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Abstract In this paper, we use the flag curvature formula for homogeneous Finsler spaces
in our previous work to classify odd-dimensional smooth coset spaces admitting positively
curved reversible homogeneous Finsler metrics.Wewill show that most important features of
L. Bérard-Bergery’s classification results for odd-dimensional positively curved Riemannian
homogeneous spaces can be generalized to reversible Finsler spaces.
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1 Introduction

Finding new examples of compact manifolds admitting Riemannian metrics of positive sec-
tional curvature is one of the central problems in Riemannian geometry. In the homogeneous
setting, the problem is to classify positively curved Riemannian homogeneous spaces, and
this has been achieved in several classical works in this field; see [1–3,16]. Notice that in
[2], Berger missed one in his classification of positively curved normal homogeneous spaces,
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as pointed out by Wilking [17]. In the classification of odd-dimensional positively curved
Riemannian homogeneous spaces by Bérard-Bergery [3], a gap was recently found by Xu
and Wolf, and it has been corrected by Wilking; see [25]. Based on some more advanced
methods developed in [18], Wilking and Ziller provided an alternative and modern proof of
the classification in [3] in their recent preprint [19].

In homogeneous Finsler geometry, the following problem is of great significance:

Problem 1.1 Classify the smooth coset spaces G/H admitting a G-invariant Finsler metric
with positive flag curvature.

For simplicity, we will call a homogeneous space positively curved when it admits an
invariant Finsler metric with positive flag curvature, or if it has been endowed with such a
metric. By the Bonnet–Myers Theorem for Finsler spaces, a positively curved homogeneous
space must be compact.

Problem 1.1 was first studied by Deng and Hu [13], where they classified homogeneous
Randers metrics with positive flag curvature and vanishing S-curvature. Note that their classi-
fication is also valid for homogeneous (α, β)-spaceswith positiveflag curvature andvanishing
S-curvature [22].

Recently, big progress has beenmade on the classificationwithmore generality. In [20],we
classified positively curved normal homogeneous Finsler spaces, generalizing the classical
results of [2]. In the joint work of the authors with Huang and Hu [23], we classified even-
dimensional positively curved homogeneous Finsler spaces, generalizing the results of [16].

It should be noted that a very useful homogeneous flag curvature formula has been estab-
lished in [23] (see Theorem 3.5 below). In this paper, we will apply this formula to the
classification of odd-dimensional positively curved homogeneous Finsler spaces.

The general theme for the classification has been set up in [20]. Recall that for a positively
curved homogeneous Finsler space (G/H, F) with a bi-invariant orthogonal decomposition
g = h + m for the compact Lie group g, and a fundamental Cartan subalgebra t of g (i.e.
t ∩ h is a Cartan subalgebra of h), we call H a regular subgroup of G if each root plane of
h = Lie(H) with respect to t ∩ h is also a root plane of g with respect to g. Otherwise, we
call H not regular or irregular. We will divide our discussion into three cases (see Sect. 3.3),
where in Case I H is regular in G and in Case II and III H is not.

The classification is only up to local isometry. Sowe introduce an equivalence relation (see
Sect. 2.5) for homogeneous Finsler spaces to specify some typical procedures which results
local isometries, such as changing G and H to their covering groups, cancelling common
product factors from G and H , changing the pair G and H by an isomorphism of G, and
so on. This technical terminology greatly reduces the complexity of the statement and the
proofs of the classification.

In this paper, we shall consider the classification of odd-dimensional reversible homo-
geneous Finsler spaces with positive flag curvature. Our motivation to consider reversible
metrics is twofold. On one hand, our application of the homogeneous flag curvature for-
mula can only be carried out with the assumption that the metric is reversible. On the other
hand, restricting our discussion to reversible Finsler metrics will not lose much generality. It
includes the Riemannian case and many other important types of Finsler metrics.

For the case when H is irregular in G, we get a complete classification, which can be
summarized as the following main theorem.

Theorem 1 Let (G/H, F) be an odd-dimensional positively curved reversible homogeneous
Finsler space. If H is not regular in G, then G/H admits a G-invariant Riemannian metric
with positive curvature.
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Theorem 1 follows immediately from Theorems 3 and 6.2, which deal with Case III
and II, respectively. To be precise, the classification list is the following. When G/H
belongs to Case II, it is equivalent to the homogeneous spheres S3 = SO(4)/SO(3), or
S4n−1 = Sp(n)Sp(1)/Sp(n − 1)Sp(1), n > 1, or Wilking’s space SU(3) × SO(3)/U(2).
When G/H belongs to Case III, it is equivalent to the homogeneous spheres S2n−1 =
SO(2n)/SO(2n − 1), n > 2, S7 = Spin(7)/G2, S15 = Spin(9)/Spin(7), or one of the
Berger’s spaces SU(5)/Sp(2)U(1) and Sp(2)/SU(2). It is obvious that all these coset spaces
admit positively curved Riemannian homogeneous metrics.

Notice that any invariant Finslermetric on the coset space S2n−1 = SO(2n)/SO(2n−1) or
S7 = Spin(7)/G2 must be the standard Riemannian metric of positive constant curvature. On
the other hand, as pointed out in [13,22], the Aloff–Wallach’s spaces admit non-Riemannian
homogeneous Randers metrics or (α, β)-metrics with positive flag curvature and vanishing
S-curvature. Moreover, any of the other coset spaces listed in Theorem 1 admits a non-
Riemannian positively curved normal homogeneous Finsler metric; see [20].

In the case that H is regular in G, we prove the following theorem:

Theorem 2 Let (G/H, F) be an odd-dimensional positively curved reversible homogeneous
Finsler space. If H is a regular subgroup of G, then there are only the following two cases:

(1) G/H is equivalent to the homogeneous spheres S2n−1 = U(n)/U(n − 1), S4n−1 =
Sp(n)U(1)/Sp(n − 1)U(1), n > 1, or the U(3)-homogeneous Aloff–Wallach’s spaces.

(2) G/H is equivalent to an odd-dimensional reversible positively curved homogeneous
Finsler space G ′/H ′ such that G ′ is compact simple and H ′ is a regular subgroup in
G ′.

To finish this classification, we need to discuss the case (2) in Theorem 2. This will be fur-
ther studied in [26]. Besides the homogeneous spheres S2n−1 = SU(n)/SU(n −1), S4n−1 =
Sp(n)/Sp(n − 1), and SU(3)-homogeneous Aloff–Wallach’s spaces, which are known to
admit positively curved homogeneous Riemannian metrics (as well as non-Riemannian
positively curved homogeneous Randers metrics), there are several undetermined potential
candidates.

This work is organized as following. In Sect. 2, we give a brief summary of basic notions
in Finsler geometry and homogeneous Finsler geometry and define the notion of equivalence
which will be used throughout this paper. In Sect. 3, we present the general theme for the
classification of odd-dimensional positively curved homogeneous Finsler spaces, including
the homogeneous flag curvature formula, the rank equality, and some useful lemmas. In
Sects. 4 and 5, we discuss the classification of odd-dimensional positively curved reversible
homogeneous Finsler spaces in Case III. In Sect. 6, we discuss the classification of odd-
dimensional positively curved reversible homogeneous Finsler spaces in Case II and I.

We are grateful to J.A. Wolf, W. Ziller, B. Wilking and L. Huang for helpful discus-
sions. The first author thanks the Department of Mathematics at the University of California,
Berkeley, for hospitality during the preparation of this paper.

2 Preliminaries

In this section, we summarize some definitions and fundamental results in Finsler geometry;
see [6,7] for more details. In this paper, we will only consider connected smooth manifolds
and connected Lie groups.
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2.1 Minkowski norm and Finsler metric

A Minkowski norm on a real vector spaceV, dimV = n, is a continuous real-valued function
F : V → [0,+∞) satisfying the following conditions:

(1) F is positive and smooth on V\{0};
(2) F(λy) = λF(y) for any λ > 0;
(3) With respect to any linear coordinates y = yi ei , the Hessian matrix

(gi j (y)) =
(
1

2
[F2]yi y j

)
(2.1)

is positive definite at any nonzero y.

The Hessian matrix (gi j (y)) and its inverse (gi j (y)) can be used to move up and down
indices of relevant tensors in Finsler geometry.

Given a nonzero vector y, the Hessian matrix (gi j (y)) defines an inner product 〈·, ·〉y on
V by

〈u, v〉y = gi j (y)uiv j ,

where u = ui ei and v = vi ei . In the literature, the above inner product is also denoted as
〈·, ·〉F

y to specify the norm. Sometimes it is shortened as gy or gF
y . This inner product can

also be expressed as

〈u, v〉y = 1

2

∂2

∂s∂t

[
F2(y + su + tv)

] |s=t=0. (2.2)

It is easy to check that the above definition is independent of the choice of linear coordinates.
Let M be a smooth manifold of dimension n. A Finsler metric F on M is a continuous

function F : T M → [0,+∞) such that it is positive and smooth on the slit tangent bundle
T M\0, and its restriction to each tangent space is a Minkowski norm. Generally, (M, F) is
called a Finsler manifold or a Finsler space.

Here are some important examples.
Riemannian metrics are a special class of Finsler metrics such that the Hessian matrix

only depends on x ∈ M . For a Riemannian manifold, the metric is often referred to as the
global smooth section gi jdxidx j of Sym2(T ∗M). Unless otherwise stated, we mainly deal
with non-Riemannian metrics in this paper.

Randers metrics are the simplest and the most important class of non-Riemannian metrics
in Finsler geometry. A Randers metric can be written as F = α+β, where α is a Riemannian
metric andβ is a 1-form. The notion ofRandersmetrics can be naturally generalized to (α, β)-
metrics. An (α, β)-metric is a Finsler metric of the form F = αφ(β/α), where φ is a positive
smooth real function, α is a Riemannian metric and β is a 1-form. In recent years, there have
been a lot of research works concerning (α, β)-metrics as well as Randers metrics.

Recently, we have defined and studied (α1, α2)-metrics and introduced the more gener-
alized class of (α1, α2, . . . , αk)-metrics; see [10,23]. Such metrics naturally appear in the
study of homogeneous Finsler geometry.

A Minkowski norm or a Finsler metric is called reversible if F(y) = F(−y) for any
y ∈ V or F(x, y) = F(x,−y) for any x ∈ M and y ∈ Tx M . Obviously, a Riemannian
metric is reversible, and a non-Riemannian Randers metric must be non-reversible. Note that
a non-Riemannian (α, β)-metric is reversible if the function φ is an even function, and there
exist many non-reversible (α, β)-metrics.
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2.2 Geodesic spray and geodesics

Let (M, F) be a Finsler space.A local coordinate system {x = (xi ) ∈ M; y = y j∂x j ∈ Tx M}
on T M is called a standard local coordinates system. The geodesic spray is a vector field G
globally defined on T M\0. On a standard local coordinate system, it can be expressed as

G = yi∂xi − 2Gi∂yi , (2.3)

in which

Gi = 1

4
gil

(
[F2]xk yl yk − [F2]xl

)
. (2.4)

A non-constant curve c(t) on M is called a geodesic if (c(t), ċ(t)) is an integral curve of
G, in which the tangent field ċ(t) = d

dt c(t) along the curve gives the speed. On a standard
local coordinate, a geodesic c(t) = (ci (t)) can be characterized by the equations

c̈i (t) + 2Gi (c(t), ċ(t)) = 0. (2.5)

It is well known that F(c(t), ˙c(t)) is a constant function, or in other words, a geodesic
defined by the above equations must be of nonzero constant speed.

