < z0 such that limr→∞ z(r) = z0. Thus as
r tends to∞, the limit of circles converge to a straight line orthogonal to the xz-plane and
by the Schwarz reflection principle, the surface can extend by rotating 180◦ about this
line. Repeating this process and by successive reflections, we obtain a periodic embedded
surface foliated by circles and, at a discrete set of heights, the intersection of the surface
with horizontal planes is a straight line.

We will only work with compact pieces of a Riemann minimal example. We precise this
definition.

Definition 1 A Riemann minimal surface is a compact sub-surface of a Riemann minimal
example bounded by two circles.

In particular, we exclude that the surface can contain a straight line. We denote R1,2 =
R1,2(a, b) to indicate that the boundary is formed by the circles C1 and C2 of radii r1 and
r2, respectively, with z(r1) < z(r2). In the symmetric case, that is, r = r1 = r2 (and
consequently, z(r1) = −z(r2) < 0 and c(r1) = −c(r2) < 0, we stand for Rr .

We know that the orthogonal projection onto Π of C1 and C2 must overlap. This property
can express by saying that the lateral distance of C1 and C2 is less than the sum of their radii
[11, pp. 88–89]. In this section, we want to estimate the amount of overlapping. We define
the overlapping distance between C1 and C2 as

O1,2 = O1,2(a, b) = c(r1) − c(r2) + r1 + r2.

See Fig. 2. In the symmetric case, O1,2 is simply 2(r − c(r)). Denote by h = z(r2) − z(r1)
and by d = c(r2) − c(r1) the vertical distance and the lateral distance between C1 and C2,
respectively. Under this notation, the Problem 1 expresses by saying: if r1, r2 and h are fix,
is it possible to have O1,2(a, b) → 0 for all a and b?

Theorem 1 There exists a universal constant M = √
2 − 1 such that it holds

O1,2(a, b) > Mh, (6)

for any Riemann minimal surface R1,2(a, b).

Proof Consider the part ofR(a, b) bounded by the waist and a circle C of radius r > 0 that
lies above the plane Π . Then c(r) > 0 and we have

r − c(r) >
√
r2 − b2 − c(r) =

∫ r

b

t√
t2 − b2

dt −
∫ r

b

t2√
Δ

dt

= a2
∫ r

b

t

(t + √
t2 + a2)

√
Δ

dt.

The function t/(t + √
t2 + a2) is increasing on t and then its minimum value is attained at

t = b. Thus (3) gives

r − c(r) >
a2b

b + √
a2 + b2

∫ r2

b

dt√
Δ

= az(r)

b + √
a2 + b2

≥ az(r)

a + √
a2 + a2

= (
√
2 − 1)z(r) = Mz(r).
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1518 R. López

IfR1,2 has points in both sides of Π , then we apply the above estimate for each part ofR1,2,
and finally we sum both estimates, obtaining (6).

Finally suppose now that R1,2 lies in one side of Π , for example, above Π . A similar
argument yields

r2 + r1 + c(r1) − c(r2) >

√
r22 − b2 −

√
r21 − b2 + c(r1) − c(r2)

=
∫ r2

r1

(
t√

t2 − b2
− t2√

Δ

)
dt

= a2b

b + √
a2 + b2

∫ r2

r1

dt√
Δ

= a(z(r2) − z(r1))

a + √
a2 + a2

= M(z(r2) − z(r1)) = Mh.

��
The estimate (6) can view as a restriction on the vertical separation between two circles

to bound a Riemann minimal surface. As we pointed out in the Introduction, it is known
experimentally that if we move vertically C1 and C2 in opposite vertical directions, there
exists a critical separation h0 = h0(r1, r2, d) where the surface breaks into the two disks
bounded by C1 and C2. By Theorem 1, we now can estimate the value h0.