2.3 Riemann curvature and flag curvature

In Finsler geometry, there is a similar notion of curvature as in the Riemannian case, which
is called the Riemann curvature. It can be defined either by the Jacobi field or the structure
equation for the curvature of the Chern connection.

On a standard local coordinate system, the Riemann curvature is a linear map Ry =
Ri

k(y)∂xi ⊗ dxk : Tx M → Tx M , defined by

Ri
k(y) = 2∂xkGi − y j∂2x j ykG

i + 2G j∂2y j ykG
i − ∂y j Gi∂ykG j . (2.6)

When the metric needs to be specified, the Riemann curvature is denoted as RF
y =

(RF )i
k(y)∂xi ⊗ dxk . From Proposition 6.2.2 of [14], it is easily seen that the Riemann cur-

vature Ry is self-adjoint with respect to the inner product 〈·, ·〉y .
Using the Riemann curvature, we can generalize the notion of sectional curvature to

Finsler geometry, called the flag curvature. Let y ∈ Tx M be a nonzero tangent vector and P
a tangent plane in Tx M containing y, and suppose it is linearly spanned by y and v. Then the
flag curvature of the pair (y,P) is defined by

K (x, y, y ∧ v) = K (x, y,P) = 〈Ryv, v〉y

〈y, y〉y〈v, v〉y − 〈y, v〉2y
. (2.7)

Obviously, the flag curvature in (2.7) does not depend on the choice of v but only on y and
P. Sometimes we also write the flag curvature of a Finsler metric F as K F (x, y, y ∧ v) or
K F (x, y,P) to indicate the metric explicitly.

2.4 Totally geodesic submanifolds

A submanifold N of a Finsler space (M, F) can be naturally endowed with a submanifold
Finsler metric, denoted as F |N . At each point x ∈ N , the Minkowski norm F |N (x, ·) is just
the restriction of the Minkowski norm F(x, ·) to Tx N . We say that (N , F |N ) is a Finsler
submanifold or a Finsler subspace.
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A Finsler subspace (N , F |N ) of (M, F) is called totally geodesic if any geodesic of
(N , F |N ) is also a geodesic of (M, F). On a standard local coordinate system (xi , y j ) such
that N is locally defined by xk+1 = · · · = xn = 0, and the totally geodesic condition can be
expressed as

Gi (x, y) = 0, k < i ≤ n, x ∈ N , y ∈ Tx N .

A direct calculation shows that in this case the Riemann curvature RF |N
y : Tx N → Tx N of

(N , F |N ) is just the restriction of the Riemann curvature RF
y of (M, F), where y is a nonzero

tangent vector of N at x ∈ N . Therefore, we have .„

Proposition 2.1 Let (N , F |N ) be a totally geodesic submanifold of (M, F). Then for any
x ∈ N , y ∈ Tx N\0, and a tangent plane P ⊂ Tx N containing y, we have

K F |N (x, y,P) = K F (x, y,P). (2.8)

As in Riemannian geometry, the local properties of exponential maps implies any con-
nected component N of the common fixed points for a set of isometries {ρa, a ∈ A} of
(M, F) is a totally geodesic submanifolds of (M, F). To be more precise, for each point
x ∈ N ,

Tx N = {y ∈ Tx M |ρa∗y = y,∀a ∈ A}
and N contains a small neighbourhood of x in expx Tx N .

2.5 Homogeneous Finsler geometry

Let (M, F)be a connectedFinslermanifold. If the full group I (M, F)of isometries of (M, F)

(or equivalently, the identity component I0(M, F) of I (M, F)) acts transitively on M , then
we say that (M, F) is a homogeneous Finsler space, or F is a homogeneous Finsler metric.
By [8,15], I (M, F) (hence G = I0(M, F)) is a Lie transformation group on M , which can be
identified as the isometry group for the (possibly irreversible) distance function dF (·, ·) that
F defines on M . Let H be the compact isotropic subgroup of G at a point o ∈ M . Then M is
diffeomorphic to the smooth coset space G/H , associatedwith a canonical smooth projection
map π : G → M = G/H such that π(e) = o. The tangent space To M can be naturally
identified withm = g/h, in which g and h are the Lie algebras of G and H , respectively. The
isotropy action of H on To M coincides with the induced Ad(H)-action on m. In the cases
we will consider in this paper,m can be realized as a complement subspace of h in g which is
preserved by Ad(H)-actions. Then we have an Ad(H)-invariant decomposition g = h + m

satisfying the reductive condition [h,m] ⊂ m.
If (M, F) is positively curved, then by the Bonnet–Myers Theorem, M must be compact,

and hence G = I0(M, F) is also compact. Fix a bi-invariant inner product on g. Then we
can realizem as the bi-invariant orthogonal complement of h. In this case, the decomposition
g = h + m is called a bi-invariant orthogonal decomposition for the homogeneous space
G/H .

Notice that for any closed connected subgroup G of I0(M, F) which acts transitively on
M , we have a corresponding representation M = G/H . The most typical example is the nine
classes of homogeneous spheres; see [4]. For convenience, we will consider a slightly more
general situation, namely for a positively curved homogeneous Finsler space M = G/H , we
only require that the Lie algebra g of G is compact (i.e. G is quasi-compact). The notion of
bi-invariant orthogonal decomposition is still valid in this case.
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To simplify the discussion and avoid unnecessary iterance in the classification, we will not
distinguish homogeneous Finsler spaces which are locally isometric to each other. In partic-
ular, we will call (G1/H1, F1) and (G2/H2, F2) (with corresponding bi-invariant orthogonal
decompositions for the compact Lie groups g1 and g2, respectively) equivalent if one of the
following conditions is satisfied

(1) G1 is a covering group of G2, with the connected components of the isotropy subgroups
(H1)0 covering (H2)0, and F1 is naturally induced from F2, up to a positive scalar;

(2) G1 = G2 × G ′, H1 = H2 × G ′, and F1 and F2 are induced from the same Minkowski
norm, when m1 and m2 are naturally identified as the same vector space;

(3) There exists a group isomorphism from G1 to G2, which maps H1 onto H2 and induces
an isometry from F1 to F2.

The above notion actually defines an equivalent relation on the set of compact homogeneous
Finsler spaces G/H with g = Lie(G) compact. In the following, compact homogeneous
Finsler spaces in the same equivalent class will not be distinguished. Thus our classification
will be local, or in other words, on the Lie algebra level.

3 The general theme for the classification

In this section, we establish the theme for our classification.

3.1 The totally geodesic technique and the rank equality

Assume that (G/H, F) is a positively curved homogeneous Finsler space, with a bi-invariant
orthogonal decomposition g = h + m for the compact Lie group g.

Let t be a Cartan subalgebra of g such that t∩h is a Cartan subalgebra of h. For simplicity,
we just call t a fundamental Cartan subalgebra. Denote the tori T, TH and T ′ such that
Lie(T ) = t,Lie(TH ) = t ∩ h, and Lie(T ′) = t′ is a subalgebra of t ∩ h. Let G ′ be the
connected group (CG(T ′))0 = (CG(t′))0. Its Lie algebra g′ = Lie(G ′) can be identified
as cg(t

′). Let H ′ = G ′ ∩ H . Then (G ′/H ′, F |G ′/H ′) is a homogeneous submanifold of
(G/H, F).

We first prove the following useful lemma.

Lemma 3.1 Keep all the above notation. Then (G ′/H ′, F |G ′/H ′) is totally geodesic in
(G/H, F). In particular, if G/H admits positively curved homogeneous Finsler metrics and
dim G ′/H ′ > 1, then G ′/H ′ also admits positively curved homogeneous Finsler metrics.

Proof By Corollary II.5.7 of [5], the set of common fixed points of T ′ is a disconnected
union of finite orbits of NG(T ′) = {g ∈ G|g−1T ′g = T ′}. Thus the connected component of
NG(T ′)·o containing o = eH , which coincideswithG ′/H ′, is a totally geodesic submanifold
of (G/H, F). Therefore, if (G/H, F) is positively curved and dim G ′/H ′ > 1, then the
homogeneous Finsler space (G ′/H ′, F |G ′/H ′) has positive flag curvature. ��

Lemma 3.1 is valid when T ′ is changed to any closed subgroup of H . Using it, we can
shorten some later argument. For simplicity, we call it the totally geodesic technique. Notice
up to equivalence, G ′ and H ′ contains a common product factor T ′ which can be cancelled.

An immediate application of Lemma 3.1 is the rank inequality (see Theorem 5.2 of [23])
rkg ≤ rkh + 1 for any positively curved homogeneous Finsler space G/H . Take t′ = t ∩ h,
then F ′ = F |G ′/H ′ induces a left invariant Finsler metric F ′′ on the compact Lie group G ′′

123



1466 M. Xu, S. Deng

with Lie(G ′′) = cg(t ∩ h) ∩ m. Then the above lemma implies that if dim G ′′ > 1, then F ′′
is positively curved. Thus by Theorem 5.1 of [9], we have G ′′ = U(1),SU(2) or SO(3). The
rank inequality follows immediately. In the case that dim G/H is odd, we get the following
rank equality

Corollary 3.2 Let (G/H, F) be an odd-dimensional positively curved homogeneous Finsler
space with compact g = Lie(G). Then rkg = rkh + 1.

3.2 Some notations for Lie algebras and root systems

We now introduce some notations for the relevant Lie algebras and root systems used in [24].
Let (G/H, F) be an odd-dimensional positively curved homogeneous Finsler spacewith a bi-
invariant orthogonal decomposition g = h+m for the compact Lie algebra g = Lie(G). The
orthogonal projections to the h-factor and m-factor are denoted as prh and prm, respectively.
Our conventions are as following. We will use a suitably chosen bi-invariant inner product
of g to identify the root system of g as the subset of g with the standard presentation for each
of its simple factor. By the same bi-invariant inner product on g (i.e. its restriction on h), the
root system of h is regarded as a subset of t ∩ h. We will use α, β, γ , etc, to denote vectors
in t, and particularly α′, β ′, γ ′, etc, to denote vectors in t∩ h. No matter if the vector in t (or
t ∩ h) is or is not a root of g (or h), the root plane can be formally defined, and it is 0 when
the vector is not a root.

Fix a fundamental Cartan subalgebra t of g (i.e. t ∩ h is a Cartan subalgebra of h). From
now on, root systems, root planes, etc, for g will be taken with respect to t, and those for h
will be taken with respect to t∩ h. It is easy to see that t is a splitting Cartan subalgebra, i.e.,
t = (t ∩ h) + (t ∩ m). By Corollary 3.2, we have dim(t ∩ m) = 1.

We have the maximal torus T (resp. TH ) of G (resp. H ) corresponding to t (resp. t ∩ h).
We now have the following decomposition of g with respect to Ad(T )-actions:

g = t +
∑

α∈
g

g±α,

where 
g ⊂ t is the root system of g, and for each α ∈ 
g, g±α is a two-dimensional
irreducible representation of Ad(T )-actions, called a root plane (notice g±α = g±β when
α = −β).

For the compact Lie subalgebra h = Lie(H), we have a similar decomposition with
respect to Ad(TH )-actions, i.e.,

h = t ∩ h +
∑

α′∈
h

h±α′ ,

where 
h ⊂ t ∩ h is the root system of h, and for each root α′ ∈ 
h, h±α′ is the two-
dimensional root plane.

There is another decomposition of g with respect to the Ad(TH )-action, namely

g =
∑

α′∈t∩h
ĝ±α′ , (3.9)

where

ĝ±α′ =
∑

prh (α)=α′
g±α, if α′ �= 0,
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Towards the classification of odd-dimensional homogeneous... 1467

ĝ0 = t ∩ m + g±α , if there is a root α of g contained in t ∩ m, and ĝ0 = t ∩ m other-
wise. This Ad(TH )-invariant decomposition is compatible with the bi-invariant orthogonal
decomposition in the sense that

ĝ±α′ = (ĝ±α′ ∩ h) + (ĝ±α′ ∩ m).

To be more precise, we have the following easy lemma, which will be repeatedly used in the
sequel.

Lemma 3.3 Let α′ be a vector of t ∩ h. Then we have the following:

(1) if α′ ∈ 
h, then we have ĝ±α′ = (ĝ±α′ ∩ h) + (ĝ±α′ ∩ m), where ĝ±α′ ∩ h = h±α′ ;
(2) if α′ /∈ 
h, then we have ĝ±α′ ⊂ m. In particular, ĝ0 ⊂ m, and g±α ⊂ m if prhα /∈ 
h.

For the bracket between root planes, we have the following well-known relation,

[g±α, g±β ] ⊆ g±(α+β) + g±(α−β), (3.10)

where g±α and g±β are different root planes, i.e., α �= ±β, and each term of the right side
can be 0 when the corresponding vector is not a root of g. In fact, this is just a special case
of the following general fact; see for example [11].

Lemma 3.4 Keep all the above notation. We have

(1) For any root α of g, [g±α, g±α] = Rα.
(2) Let α and β be two linearly independent roots of g. If none of the roots α ± β is a

root of g, then [g±α, g±β ] = 0; if one of α ± β, say γ , is a root, and the other is not,
then [g±α, g±β ] = g±γ ; If both α ± β are roots of g, then [g±α, g±β ] is a cone in
g±(α+β) + g±(α−β).

(3) In the second case of (2), for any nonzero vector v ∈ g±α , the linear map ad(v) is an
isomorphism from g±β onto [g±α, g±β ] = g±γ .

3.3 The three cases and the reversibility assumption

Keep all the above assumptions and notation. In [21], we established the general theme for
our classification of positively curved normal homogeneous Finsler spaces. The main idea
can be applied to this paper. In particular, we only need to consider the following three cases
for the classification of odd-dimensional positively curved homogeneous Finsler spaces:

Case I. Each root plane of h is a root plane of g.
Case II. There exists a root plane of h which is not that of g. For the corresponding root

α′ of h, there are two roots α and β of g from different simple factors such that
prh(α) = prh(β) = α′ is a root of h.

Case III. The same as Case II except that the roots α and β are from the same simple factor
of g.

Here we keep all notation of the previous subsection with respect to the chosen bi-invariant
inner product (which determines the bi-invariant decomposition g = h + m as well ) and a
fixed fundamental Cartan subalgebra t. It is easy to see that H is regular in G in Case I, and
H is not regular in Case II and III.

In the following sections, we will restrict our discussion to reversible Finsler metrics (i.e.
F(x, y) = F(x,−y) for any y ∈ Tx (G/H)). The reason for adding this condition for F will
be explained in the next subsection.

It turns out that with the reversibility assumption for F , Case II is the easiest. Case III
contains a lot of case-by-case discussions. But in this case we can use the root α′ of h to get
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the complete classification. Case I turns out to be very difficult, and we can only get some
partial classification result for this case.

Adding the reversibility assumption will provide an alternative certification that the clas-
sification result in [3] is correct.

3.4 The homogeneous flag curvature formula and the key lemmas

First we quote the following theorem which gives a very useful homogeneous flag curvature
formula.

Theorem 3.5 Let (G/H, F) be a connected homogeneous Finsler space, and g = h+m be
anAd(H)-invariant decomposition for G/H. Then for any linearly independent commutative
pair u and v in m satisfying 〈[u,m], u〉F

u = 0, we have

K F (o, u, u ∧ v) = 〈U (u, v), U (u, v)〉F
u

〈u, u〉F
u 〈v, v〉F

u − 〈u, v〉F
u 〈u, v〉F

u
,

where U is the bilinear map from m × m to m defined by

〈U (u, v), w〉F
u = 1

2

(
〈[w, u]m, v〉F

u + 〈[w, v]m, u〉F
u

)
, for any w ∈ m,

here [·, ·]m = prm ◦[·, ·] and prm is the projection with respect to the given Ad(H)-invariant
decomposition.

Theorem 3.5 is a corollary of the more general homogeneous flag curvature formula of
Huang in [12]. It can also be proven directly by the Finslerian submersion technique. All the
details of its proof can be found in [23].

We will use this important homogeneous flag curvature formula to prove two key lem-
mas for odd-dimensional positively curved reversible homogeneous Finsler spaces. As the
preparation for proving the key lemmas, we will present some results on the gF

u -orthogonal
(i.e. with respect to the inner product 〈·, ·〉F

u ) decomposition of m. These lemmas will also
be crucial for our later discussions.

Lemma 3.6 Keep the above assumptions and notations.

(1) Let u be a nonzero vector in ĝ0 ⊂ m. Then m has a gF
u -orthogonal decomposition as the

sum of all m̂±α′ = ĝ±α′ ∩ m, α′ ∈ t ∩ h. In particular, m̂0 = ĝ0.
(2) If dim ĝ0 = 3, then there is a fundamental Cartan subalgebra t, such that for any nonzero

vector u ∈ t ∩ m, we have 〈t ∩ m, g±α〉F
u = 0, where α is the root in t ∩ m.

Proof (1) Let TH be the torus in H with Lie(TH ) = t ∩ h. Since both F and u ∈ ĝ0 are
Ad(TH )-invariant, the inner product 〈·, ·〉F

u is also Ad(TH )-invariant. The summands
given in the decomposition correspond to different irreducible representations of TH ;
thus, it is a gF

u -orthogonal decomposition.
(2) Choose the F-unit vector u ∈ ĝ0 such that ||u||bi reaches the maximum among all F-unit

vectors in ĝ0. Then t0 = t∩h+Ru is also a fundamental Cartan subalgebra of g. Notice
that for α′ ∈ t ∩ h, the subspace ĝ±α′ does not change when t is replaced with t0. The
bi-invariant orthogonal complement u⊥ ∩ ĝ0 of u in ĝ0 is a root plane g±α for t0. Then
our assumption on u implies that

〈t0 ∩ m, g±α〉F
u = 〈Ru, u⊥ ∩ ĝ0〉F

u = 0.

This completes the proof of the lemma.
��
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Lemma 3.7 Keep the above assumptions and notations. Let u ∈ m be a nonzero vector in a
root plane m̂±α′ with α′ �= 0. Denote the bi-invariant orthogonal complement of α′ in t ∩ h

as t′, and the bi-invariant orthogonal projection to t′ as prt′ . Then m can be gF
u -orthogonally

decomposed as the sum of

ˆ̂m±γ ′′ =
⎛
⎝ ∑

prt′ (γ )=γ ′′
g±γ

⎞
⎠ ∩ m =

∑
prt′ (γ ′)=γ ′′

(ĝ±γ ′ ∩ m)

=
⎛
⎝ ∑

γ∈τ+Rα+t∩m
g±γ

⎞
⎠ ∩ m,

where τ is a root of g with prt′(τ ) = γ ′′ �= 0, and m̂0 =
( ∑

γ∈Rα+t∩m
g±γ

)
∩ m + t ∩ m.

Proof The existence of nonzero vector u in m̂±α′ implies the existence of a root α of g such
that prh(α) = α′. The subalgebra t′ = α′⊥ ∩ (t ∩ h) is the intersection of the Weyl wall
bi-invariant orthogonal to α and the Cartan subalgebra t ∩ h of h. So there is a subtorus
T ′ in TH with Lie(T ′) = t′. Since both F and u are Ad(T ′)-invariant, the inner product
〈·, ·〉F

u on m is also Ad(T ′)-invariant. The summands given in the decomposition correspond
to different irreducible representations of T ′; thus, it is an orthogonal decomposition with
respect to 〈·, ·〉F

u . ��
The following lemma does not hold in general without the reversibility assumption.

Lemma 3.8 Keep the above assumptions and notations. Then for any nonzero vector u ∈
m̂±α′ = ĝ±α′ ∩ m with α′ �= 0, and any β ′ ∈ t ∩ h which is not an even multiple of α′, we
have

〈m̂±β ′ , ĝ0〉F
u = 0.

In particular, we have

〈m̂±α′ , ĝ0〉F
u = 0.

Proof Without losing generality, we can assume that m̂±β ′ �= 0. Then dim m̂±β ′ = 2k > 0
is even. Hence there exists an element g in the maximal torus TH of H , and a bi-
invariant orthonormal basis {u1, v1, u2, v2, . . . , uk, vk} of ĝ±β ′ ∩m such that Ad(g)|m̂±α′ =
−Id,Ad(g)|ĝ0 = Id, and for each i,Ad(g)|Rui +Rvi is the anticlockwise rotation R(θ) with
angle θ ∈ (0, 2π).

Since F is Ad(g)-invariant, for any w1 ∈ Rui + Rvi and w2 ∈∈ ĝ0 ∩ m, we have

〈w1, w2〉F
u = 〈Ad(g)w1,Ad(g)w2〉F

Ad(g)u = 〈R(θ)w1, w2〉F−u = 〈R(θ)w1, w2〉F
u .

Repeating this procedure, we get 〈w1, w2〉F
u = 〈R(nθ)w1, w2〉F

u for each n ∈ N. So

〈w1, w2〉F
u = lim

n→∞〈1
n

(R(θ)w1 + · + R(nθ)w1), w2〉F
u = 0.

Now the above argument holds for any i between 1 to k. This proves the lemma. ��
Now we are ready to use the homogeneous flag curvature formula prove two key lemmas.
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Lemma 3.9 Let F be a positively curved homogeneous Finsler metric on the odd-
dimensional coset space G/H. Keep all the relevant notation as before. If α is a root of
g contained in t ∩ h, and it is the only root of g contained in α + (t ∩ m), then it is a root of
h and we have h±α = ĝ±α = g±α .

Proof We only need to prove that α is a root of h. The other statement follows easily.
Assume conversely that α is not a root of h. Then g±α = ĝ±α is contained in m. By (2) of

Lemma 3.6, if dim ĝ0 = 3, then there exists a fundamental Cartan subalgebra t and a nonzero
u in t ∩ m, such that

〈u⊥ ∩ ĝ0, u〉F
u = 0, (3.11)

where u⊥ ∩ ĝ0 is the bi-invariant orthogonal complement of u in ĝ0. Let v be a nonzero
vector in g±α . Since α ∈ t ∩ h, it is easy to see that u and v are linearly independent and
commutative.

Let α′ = prh(α). Then a direct calculation shows that

[u,m]m ⊂ u⊥ ∩ ĝ0 +
∑

γ ′ �=α′,γ ′ �=0

ĝ±γ ′ .