Corollary 1 Given r1, r2, d > 0, then

h0 < (
√
2 + 1)(r1 + r2 − d). (7)

Proof IfR1,2(a, b) is Riemann minimal surface bounded by C1 and C2, then h ≤ (r1 +r2 −
d)/M . Since this holds for any a ≥ b > 0, it follows the result. ��

We can extend Theorem 1 for a doubly connected minimal surface spanning two Jordan
curves. Let Γ1 and Γ2 be two Jordan curves and letCi be the circumscribed circle of radius ri
for Γi , i = 1, 2. We define the lateral distance d and the overlapping distance O1,2 between
Γ1 andΓ2 to be the ones between the circlesC1 andC2. In this context, we formulate Theorem
1 in terms of a nonexistence result.

Corollary 2 If
h ≥ (

√
2 + 1)(r1 + r2 − d), (8)

then the curves Γ1 and Γ2 cannot bound a doubly connected minimal surface.

Proof By contradiction, suppose that S is a doubly connected minimal surface bounded by
Γ1 ∪ Γ2. By the inclusion theorem that appears in [9], it is proved that the circumscribed
circlesC1 andC2 also bound aminimal surface S̃ of the type of the annulus. By the Shiffman’s
theorem, S̃ must be a Riemann minimal surface. However the same estimate (8) holds for S̃,
which it is a contradiction with (6). ��

This result gives some information on the function M(r1, r2, d) proposed by Nitsche [8,
Sec. IV.1] and by Nitsche and Leavitt in [12]. From (8), we have M(r1, r2, d) ≤ (

√
2 +

1)(r1 + r2 − d).
We now compare the Nitsche’s estimate (1) with the bound (6) in Theorem 1. The over-

lapping distance writes in terms of d and ri as O1,2 = r1 + r2 − d . Then (1) gives two types
of inequalities for O1,2, namely,

O1,2 ≥ −d +
√
h2 + d2

2
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and

O1,2 ≥ r1 + r2 −
√
2(r1 + r2)2 − h2.

In particular, both estimates depend on h and d or on h and r1 + r2. However, the inequality
(6) gives a universal lower bound ofO1,2 in terms of the vertical and lateral distances. Recall
that the estimate (1) was proved with techniques of complex analysis and strongly using that
the surface has the topology of an annulus.

3 Height estimates comparing with catenoids

Consider a catenoid whose rotational axis is the z-axis and suppose that the waist ω of the
catenoid is a circle in the plane Π centered at the origin. Then the catenoid parametrizes as

Z(x, θ) =
(
x cos θ, x sin θ, ω arc cosh

x

ω

)
, x ≥ ω, θ ∈ R.

Denote by Cr1,r2,ω the part of the catenoid bounded by two circles of radii r1 and r2. The
height hcat(r1, r2, ω) of Cr1,r2,ω is the distance between the two boundaries circles and this
value is

hcat(r1, r2, ω) =
{

ω
(
arc cosh

( r2
ω

) − arc cosh
( r1

ω

))
, if 0 ≤ z(r1) < z(r2)

ω
(
arc cosh

( r2
ω

) + arc cosh
( r1

ω

))
, if z(r1) < 0 < z(r2).

(9)

If Cr1,r2,ω is a symmetric catenoid, then r1 = r2 = r and the height is hcat(r, ω) =
2ω arc cosh (r/ω). We compare the height hcat(r1, r2, ω) of the catenoid Cr1,r2,ω with the
one of a Riemann minimal surface with the same radii and waist.

Theorem 2 The height h(r1, r2) = z(r2) − z(r1) of a Riemann minimal surface R1,2(a, b)
satisfies:

1. If 0 ≤ z(r1) < z(r2), then

a√
r22 + a2

hcat(r1, r2, b) ≤ h(r1, r2) ≤ a√
r21 + a2

hcat(r1, r2, b).

2. If z(r1) < 0 < z(r2), then for i = 1, 2 we have

a

2
√
r2i + a2

hcat(ri , b) ≤ |z(ri )| ≤ a

2
√
b2 + a2

hcat(ri , b).

3. In the symmetric case, we have

a√
r2 + a2

hcat(r, b) ≤ h(r) ≤ a√
b2 + a2

hcat(r, b).