Thus by (3.11) and (1) of Lemma 3.6, we have

〈[u,m]m, u〉F
u = 〈[u,m]m, v〉F

u = 0. (3.12)

On the other hand, a direct calculation also shows that

[v,m]m ⊂
∑
γ ′ �=0

ĝ±γ ′ .

Hence by (1) of Lemma 3.6, we have

〈[v,m]m, u〉F
u = 0. (3.13)

Taking the summation of (3.12) and (3.13), we get U (u, v) = 0. Hence by Theorem 3.5,
we have K F (o, u, u ∧ v) = 0. This is a contradiction. ��
Lemma 3.10 Let F be a reversible positively curved homogeneous Finsler metric on an
odd-dimensional coset space G/H. Keep all the relevant notations as before. Then there
does not exist a pair of linearly independent roots α and β of g such that the following
(1)–(4) hold simultaneously:

(1) Neither α nor β is a root of h;
(2) None of α ± β is a root of g;
(3) ±α are the only roots of g in Rα + t ∩ m;
(4) ±β are the only roots of g in Rα ± β + t ∩ m.

Though (2) is implied by (4), we prefer to list it separately because in some cases of our
later discussion, (4) is not satisfied but (1)–(3) are.

Proof Assume conversely that there are roots α and β of g satisfying (1)–(4) of the lemma.
Denote α′ = prh(α) and β ′ = prh(β). Then g±α = ĝ±α′ must be contained in m, otherwise
by (3) of the lemma, g±α is a root plane in h, and hence α ⊂ [g±α, g±α] ⊂ h is a root of h,
which is a contradiction to (1). Similarly, by (1) and (4) of the lemma, g±β = ĝ±β ′ is also
contained in m.
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First we consider the case that α′ �= 0, i.e., α is not contained by t∩m. Let u and v be any
nonzero vectors in g±α and g±β , respectively. By (1) of the lemma and the above argument,
they must be linearly independent and commutative.

Let u′ be another nonzero vector in g±α such that 〈u, u′〉bi=0. Because of the Ad(TH )-
invariance of F, F |g±α coincides with the restriction of the bi-invariant inner product up to
a scalar. So we have

〈u⊥ ∩ g±α, u〉F
u = 〈Ru′, u〉F

u = 0, (3.14)

where u⊥ ∩ g±α = Ru′ is the bi-invariant orthogonal complement of u in g±α .
Let t′ be the bi-invariant orthogonal complement of α in h, and prt′ be the orthogonal

projection to t′ with respect to the bi-invariant inner product. By Lemma 3.7, m can be
gF

u -orthogonally decomposed as the sum of

ˆ̂m±γ ′′ =
⎛
⎝ ∑

prt′ (γ )=γ ′′
gγ

⎞
⎠ ∩ m

for all different {±γ ′′} ⊂ t′. In particular, (3) and (4) of the lemma indicates that

ĝ0 = t ∩ m, ˆ̂m0 = t ∩ m + g±α, and ˆ̂m±β ′′ = g±β, (3.15)

where β ′′ = prt′(β).
Now (1), (2) of the lemma and a direct calculation implies that

[u,m] ⊂ t ∩ m + u⊥ ∩ g±α +
∑

γ ′′ �=0,γ ′′ �=±β ′′,

ˆ̂m±γ ′′ .

So by Lemmas 3.8, 3.7 and (3.14), we have

〈[u,m]m, u〉F
u = 〈[u,m]m, v〉F

u = 0. (3.16)

On the other hand, a direct calculation also shows that

[v,m]m ⊂ ĝ0 +
∑
γ ′′ �=0

ˆ̂m±γ ′′ .

Thus by Lemmas 3.8 and 3.7, we have

〈[v,m]m, u〉F
u = 0. (3.17)

Taking the summation of (3.16) and (3.17), we get U (u, v) = 0. Hence by Theorem 3.5, we
have K F (o, u, u ∧ v) = 0. This is a contradiction. ��

Notice that Lemmas 3.6, 3.7 and 3.9 does not require F to be reversible. For most cases
in later discussions, the key lemmas will be enough to deduce our classification. But in some
cases (Sect. 5.5 for example), we need to use Theorem 3.5 more carefully to complete the
proofs.

4 Case III: The general reduction and the classical groups

In this section, we consider the Case III for classical groups.
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4.1 The general reduction

Assume that (G/H, F) is an odd-dimensional positively curved reversible homogeneous
Finsler space in Case III. We have chosen the bi-invariant inner product for the compact Lie
algebra g = Lie(G) such that the root system of g is presented as the subset of t. Then for
the bi-invariant orthogonal decomposition g = h +m, and a fundamental Cartan subalgebra
t, there exists a pair of roots α and β of g from the same simple factor, with α �= ±β, such
that prh(α) = prh(β) = α′ is a root of h. Obviously, in this case t ∩ m is spanned by α − β.

We first prove the following lemma.

Lemma 4.1 Let (G/H, F) be an odd-dimensional positively curved reversible homogeneous
Finsler space in Case III. Keep all the relevant notations. Then (G/H, F) is equivalent to
a positively curved reversible homogeneous Finsler space (G ′/H ′, F ′) in Case III with a
compact simple Lie group G ′.

Proof Suppose g has a direct sum decomposition as

g = g0 ⊕ g1 · · · ⊕ gn,

where g0 is an abelian subalgebra, and for i > 0, gi is a simple ideal of g. Let α and β be
two roots of g1. So g0 and t ∩ gi for i > 1 are contained in h.

Let γ be any root of gi with i > 1. Then γ is the only root contained in γ + t ∩ m. Thus
by Lemma 3.9, γ is a root of h and g±γ = h±γ is contained in h. So we have gi ⊂ h for each
i > 1. Let G ′/H ′ be the homogeneous space corresponding to the pair g1 and h1 = h ∩ g1.
Then G ′/H ′ admits a homogeneous Finsler metric F ′ naturally induced by F , such that
(G/H, F) is equivalent to (G ′/H ′, F ′). This completes the proof of the lemma. ��

Since Lemma 3.9 holds without the reversible assumption, Lemma 4.1 is also valid for
non-reversible metrics.

In the following, we will start a case-by-case consideration of the compact simple Lie
algebras. However, there are some common subcases which can be uniformly dealt with. We
summarize them as the following lemma.

Lemma 4.2 Let (G/H, F) be an odd-dimensional positively curved reversible homogeneous
Finsler space in Case III, with compact simple Lie algebra g = Lie(G). Then for any two
different roots α and β such that prh(α) = prh(β) = α′ is a root of h, the angle between α

and β can not be π
3 or 2π

3 .

Proof First we assume that g �= G2 and prove that the angle between α and β can not be π
3 .

Assume conversely that the angle betweenα andβ is π
3 . Let t

′ = α′⊥∩t∩h = (Rα+Rβ)⊥∩t

be the bi-invariant orthogonal complement of α′ in t∩h, and T ′ be the corresponding torus in
H . Notice that there is a decomposition Lie(CG(T ′)) = t′ ⊕ A2 such that α and β are roots
of the A2-factor. By Lemma 3.1, there is a positively curved homogeneous Finsler space
(G ′′/H ′′, F ′′), where g′′ = Lie(G ′′) = su(3), and h′′ = Lie(H ′′) = A1 is linearly spanned
by

w1 = √−1

⎛
⎝−2 0 0

0 1 0
0 0 1

⎞
⎠ , w2 = √−1

⎛
⎝ 0 ā b̄

a 0 0
b 0 0

⎞
⎠ , and

w3 = 1

3
[w1, w2] =

⎛
⎝ 0 ā b̄

−a 0 0
−b 0 0

⎞
⎠ ,

123



Towards the classification of odd-dimensional homogeneous... 1473

where a, b ∈ C and (a, b) �= (0, 0). But then [w3, w1] is not contained in h′′. This is a
contradiction.

Now we prove that the angle between α and β can not be 2π
3 . Assume conversely that it

is 2π
3 . Then α′ = 1

2 (α + β) is a root of h. But then γ = 2α′ = α + β is a root of g contained
in t ∩ h, and it is the only root contained in γ + (t ∩ m). So by Lemma 3.9, γ = 2α′ is also
a root of h. This is a contradiction.

Finally, we assume that g = G2 and prove that the angle between α and β can not be π
3 . If

α and β are short roots, then they can be replaced with two long roots with angle 2π
3 , which

has already been proven to be impossible. If α and β are long roots, then α′ = 1
2 (α + β) is a

root of h. By Lemma 3.9 and a similar argument as above, the short root γ = 1
3 (α+β) = 2

3α
′

is also a root of h. This is a contradiction. ��
Nowwe start the case-by-case discussion. Notice that in the following, we always assume

that the relevant coset space has been endowed with an invariant reversible Finsler metric
with positive flag curvature. If a contradiction arises, then we can conclude that the coset
space cannot be positively curved in the reversible homogeneous sense. In each case, we use
the standard presentation of the root systems and divide the discussion into subcases with
respect to the rank of G, the long/short roots choices of α and β and the angle between α and
β. Using theWeyl group actions and more outer automorphisms for Dn and E6, the subcases
can be reduced to the following.

4.2 The case g = An

We only need to consider the following subcases.

Subcase 1 n = 3, and α = e1 − e4, β = e3 − e2.

In this case, we have t∩m = R(e1 + e2 − e3 − e4) and α′ = 1
2 (e1 − e2 + e3 − e4) is a root

of h. By Lemma 3.9, e1 − e2 and e3 − e4 are roots of h. Notice that ĝ±(e1−e2) = g±(e1−e2) is a
root plane of h. Let β ′ = 1

2 (−e1+e2+e3−e4) ∈ t∩h. Then any non zero u ∈ g±(e1−e2) ⊂ h

defines a linear isomorphism

ad(u) : ĝ±α′ = g±(e1−e4) + g±(e2−e3) → ĝ±β ′ = g±(e2−e4) + g±(e1−e3). (4.18)

Since u ∈ h, ad(u) preserves the bi-invariant orthogonal decomposition. So β ′ = 1
2 (−e1 +

e2 + e3 − e4) is also a root of h. It follows that h = B2 and its root system is

{±(e1 − e2),±(e3 − e4),±α′,±β ′}.
Nowwe prove that up to conjugation, h is uniquely determined. By (4.18), it is easy to see

that h is uniquely determined by h±α′ . Let g′ be the subalgebra of g isomorphic to A1 ⊕ A1,
defined by

g′ = Rα + Rβ + g±(e1−e4) + g±(e2−e3),

and let h′ be the subalgebra of g′ defined by h′ = Rα′+h±α′ . Suppose t′ = t∩g′ = Rα+Rβ is
a fundamental Cartan subalgebra of g′. Thenwe also have the induced bi-invariant orthogonal
decomposition g′ = h′+m′ such thatm′ = m∩g′ and t′∩m′ = t∩m. Notice also that h′ can not
have nonzero intersectionwith either of the two simple factors of g′, otherwise, byAd(exp h′)-
actions, the whole subalgebra h′ coincides with that factor, which is a contradiction with the
fact that α, β /∈ h′.