In particular, h < hcat(r, b).

The inequality h < hcat(r, b) can formulate by saying that the height of a symmetric
Riemann minimal surface is strictly less than the height of a catenoid of the same boundary
radius and waist. Experimentally this inequality says that if we have formed a catenoid by a
soap film framed by two given circles C1 ∪ C2 of the same radius and we displace C1 and
C2 sideways to produce Riemann minimal surfaces, if we want to keep the same waist of the
catenoid, we have to reduce the vertical distance betweenC1 andC2 of the Riemann minimal
surface.

123
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Proof In a first case, suppose 0 ≤ z(r1) < z(r2). For b ≤ r1 ≤ t ≤ r2 we have r21 + a2 ≤
t2 + a2 ≤ r22 + a2 and this yields∫ r2

r1

dt√
Δ

≤ 1√
r21 + a2

∫ r2

r1

dt√
t2 − b2

= 1√
r21 + a2

(
arc cosh

r2
b

− arc cosh
r1
b

)
,

and similarly,

1√
r22 + a2

(
arc cosh

r2
b

− arc cosh
r1
b

)
≤

∫ r2

r1

dt√
Δ

.

The first item in Theorem 2 follows from the value z(r) in (3), the height of R1,2(a, b),
namely, z(r2) − z(r1) and the expression of hcat(r1, r2, b) in (9).

Suppose now z(r1) < 0 < z(r2). For the part of R1,2(a, b) that lies above the plane Π ,
we have

1√
r22 + a2

arc cosh
r2
b

≤
∫ r2

b

dt√
Δ

≤ 1√
b2 + a2

arc cosh
r2
b

.

Then (3) gives the estimate for z(r2) in the second item. For z(r1) < 0 the argument is similar.
The third item is proved by letting r1 = r2 = r with z(r1) = −z(r2), and using the

previous item. ��
With the same ideas than in Theorem 2, we can estimate the center of each circle of the

foliation.

Corollary 3 For a Riemann minimal surface R(a, b), consider the center (c(r), 0, z(r)) of
the circle of R(a, b) at height z = z(r). Then

r
√
r2 − b2 + b2arc cosh (r/b)

2
√
r2 + a2

≤ |c(r)| ≤ r
√
r2 − b2 + b2arc cosh (r/b)

2
√
b2 + a2

,

|c(r)| ≤ 1

2
√
2

(
r

√( r
b

)2 − 1 + 1

2
hcat(r, b)

)
.

Proof Without loss of generality, we suppose z(r) ≥ 0, so c(r) ≥ 0. For each b ≤ t ≤ r , we
have b2 + a2 ≤ t2 + a2. Then the expression of c(r) in (3) gives

c(r) =
∫ r

b

t2 dt√
Δ

≤ 1√
b2 + a2

∫ r

b

t2 dt√
t2 − b2

= 1

2
√
b2 + a2

(
r
√
r2 − b2 + b2arc cosh

r

b

)
.

The other inequality for c(r) uses t2+a2 ≤ r2+a2. The estimate for |c(r)| is a consequence
that a ≥ b. ��

4 Numerical computations on the overlapping distance and the vertical
distance

The estimate (6) is not sharp as we see when d → 0, where the limit surface is a catenoid.
In such a case, and when the two circles have the same radius r , we have O1,2 = 2r , and
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thus O1,2 ≥ 1.509h, in contrast to the estimate (6) that gives O1,2 ≥ 0.4142h. However,
the importance of our estimate is based that it holds for any radii r1 and r2 and any vertical
distance h. The aim of this section is showing some computations ofO1,2 in order to measure
how amount of sharpness is the bound M = √

2 − 1. We also give some computations for
the bound (7) of the vertical distance given in Corollary 1.

We begin with the estimate (6). Consider the symmetric case, that is, a Riemann minimal
surface Rr bounded by two circles with the same radius r > 0. After an homothety of the
space, we assume that the vertical distance is h = 2. Thus the value of z(r) is z(r) = 1. For
this value of h, the estimate (6) becomes O1,2 ≥ 0.82843. We explain the steps to follow in
the next computations.

1. Fix the value of the radius r .
2. For each value of the parameter a, compute the value of z(r) in (3) depending on the

parameter b until that we get z(r) = 1.
3. The equality z(r) = 1 provides the value of the waist b.
4. Compute the x-coordinate c(r) of the center of the circle C2 by using (3).
5. Compute the overlapping distance O1,2 = 2(r − c(r)).

Here we use the software Mathematica where the calculations have an approximation of
5 decimal digits.

In the above scheme, there appears the problem of whether any given circle C2 and the
corresponding symmetric circleC1 at the height−z(r), bound a symmetric Riemannminimal
surface Rr . In a first step, we begin for small values for r , namely, r = 3 and r = 5 (Table
1). In each step of computation, and once fixed the value of a, we do not know a priori if
there exists a value of b so the height of Rr is 2.

Denote z = z(r, a, b) the height of the circle C2 indicating the dependence on the three
parameters. Fixing r and b, we have

z(r, a, b) ≥ ab√
a2 + b2

∫ r

b

dt√
t2 − b2

= ab√
a2 + b2

arc cosh
r

b
.

The function b �→ b arc cosh(r/b) defined in the interval (0, r) has a unique maximum at

a value b0 which satisfies arc cosh(r/b0) = r/
√
r2 − b20. The value of b0 arc cosh(r/b0)

is rb0/
√
r2 − b20 which increases until ∞ as r → ∞. Thus we can begin with a value a

sufficiently big so z(r, a, b) is bigger than z = 1, that is, the height where we want to place
the circle C2. Once obtained the value of a, we decrease the value of b until to get the height
of the circle C2 at z = 1.

By the values obtained in Table 1, we conclude the next facts:

1. Fixing r , the overlapping distance O1,2 decreases with the parameter a.
2. The value b that gives the desired height z = 1 is a decreasing function on the parameter

a.
3. Fixing r , there exists a number α which is the infimum for the values a and the supremum

for the values b, where the height z = 1 is attained. For this α, the corresponding
overlapping distance O1,2(r) is the infimum of all O1,2(a, b) where r and h are keeping
fix.

4. As r increases, the value O1,2(r) decreases.

By Theorem 1 we know that if
O1,2(r)

h
≤ M, (10)
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Table 1 Computation of O1,2
for for r = 3, 5, 10, 20

a b c(r) O1,2

r = 3, Mh = 0.82843

2 0.44804 1.69192 2.61617

1.5 0.52120 1.98096 2.03809

1.2 0.64592 2.20914 1.58172

1.1 0.75473 2.30265 1.39471

1.05 0.88490 2.35586 1.28828

r = 5, Mh = 0.82843

2 0.37837 3.46157 3.07685

1 0.64224 4.31227 1.37547

0.9 0.81386 4.44295 1.11409

0.89 0.84655 4.45783 1.08435

0.885 0.86550 4.46545 1.06910

r = 10, Mh = 0.82843

2 0.33947 8.26831 3.46339

1 0.54960 9.24573 1.50854

0.9 0.64195 9.37760 1.24481

0.82 0.79263 9.50102 0.99796

0.815 0.80755 9.50963 0.98074

r = 20, Mh = 0.82843

2 0.32307 18.16736 3.66539

1 0.51733 19.21384 1.57244

0.8 0.75014 19.50452 0.99110

0.79 0.77603 19.52230 0.95547

0.787 0.78445 19.52770 0.94457

Table 2 Computation of O1,2
for r = 50

a b c(r) O1,2

r = 50, Mh = 0.82843

1 0.50057 49.19490 1.61019

0.8 0.70574 49.48690 1.02615

0.79 0.72687 49.55045 0.95547

0.772 0.77144 49.53730 0.92534

0.7719 0.77171 49.53750 0.92497

then there is not a (symmetric) Riemann minimal surface spanningC1∪C2. Our calculations
cannot compute this quotient for large values of r because Mathematica uses the elliptic
integrals of type E and F and the errors appear for large values of r . We have obtained the
value of O1,2 at least for r = 50, where the constants a and b differ up to an accuracy of ten
thousandths. See Table 2.