The following lemma will be useful.
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Lemma 4.3 Let g′ = g1 ⊕ g2 = A1 ⊕ A1 be endowed with a bi-invariant inner product.
Assume that t′ is a Cartan subalgebra, and h′ and h′′ are subalgebras of g′ isomorphic to A1

satisfying the following conditions:

(1) h′ ∩ t′ = h′′ ∩ t′ is one dimensional.
(2) h′ ∩ gi = h′′ ∩ gi = 0, i = 1, 2.
(3) h′ ∩ (h′ ∩ t′)⊥ ⊂ t′⊥, and h′′ ∩ (h′′ ∩ t′)⊥ ⊂ t′⊥, where the orthogonal complements

are taken with respect to the chosen bi-invariant inner product on g.

Then there is an Ad(exp t′)-action which maps h′ onto h′′.

Proof We first give a definition. For a compact Lie algebra of type A1 endowed with a
bi-invariant inner product, we call the bi-invariant orthogonal basis {u1, u2, u3} standard, if
[ui , u j ] = uk for (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2). Then all ui ’s have the same length
c which only depends on the scale of the bi-invariant inner product. The bracket u′

3 = [u′
1, u′

2]
of any two orthogonal vectors with length c is also a vector with length c, and {u′

1, u′
2, u′

3} is
a standard basis as well.

Now we go back to the proof. Let c1 and c2 be the length of the standard basis vectors
for g1 and g2, respectively. Then we can choose standard bases {u1, u2, u3} and {v1, v2, v3}
for g1 and g2, respectively, as follows. First, we choose vectors u1 and v1 from t′ ∩ g1 and
t′ ∩ g2 with length c1 and c2, respectively. Then we freely choose any vectors u2 of length
c1 from t′⊥ ∩ g1 and set u3 = [u1, u2]. By (2) and (3) in the lemma, we can find a vector of
h′ from u2 + g2 ∩ t′⊥. Then its g2-factor is not 0, which can be positively scaled to a vector
v2 with the length c2. Then v1, v2, v3 = [v1, v2] form a standard basis for g2.

Now suppose h′ is linearly spanned by u1 + av1, u2 + bv2, and their bracket can be
expressed as

[u1 + av1, u2 + bv2] = u3 + abv3,

where a is a fixed nonzero constant and b > 0. As a Lie algebra, h′ contains [u2 + bv2, u3 +
abv3] = u1 + ab2v1, hence b = 1.

With h′ changed to h′′, the same argument above can also give standard bases {u′
1, u′

2, u′
3}

and {v′
1, v

′
2, v

′
3} for g1 and g2, respectively, such that u′

i = ui for each i , and v′
1 = v1. Then

it is easy to see that there exists a real number t such that Ad(exp(tv1)) maps v2 to v′
2, v3 to

v′
3, and keep v1 and all the vectors ui unchanged. So it maps h′ isomorphically to h′′. ��
By Lemma 4.3, it is easy to see that, up to the Ad(exp t)-actions which preserve all the

roots and root planes of g, h±α′ is uniquely determined. So h is conjugate to the standard
subalgebra sp(2) in su(4) which makes G/H a symmetric space. Since A3 = D3, G/H
is equivalent to the standard Riemannian sphere S5 = SO(6)/SO(5) with constant positive
curvature.

In this subcase, we can also directly prove that G/H is a symmetric homogeneous space,
that is, [m,m] ⊂ h, and then apply the classification of symmetric homogeneous spaces to
get the classification. However, this argument is not valid for some other subcases below.

Subcase 2 n = 4, and α = e1 − e4, β = e3 − e2.

In this case, we have t ∩ m = R(e1 + e2 − e3 − e4), and α′ = 1
2 (e1 − e2 + e3 − e4) is

a unit root of h. Notice that prh(ei − e5), 1 ≤ i ≤ 4, can not be a root of h since it is not

orthogonal to α′ and its length is
√
7
2 . Thus any root of h must be of the form prh(ei − e j )

with 1 ≤ i < j ≤ 4. A similar argument as in Subcase 1 then shows that the root system of h
is of type B2 = C2, i.e., up to the Ad(SU(4))-actions, h = R(e1 + e2 + e3 + e4 − 4e5) ⊕ h′,
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where h′ is the standard subalgebra sp(2) in su(4) corresponding to ei with 1 ≤ i ≤ 4. So
G/H is equivalent to the Berger’s space SU(5)/Sp(2)U(1), which admits positive curved
normal homogeneous (Riemannian) metrics.

Subcase 3 n > 4, and α = e1 − e4, β = e3 − e2.

We have t ∩m = R(e1 + e2 − e3 − e4) and α′ = 1
2 (e1 − e2 + e3 − e4) is a unit root of h.

Then it is easy to check that the roots γ1 = e1 − e5 and γ2 = e2 − e6 satisfy the conditions
(1)–(4) of Lemma 3.10; hence, the corresponding coset space does not admit any invariant
reversible Finsler metric with positive flag curvature.

4.3 The case g = Bn with n > 1

We only need to consider the following subcases.

Subcase 1 α = e1 + e2, β = e2.

In this case, t ∩ m = Re1 and α′ = e2 is a root of h, with

h±e2 ⊂ ĝ±e2 = g±(e2−e1) + g±e2 + g±(e2+e1).

Denote g′ = Re1+Re2+∑
a,b g±(ae1+be2) and g

′′ = Re1+g±e1 . Then g
′, g′′ are Lie algebras

of types B2 = so(5) and A1, respectively. The subalgebra h∩g′ of type A1 is linearly spanned
by

u =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ ∈ Re2, v =

⎛
⎜⎜⎜⎜⎝

0 0 0 −a −a′
0 0 0 −b −b′
0 0 0 −c −c′
a b c 0 0
a′ b′ c′ 0 0

⎞
⎟⎟⎟⎟⎠ ∈ h±e2 ,

and

w = [u, v] =

⎛
⎜⎜⎜⎜⎝

0 0 0 a′ −a
0 0 0 b′ −b
0 0 0 c′ −c

−a′ −b′ −c′ 0 0
a b c 0 0

⎞
⎟⎟⎟⎟⎠ ,

in which (a, b, c, a′, b′, c′) is a nonzero vector in R
6. Since [v,w] ∈ h ∩ g′, (a, b, c) and

(a′, b′, c′) are linearly dependent vectors. Using a suitable isomorphism l ∈ Ad(exp g′′) of g,
we can make b = c = b′ = c′ = 0, i.e., up to equivalence, we can assume that h±e2 = g±e2 .
Thus g±(e2±e1) ∈ m.

By Lemma 3.9, any root ±ei ± e j of g with 1 < i < j must be a root of h and we have
h±(ei ±e j ) = g±(ei ±e j ) = ĝ±(ei ±e j ). By the linear isomorphism ad(w) between ĝ±e2 and ĝ±ei ,
for any nonzero vector w ∈ g±(e2−ei ) with i > 2, we have g±ei ⊂ h. Moreover, for any
i ≥ 2, we have g±(ei ±e1) ⊂ m. To summarize, we have

m = Re1 + g±e1 +
n∑

i=2

(g±(ei +e1) + g±(ei −e1)). (4.19)

Let {u, u′} be a bi-invariant orthonormal basis of g±(e1+e2) and choose a nonzero vec-
tor v from g±(e1−e2) such that 〈u′, v〉F

u = 0. Since the Minkowski norm F |g±(e1+e2)
is

123



1476 M. Xu, S. Deng

Ad(exp(Re2))-invariant, it coincides with the restriction of the bi-invariant inner product
up to scalar changes. So we have

〈u′, u〉F
u = 〈[u, e1], u〉F

u = 〈[u, e2], u〉F
u = 0. (4.20)

Now a direct calculation shows that

[u,m]m ⊂ R[e1, u] + Re1 ⊂ Ru′ + ĝ0.

By Lemma 3.8,

〈v, ĝ0〉F
u = 〈u, ĝ0〉F

u = 0,

so by our assumptions on u and v, we have

〈[u,m]m, u〉F
u = 〈Ru′, u〉F

u = 0, (4.21)

and

〈[u,m]m, v〉F
u = 〈Ru′, u〉F

u + 〈ĝ0, v〉F
u = 0. (4.22)

Since e2 ∈ h, by Theorem 1.3 of [8], we have

〈[e2, v], u〉F
u = −〈[e2, u], v〉F

u − 2C F
u (u, v, [e2, u]). (4.23)

By (4.20), the first term of the right side of above equation vanishes. By the property of
Cartan tensor, C F

u (u, ·, ·) ≡ 0, so the second term also vanishes. Thus we have

〈[e1, v], u〉F
u = 〈[e2, v], u〉F

u = 0. (4.24)

A direct calculation then shows that

[v,m]m ⊂ R[e1, v] + ĝ0.

By Lemma 3.8 and (4.24), we have

〈[v,m]m, u〉F
u = 〈R[e1, v], u〉F

u + 〈ĝ0, u〉F
u = 0. (4.25)

Taking the summation of (4.21), (4.22) and (4.25), we getU (u, v) = 0.Hence byTheorem
3.5, we have K F (o, u, u ∧ v) = 0. Therefore, the corresponding coset space does not admit
any invariant reversible Finsler metric with positive flag curvature.

Subcase 2 α = e1 + e2, β = e2 − e1.

This subcase has been covered by Subcase 1.

Subcase 3 n = 4, and α = e1 + e2, β = −e3 − e4.

In this case, we have t ∩ m = R(e1 + e2 + e3 + e4), and α′ = 1
2 (e1 + e2 − e3 − e4) is

a root of h with h±α′ ⊂ ĝ±α′ = g±(e1+e2) + g±(e3+e4). The argument here is very similar to
Subcase 1 for An . Obviously h±α′ is not a root plane of g. By Lemma 3.9, if 1 ≤ i < j ≤ 4,
then the root ei − e j of g is also a root of h with h±(ei −e j ) = g±(ei −e j ) = ĝ±(ei −e j ). Using
the action ad(u), one easily shows that for any non zero vector u ∈ g±(ei −e j ) ⊂ h, with

(i, j) = (2, 3) or (2, 4), both β ′ = 1
2 (e1 + e3 − e2 − e4) and γ ′ = 1

2 (e1 + e4 − e2 − e3)
are also roots of h. Hence h is of type B3, and it is uniquely determined by the choice
of h±α′ . By Lemma 4.3, up to the Ad(G)-action, the subalgebra h is unique. So we can
assume h to be the standard subalgebra such that the pair (g, h) defines the homogeneous
Finsler sphere S15 = Spin(9)/Spin(7), i.e., in this subcase (G/H, F) must be equivalent
to the homogeneous sphere S15 = Spin(9)/Spin(7) on which there exist positively curved
homogeneous Riemannian metrics.

123



Towards the classification of odd-dimensional homogeneous... 1477

Subcase 4 n > 4, and α = e1 + e2, β = −e3 − e4.

We have t∩m = R(e1 + e2 + e3 + e4), and it is easily seen that α′ = 1
2 (e1 + e2 − e3 − e4)

is a unit root of h. Then the roots γ1 = e1 + e5 and γ2 = e1 − e5 satisfy (1)–(4) of Lemma
3.10. Hence the corresponding coset space does not admit any invariant reversible Finsler
metric with positive flag curvature.

Subcase 5 n = 3, and α = e1 + e2, β = −e3.

Then we have t∩m = R(e1+e2+e3) and α′ = 1
3 (e1+e2−2e3) is a root of h. The argument

here is similar to that of Subcase 3. By Lemmas 3.9 and 3.4, the root system of h contains
the roots

±(ei − e j ), 1 ≤ i < j ≤ 3,

and

1

3
(e1 + e2 + e3) − ei , 1 ≤ i ≤ 3.

The subalgebra h is of type G2 and is uniquely determined by the choice of

h±α′ ⊂ ĝ±α′ = g±(e1+e2) + g±e3 .

By Lemma 4.3, up to the Ad(G)-action, there exists a unique h, and the corresponding coset
space is the homogeneous sphere S7 = Spin(7)/G2. Notice that in this case the isotropy
action is transitive, so any homogeneous Finsler metric on it must be Riemannian with
positive constant curvature. Consequently in this subcase (G/H, F) is equivalent to the
Riemannian homogeneous sphere S7 = Spin(7)/G2 of positive constant curvature.

Subcase 6 n > 3, and α = e1 + e2, β = −e3.

In this case, t ∩ m = R(e1 + e2 + e3) and α′ = 1
3 (e1 + e2 − 2e3) is a root of h. The roots

γ1 = e1 + e4 and γ2 = e1 − e4 satisfy the conditions (1)-(4) of Lemma 3.10. Hence the
corresponding coset space does not admit any invariant reversible Finsler metric with positive
flag curvature.

Subcase 7 α = e1, β = e2.

In this case, t ∩ m = R(e1 − e2) and α′ = 1
2 (e1 + e2) is a root of h. By Lemma 3.9,

2α′ = e1 + e2 is also a root of h. Hence the corresponding coset space does not admit any
invariant reversible Finsler metric with positive flag curvature.

Subcase 8 n = 2, and α = e1 + e2, β = −e1.

In this case, t ∩ m = R(2e1 + e2) and α′ = − 1
5e1 + 2

5e2 is a root of h. The subalgebra h is
of type A1, and is uniquely determined by the choice of h±α′ in ĝ±α′ = g±(e1+e2) + g±e1 .
By Lemma 4.3, h is uniquely determined up to Ad(G)-actions. So G/H must be equivalent
to unique known example in this subcase, i.e., the Berger’s space Sp(2)/SU(2). There exists
positively curved normal homogeneous Riemannian metrics on it.

Subcase 9 n > 2, and α = e1 + e2, β = −e1.

In this case, t∩m = R(2e1 + e2) and α′ = − 1
5e1 + 2

5e2 is a root of h. The roots γ1 = e1 + e3
and γ2 = e1 − e3 satisfy (1)-(3) but does not satisfy (4) of Lemma 3.10, i.e.,±γ1 are the only
roots of g in Rγ1 + t∩m, and all the roots of g in ±γ2 +Rγ1 + t∩m are ±γ2 = ±(e1 − e3)
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and ±γ3 = ±e2. Choosing u and v from g±γ1 and g±γ2 as in the proof for Lemma 3.10, we
can similarly get

〈[u,m]m, u〉F
u = 〈[v,m]m, u〉F

u = 0. (4.26)

Notice that γ1 = e1 + e3 and γ3 = e2 also satisfy (2) of Lemma 3.10, i.e., γ1 ± γ3 are not
roots of g, and Lemma 3.8 implies 〈ĝ0, v〉F

u = 0, so we can still get

〈[u,m]m, v〉F
u = 0. (4.27)

Taking the summation of (4.26) and (4.27), we get U (u, v) = 0. Thus by Theorem 3.5, we
have K F (o, u, u ∧ v) = 0. Hence there does not exist any invariant reversible Finsler metric
on the corresponding coset space with positive flag curvature.

4.4 The case g = Cn with n > 2

We only need to consider the following subcases.

Subcase 1 α = 2e1, β = e1 + e2.

In this case, t ∩ m = R(e1 − e2) and α′ = β = e1 + e2 is a root of h. Let t′ be the
subalgebra of t ∩ h spanned by {e3, . . . , en}, and T ′ the corresponding subtorus in T ∩ H .
Then the Lie algebra of CG(T ′) is t′ ⊕ g′′, in which g′′ is of type B2. If the corresponding
coset space can be positively curved, then Lemma 3.1 implies that the positively curved
reversible homogeneous Finsler space SO(5)/SO(3) should appear in Subcase 1 for Bn ,
which is a contradiction. Hence there does not exist any invariant reversible Finsler metric
on the corresponding coset space with positive flag curvature.

Subcase 2 α = 2e1, β = 2e2.

This subcase has been covered by the previous one.

Subcase 3 α = 2e1, β = −e2 − e3.

In this case, t ∩ m = R(2e1 + e2 + e3) and α′ = 2
3e1 − 2

3e2 − 2
3e3 is a root of h. Then

the roots γ1 = 2e2 and γ2 = 2e3 satisfy the conditions (1)–(4) of Lemma 3.10. Hence there
does not exist any invariant reversible Finsler metric on the corresponding coset space with
positive flag curvature.

Subcase 4 α = e1 + e2, β = e1 − e2.

In this case, t ∩ m = Re2 and α′ = e1 is a root of h. By Lemma 3.9, 2α′ = 2e1 is also a
root of h. This is a contradiction. Hence there does not exist any invariant reversible Finsler
metric on the corresponding coset space with positive flag curvature.

Subcase 5 α = e1 + e2, β = −e3 − e4.

In this case, t ∩ m = R(e1 + e2 + e3 + e4) and α′ = 1
2 (e1 + e2 − e3 − e4) is a root of h.

Then the roots γ1 = 2e1 and γ2 = 2e2 satisfy (1)–(4) of Lemma 3.10. Hence there does not
exist any invariant reversible Finsler metric on the corresponding coset space with positive
flag curvature.

Subcase 6 α = 2e1, β = −e1 − e2.

In this case, t ∩ m = R(3e1 + e2) and α′ = 1
5e1 − 3

5e2 is a root of h. Then the roots
γ1 = e1 + e3 and γ2 = 2e2 satisfy the conditions (1)–(4) of Lemma 3.10. Hence there
does not exist any invariant reversible Finsler metric on the corresponding coset space with
positive flag curvature.
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4.5 The case g = Dn with n > 3

We only need to consider the following subcases.

Subcase 1 α = e1 + e2, β = e2 − e1.

In this case, t ∩ m = Re1 and α′ = e2 is a root of h. Then we can apply Lemmas 3.9, 3.4
and a similar argument as in Subcase 1 for An (which in fact is a special situation of this
subcase), to show that h is of type Bn−1 with all the roots given by

±ei ± e j for 1 < i < j ≤ n and ± ei for 1 < i ≤ n.

We can also use Lemma 4.3 to show that, up to Ad(G)-actions, h is unique, i.e., (G/H, F)

must be equivalent to the Riemannian symmetric sphere SO(2n)/SO(2n − 1) of positive
constant curvature.

Subcase 2 α = e1 + e2 and β = −e3 − e4.

First notice that D4 has outer automorphisms. So the argument in the above subcase
can be applied to this subcase for n = 4, i.e., we get the Riemannian symmetric sphere
S7 = SO(8)/SO(7). If n > 4, then t∩m = R(e1+e2+e3+e4) and α′ = 1

2 (e1+e2−e3−e4)
is a root of h. Then the roots γ1 = e1 + e5 and γ2 = e1 − e5 satisfy the conditions (1)–(4)
of Lemma 3.10. Hence there does not exist any invariant reversible Finsler metric on the
corresponding coset space with positive flag curvature.

5 Case III: The exceptional groups and summary

We continue the case-by-case discussion of the last section and summarize all the results of
these two sections as a theorem at the end, which proves half of the first main theorem in
Sect. 1. We still choose the suitable bi-invariant inner product on g such that the root system

g is viewed as a subset of g with its standard presentation.

5.1 The case g = E6

Without losing generality, we can assume that the orthogonal pair of the roots α and β are
of the form ±ei ± e j . Up to the Weyl group action induced by D5, there are two subcases:
(1) α = e1 + e2 and β = e2 − e1; (2) α = e1 + e2 and β = −e3 − e4. Using the outer
automorphisms of E6 as well as the Weyl group action, the second subcase can be reduced
to the first one. So we can assume that α = e1 + e2 and β = e2 − e1. Then t∩m = Re1, and
α′ = e2 is a root of h. Then the roots

γ1 = −1

2
e1 + 1

2
e2 + 1

2
e3 + 1

2
e4 + 1

2
e5 +

√
3

2
e6,

and

γ2 = −1

2
e1 − 1

2
e2 − 1

2
e3 − 1

2
e4 − 1

2
e5 +

√
3

2
e6

satisfy the conditions (1)–(4) of Lemma 3.10. Hence there does not exist any invariant
reversible Finsler metric on the corresponding coset space with positive flag curvature.
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5.2 The case g = E7

Given an orthogonal pair of roots α and β of g, we can use certain Weyl group action to
change β to

√
2e7. Since β is orthogonal to α, α must be then of the form ±ei ± e j with

1 ≤ i < j ≤ 6. Using Weyl group actions induced by D6, we can change α to e1 + e2 while
keeping β = √

2e7 fixed. So essentially there is only one subcase for the orthogonal pair of
roots. The most convenient way is to choose α = e1 +e2 and β = e2 −e1. Then t∩m = Re1
and α′ = e2 is a root of h. Now the pair of roots

γ1 = −1

2
e1 + 1

2
e2 + 1

2
e3 + 1

2
e4 + 1

2
e5 + 1

2
e6 +

√
2

2
e7,

and

γ2 = 1

2
e1 − 1

2
e2 − 1

2
e3 − 1

2
e4 + 1

2
e5 + 1

2
e6 +

√
2

2
e7

satisfy the conditions (1)–(4) of Lemma 3.10. Hence there does not exist any invariant
reversible Finsler metric on the corresponding coset space with positive flag curvature.

5.3 The case g = E8

Up to the Weyl group action, we can assume that α and β are of the form ±ei ± e j . We only
need to consider the following two subcases.

Subcase 1 α = e1 + e2, β = e2 − e1.

In this case, t ∩ m = Re1 and α′ = e2 is a root of h. The pair of roots

γ1 = 1

2
e1 + 1

2
e2 + 1

2
e3 + 1

2
e4 + 1

2
e5 + 1

2
e6 + 1

2
e7 + 1

2
e8,

and

γ2 = −1

2
e1 − 1

2
e2 − 1

2
e3 − 1

2
e4 + 1

2
e5 + 1

2
e6 + 1

2
e7 + 1

2
e8

satisfy the conditions (1)–(4) of Lemma 3.10. Hence there does not exist any invariant
reversible Finsler metric on the corresponding coset space with positive flag curvature.

Subcase 2 α = e1 + e2 and β = −e3 − e4.

In this case, t ∩ m = R(e1 + e2 + e3 + e4) and α′ = 1
2 (e1 + e2 − e3 − e4) is a root of h.

Then the pair of roots γ1 = e1+e5 and γ2 = e2 +e6 satisfy the conditions (1)–(4) of Lemma
3.10. Hence there does not exist any invariant reversible Finsler metric on the corresponding
coset space with positive flag curvature.

5.4 The case g = F4

Notice that up to the Weyl group action, any short root of F4 can be changed to e1. This
implies that any orthogonal pair of short roots of F4 can be changed to the pairs e1 and −e2.
On the other hand, using the reflections induced by the roots 1

2 (±e1 ± e2 ± e3 ± e4), any
orthogonal pair of long roots can be changed to the pair e1 ± e2. Hence we only need to
consider the following subcases.