It is an open problem to estimate a sharper upper bound (if there is) for the quotient
O1,2(r)/h in (10).
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Table 3 Comparison between
the estimate (7) and the real value
of the height h of a symmetric
Riemann surface Rr (a, b)

Here the radius is r = 2 and the
lateral distance is
d = 2c(r) = 1, 2, 3 and 3.8

b a h
2(r − c(r))

M

r = 2, d = 1, c(r) = 0.5

1.8 2.66677 1.37785 7.24264

1.5 4.0990 2.21032 7.24264

1.2 4.52332 2.50766 7.24264

0.9 4.51030 2.48868 7.24264

0.7 4.3663 2.31696 7.24264

r = 2, d = 2, c(r) = 1

1.4 1.63133 1.79571 4.82843

1.2 1.8375 2.06828 4.82843

1 1.90354 2.16727 4.82843

0.8 1.88183 2.1264 4.82843

0.6 1.80280 1.95105 4.82843

r = 2, d = 3, c(r) = 1.5

0.8 0.82120 1.47998 2.41421

0.75 0.824235 1.48700 2.41421

0.7 0.82302 1.48408 2.41421

0.65 0.81807 1.47157 2.41421

0.6 0.80990 1.44977 2.41421

r = 2, d = 3.8, c(r) = 1.9

0.15 0.16141 0.39033 0.48284

0.16 0.16471 0.40208 0.48284

0.165 0.16630 0.40767 0.48284

0.166 0.16662 0.40878 0.48284

0.1666 0.16680 0.40943 0.48284

In the last part of this section, we study the estimate for the vertical distance given in (7).
It is not expectable a sharp bound for a general situation because inequality (7) holds for any
Riemann minimal surface. Again we consider the symmetric case and after a homothety we
suppose that the radii of the boundary circles are r = 2. Here we fix two circles C1 and C2

of radii r = 2 situated in each side of Π . Let d be the lateral distance which it agrees with
the value 2c(r). Now the steps to follow in the calculations have been:

1. Fix the lateral distance d , that is, fix the value c(r).
2. Take a value b, the waist, where we know that b < r .
3. For each value of b, calculate the parameter of a so we have c(r) = d/2.
4. Once we know a and b, compute the height of Rr (a, b) which agrees with 2z(r) and

compare with the estimate (7).

See Table 3. We have observed that fixed the value of b, the value of c(r) is decreasing on a.
Thus, when we fix the value of d , for each value of b, we take a = b such that c(r) > d/2.
Then, we increase the parameter a so c(r) decreases until we get the desired lateral distance
2c(r). Finally we compute the height h of the Riemann minimal surface and we compare the
estimate (7) with 2(r − c(r))/M .
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Remark 1 By the computations obtained in Table 3 we point out that for two given circles
C1 ∪ C2 (in this case of radius r = 2) separated a fixed vertical distance h, there exist
two Riemann minimal surfaces spanning C1 ∪ C2. Indeed, in each one of the cases d = 1,
d = 2 and d = 3, we observe that there exists a maximum of the vertical distance hmax (for
d = 1, d = 2 and d = 3, the value hmax it is approximately 2.50766, 2.16727 and 1.48700,
respectively). For values of h close to hmax with h < hmax we have two pairs (a1, b1) and
(a2, b2) such thatRr (a1, b1) andRr (a2, b2) have the same boundary. This is expectable by
the results of Meeks and White in [5] that assert under certain configurations that given two
curves lying in parallel planes, these curves are the boundary of exactly two minimal annuli,
one stable and one unstable. As in the case of the catenoid, it is expectable that the Riemann
minimal surface with least waist is unstable while the Riemann minimal surface with biggest
waist is stable.
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