Subcase 1 α = e1 + e2, β = e2.
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In this case, t ∩ m = Re1 and α′ = e2 is a root of h. Let t′ be the subalgebra of t ∩ h

spanned by e3 and e4, and T ′ be the closed subtorus in T ∩ H with Lie(T ′) = t′. Then
applying Lemma 3.1 to T ′, we conclude that there should be a positively curved reversible
homogeneous Finsler space SO(5)/SO(3) in Subcase 1 for Bn , which is a contradiction.
Hence there does not exist any invariant reversible Finsler metric on the corresponding coset
space with positive flag curvature.

Subcase 2 α = e1 + e2, β = e2 − e1.

This subcase has been covered by the previous one.

Subcase 3 α = e1 + e2, β = −e3.

In this case, t ∩ m = R(e1 + e2 + e3) and α′ = 1
3e1 + 1

3e2 − 2
3e3 is a root of h with

length
√

2
3 , with h±α′ ⊂ ĝ±α′ = g±(e1+e2) + g±e3 . By Lemma 3.9, ±e4 are roots of h, and

h±e4 = g±e4 = ĝ±e4 . Notice that prh(e4 − e3) is not orthogonal to α′ and has length
√

5
3 . So

prh(e4 − e3) is not a root of h. Thus g±(e4−e3) ⊂ m. Therefore, we have

g±e3 = [g±e4 , g±(e4−e3)] ⊂ m.

Hence h±α′ = g±(e1+e2). Then we have

α′ = 1

3
e1 + 1

3
e2 − 2

3
e3 ⊂ [h±α′ , h±α′ ] = [g±(e1+e2), g±(e1+e2)] = R(e1 + e2),

which is a contradiction. Hence there does not exist any invariant reversible Finsler metric
on the corresponding coset space with positive flag curvature.

Subcase 4 α = e1, β = −e2.

In this case, t ∩ m = R(e1 + e2) and α′ = 1
2 (e1 − e2) is a root of h. By Lemma 3.9,

e1 − e2 = 2α′ is also a root of h, which is a contradiction. Hence there does not exist
any invariant reversible Finsler metric on the corresponding coset space with positive flag
curvature.

Subcase 5 α = e1 + e2, β = −e2.

In this case, t ∩ m = R(e1 + 2e2), and α′ = 2
5e1 − 1

5e2 is a root of h of length
√

1
5 , with

h±α′ ⊂ ĝ±α′ = g±(e1+e2) + g±e2 . By Lemma 3.9, e3 is a root of h and h±e3 = g±e3 = ĝ±e3 .
The vector prh(e2 + e3) is not a root of h, since it is not orthogonal to α′ and its length is√

6
5 . So g±(e2+e3) ⊂ m. Then we have

g±e2 = [g±(e2+e3), g±e3 ] ⊂ m.

This implies that h±α′ = g±(e1+e2). Thenwe can deduce a contradiction by a similar argument
as in Subcase 3 of this section.

There is anotherway to deduce the contradiction. Let t′ = Re4 and T ′ be the corresponding
closed one-parameter subgroup in H . Using Lemma 3.1, we get a positively curved reversible
homogeneous Finsler space in Subcase 9 for Bn , which is impossible.
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5.5 The case g = G2

If the angle between α and β is π
6 or π

2 , we can find a pair of short roots α1 and β1 of g such
that the angle between α1 and β1 is π

3 , and α′ = prh(α1) = prh(β1) is a root of h. This is a
contradiction to Lemma 4.2.

Therefore, we only need to consider the case that α is a long root, β is a short root, and
the angle between them is 5π

6 , α′ = prh(α) = prh(β) is a root of h, and h is of type A1. Let
γ1 = α+3β and γ2 = α+β. Select any two nonzero vectors u ∈ g±γ1 and v ∈ g±γ2 . Then it
is not hard to see that the long root γ1 and the short root γ2 are orthogonal to each other, and
none of γ1 ± γ2 is a root of g. So u and v are linearly independent and commutative. Denote
the anticlockwise rotation with angle θ as R(θ). Then there exists g ∈ TH , and suitable
orthonormal bases for each of the subspaces of m below, such that

Ad(g)|t∩m=ĝ0 = Id,

Ad(g)|ĝ±α′ ∩m = R(π/4),

Ad(g)|g±(α+β)=ĝ±2α′ = R(π/2),

Ad(g)|g±(α+2β)=ĝ±3α′ = R(3π/4),

Ad(g)|g±(α+3β)=ĝ±4α′ = R(π) = −Id,

Ad(g)|g±(2α+3β)=ĝ±5α′ = R(5π/4).

Denote the above subspaces as mk, k = 0, 1, . . . , 5, i.e., the action of Ad(g) on mk is equal
to R(kπ/4). In particular, m0 = t∩m,m2 = g±γ2 and m4 = g±γ1 . By Lemma 3.8, we have

〈m4,mi 〉F
u = 0, ∀i �= 4. (5.28)

For any v′ ∈ m2 and w′ ∈ mi with i �= 2, we have

〈v′, w′〉F
u = 〈Ad(g)v′,Ad(g)w′〉F

Ad(g)u = 〈R(π/2)v′, R(iπ/4)w′〉F−u

= 〈R(π/2)v′, R(iπ/4)w′〉F
u = 〈R(π/2)2v′, R(iπ/4)2w′〉F

u

= 〈−v′, R(iπ/2)w′〉F
u = 〈v′, R((i − 2)π/2)w′〉F

u .

Using a similar argument as in the proof of Lemma 3.8, we get

〈m2,mi 〉F
u = 0, ∀i �= 2. (5.29)

By the Ad(TH )-invariance, the Minkowski norm F |m4 coincides with the restriction of the
bi-invariant inner product up to a scalar change. Thus

〈[u, t], u〉F
u = 0. (5.30)

Now a direct calculation shows that

[u,m]m ⊂ m0 + m1 + m3 + [u, t] + m5,

and

[v,m]m ⊂ m0 + m1 + m2 + m3 + m5.

So by (5.28), (5.29) and (5.30), we have

〈[u,m]m, u〉F
u = 〈[u,m]m, v〉F

u = 〈[v,m]m, u〉F
u = 0. (5.31)

HenceU (u, v) = 0. Then by Theorem 3.5, we get K F (o, u, u∧v) = 0, which is a contradic-
tion. Hence there does not exist any invariant reversible Finsler metric on the corresponding
coset space with positive flag curvature.
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5.6 Summary

We now summarize all the results in Sects. 4 and 5 as the following theorem, which gives a
complete classification of odd-dimensional positively curved reversible homogeneous Finsler
spaces in Case III.

Theorem 3 Let (G/H, F) be an odd-dimensional positively curved reversibly homogeneous
Finsler space of Case III, i.e., with respect to a bi-invariant orthogonal decomposition g =
h+m for the compact Lie algebra g, and a fundamental Cartan subalgebra t, there are roots
α and β of g from the same simple factor, such that α �= ±β and prh(α) = prh(β) = α′ is a
root of h. Then (G/H, F) is equivalent to one of the following homogeneous Finsler spaces:

(1) The odd-dimensional Riemannian symmetric spheres S2n−1 = SO(2n)/SO(2n−1) with
n > 2;

(2) The homogeneous spheres S7 = Spin(7)/G2 and S15 = Spin(9)/Spin(7);
(3) Berger’s spaces SU(5)/Sp(2)U(1) and Sp(2)/SU(2).

6 The cases II and I

In this section, we will consider odd-dimensional positively curved reversible homogeneous
Finsler spaces in Cases II and I.

6.1 The case II

Let (G/H, F) be an odd-dimensional positively curved reversible homogeneous Finsler
space in Case II, i.e., with respect to a bi-invariant orthogonal decomposition g = h + m

for the compact Lie algebra g = Lie(G) and a fundamental Cartan subalgebra t, there exists
two roots α and β of g from different simple factors such that prh(α) = prh(β) = α′ is
a root of h. It is implied by this assumption that H is not a regular subgroup of G, i.e.,
h±α′ ⊂ ĝ±α′ = g±α + g±β is not a root plane of g, or equivalently, g±α and g±β are not
contained in h or m.

First of all, we can find a direct sum decomposition

g = g1 ⊕ · · · ⊕ gn ⊕ R
m,

such that each gi is a simple ideal of g, and α and β are roots of g1 and g2, respectively.
Since t ∩ m = R(α − β) ⊂ g1 ⊕ g2, the abelian factor of g and t ∩ gi for each i > 2 is
contained in t ∩ h. It is also obvious that for each root γ of g with γ �= ±α, γ �= ±β and
prh(γ ) = γ ′, g±γ = ĝ±γ ′ is contained either in h or in m.

Now we prove that for any i > 2, gi is contained in t ∩ h. We only need to prove that
each root plane of gi is contained in h. Let γ be a root of gi . Since i > 2, γ is contained
in t ∩ h and it is the only root of g in γ + (t ∩ m). By Lemma 3.9, γ is a root of h and
g±γ = ĝ±γ = h±γ ⊂ h.

Consider the roots of g1 and g2. Up to equivalence, we can assume that g = g1⊕g2. Let γ
be a root of g1 such that γ �= ±α. Since it is the only root of g1 contained in γ + (t∩m), by
Lemma 3.9, if γ ∈ t∩h, then g±γ ⊂ h. On the other hand, if γ is not bi-invariant orthogonal
to α, then g±γ ⊂ m, because otherwise g±γ ⊂ h and by Lemma 3.4, γ ∈ [g±γ , g±γ ] ⊂ t∩h,
but γ and t ∩ m = R(α − β) are not bi-invariant orthogonal. The similar assertion is valid
for any root of g2.
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Now we claim that there does not exist two roots γ1 and γ2 of g1 and g2, respectively,
such that γ1 �= ±α, γ2 �= ±β, and their root planes are contained in m. If we have such a
pair γ1 and γ2, then they satisfy the conditions (1)–(4) of Lemma 3.10, which is impossible.

Without loss of generality, we can assume that all roots of g1 other than ±α are roots of
h. Thus they are bi-invariant orthogonal to ±α. Since g1 is simple, g1 is of type A1 with the
only roots ±α. Now we consider g2. We first prove the following lemma

Lemma 6.1 Keep the above assumptions and notations. Then there does not exist a pair of
roots γ1 and γ2 of g2 satisfying the following conditions:

(1) γ1 �= ±γ2, γ1 �= ±β and γ2 �= ±β;
(2) Neither γ1 nor γ2 is a root of h;
(3) None of γ1 ± γ2 is a root of g.

Proof Assume conversely that there are two roots γ1 and γ2 of g2 satisfying (1)–(3) of the
lemma. Then it is easy to see that γ1 is the only root in γ1 +R(α − β). On the other hand, if
there exist some real numbers t1 and t2, such that γ3 = γ2+t1γ1+t2(α−β) is a root of g other
than γ2, then we have t2 ∈ {−1, 0, 1}. If t2 = 0, then γ3 = γ2 + t1γ1, with t1 �= 0, is a root
of g2. This is impossible, Since γ1 ± γ2 are not roots of g2. If t2 = ±1 then ±β = t1γ1 + γ2
is a root of g2 other than γ2. Similarly we can get a contradiction. This implies that the pair
of roots γ1 and γ2 satisfy the conditions (1)–(4) of Lemma 3.10, which is a contradiction. ��

Let k be the subalgebra of g2 generated by g±β and h ∩ g2. It has the same rank as g2 and
can be decomposed as a direct sum k = A1 ⊕ (h ∩ g2), in which the A1-factor is generated
by g±β . By Lemma 6.1, the pair (g2, k) satisfies Condition (A) in [16]. Then by Proposition
6.1 of [16], the pair (g2, k) must be one of the following:

(A1, A1), (A2, A1 ⊕ R) or (Cn, A1 ⊕ Cn−1).

Correspondingly, the pair (g, h) must be one of the following:

(A1 ⊕ A1, A1), (A1 ⊕ A2, A1 ⊕ R) or (A1 ⊕ Cn, A1 ⊕ Cn−1),

in which the A1-factor in h is the diagonal subalgebra. Thus the corresponding homogeneous
Finsler space is equivalent to the symmetric homogeneous sphere S3 = SO(4)/SO(3), or
the Wilking’s space SU(3) × SO(3)/U(2) (which coincides with the Aloff–Wallach’s space
S1,1, see [1] and [17]), or the homogeneous sphere S4n−1 = Sp(n)Sp(1)/Sp(n − 1)Sp(1).

To summarize, we have the following theorem, which gives a complete classification of
odd-dimensional positively curved reversible homogeneous Finsler spaces in Case II.

Theorem 6.2 Let (G/H, F) be an odd-dimensional positively curved reversibly homoge-
neous Finsler space of Case II, i.e., with respect to a bi-invariant orthogonal decomposition
g = h+m for the compact Lie algebra g = Lie(G) and a fundamental Cartan subalgebra t of
g, there are roots α and β of g from different simple factors such that prh(α) = prh(β) = α′
is a root of h. Then (G/H, F) is equivalent to one of the following homogeneous Finsler
spaces:

(1) The symmetric homogeneous sphere S3 = SO(4)/SO(3);
(2) The homogeneous spheres Sp(n)Sp(1)/Sp(n − 1)Sp(1);
(3) The Wilking’s space SU(3) × SO(3)/U(2).
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6.2 The case I: The proof for Theorem 2

Let (G/H, F) be an odd-dimensional positively curved reversible homogeneous Finsler
space in Case I, i.e., with respect to the chosen bi-invariant orthogonal decomposition g =
h +m for the compact Lie algebra g = Lie(G) and a fundamental Cartan subalgebra t, each
root plane of h is also a root plane of g. Keep all the relevant notation as before. The root
system of h is then a subset of the root system of g, that is, 
h ⊂ 
g ∩ h. For each root α of
g, we have either g±α = h±α ⊂ h or g±α ⊂ m.

Suppose g has the following direct sum decomposition:

g = g0 ⊕ g1 ⊕ · · · ⊕ gn, (6.32)

where g0 is abelian and each gi , 1 ≤ i ≤ n, is a simple ideal. Given a nonzero vector w

in t ∩ m, let w = w0 + · · · + wn be the decomposition of w with respect to (6.32). Then
it follows from Lemma 3.9 that gi is contained in h if and only if wi = 0, for any nonzero
w ∈ t ∩ m. Now we have the following cases:

Case 1. There exists w ∈ t ∩ m such that w0 �= 0.
We first assert that if α and β are roots of g, with α �= ±β, such that none of them is a

root of h, then at least one of α ± β is a root of g. In fact, otherwise the pair of roots α, β

will satisfy the conditions (1)–(4) of Lemma 3.10, which is a contradiction. Now let k be the
subalgebra generated by h and t. Then we have k = h⊕ (t∩m). Let K be a closed subgroup
of G with Lie(K ) = k. Then we have rkK = rkG. This implies that the pair (g, k) satisfies
the Condition (A) in [16]. Thus we can suppose that in the decomposition (6.32) of g, the
following equation holds:

k = g0 ⊕ k1 ⊕ g2 ⊕ · · · ⊕ gn,

where

(g1, k1) = (An, An−1 ⊕ R), (Cn, Cn−1 ⊕ R), or (A2,R ⊕ R).

Notice that in other spaces of Wallach’s list, the abelian factor required for this situation does
not appear. If g1 = A2, then by Lemma 3.9, no root of g1 can be contained in t ∩ h. Thus
(G/H, F) is equivalent to one of the following:

(1) The homogeneous sphere

S2n−1 = U(n)/U(n − 1) or S4n−1 = Sp(n)U(1)/Sp(n − 1)U(1) for n > 1;
(2) The U(3)-homogeneous presentations of Aloff–Wallach’s spaces Sk,l = U(3)/T 2, in

which T 2 is a two-dimensional torus of diagonal matrices which does not contain the
centre of U(3) and

T 2 ∩ SU(3) = Uk,l = {diag(zk, zl , z−k−l)|z ∈ C, |z| = 1},
where k and l are integers satisfying kl(k + l) �= 0.

Notice that the SU(3)-homogeneous space Sk,l have infinitely many different presentation
as U(2)-homogeneous spaces; see [1].

Case 2. There exists w ∈ t ∩ m with decomposition w = w1 + w2, where both w1 and w2

are nonzero.
Up to equivalence, we can assume that g = g1 ⊕ g2.
We first assert that there does not exist a root α of g1, and a root β of g2 such that

α /∈ Rw1, β /∈ Rw2, and none of them is a root of h. In fact, otherwise the pair of roots α and

123



1486 M. Xu, S. Deng

β will satisfy (1)–(4) of Lemma 3.10, which is a contradiction. Without loss of generality,
we can assume that all the roots of g1 outside Rw1 are roots of h, i.e., they are contained in
t ∩ h ∩ g1 which is bi-invariant orthogonal to w1. By the simpleness of g1, we must have
g1 = A1, and the only roots in t ∩ g1 = Rw1 are ±α. There are two subcases:

Subcase 1 There exists a root β of g2 contained in Rw2.

Obviously neither α nor β is a root of h, i.e., their root planes are contained in m. Let t′
be the bi-invariant orthogonal complement of w2 in g2 and T ′ be the corresponding torus
in H . Using Lemma 3.1 for T ′, we get a positively curved reversible homogeneous Finsler
space SU(2) × SU(2)/U(1) in Case I, in which U(1) is not contained in any of the simple
factors. To prove the reversible homogeneous space G/H can not be positively curved in this
subcase, we only need to consider the situation that g2 = A1, and the only roots are ±β. By
suitably reordering the two simple factors, we can assume that α + cβ ∈ t ∩m with |c| ≥ 1.
Denote α′ = prh(α) and β ′ = prh(β). Then the above assumption implies that β ′ is not an
even multiple of α′.

Let {u, u′} be a bi-invariant orthonormal basis of g±α , and v a nonzero vector in g±β

such that 〈u′, v〉F
u = 0. Obviously u and v are linearly independent and commutative. By the

Ad(H)-invariance, the Minkowski norm F |g±α coincides with the bi-invariant inner product
up to scalar changes. Thus

〈u′, u〉F
u = 〈[t, u], u〉F

u = 0.

By the assumption that β ′ is not an even multiple of α′ and Lemma 3.8, we have

〈t ∩ m, u〉F
u = 〈t ∩ m, v〉F

u = 0. (6.33)

Then a direct calculation shows that

[u,m]m = t ∩ m + [t, u]. (6.34)

So by (6.33), we get

〈[u,m]m, u〉F
u = 〈t ∩ m, u〉F

u + 〈Ru′, u〉F
u = 0, (6.35)

and

〈[u,m]m, v〉F
u = 〈t ∩ m, v〉F

u + 〈Ru′, v〉F
u = 0. (6.36)

Now a direct calculation shows that

[v,m]m = t ∩ m + [t ∩ m, v] = t ∩ m + [t ∩ h, v]. (6.37)

For any w′ ∈ t ∩ h, we have, by Theorem 3.1 of [8],

〈[w′, v], u〉F
u = −〈v, [w′, u]〉F

u − 2C F
u ([w′, u], v, u) = 0.

So by Lemma 3.8 and (6.37), we have

〈[v,m]m, u〉F
u = 〈[v, t ∩ h], u〉F

u = 0. (6.38)

Taking the summation of (6.35), (6.36) and (6.38), we getU (u, v) = 0.Hence byTheorem
3.5, K F (o, u, u ∧ v) = 0, which is a contradiction. Hence the corresponding coset space
does not admit any invariant Finsler metric with positive flag curvature.

Subcase 2 There does not exist any root of g2 in Rw2.
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Then by the simpleness of g2, there is a root β of g2 which is not bi-invariant orthogonal to
w2. Let u and v be any nonzero vectors in g±α and g±β , respectively. Then they are linearly
independent and commutative. The subalgebra t′ = t∩h∩g2 coincides withw⊥

2 ∩ t∩g2, the
bi-invariant orthogonal complement ofw2 in t∩g2. Denote T ′ the corresponding torus in H .
Since the inner product 〈·, ·〉F

u is Ad(T ′)-invariant, by Lemma 3.7,m can be gF
u -orthogonally

decomposed as the sum ofm′ = ˆ̂m0 = t∩m+g±α for the trivial irreducible T ′-representation
andm′′ ⊂ g2 for nontrivial irreducible T ′-representations. Notice thatm′′ is the sum of some
root planes in g2, and u and v are contained in m′ and m′′, respectively.

Now a direct calculation shows that

[u,m]m = t ∩ m + [t, u] ⊂ m′ and [v,m]m ⊂ t ∩ m + m′′. (6.39)

Moreover, the Ad(TH ) invariance of F |g±α implies that F |g±α coincides with the restriction
of a bi-invariant inner product up to scalar changes. Thus we have

〈[t, u], u〉F
u = 〈[t ∩ h, u], u〉F

u = 0. (6.40)

By Lemma 3.8,

〈t ∩ m, u〉F
u = 0. (6.41)

Taking the summation of (6.39), (6.40) and (6.41), we get

〈[u,m]m, u〉F
u = 〈[u,m]m, v〉F

u = 〈[v,m]m, u〉F
u = 0.

Therefore, U (u, v) = 0. Now by Theorem 3.5, K F (o, u, u ∧ v) = 0. This is a contradiction.
Hence the corresponding coset space does not admit any invariant Finslermetric with positive
flag curvature.

Case 3. There exists w ∈ t ∩ m such that w = w1 + · · · + wm , where m > 2 and
wi �= 0,∀1 ≤ i ≤ m.

If there is a root α /∈ Rw1 of g1, and a root β /∈ Rw2 of g2 such that they are not roots of h,
then they satisfy the conditions (1)–(4) of Lemma 3.10, which is a contradiction. Similarly to
the previous case, we can assume that g1 = A1. Let ±α be the only roots of g1, then we have
g±α ⊂ m. We can also find a root β of g2 which is not bi-invariant orthogonal to w2, then
g±β ⊂ m. Let u and v be any nonzero vectors in g±α and g±β , respectively. Notice there does
not exist any root which is contained in R(w2 + · · · + wm), thus a similar argument as for
Subcase 2 of Case 2 can be applied to prove K F (o, u, u ∧ v) = 0, which is a contradiction.
Hence the corresponding coset space does not admit any invariant reversible Finsler metric
with positive flag curvature.

The only case left is thatw belongs to a simple factor; in this case G/H is equivalent to an
odd-dimensional positively curved reversible homogeneous Finsler space G ′/H ′ such that
G ′ is a compact simple Lie group and H ′ is regular in G ′. Summarizing the above argument
in this subsection, we have proven Theorem 2.
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